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Mahmudov (2012, 2013) introduced and investigated some 𝑞-extensions of the 𝑞-Bernoulli polynomialsB(𝛼)𝑛,𝑞(𝑥, 𝑦) of order 𝛼, the 𝑞-
Euler polynomialsE(𝛼)𝑛,𝑞(𝑥, 𝑦) of order 𝛼, and the 𝑞-Genocchi polynomialsG(𝛼)𝑛,𝑞(𝑥, 𝑦) of order 𝛼. In this paper, we give some identities
forB(𝛼)𝑛,𝑞(𝑥, 𝑦),G

(𝛼)
𝑛,𝑞(𝑥, 𝑦), andE

(𝛼)
𝑛,𝑞(𝑥, 𝑦) and the recurrence relations between these polynomials. This is an analogous result to the

𝑞-extension of the Srivastava-Pintér addition theorem in Mahmudov (2013).

1. Introduction, Definitions, and Notations

Throughout this paper, we always make use of the following
notation:N denotes the set of natural numbers andC denotes
the set of complex numbers. The 𝑞-numbers and 𝑞-factorial
are defined by

[𝑎]𝑞 =
1 − 𝑞
𝑎

1 − 𝑞
, 𝑞 ̸= 1,

[𝑛]𝑞! = [𝑛]𝑞[𝑛 − 1]𝑞 ⋅ ⋅ ⋅ [2]𝑞[1]𝑞,

(1)

respectively, where [0]𝑞! = 1, 𝑛 ∈ N, and 𝑎 ∈ C. The 𝑞-
binomial coefficient is defined by

[
𝑛

𝑘
]

𝑞

=
(𝑞 : 𝑞)

𝑛

(𝑞 : 𝑞)
𝑛−𝑘
(𝑞 : 𝑞)

𝑘

, (2)

where (𝑞 : 𝑞)𝑛 = (1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞
𝑛
). The 𝑞-analogue of the

function (𝑥 + 𝑦)𝑛𝑞 is defined by

(𝑥 + 𝑦)
𝑛

𝑞
=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑞
(𝑘(𝑘−1))/2

𝑥
𝑛−𝑘
𝑦
𝑘
. (3)

The 𝑞-binomial formula is known as

(𝑛; 𝑞)
𝑎
= (1 − 𝑎)

𝑛

𝑞

=

𝑛−1

∏

𝑗=0

(1 − 𝑞
𝑗
𝑎)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑞
(𝑘(𝑘−1))/2

(−1)
𝑘
𝑎
𝑘
.

(4)

The 𝑞-exponential functions are given by

𝑒𝑞 (𝑧) =

∞

∑

𝑛=0

𝑧
𝑛

[𝑛]𝑞!

=

∞

∏

𝑘=0

1

(1 − (1 − 𝑞) 𝑞𝑘𝑧)
, 0 <

𝑞
 < 1,

|𝑧| <
1

1 − 𝑞


,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193391893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Abstract and Applied Analysis

𝐸𝑞 (𝑧) =

∞

∑

𝑛=0

𝑞
(𝑛(𝑛−1))/2 𝑧

𝑛

[𝑛]𝑞!

=

∞

∏

𝑘=0

(1 + (1 − 𝑞) 𝑞
𝑘
𝑧) ,

0 <
𝑞
 < 1, 𝑧 ∈ C.

(5)

From these forms, we easily see that 𝑒𝑞(𝑧)𝐸𝑞(−𝑧) = 1.
Moreover, 𝐷𝑞𝑒𝑞(𝑧) = 𝑒𝑞(𝑧) and 𝐷𝑞𝐸𝑞(𝑧) = 𝐸𝑞(𝑞𝑧), where
𝐷𝑞 is defined by

𝐷𝑞𝑓 (𝑧) =
𝑓 (𝑞𝑧) − 𝑓 (𝑧)

𝑞𝑧 − 𝑧
, 0 <

𝑞
 < 1, 0 ̸= 𝑧 ∈ C. (6)

The previous 𝑞-standard notation can be found in [1,
2]. Carlitz firstly extended the classical Bernoulli numbers
and polynomials and Euler numbers and polynomials [3, 4].
There are numerous recent investigations on this subject by
many other authors. Among them are Cenkci et al. [5, 6],
Choi et al. [1], Cheon [7], Kim [8], Kurt [9], Kurt [10], Luo
and Srivastava [11–13], Srivastava et al. [14, 15], Natalini and
Bernardini [16], Tremblay et al. [17, 18], Gaboury and Kurt
[19],Mahmudov [2, 20, 21], Araci et al. [22], andKupershmidt
[23].

Mahmudov defined and studied the properties of the
following generalized 𝑞-Bernoulli polynomials B(𝛼)𝑛,𝑞(𝑥, 𝑦) of
order 𝛼 and 𝑞-Euler polynomials E(𝛼)𝑛,𝑞(𝑥, 𝑦) of order 𝛼 as
follows [2].

Let 𝑞 ∈ C, 𝛼 ∈ N, and 0 < |𝑞| < 1. The 𝑞-Bernoulli
numbersB(𝛼)𝑛,𝑞 and polynomialsB(𝛼)𝑛,𝑞(𝑥, 𝑦) in𝑥 and𝑦 of order
𝛼 are defined by means of the generating functions:

∞

∑

𝑛=0

B
(𝛼)

𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
= (

𝑡

𝑒𝑞 (𝑡) − 1
)

𝛼

, |𝑡| < 2𝜋, (7)

∞

∑

𝑛=0

B
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

= (
𝑡

𝑒𝑞 (𝑡) − 1
)

𝛼

𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦) ,

|𝑡| < 2𝜋.

(8)

The 𝑞-Euler numbers E(𝛼)𝑛,𝑞 and polynomials E(𝛼)𝑛,𝑞(𝑥, 𝑦) in 𝑥
and 𝑦 of order 𝛼 are defined by means of the generating
functions:

∞

∑

𝑛=0

E
(𝛼)

𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
= (

2

𝑒𝑞(𝑡) + 1
)

𝛼

, |𝑡| < 𝜋, (9)

∞

∑

𝑛=0

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

= (
2

𝑒𝑞 (𝑡) + 1
)

𝛼

𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦) , |𝑡| < 𝜋.

(10)

The 𝑞-Genocchi numbers G(𝛼)𝑛,𝑞 and polynomials
G(𝛼)𝑛,𝑞(𝑥, 𝑦) in 𝑥 and 𝑦 of order 𝛼 are defined by means of the
generating functions:

∞

∑

𝑛=0

G
(𝛼)

𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
= (

2𝑡

𝑒𝑞 (𝑡) + 1
)

𝛼

, |𝑡| < 𝜋, (11)

∞

∑

𝑛=0

G
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

= (
2𝑡

𝑒𝑞 (𝑡) + 1
)

𝛼

𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦) , |𝑡| < 𝜋.

(12)

The familiar 𝑞-Stirling numbers 𝑆2,𝑞(𝑛, 𝑘) of the second
kind are defined by

(𝑒𝑞 (𝑡) − 1)
𝑘

[𝑘]𝑞!
=

∞

∑

𝑛=0

𝑆2,𝑞 (𝑛, 𝑘)
𝑡
𝑛

[𝑛]𝑞!
. (13)

It is obvious that

B
(1)

𝑛,𝑞 (𝑥, 𝑦) :=B𝑛,𝑞 (𝑥, 𝑦) , E
(1)

𝑛,𝑞 (𝑥, 𝑦) := E𝑛,𝑞 (𝑥, 𝑦) ,

G
(1)

𝑛,𝑞 (𝑥, 𝑦) := G𝑛,𝑞 (𝑥, 𝑦) , B𝑛,𝑞 (0, 0) :=B𝑛,𝑞,

E𝑛,𝑞 (0, 0) := E𝑛,𝑞, G𝑛,𝑞 (0, 0) := G𝑛,𝑞,

B
(𝛼)

𝑛,𝑞 =B
(𝛼)

𝑛,𝑞 (0, 0) ,

lim
𝑞→1−

B
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) =B
(𝛼)

𝑛 (𝑥 + 𝑦) ,

lim
𝑞→1−

B
(𝛼)

𝑛,𝑞 =B
(𝛼)

𝑛 , E
(𝛼)

𝑛,𝑞 = E
(𝛼)

𝑛,𝑞 (0, 0) ,

lim
𝑞→1−

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) = E
(𝛼)

𝑛 (𝑥 + 𝑦) , lim
𝑞→1−

E
(𝛼)

𝑛,𝑞 = E
(𝛼)

𝑛 ,

G
(𝛼)

𝑛,𝑞 = G
(𝛼)

𝑛,𝑞 (0, 0) , lim
𝑞→1−

G
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) = G
(𝛼)

𝑛 (𝑥 + 𝑦) ,

lim
𝑞→1−

G
(𝛼)

𝑛,𝑞 = G
(𝛼)

𝑛 .

(14)

From (8) and (10), it is easy to check that

B
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

B𝑛−𝑘,𝑞 (𝑥, 0)B
(𝛼−1)

𝑘,𝑞
(0, 𝑦) ,

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

E
(𝛼−1)

𝑛−𝑘,𝑞
(𝑥, 0)E𝑘,𝑞 (0, 𝑦) .

(15)

In this work, we give some identities for the 𝑞-Bernoulli
polynomials. Also, we give some relations between the 𝑞-
Bernoulli polynomials and 𝑞-Euler polynomials and the 𝑞-
Genocchi polynomials and 𝑞-Bernoulli polynomials. Fur-
thermore, we give a different form of the analogue of the
Srivastava-Pintér addition theorem.More precisely, we prove
the following theorems.
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Theorem 1. There are the following relations between the 𝑞-
Bernoulli polynomials and 𝑞-Stirling numbers of the second
kind:

B
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) =
[𝑘]𝑞![𝑛]𝑞!

[𝑛 + 𝑘]𝑞!

×

𝑛+𝑘

∑

𝑙=0

[
𝑛 + 𝑘

𝑙
]

𝑞

B
(𝛼+𝑘)

𝑙,𝑞
(𝑥, 𝑦)

× 𝑆2,𝑞 (𝑛 + 𝑘 − 𝑙, 𝑘) ,

(16)

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

B
(𝛼)

𝑛−𝑘,𝑞
(𝑥, 𝑦) [𝛼]𝑞!𝑆2,𝑞 (𝑘, 𝛼)

=

𝑛−𝛼

∑

𝑙=0

[
𝑛 − 𝛼

𝑙
]

𝑞

[𝑛]𝑞!

[𝑛 − 𝛼]𝑞!
𝑥
𝑛−𝛼−𝑙

𝑦
𝑙
𝑞
( 𝑙
2
)
,

(17)

where 𝑞 ∈ C, 𝛼,𝑛 ∈ N, and 0 < |𝑞| < 1.

Theorem 2. The 𝑞-Stirling numbers of the second kind satisfy
the following relations:

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) =

∞

∑

𝑗=0

(
−𝛼

𝑗
)
1

2𝑗
[𝑗]
𝑞
!

×

𝑛

∑

𝑝=0

[
𝑛

𝑝
]

𝑞

𝑆2,𝑞 (𝑛 − 𝑝, 𝑗)

×

𝑝

∑

𝑙=0

[
𝑝

𝑙
]

𝑞

𝑥
𝑝−𝑙
𝑦
𝑙
𝑞
( 𝑙
2
)
,

(18)

B
(𝛼)

𝑛,𝑞 = [𝛼]𝑞!

∞

∑

𝑗=0

(
−𝛼

𝑗
)

×

𝑗

∑

𝑘=0

(
𝑗

𝑘
) [𝑘]𝑞!

𝑆2,𝑞 (𝑛 + 𝑘, 𝑘)

[𝑛 + 𝑘]𝑞!
[𝑘]𝑞!(−1)

𝑗−𝑘
,

B
(−𝛼)

𝑛,𝑞 (𝑥, 𝑦)

= [𝛼]𝑞!

𝑛+𝛼

∑

𝑚=0

[
𝑛 + 𝛼

𝑚
]

𝑞

𝑆2,𝑞 (𝑚, 𝛼)

× (𝑥 + 𝑦)
𝑛+𝛼−𝑚

𝑞

[𝑛]𝑞!

[𝑛 + 𝛼]𝑞!
,

(19)

where 𝑞 ∈ C, 𝛼,𝑛 ∈ N, and 0 < |𝑞| < 1.

Theorem 3. The generalized 𝑞-Euler polynomials satisfy the
following relation:

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

E𝑘,𝑞 (𝑥, 𝑦) = 2(𝑥 + 𝑦)
𝑛

𝑞
−E𝑛,𝑞 (𝑥, 𝑦) , (20)

where 𝑞 ∈ C, 𝛼, 𝑛 ∈ N, and 0 < |𝑞| < 1.

Theorem 4. The polynomials 𝐵𝑛,𝑞(𝑥, 𝑦) andG𝑛,𝑞(𝑥, 𝑦) satisfy
the following difference relationships:

B𝑛,𝑞 (𝑥, 𝑦) =
𝑛+1

∑

𝑙=0
𝑙 ̸= 𝑛

[
𝑛 + 1

𝑙
]

𝑞

1

[𝑛 + 1]𝑞

G𝑙,𝑞 (𝑥, 𝑦)B𝑛+1−𝑙,𝑞,

(21)

G𝑛,𝑞 (𝑥, 𝑦) = −2
𝑛

∑

𝑙=0
𝑙 ̸= 𝑛

[
𝑛

𝑙
]

𝑞

1

[𝑙 + 1]𝑞

G𝑙+1,𝑞B𝑛−𝑙,𝑞 (𝑥, 𝑦) ,

(22)

where 𝑞 ∈ C, 𝛼,𝑛 ∈ N, and 0 < |𝑞| < 1.

Theorem 5. There is the following relation between the
generalized 𝑞-Euler polynomials and generalized 𝑞-Bernoulli
polynomials:

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)

= {

𝑛+1

∑

𝑠=0

[
𝑛 + 1

𝑠
]

𝑞

𝑠

∑

𝑙=0

[
𝑠

𝑙
]

𝑞

B𝑠−𝑙,𝑞 (𝑚𝑥, 0)

−

𝑛+1

∑

𝑙=0

[
𝑛 + 1

𝑙
]

𝑞

B𝑛+1−𝑙,𝑞 (𝑚𝑥, 0)}

×
𝑚

[𝑛 + 1]𝑞!
E
(𝛼)

𝑙,𝑞
(0, 𝑦)𝑚

𝑙−𝑛−1
,

(23)

where 𝑞 ∈ C, 𝛼,𝑛 ∈ N, and 0 < |𝑞| < 1.

2. Proof of the Theorems

Lemma 6. The generalized 𝑞-Bernoulli polynomials, 𝑞-Euler
polynomials, and 𝑞-Genocchi polynomials satisfy the following
relations:

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

B
(𝛼)

𝑘,𝑞
(𝑥, 𝑦)B

(−𝛼)

𝑛−𝑘,𝑞
= (𝑥 + 𝑦)

𝑛

𝑞
,

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

B
(𝛼)

𝑘,𝑞
(0, 𝑦)B

(−𝛼)

𝑛−𝑘,𝑞
= 𝑞
(𝑛(𝑛−1))/2

𝑦
𝑛
,

B
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) =

𝑛

∑

𝑙=0

[
𝑛

𝑙
]

𝑞

B
(𝛼)

𝑛−𝑙,𝑞
(0, 𝑦)

×

𝑙

∑

𝑘=0

[
𝑙

𝑘
]

𝑞

E
(𝛼)

𝑘,𝑞
(𝑥, 0)E

(−𝛼)

𝑙−𝑘,𝑞
,
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E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦) =

𝑛

∑

𝑙=0

[
𝑛

𝑙
]

𝑞

E
(𝛼)

𝑛−𝑙,𝑞
(0, 𝑦)

×

𝑙

∑

𝑘=0

[
𝑙

𝑘
]

𝑞

B
(𝛼)

𝑘,𝑞
(𝑥, 0)B

(−𝛼)

𝑙−𝑘,𝑞
,

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

G𝑘,𝑞 (𝑥, 𝑦) +G𝑛,𝑞 (𝑥, 𝑦)

= 2[𝑛]𝑞(𝑥 + 𝑦)
𝑛−1

𝑞
,

G
(𝛼−𝛽)

𝑛,𝑞 (𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

G
(𝛼)

𝑘,𝑞
(𝑥, 0)G

(−𝛽)

𝑛−𝑘,𝑞
(0, 𝑦) .

(24)

Proof. The proof of this lemma can be found from (7)–(12).

Proof of Theorem 1. By (8) and (13) we have

∞

∑

𝑛=0

B
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

= (
𝑡

𝑒𝑞 (𝑡) − 1
)

𝛼

𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

×
[𝑘]𝑞!

(𝑒𝑞 (𝑡) − 1)
𝑘

(𝑒𝑞 (𝑡) − 1)
𝑘

[𝑘]𝑞!

= [𝑘]𝑞!
𝑡
𝛼

(𝑒𝑞 (𝑡) − 1)
𝛼+𝑘

𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

×

∞

∑

𝑚=0

𝑆2,𝑞 (𝑚, 𝑘)
𝑡
𝑚

[𝑚]𝑞!

= [𝑘]𝑞!𝑡
−𝑘
∞

∑

𝑛=0

𝑛

∑

𝑙=0

[
𝑛

𝑙
]

𝑞

B
(𝛼+𝑘)

𝑙,𝑞

× (𝑥, 𝑦) 𝑆2,𝑞 (𝑛 − 𝑙, 𝑘)
𝑡
𝑛

[𝑛]𝑞!

= [𝑘]𝑞!

∞

∑

𝑛=0

𝑛

∑

𝑙=0

[
𝑛

𝑙
]

𝑞

B
(𝛼+𝑘)

𝑙,𝑞

× (𝑥, 𝑦) 𝑆2,𝑞 (𝑛 − 𝑙, 𝑘)
𝑡
𝑛−𝑘

[𝑛]𝑞!

= [𝑘]𝑞!

∞

∑

𝑛=−𝑘

𝑛+𝑘

∑

𝑙=0

[
𝑛 + 𝑘

𝑙
]

𝑞

B
(𝛼+𝑘)

𝑙,𝑞

× (𝑥, 𝑦) 𝑆2,𝑞 (𝑛 + 𝑘 − 𝑙, 𝑘)
𝑡
𝑛−𝑘

[𝑛]𝑞!
.

(25)

Equating the coefficients of (𝑡𝑛/[𝑛]𝑞!), we obtain (16).
Similarly, we have (17).

Proof of Theorem 2. Combining (10) and (13), we obtain

(
2

𝑒𝑞 (𝑡) + 1
)

𝛼

= (1 +
𝑒𝑞 (𝑡) − 1

2
)

(−𝛼)

=

∞

∑

𝑗=0

(
−𝛼

𝑗
)(

𝑒𝑞 (𝑡) − 1

2
)

(𝑗)

,

∞

∑

𝑛=0

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑗=0

(
−𝛼

𝑗
)(

𝑒𝑞 (𝑡) − 1

2
)

(𝑗)

𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

=

∞

∑

𝑗=0

(
−𝛼

𝑗
)
1

2𝑗
[𝑗]
𝑞
!

∞

∑

𝑛=0

𝑆2,𝑞 (𝑛, 𝑗)
𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑥
𝑛−𝑘
𝑦
𝑘
𝑞
( 𝑘
2
) 𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑗=0

(
−𝛼

𝑗
)
1

2𝑗

×

∞

∑

𝑛=0

𝑛

∑

𝑝=0

[
𝑛

𝑝
]

𝑞

[𝑗]
𝑞
!𝑆2,𝑞 (𝑛 − 𝑝, 𝑗)

×

𝑝

∑

𝑙=0

[
𝑝

𝑙
]

𝑞

𝑥
𝑝−𝑙
𝑦
𝑙
𝑞
( 𝑙
2
) 𝑡
𝑛

[𝑛]𝑞!
.

(26)

Comparing the coefficients of (𝑡𝑛/[𝑛]𝑞!), we find (18).
Similarly, we have (19).

Proof of Theorem 3. It is obvious that

−2

(𝑒𝑞 (𝑡) + 1) 𝑒𝑞 (𝑡)

=
2

(𝑒𝑞 (𝑡) + 1)
−

2

𝑒𝑞 (𝑡)
. (27)

We write it as

−2

𝑒𝑞 (𝑡) + 1

𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

𝑒𝑞 (𝑡)
=

2

𝑒𝑞 (𝑡) + 1
𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

−
2

𝑒𝑞 (𝑡)
𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦) ,

−2

𝑒𝑞 (𝑡) + 1
𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦) =

2

𝑒𝑞 (𝑡) + 1
𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

− 2𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)
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−

∞

∑

𝑛=0

E𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

E𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

𝑡
𝑛

[𝑛]𝑞!
− 2

∞

∑

𝑛=0

(𝑥 + 𝑦)
𝑛

𝑞

𝑡
𝑛

[𝑛]𝑞!
.

(28)

Using the Cauchy product and comparing the coefficients of
(𝑡
𝑛
/[𝑛]𝑞!), we have

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

E𝑘,𝑞 (𝑥, 𝑦) = 2(𝑥 + 𝑦)
𝑛

𝑞
−E𝑘,𝑞 (𝑥, 𝑦) . (29)

Finally, we consider the interesting relationships between
the 𝑞-Bernoulli polynomials and 𝑞-Genocchi polynomials
and the 𝑞-Euler polynomials and 𝑞-Bernoulli polynomials.
These relations are 𝑞-analogues to the Srivastava-Pintér
addition theorems.

Proof of Theorem 4. It follows immediately that

∞

∑

𝑛=0

B𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

=
1

2

2𝑡𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

𝑒𝑞 (𝑡) + 1

+
1

𝑡
(

𝑡

𝑒𝑞 (𝑡) − 1
)

2𝑡

𝑒𝑞 (𝑡) + 1
𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

=
1

2

∞

∑

𝑛=0

G𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!
+
1

𝑡

×

∞

∑

𝑛=0

B𝑛,𝑞
𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

G𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

=
1

2

∞

∑

𝑛=0

G𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

+

∞

∑

𝑛=0

𝑛

∑

𝑙=0

[
𝑛

𝑙
]

𝑞

1

[𝑛]𝑞

G𝑙,𝑞 (𝑥, 𝑦)

×B𝑛−𝑙,𝑞
𝑡
𝑛−1

[𝑛 − 1]𝑞!

=
1

2

∞

∑

𝑛=0

G𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

+

∞

∑

𝑛=0

( −
1

2
G𝑛,𝑞 (𝑥, 𝑦)

+

𝑛+1

∑

𝑙=0

[
𝑛 + 1

𝑙
]

𝑞

1

[𝑛 + 1]𝑞

× G𝑙,𝑞 (𝑥, 𝑦)B𝑛+1−𝑙,𝑞)
𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

(

𝑛+1

∑

𝑙=0
𝑙 ̸= 𝑛

[
𝑛 + 1

𝑙
]

𝑞

1

[𝑛 + 1]𝑞

× G𝑙,𝑞 (𝑥, 𝑦)B𝑛+1−𝑙,𝑞)
𝑡
𝑛

[𝑛]𝑞!
.

(30)

Equating the coefficients of (𝑡𝑛/[𝑛]𝑞!), we have (21).
In a similar fashion, (12) yields

∞

∑

𝑛=0

G𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

=
1

𝑡
(

2𝑡

𝑒𝑞 (𝑡) + 1
(𝑒𝑞 (𝑡) − 1))(

𝑡𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

𝑒𝑞 (𝑡) − 1
)

=
1

𝑡
(2𝑡 − 2

2𝑡

𝑒𝑞 (𝑡) + 1
)(

𝑡

𝑒𝑞 (𝑡) − 1
𝑒𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦))

=
1

𝑡
(2𝑡 − 2

∞

∑

𝑛=0

G𝑛,𝑞
𝑡
𝑛

[𝑛]𝑞!
)(

∞

∑

𝑛=0

B𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!
)

=
1

𝑡
(−2

∞

∑

𝑙=0

1

[𝑙 + 1]𝑞!
G𝑙+1,𝑞

𝑡
𝑙+1

[𝑙]𝑞!
)(

∞

∑

𝑛=0

B𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!
)

=

∞

∑

𝑛=1

(−2

𝑛

∑

𝑙=0
𝑙 ̸= 𝑛

[
𝑛

𝑙
]

𝑞

G𝑙+1,𝑞

[𝑙 + 1]𝑞

B𝑛−𝑙,𝑞 (𝑥, 𝑦))
𝑡
𝑛

[𝑛]𝑞!
.

(31)

Comparing the coefficients of (𝑡𝑛/[𝑛]𝑞!), we have (22).

Proof of Theorem 5. By (10), we write

∞

∑

𝑛=0

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

= (
2

𝑒𝑞 (𝑡) + 1
)

𝛼

× 𝐸𝑞 (𝑡𝑦)
𝑒𝑞 (𝑡/𝑚) − 1

(𝑡/𝑚)

(𝑡/𝑚)

𝑒𝑞 (𝑡/𝑚) − 1
𝑒𝑞 ((𝑡/𝑚)𝑚𝑥)
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=
𝑚

𝑡
{

∞

∑

𝑛=0

E
(𝛼)

𝑛,𝑞 (𝑥, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

B𝑛,𝑞 (𝑚𝑥, 0)
𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

×

∞

∑

𝑛=0

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!
−

∞

∑

𝑛=0

E
(𝛼)

𝑛,𝑞 (0, 𝑦)
𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

B𝑛,𝑞 (𝑚𝑥, 0)
𝑡
𝑛

𝑚𝑛[𝑛]𝑞!
}

= 𝑚

∞

∑

𝑛=−1

1

[𝑛 + 1]𝑞

× {

𝑛+1

∑

𝑠=0

[
𝑛 + 1

𝑠
]

𝑞

𝑠

∑

𝑙=0

[
𝑠

𝑙
]

𝑞

B𝑠−𝑙,𝑞 (𝑚𝑥, 0)

−

𝑛+1

∑

𝑙=0

[
𝑛 + 1

𝑙
]

𝑞

B𝑛+1−𝑙,𝑞 (𝑚𝑥, 0)}

×
𝑚

[𝑛 + 1]𝑞!
E
(𝛼)

𝑙,𝑞
(0, 𝑦)𝑚

𝑙−𝑛−1 𝑡
𝑛

[𝑛]𝑞!
.

(32)

By equating the coefficients of (𝑡𝑛/[𝑛]𝑞!), we get the theorem.

Remark 7. There are many different relationships which are
analogues to the Srivastava-Pintér addition theorems at these
polynomials.
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