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A crucial issuein parallel programming (both for distributed
and shared memory architectures) is work decomposition.
Work decomposition task can be accomplished without large
programming effort with use of high-level parallel program-
ming languages, such as OpenMP. Anyway particular care
must still be payed on achieving performance goals. In this
paper we introduce and compare two decomposition strate-
gies, in theframework of shared memory systems, as applied
to a case study particle in cell application. A number of dif-
ferent implementations of them, based on the OpenMP lan-
guage, are discussed with regard to time efficiency, memory
occupancy, and program restructuring effort.
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1. Introduction

A crucial issue in paralel programming (both for
distributed and shared memory architectures) is work
decomposition, i.e. the assignment of tasks compos-
ing the parallel application under development among
processors. The adoption of an appropriate workload
decompositionis crucia for achieving the desired per-
formance results. Primary performance goals of work
decomposition are balancing the workload among pro-
cesses/threads, reducing interprocess communication
or dataaccess contention (for shared memory program-
ming) and reducing the overhead due to managing the
work decomposition itself.

Work decompositiontask can be accomplished with-
out large programming effort with use of high-level
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parallel programming environments/languages, such as
High Performance Fortran (HPF) [13] (for distributed
memory systems), and OpenM P [20] (for shared mem-
ory systems), expecially whentheissueis porting large
sequential codes to parallel architectures. While the
developer is leveraged, with the adoption of high-level
languages, from a large code restructuring effort, par-
ticular care must be payed in order to achieve perfor-
mance goals, because such languages allow for a low
level of control over issues such as load balancing,
optimization of interprocess communication (for dis-
tributed memory) or locality of data access (for shared
memory).

Here we focus on the problems related to porting
typical particle in cell (PIC) applications on parallel
architectures. The PIC simulation consists[4] in evolv-
ing the phase-space coordinates of aparticle popul ation
in certain fields computed (in terms of particle contri-
butions) only at the points of adiscrete spatial grid and
theninterpolated at each particle (continuous) position.
Two main strategies have been devel oped for workload
decomposition, in the context of distributed memory
systems. the domain decomposition strategy and the
particle decomposition one. Standard domain decom-
position [12,16] techniques assign different portions of
the physical domain and the corresponding portions of
thegrid to different computational nodes, together with
the particlesthat reside onthem. Animportant problem
with these techniquesis given by the need of adynamic
load balancing, associated to particle migration from
one portion of the domain to another one. Such aload
balancing can complicate the parallel implementation
of aserial code, expecialy with high-level languages,
besidesintroducing extracomputational and communi-
cation overheads. On the opposite side, thedistribution
of al the arrays among the computational nodes gives
this method an intrinsic scalability of the maximum
domain size that can be simulated with the number of
nodes.

The particle decomposition [10] technique consists
in statically distributing the particle population among
processors, while replicating the data relative to grid
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guantities. It is apparent that load balancing is auto-
matically enforced, because no particle hasto be trans-
ferred (reassigned) from one processor to another. Asa
consequence, the implementation of such strategy with
high-level languagesis, in principle, relatively straight-
forward. This at the expense of an overhead on mem-
ory occupancy, given by the replication of data related
to the domain, and a communication overhead related
to the updating of the fields (each node manages only
the partial updating associated to its portion of parti-
cle population). The former overhead forbids a good
scalability of the maximum domain size with the num-
ber of processors; the latter one limits the efficiency of
such a technique to cases in which both memory and
computational loads on each node are dominated by the
particle-related ones.

Aim of this paper is to compare the two decompo-
sition strategies, in the framework of shared memory
systems, as applied to the case study PIC application.
A number of different implementations of them, based
on the high-level language OpenM P, are discussed with
regard to time efficiency, memory occupancy, and pro-
gram restructuring effort.

The specific PIC code we dea with — the Hybrid
MHD-Gyrokinetic Code (HMGC) [6] —includesall the
main features of the codes devel oped for the investiga-
tion of, e.g., plasmas magnetically confined in toroidal
devices. Porting of thesamecodein HPFfor distributed
memory architectures was presented in [10].

The paper is structured as follows. Section 2 de-
scribesthethemain physical and computational aspects
of the chosen application, also with respect to the par-
allelization of the corresponding codes. The different
implementations in OpenMP of the particles decom-
position strategy and the domain decomposition one
for the shared memory context are described in Sec-
tions 3 and 4, respectively. The experimental results
obtained with the HMGC PIC code are also reported.
Conclusions on the validity of the proposed strategies
aredrawnin Section 5.

2. The plasma particle simulation application

Particle simulation codes [4] seem to be the most
suited tool for the investigation of turbulent plasma be-
haviour. Particle simulation indeed consists in replac-
ing the physical particle population by a simulation-
particle one, with each particle representing — by its
weight — a cloud (macroparticle) of non mutualy in-
teracting physical particles. By identifying the charge

and the mass of each simulation particle with those
of the whole cloud, and imposing that such a parti-
cle moves as its physical counterpart, al the relevant
parameters (e.g., the Debye length, A p) of the sim-
ulation plasma coincide with the corresponding pa-
rameters of the physical plasma, notwithstanding that
the simulation-particle density is much lower than the
physical-particleone. The phase-space coordinatesand
the weight of the simulation particles are then evolved
inthe el ectromagneti ¢ fiel ds selfconsi stently computed,
at each time step, in terms of certain momenta of the
particle distribution function (e.g., pressure), so retain-
ing al the relevant kinetic effects.

Themost widely used method for particle simulation
is represented by the PIC approach. PIC simulation
techniques consist in

— computing the electromagnetic fields only at the
pointsof adiscretespatial grid (field solver phase);

— interpolating them at the (continuous) particle po-
sitions in order to evolve particle phase-space co-
ordinates and weights ( particle pushing phase);

— collecting particle contribution to pressure at the
grid points to close the field equations ( pressure
computation phase).

The presence of adiscrete grid, with spacing L . be-
tween grid points, leaves the physically relevant dy-
namics related to the scales larger than L . unaffected.
At the same time, the condition corresponding to long
range particle interactions dominating over the short
range ones resultsin a much more relaxed requirement
than the usual plasma condition, noA%, > 1, with ng
being the density of simulation particles. Indeed, it
comes out to be satisfied if ng L2 > 1.

The condition ng L2 > 1 can be written as Ny, =
Npart/Neen > 1, where N,y is the number of sim-
ulation particles, N is the number of grid cells and
Nppc isthe average number of particle per cell. Asone
is typically interested in simulating small-scale turbu-
lence, an important goal in plasma simulation is rep-
resented by dealing with large number of cellsand, a
fortiori, for the above condition, large number of par-
ticles. Such a goal requires to resort to paralleliza-
tion techniquesaimed to distributing the computational
loads related to the particle population among several
processors.

2.1. Parallelization of particle in cell codes

Several contributions exist, in literature, on design
and development of parallel particle in cell applica-
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tions, targeted towards distributed memory architec-
tures [1,9-11,16,17,19], shared memory [2,18], and
hybrid distributed-shared memory ones[5].

Many of them [1,9,11,16,18,19] are based on the
domain decomposition strategy, while the particle de-
composition approach has been adopted in [10,17].
References [11,15] deal with the problem of dynamic
load balancing for domain decomposition and provide
anumber of solutions.

Other works address the issue of a suitable compo-
sition of the two strategies, in order either to achieve a
proper balance of respective merits and drawbacks [2]
or to exploit hierarchical distributed-shared memory
architectures, such as clusters of SMPs[5].

Several experiences are reported on utilization of
different high level languages, programming supports
and paradigms. References [1,10] present paralleliza-
tion efforts carried out using High Performance For-
tran. Reference [5] proposes an integration of High
Performance Fortran and OpenMP for programming
clusters of SMPs. References[7,19] propose the appli-
cation of the Object Oriented programming paradigm;
in particular, Ref. [7] discusses the utilization of Java,
with JavaMPl as message passing support. Finaly,
Ref. [9] proposes an approach based on Programming
Skeletons.

With regard to the contributions [2,18] specifically
targeted to shared memory architectures, it is worth
mentioning that Ref. [18] addressestheissue of porting
3D PIC codes on CC-NUMA shared memory architec-
tures, namely a Convex Exemplar machine. The hier-
archical memory structure of the architecture solicits
minimization of accesses to remote memory and max-
imization of cache reuse; these demandsinduced those
Authors to adopt a domain decomposition, with parti-
cles and fields data storage in nodes’ private memory;
minimization of cache misses was achieved by period-
ically rebalancing particles among processors through
sorting.

Reference[2] proposesahierarchical combination of
particle and domain decomposition ( hybrid partition-
ing) for execution on NUMA shared memory architec-
tures, in order to obtain the best compromise between
memory occupancy and non-local accesses. In thisap-
proach, the set of possible data partitioning schemes
ranges from a standard domain decomposition (the do-
main is decomposed in portions, each assigned to a
processor) to a standard particle decomposition (the
whole domain is replicated among processors) passing
through schemes where subgroups of processors share
portions of the domain (with each portion assigned to
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Fig. 1. Toroida coordinate system (r, ¢, ) for a tokamak plasma
equilibrium.

a subgroup) and where the number of processor per
group (and thus the number of domain portions) char-
acterize the partitioning; the best partitioning is then
selected heuristically on the basis of empirical results.

2.2. Parallelization of HMGC on shared memory
architectures

Here we consider the paralelization of a specific
PIC code, HMGC, devel oped, in the framework of con-
trolled nuclear fusion research, for the investigation of
the effects of energetic particles produced by fusion
reactions on the dynamics of Alfvén modes in toka-
maks [8]. The code consists of approximately 16,000
F77 lines distributed over more than 40 procedures.
Particles move in a three-dimensional toroidal spatial
domain, described in terms of quasi-cylindrical coor-
dinates (see Fig. 1): the minor radius of the torus, r,
and the poloidal and toroidal angles, ¢ and , respec-
tively. Each particleis characterized by its phase-space
coordinates (real space and velocity space ones) and its
weight w.

The most relevant computational effort is concen-
trated in the loops over the particle population related,
respectively, to the pushing phase and to the pressure
computation one. The pushing loop can be schemati-
cally represented as follows:

dol =1, npart
ril =r()

w_I = wl)
rd) =rd +gx(d,...)
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wl) = wl +gwrd,...)

enddo

with n_part = N_part being the number of parti-
clesandg_r, ..., g-wbheing rather complicate nonlin-
ear functions of the particle phase-space coordinates,
which givethetime-step increment of the particle quan-
titiesin terms of the electromagneticfields at the neigh-
bouring grid points. The dots, “...", stay for al the
other phase-space coordinates.

The pressureloop can be schematized by the follow-
ing one:

p = 0.

do | = 1,npart

jor =fr@@)

j theta = f_theta(theta(l))

j phi = f_phi (phi (1))

p( -r,j theta,j_phi) = p(j r,jtheta,
j phi)

& + h{r(),...,wl))

enddo

Here, f r,f t het aandf _phi arenonlinear func-
tions of the corresponding real-space particle coordi-
nates, determining theindices of the closest spatial grid
point. The pressure p at that grid point receives a con-
tribution from the particle determined by the function
h, which takes into account the relative position of the
particle and the grid point, the velocity-space coordi-
nate of the particle and its weight. In practice, a more
complicate assignment prescription is adopted, which
involves a higher number (eight) of neighbouring grid
points, in order to get a less noisy description of the
pressure field. In the spirit of the present discussion,
however, we may neglect such details.

It can be seen that the particle pushing loop is suited
for trivial work distribution among different proces-
sors. The natural parallelization strategy for shared
memory architectures consists in distributing to differ-
ent threads (and, then, processors) the work needed to
update particle coordinates and weights. OpenMP al-
lows for a straightforward implementation of this strat-
egy: theparal | el do directive can be used to dis-
tribute the loop iterations over the particles. All the
variables that are set and then used within the do loop
areexplicitly defined aspr i vat e, with the other ones
being shar ed by default. As no particular problem
arises for the pushing phase, it will be neglected in the
following.

The immediate parallelization of the pressure loop
is inhibited by the updating of the array p. Such a
computation is indeed an example of irregular array-

reduction operation (cf., e.g. [14]), where the elements
to be reduced are the particle coordinates (the ele-
ments of the arraysr, t het a, phi ), and the results
of the reduction are the pressure values (the elements
of the array p). The operation is a reduction be-
cause the updating function h has associative and dis-
tributive properties with respect to the contributions
given by every single particle (i.e. with respect to the
quantitiesr (1 ), ...w(l )), but it is not regular because
the indices of the updated element (j r, j theta,
j -phi) are not induction variables of the loop,
but functionsof it (j + = fr(r(l)),j theta =
f theta(theta(l)), j_phi = f _phi(phi()),
having the property that for two given values of the
induction variable I (14,1_j, with [4 # [_j) the cor-
responding computed values of the updating indices
can be equa: (j r, j_theta,j phi)i =( r,

j theta,j_phi)_j. If particlesthat concur to up-
dating the same element of the array p are assigned
to different processors, a race condition can occur, if
the processors try to update the array element “simul-
taneously”. In such a case, the correctness of the par-
allel computation would be affected, because some of
the contributions of the concurrent particles would be
retained, with the others being lost.

In the next Sections we discuss some possible par-
alelization strategies for the pressure updating loop,
which present close analogies to the strategies devel-
oped in the context of distributed memory models:
namely, the particle decomposition strategy, and the
domain decomposition one.

3. Particle decomposition strategy

As stated above, the most immediate parallelization
strategy for shared memory architectures consists in
distributing the particle loop iterations among differ-
ent threads, without respect to the portion of the do-
main in which each particles resides. For this reason,
such a technique can be referred to as a particle de-
composition one. It can be implemented very easily in
OpenMP, by usingthepar al | el do directive, andit
isfully satisfactory for the particle-pushing loop. With
regard to the pressure loop, however, attention must be
payed to protect the critical sections of the pressure
loop from race conditions, that is to ensure mutual
exclusion among threads accessing shared data. The
most obvioussolutionto this problem (and the least ex-
pensive, in terms of code restructuring effort) consists,
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in OpenMP, inusing thecri ti cal directive, inthe
following way:
p = 0.
!'$OWP parallel do private(l,jr,
j theta,j _phi)
do | = 1,npart
jor =fr@@)
j theta = f_theta(t heta(l))
j -phi = f _phi (phi (1))
1$OWP critical (pdock)
PG r.j theta,j_phi) = p( r,
j theta,j_phi)
& + h(r(),...,wl))
1'$OWP end critical (p.lock)
enddo
I $OWP end parallel do

The optional name, pJ ock, given to the critical
section is intended to distinguish such a section from
other analogouscritical ones: inthereal code(HMGC),
indeed, other arrays, besides the pressure p, must be
computed, playing the same role of inhibitors of par-
alelism. The assignment of a different name to each
critical section avoids to apply the mutual exclusion to
threads accessing different shared arrays.

Unfortunately, the serialization induced by the pro-
tected critical section on the shared access to the array
p represents a bottleneck that can affect performance.

We have tested this strategy (and the other ones pre-
sented in the following), by running the corresponding
OpenMP version (v1a) of HMGC on a IBM SP par-
allel system, equipped with, among the others, two 8-
processors SM P RISC processors, with clock frequency
of 160 MHz, 512 MB Random Access Memory and
9.1GB Hard Disk. The OpenMP codes have been com-
piled by thelBM z! f (ver. 6.01) compiler (an optimized
native compiler for Fortran95 with OpenM P extensions
for IBM SMP systems) under the - gsnmp=onp option.
Several caseshavebeen considered, with different sizes
of the grid and the particle population. To be specific,
executionson agridwithn r = 32n cellsintheradial
direction, n_t het a = 16n cellsin the poloidal direc-
tion, and n_phi = 8n cells in the toroidal one have
been considered (i.e., N1 = 40967n3), withn ranging
from 1 to 4. Moreover, the average number of parti-
cles per cell has been varied, ranging from N, = 1
to a maximum value depending on the grid size and
corresponding to Npart = Neelt X Nppe = 4194304.

Figure 2 shows the scaling of the speed-up (s )
with respect to the number of processors. The results
are shown for n = 1 and five different values of the
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Fig. 2. Speed-up of the pressure-updating phase versus the number
of processors, for the critical section version, vla. Heren = 1 and
five different values of the average number of particles per cell have
been considered: from Nppe = 410 Nppe = 1024.

average number of particles per cell: from Ny, = 4
to Nppe = 1024. Speed-up values refer only to the
execution of the section related to the updating of the
pressure (and anal ogous quantities). The speed-up has
been defined as the ratio between the wall-clock time,
t_s, obtained by the serial execution (- gsnp=onp op-
tion suppressed) of the OpenMP version of the code
and the one, t,1,, Obtained by the parallel execution.
In practice, such times are computed as

tvla = treset + t100p7 (1)

ts = tvla |seriala (2)

where t,..t IS the time needed to reset the values of
the grid arrays elements to zero, and ¢, IS the time
required by the execution of the particle loop. The
results for the case np.oc = 1 have been aso reported,
corresponding to executions on a single processor of
the parallel versions.

It can be seen that, for all the considered cases, the
speed-up comes out to be very poor (nearly fixed to 1).
Infact, thesynchronizationimposed by thecri ti cal
directive makes the computation substantially serial.
We observe that the caution imposed by such a direc-
tive is likely to be too conservative: the race condi-
tion, although possible in principle (and, in fact, un-
predictable), probably occursfor avery few loopitera-
tions. On the basis of this observation, we have devel-
oped a different OpenM P implementation (v1b) of the
pressure computation, whose schematic representation
is reported in the Appendix. During each loop itera
tion, after computing the indicesj r,j t heta and
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Fig. 3. Speed-up versus the number of processors, for the element
locking version, v1b. The same parameters of Fig. 2 have been
considered.

j -phi , acheck is executed on the status of the corre-
sponding element of the array p. If the element is cur-
rently addressed (in reading and updating operations)
by a concurrent loop iteration, the current iteration is
skipped, and the processing of the corresponding parti-
cleis postponed to a further loop execution. If, on the
contrary, theelement is“free”, itisimmediately | ocked
by the current iteration; it will be freed again after its
updating has been completed. Further executions of
the loop (within the same time step) are limited to the
residual (not processed) portion of particle population.
The instructions needed for locking and releasing the
array p element, as well as for checking its status, are
executedin critical sectionslabelled by the same name.
In principle, if the relative weight of the computation
protected by such critical sections came out to belower
than that of the p-element updating (protected by the
critical section of the version vla), the version v1b
couldyield, in spite of thecomputation overhead, better
results than the previous one.

In fact, for the specific application we consider in
this paper, the v1b implementation does not improve
the speed-up results, asit can beseenfromFig. 3. Here
the whole wall-clock timeis given by

tu1p = treset T+ tloopm (3)

where t1,0ps 1S the sum of the wall-clock times related
to the different executions of the particle loop (if the
race condition effectively occursquiterarely, suchtime
is dominated by the first execution).

The bottleneck represented by the protection of crit-
ical sections of the particle loop can be eiminated, at
the expenses of memory occupation, by means of an

alternative strategy, which relies on the associative and
distributive propertiesof the updating lawsfor the pres-
surearray with respect to the contributionsgiven by ev-
ery single particle: the computation for each updateis
split among the threads into partial computations, each
of them involving only the contribution of the parti-
clesmanaged by the responsiblethread; then the partial
results are reduced into global ones.

Here we consider two different ways to implement
such a strategy. In the first one (v2a), the splitting
is obtained by introducing an auxiliary array, p aux,
defined asapri vat e variable with the same dimen-
sionsasp. Each processor works on aseparate copy of
the array, and there is no conflict between processors
updating the same element of the array. At the end of
the loop, however, each copy of p_aux contains only
the partial pressure due to the particles managed by
the owner processor. Each processor must then add its
contribution, outside the loop, to the global, shared ar-
ray p;thecri ti cal directivecan beusedto perform
such asum. The code section then reads as follows:

p = 0.
I1$OWP paral lel private(,jr,
j theta,j_phi, p.aux)

p-aux=0.

I $OWP do
do | =1, npart
jor =fax(())

j theta = f_theta(theta(l))
j -phi = f _phi (phi (1))
p-aux(j r,j theta,j _phi) =
p_aux(j r,j theta,j _phi)
& + h(r(),...,wl))
enddo
I $OWP end do
I'$OWP critical (p.lock)
p =p + paux
1$OWP end critical (p.lock)
I $OWP end parall el

The second way (v2b) to implement the alternative
strategy consists in giving the auxiliary array p aux a
shar ed-variable character, while augmenting its rank
by one dimension, sized as the number of processors.
Each page of the augmented dimension of the array
p-aux will be updated, within the bodies of the dis-
tributed loops, by a different thread. At the end of the
distributed loop, the reduction of the pages of p .aux
into the array p is very easily performed by using the
intrinsic function SUM The section assumes the fol-
lowing form:
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real *8, allocatable ::
paux(:i,:,:,:)
n_t hr eads=onp_get _max_t hr eads()
al | ocat e(paux(n_r, n_t het a, n_phi,
n_t hr eads))
p-aux=0.
p = 0.
1$OWP parallel private(l,jr,
j theta,j _phi,i_thread)
i _t hread=onp_get _t hr ead_num()+1
! $OWP do
do | =1, npart
jr =fr(()
j theta = f _theta(theta(l))
j phi- = f _phi (phi (1))
p-aux(j r,j theta,j _phi,i _thread)=
& p-aux(j r,j-theta,j_phi,i_thread)
& + h(r(),...,wl))
enddo
! $OWP end do
I $OWP end parall el
p = sump.aux, di m=4)

Here, n_r, n_t het a and n_phi are the number of
grid pointsintheradial, poloidal and toroidal direction,
respectively. The execution environment integer func-
tion onp_get _max_t hr eads has been used to iden-
tify the maximum number of threadsthat can constitute
the team executing the parallel region.

Note that this aternative strategy (based on the in-
troduction of auxiliary arrays), makes the execution of
the Ny, iterations of the loop perfectly parallel. The
seria portion of the computation is limited to the re-
duction of the different copies (or pages) of p .aux into
p. Then, its size scales with Neeit X Niproc, With Neent
and nproc being the number of grid points and pro-
cessors (equal to the number of threads), respectively.
Such product is much smaller than N,,,¢, as long as
the Nppe > nproc. The price payed to obtain such an
improvement is represented by the increased memory
requirement: Ncen X nproc Morereal* 8 elements must
bestored. Inorder to evaluatethe effectiverelevance of
such further requirement, this number has to be com-
pared with the number of elements of the shared parti-
clearrays. Under the above condition, Nppc > nproc,
the whole memory requirement is not significantly af-
fected. This conclusion can however break down if
many other arrays, besidesp, need to be copied (or aug-
mented) in the concrete case (cf. the comment above
concerning the use of an optional name for the critical
section). We can represent such a feature by giving
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Fig. 4. Memory-occupation data measured (squares) during execu-
tions with nproc = 4 for the version vla, compared, at different
values of n and Nppc, with the values corresponding to the approx-
imations (circles) given by Eq. (6).

the following approximate expressions of the memory
requirement for, e.g., the versions vla and v2a:

lea ~ mcellNcell + mparthchcella (4)

My24 = Mcel Neell + 5mce11Ncellnproc (5)

+mpart NppCN06117

where the term proportional to m . refers the shared
grid arrays, that proportional to dm.. corresponds
to the different copies (or pages) of the pressure-like
arrays, that proportional to mp.. IS related to the
Nppe X Neen particles. For the specific case of HMGC,
and the particular choice of the dependence of N en
on the parameter n, the asymptotic (large n) behaviour
of the memory requirements (in Megabytes) can be
approximated as follows

Moytal garao = (0.37 + 0.23Npp0)n?, (6)

M'U2a|HMGC

Y
~ (0.37 + 0.11npr0¢ + 0.23Nppe)n®.

Such approximations are compared with the exper-
imental data in Figs 4 and 5, where the memory-
occupation data measured during executions with
nproc = 4 are reported, for different values of n and
Nppe, dong with the values corresponding to the ap-
proximations given by Egs (6) and (7), respectively.

From Egs (5) and (7) we see that the memory en-
hancement is effectively negligible for

Nppc/nproc > 5mcell/mpart =~ 05
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Fig. 5. Comparison between the memory-occupation data measured
(squares) during executions with nproc = 4 for the version v2a,
compared, at different values of n and N, and the approximations
(circles) given by Eq. (8).
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Fig. 6. Speed-up versus the number of processors, for the private
array version, v2a. Parameters are chosen asin the previous Figures.

Figures 6 and 7 show the speed-up values obtained
by version v2a and version v2b, respectively. The
corresponding times are defined as follows:

tv2a = treset + tparallela (8)

tyob = treset + tparallel + tsum; (9)

where ¢parailel aNd teum are the times required by the
execution of the whole par al | el section and the
sumoperation, respectively. Note that, for the version
v2a, tparallel iNCludesthe time needed for the reduction
operation, while, for the version v2b, t,esey inCludes
the time needed for resetting of the elements of the
augmented arrays.

We observe that, in these cases, the speed-up values
depart from the linear scaling only for n ... greater
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Fig. 7. Speed-up versusthe number of processors, for the augmented
array version, v2b. Parameters are chosen asin the previous Figures.

than a certain value, which is higher, the higher the
average number of particles per cell, N, is. These
findings can be qualitatively explained considering that
the following approximations hold:

ts =~ tloop ~ alooprchcclla (10)
~ ~ Npchccll
ty2a = tyop = Qloop
Nproc (11)
+arednprochell-

Here we neglect the time required to reset the arrays
to zero, create and terminate threads and distribute the
work among them. Weal so neglect thedifferent scaling
with npr0c between the time required by the reduction
of the private copies of the arrays and the one required
by the optimized sum of the different pages of the
augmented arrays. From the above approximations, we
expect a speed-up approximately given by

Su A ”P—HQ (12)

Qred "‘proc

bt Uloop Nppc
Figure 8 shows the parallelization efficiency (n =
Su/Mproc) VErsus the quantity ngroc /Nppe, for thetwo
versions, v2a and v2b. It can be seen that both theideal
efficiency regime (at low values of n2,./Nppe) and
the decreasing efficiency one (at higher n.2,,./Nppc)
follow the approximate scaling obtained from Eqg. (12).
Valuesfor executionswithn = 1, 2 and 4 are reported.
Thedlight differencesobserved at different n (and, then,
Neen) inthe low-efficiency regime can be explainedin
terms of correctionsto the approximate expressions of
ty2q aNd t,2, proportional to npyoc; such corrections

may be related to the management of threads.
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Fig. 8. Efficiency values versus ngmc /Nppe, for the private (v2a) and the augmented array (v2b) versions. Values for executions withn = 1,

2 and 4 are reported.

We can conclude that the two alternative parallel
versionsthat avoid theinsertionof cri ti cal sections
inthe particleloop arebothrather efficient (with aslight
prevalence of version v2a over version v2b) as far as
n2.0c/Nppe i lower than a certain threshold, which,
for the specific code considered in this paper, comes
out to be approximately equal to 1.

4. Domain decomposition strategy

In the previous Section, we have discussed several
different implementations of what we can indicateas a
particle decomposition strategy. Indeed, the work dis-
tribution consists in assigning the particle loop itera-
tionsto different threads, without respect to the portion
of the domain in which each particlesresides. We have
seen that such a strategy is characterized by a perfect
load balancing among the different threads and a very
limited code restructuring effort. On the opposite side,
the need of avoiding race conditionsintroducesatrade-
off between parallelization efficiency and memory re-
guirements.

In order to overcome such a trade-off, at the price
of aheavier restructuring of the code and, possibly, the
need of addressing load-balancing problems, a com-
pletely different strategy can be adopted: namely, the
domain decomposition strategy. This strategy consists
in reordering the particle population according to the
portion of domain in which each particle resides, and
assigning a different portion to each thread. Such are-
ordering gives rise, once again, to therisk of race con-
ditions (the particlesbel onging to a certain domain por-
tion have to be counted within a particle loop, and the

updating of the counter is a critical operation). Once
assigned to the threads, however, no further race con-
dition occurs in updating the pressure array element,
asloopiterationsthat could, in principle, concur to the
updating of the same element are executed by the same
thread.

A possible implementation of this strategy (version
v3a, Whose schematic representation is reported in the
Appendix) consists in decomposing the domain along
oneof itsdimensions (e.g., along theradial coordinate)
and is based on the following items:

— A particleloop is executed in order to identify the
elementary portion of the domain in which each
particle falls. The number of particles that belong
to each portion is updated inside a critical section.
Each particle is labelled, inside the same critica
section, by an index that spans the population be-
longing to the corresponding elementary domain
portion.

— The different elementary portions of the domain
are assigned to each thread. Load balancingis en-
forced by adding elementary portions to a given-
thread load until the number of particles assigned
to the thread approximately equals the average
number of particlesper threads, Npart /Mproc. Par-
ticles are then reordered according to their thread
belonging.

— The pressure loop is executed in the form of a
parallel loop over threads in which aloop over the
particle belonging to the thread is nested. Race
conditions are automatically avoided.

Note that the load balancing is implemented within
a loop over threads. It then causes negligible com-
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Fig. 9. Memory-occupation data measured (sguares) during execu-
tions with nproc = 4 for the version v3a, compared, at different
values of n and Nppc, with the approximations (circles) given by
Eq. (14).

putation overheads. Moreover, different from the dis-
tributed memory context, it does not require commu-
nication between processors. Note also that the incre-
ment of memory requirementsisvery contained (essen-
tially limited to the integer labels of the reordered par-
ticles), and does not scale with the number of threads
(processors). The approximate expression for such a
requirement can indeed be written as

My3q = MecelNeell + (mpart
13
+5mpart )Npchcell;

with the quantity dmpa.r being related to the integer-

label particle array.
In the case of HMGC, the asymptotic (large n) be-
haviour of the memory requirement (in Megabytes) can

be approximated by

My3q|-nmce = (0.37 4+ 0.27Nppe)n®, (14)

which has to be compared with the expressions given
by Egs (6) and (7). Figure 9 shows the satisfactory
agreement between this approximation and the exper-
imental results obtained, with np... = 4, at different
values of n and Nppc.

Figure 10 showsthe speed-up valuesobtained by this
domain decomposition version, v3a. The wall-clock
timeis computed, in this case, as follows:

tyza = lreset T tprefloop + tassign

Ftreorder + tloop-

(15)

Here ¢,re—100p refers to the particle loop needed to
identify the domain portioninwhich each particlefalls,
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Fig. 10. Speed-up versus the number of processors, for the domain
decompositionversion, v3a. Parametersarechosenasintheprevious
Figures.

tassign 1S thetime required by the balanced assignment
loop (over threads), ¢ reorder 8N L160p arethetimesspent
inthe reordering loop and in the pressure updating loop
(both over particles), respectively.

We note that, at least for the specific application
here considered, this domain decomposition strategy
appears to be an interesting compromise between the
two extremes obtained in the framework of the particle
decomposition approach (namely, the low-efficiency
and the large-memory versions). We a so observe that
the bottleneck, with respect to the efficiency perfor-
mances, is still represented by the critical section, al-
though this bottleneck is not so penalizing as in the
particle-decomposition, critical section versions, vla
and v1b.

A significant improvement of the efficiency can be
obtained, for specific (but rather common) applications
characterized by acontained particlemigration per time
step from one portion of the domain to another one,
by limiting the reordering phase (and then the critical
computation) to those particles that have changed do-
main portion in the last step. Their number can bein-
deed very low if it is possible to decomposethe domain
along a dow-varying coordinate. This is moderately
true for the specific application we have tested, as it
can be seen from Fig. 11, which shows a comparison
between the results obtained by the version v3a and
a companion version, v3b, which implements such a
selective reordering. The results of the most efficient
particle decomposition implementation, v2a, are also
shown for reference. Thecasen = 1 and Ny, = 64
is considered, for example.
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Fig. 11. Comparison between the speed-up obtained, at different
number of processors, by the domain decomposition version, v3a,
and acompanion selective reordering version, v3a. Theresults of the
most efficient particle decomposition implementation, v2a, are also
shown for reference. Thecasen = 1 and Nppc = 64 isconsidered.

5. Concluding remarks

We have presented two work decomposition strate-
giesin the framework of shared memory systems, with
application to a case study PIC application. A num-
ber of different implementations of them, based on the
high-level language OpenM P, have been discussed with
regard to time efficiency, memory occupancy, and pro-
gram restructuring effort.

The computation we dealt with is a particular ex-
ample of an irregular array reduction. Extensions to
OpenMP ableto handleirregular array reductions have
been proposed by J. Labarta et al. [14], but neither the
present version of OpenM P nor the upcoming one (2.0)
present such capability.

With the indirect clause of the parallel directive pro-
posed in Ref. [14], the pressure computation can be
(very simply) recoded as follows:

p = 0.

! $OWP parallel do private(l,jr,

j theta,j _phi)

I $OMP& reducti on(+: p)

1$OVP& indirect(j r,j_theta,j _phi)

do | = 1,npart

jor =fr@@)

j theta = f_theta(theta(l))
j -phi =1 _phi (phi (1))

PG r.j theta,j_phi) = p( r,
j theta,j_phi)
& + h(r(),...,wl))

enddo

I $OVP end parallel do

In the automatic parallelizing compilation area the
issue of irregular array reductions, and in general indi-
rect and irregular array accesses, has been addressed,
and atechniquecalled inspector-executdras been pro-
posed. This technique was originally developed by
Mehrotra, Koelbel, and Saltz for distributed memory
architectures[21], and redesigned and extended for in-
clusion in HPF compilers by Benkner et a. [3]. A
version of this technique, targeted to shared memory
systems, is presented in Ref. [14].

Experimental results show, in the above mentioned
and other related work, that inspector-executor tech-
niques, although quite generally applicable to a broad
range of irregular application, allow for achieving only
amoderate efficiency, in the general case. Our results
show that an high efficiency can be achieved, only if
“ad hoc” solutions are adopted, which take into ac-
count the peculiar characteristics of the application (or
application class, under consideration (such as domain
geometry, nature of particle movement, and so on); in
addition, goals such as efficiency, low memory occu-
pancy overhead, and low code restructuring effort are
very much interrelated, being matter of trade-off, and,
for a given parallel implementation, very much sensi-
tive to the ratio domain size vs. particle size of the
application under consideration.

We can conclude that, even if general-purpose com-
piler techniques will not succeed in attaining, in gen-
eral, high efficiency over thewhole range of the “irreg-
ular array reduction operation” applications, “ad hoc”
solutions (yet still generally applicable to an applica
tion category rather than to a single specific applica-
tion) can achieve this goal, taking also into account
other goal's (such as memory occupancy) and requiring
a moderate programming/restructuring effort, if high-
level languages, such as OpenMP, are adopted.

Appendix: Schematic representation of the
versionsvlb and v3a

In Section 3, we have described a particular imple-
mentation (version v1b) of the particle decomposition
strategy that consistsin executing, for each iteration of
the particle loop a critical check on the status of the ar-
ray element that should be updated during the iteration
itself. If the check gives a negative result, the element
is critically locked. It will be (critically) released as
soon as its updating has been completed. In case of
positive result (element already locked), the rest of the
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iterationis skipped and postponed to afurther loop exe-
cution, limited to the residual portion of not completed
iterations. Such implementation can be schematically
represented as follows:

i nteger | check_part(n_part),

| _check_part O(n_part)

i nteger i_check_address(n.r,

n_t het a, n_phi)

| check_part (:)=0

| check_part 0(: )=0

p = 0.

n_ oop=n_part

i | oop_exec=0

1000 conti nue

n_race=0

i .check_address(:,:,:)=0
! $OWP paral l el do private(i goto,
| loop,l,jr,jtheta,j_phi)

do | |1 oop=1, nl oop
i f(i 1oop-exec.gt.O)then
| =I check_part (I _I oop)

el se

I =I _l oop
endi f
jro=frx(@()

j theta = f_theta(theta(l))
j -phi = f _phi (phi (I'))
i got 0=0
1$OWP critical (address. ock)
i f(i .check_address(j r,j -theta,
j -phi). eq. 1)t hen
i got o=1
el se
i check_address(j r,j theta,
j phi)=1
endi f
1$OWP end critical (address. ock)
i f(i goto.eq.1)then
go to 10
el se
i got 0=2
endi f
p( r.j-theta,j phi) = p(r,
j theta,j_phi)
& + h(r(),...,wl))
go to 20
10 conti nue

I1'$OWP critical (racedl ock)
n_orace=n_race+l

| check_part 0(n_race)=l
1'$OWP end critical (race.l ock)

20 conti nue
i f(igoto.eq.2)then
1$OWP critical (address. ock)
i check_address(j r,
j theta,j_phi)=0
1'$OWP end critical (address. ock)
endi f

enddo
I $OWP end paral l el do

i | oop-exec=i | oop_exec+1
n_ oop=n_race

i f(nrace.ne.O)t hen

| check_part (1: nd oop)=

| check_part _0(1: n. oop)
go to 1000

endi f

The domain decomposition strategy can be imple-
mented, e.g., according to the scheme proposed in Sec-
tion 4. The domain is decomposed along one of its
dimensions. The elementary portion each particle be-
longstoisidentified by aloop over particles. Thenum-
ber of particles belonging to each elementary portionis
updated inside a critical section of the loop (in order to
avoid race conditions). The relative order of the parti-
clewithinthepopulationresiding in the same portionis
defined inside the critical sectiontoo. A global portion,
composed by several consecutive elementary portions
is assigned to each thread. The size of each global por-
tion is chosen in such away to ensure an approximate
load balancing: each thread will manage a number of
particles approximately equal t0 Npart/Mproc. Parti-
clesarethen reordered according to their thread bel ong-
ing. Finaly, the pressureloop, rewritten as aloop over
threads in which a loop over the particle belonging to
the thread is nested, can be distributed among threads
without concernsfor the occurrence of race conditions.

This scheme can be represented as follows:

i nteger, allocatable ::

j -r .upper(:)

i nteger j_r_part(npart),i_r(n_part),
| i ndex(n_part)

i nteger n_part _r(n.r),

n_part | ower (nr)

n_t hr eads=onp_get _max_t hr eads()

al  ocat e(j r _upper (0: n_t hr eads))

p = 0.

npartr =0
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I $OWP paral | el
do | = 1,npart
jor =frx(())
jrpart(l)=jr

I'$OWP critical
npart_r( r)=npart._r(_r)+l
i _r(l)=npartr(.r)
1'$OWP end critical
enddo
I $OWP end parallel do
n_part _aver age=f | oat (n_part)/
fl oat (n_t hr eads)
n_part _portion=0
do jr=1,nr
n_part | ower (j _r)=n_part portion
n_part _portion=n_part _portion+
npart._r(.r)
i .t hread=n_part _portion/
n_part _aver age+1l
i f(i thread.gt.nthreads)
i .t hread=n_t hreads
j _r _upper (i t hread)=j r
enddo
j _r _upper (0)=0

I $OWP paral | el
do | = 1,npart
jr=jr_part(l)
| O=n_part _l ower(j r)+i r(l)
| i ndex(l 0)=I
enddo
I $OWP end parallel do

' $OWP parallel do private(i _thread,
jr,i,10,1,jtheta,j _phi)
do i _t hread=1, n_t hreads
do j r=j _r _upper (i -t hread- 1)+1,
j _r _upper (i -t hr ead)
do i=1,npart.r(.r)
| O=n_part | ower (j r)+i
I =I _i ndex(l 0)
j theta = f_theta(theta(l))
j -phi = f _phi (phi (1))
p(j r,j theta,j _phi) =
p( -r,j theta,j_phi)
& + h(r(),...,wl))
enddo
I $OWP end parall el do

do private(l,jr)

(n_part r I ock)

(n_part _r | ock)

do private(l,jr,10)
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