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Our knowledge about surroundings can be achieved by observations and measurements but both are influenced by errors (noise).
Therefore one of the first tasks is to try to eliminate the noise by constructing instruments with high accuracy. But any real observed
and measured system is characterized by natural limits due to the deterministic nature of the measured information. The present
work is dedicated to the identification of these limits. We have analyzed some algorithms for selection and estimation based
on statistical hypothesis and we have developed a theoretical method for their validation. A classic (non-quantic) algorithm for
observations andmeasurements based on statistical strategies of optical field is presented in detail. A generalized statistical strategy
for observations and measurements on the nuclear particles, is based on these results, taking into account the particular type of
statistics resulting from the measuring process also.

1. Introduction

The methods of testing statistical hypothesis and parameters
estimation, built up in the frame of mathematical statistics,
represent algorithms which confirm the “functionality” of
experimental systems [1–4]. The aim of this paper is to
identify natural limits by building up “observation” and
“estimation” algorithms based on “statistical strategies” of
“assessment and control” of these limits. In the experimental
systems as optical communications a large interest is focused
on observation and measurement of signals with entropy
bigger than the noise level.Thus, the signal/noise ratio is used
as a main observable for validation of correct operation of a
communication system [5–12].

A classic (non-quantic) algorithm based on statistical
strategies for an optical field is presented in detail. A gen-
eralized statistical strategy based on observations and mea-
surements on the nuclear particles as neutrinos can be also
developed [13, 14]. The neutrinos physics and engineering
are related very closely to that of the stars. The chemical
composition of the solar interior is one of the frontiers of

solar neutrino spectroscopy. They have a decisive role as an
energy-loss channel for understanding stellar evolution also.
The observed astrophysical neutrino sources other than the
Sun help us in understanding supernova physics as stellar
core collapse as well as the dynamics of supernova explosions
and nucleosynthesis [15–24].

The methods of statistical physics we will discuss in
the paper are inseparably intertwined in the strategy for
observations and measurements on the nuclear particles, as
neutrinos.

A high-statistics neutrino observation provides us with
very important data about other low-mass particles which
determine large-scale experiments in which new types of
particle detectors will be developed and built. Concomitantly
with the neutrino observation, a lot of theoretical and numer-
ical work remains to be done, based on statistical physics
methods giving us crucial information for the accuracy of the
experiments to be developed and built.

Two application examples are given: one is based on the
bilateral test for validation of statistical hypothesis (validation
of mean value for a given dispersion) and another one for
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validation of the mean value for an unknown dispersion [6–
12, 15, 25].

To eliminate the noise by construction of instruments
with high accuracy it is very important to mention that
statistical validation of some communication systems based
on control statistical strategies points out that the signal/noise
ratio is not the essential parameter in characterising such a
system but the structure of the statistical strategy. Therefore
a system with high signal/noise ratio will not solve the
validation (good working of this system) from the point of
view of multistochastic processes that generate noise.

2. Theoretical Considerations

We define the set of measurements for the considered signal
as follows:

→

𝑉= {𝑉
1

, 𝑉
2

, 𝑉
3

, . . . 𝑉
𝑛

} . (1)

Starting with this, we intend to calculate the false alarm
probability (𝑄

0

), the detection probability (𝑄
𝑑

), and the
physical system state [7]. We assume that a physical system is
in𝑀 statistical states, described by𝑀 statistical hypothesis
{�̂�

𝑗

}. If an 𝑀 physical system is characterized by {�̂�
𝑗

}

statistical state, the detected signal will be, [8],

{�̂�
𝑗

} : 𝑉 (𝑡) = 𝑠
𝑗

(𝑡) + 𝑛 (𝑡) , (2)

where 𝑠
𝑗

(𝑡) represents the useful signal and 𝑛(𝑡) the random
signal.

We assume that the observation vector {
→

𝑉} is a random
variable described by the probability density function:

𝑃
𝑗

= 𝑃
𝑗

(
→

𝑉)
𝑗=1,2,3,4...,𝑀

. (3)

Thus, the “strategy” consists in associating the statistical
hypothesis {�̂�

𝑗

} to the event {
→

𝑉}, with risk probability �̂�
𝑗

(
→

𝑉)

(classic measurement operator).
The {�̂�

𝑖

(
→

𝑉)}
𝑖=1,2,...𝑀

functions represent a “random strat-
egy” for choosing the best statistical hypothesis.Wedefine the
probability of choosing the statistical hypothesis {�̂�

𝑖

} when
the physical system is characterized by statistical hypothesis
{�̂�

𝑗

} [9] as follows:

{�̂�
𝑗

} : 𝑃
𝑟

{
𝑖

𝑗
} = ∫ �̂�

𝑖

(
→

𝑉)𝑃
𝑗

(
→

𝑉)[𝑑
→

𝑉] , (4)

where [𝑑
→

𝑉] = 𝑑𝑉
1

𝑑𝑉
2

𝑑𝑉
3

. . . 𝑑𝑉
𝑛

.
The statistical event (given by 𝑃

𝑟

{𝑖/𝑗} probability) is
described by {𝐶

𝑖𝑗

} risk. Using the prior probability {𝜉
𝑗

}, the
value of average risk for immediate strategy leads to

𝐶 = 𝐶 [�̂�
𝑖

] =

𝑀

∑

𝑖, 𝑗=1

𝜉
𝑗

𝐶
𝑖𝑗

𝑃
𝑟

{
𝑖

𝑗
}

=

𝑀

∑

𝑖, 𝑗=1

𝜉
𝑗

𝐶
𝑖𝑗

∫ �̂�
𝑖

(
→

𝑉)𝑃
𝑗

(
→

𝑉)[𝑑
→

𝑉] .

(5)

We define the risk function 𝑊
𝑖

(
→

𝑉) in choosing statistical
hypothesis {�̂�

𝑖

} as follows:

𝑊
𝑖

(
→

𝑉) =

𝑀

∑

𝑗=1

𝜉
𝑗

𝐶
𝑖𝑗

𝑃
𝑗

(
→

𝑉) . (6)

Using (6), the value of average risk leads to the following
expression:

𝐶 = ∫

𝑀

∑

𝑖=1

𝑊
𝑖

(
→

𝑉) �̂�
𝑖

(
←
𝑉) [𝑑

→

𝑉] . (7)

The problem consists in finding a number of 𝑀 functions
{�̂�
𝑖

(
→

𝑉)}, which satisfy the conditions:

0 ≤ �̂�
𝑖

(
→

𝑉) ≤ 1,

𝑀

∑

𝑖=1

�̂�
𝑖

(
→

𝑉) = 1,

𝛿𝐶 = 𝛿∫

𝑀

∑

𝑗=1

𝑊
𝑖

(
→

𝑉) �̂�
𝑖

(
→

𝑉)[𝑑
→

𝑉] = 0.

(8)

The value of minimum risk is defined as follows:

Γ (
→

𝑉)
def
= min

(𝑗)

𝑊
𝑗

(
→

𝑉) (9)

or in other form:

Γ (
→

𝑉) =

𝑀

∑

𝑖=1

𝑊
𝑖

(
→

𝑉) �̂�
𝑖

(
→

𝑉) , (10)

where:

𝐶min = ∫Γ(
→

𝑉)[𝑑
→

𝑉] . (11)

The risk functions {𝑊
𝑖

(
→

𝑉)} are directly proportional to the
risks defined “a posteriori” {𝑟

𝑖

(
→

𝑉)} as it is presented in the
following:

𝑟
𝑖

(
→

𝑉)
def
=

𝑀

∑

𝑘=1

𝐶
𝑖𝑘

𝑃
𝑟

{
�̂�
𝑘

→

𝑉

} =

𝑊
𝑖

(
→

𝑉)

𝑃(
→

𝑉)

, (12)

where 𝑃
𝑟

{�̂�
𝑘

/
→

𝑉} = 𝜉
𝑘

(𝑃
𝑘

(
→

𝑉)/𝑃(
→

𝑉)) represents “a posteri-
ori” probability for statistical hypothesis {�̂�

𝑘

}:

𝑃(
→

𝑉) =

𝑀

∑

𝑖=1

𝜉
𝑗

𝑃
𝑗

(
→

𝑉) . (13)

Also, the a posteriori probability could be defined in relation
to verisimilitude ratio under the expression:

𝑃
𝑟

{
�̂�
𝑘

→

𝑉

} = 𝜉
𝑘

Λ
𝑘

(
→

𝑉)

∑
𝑀

𝑗=1

𝜉
𝑗

Λ
𝑗

(
→

𝑉)

(14)
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and the verisimilitude ratio can bewritten as,Λ
𝑘

(
→

𝑉)=𝑃
𝑘

(
→

𝑉)/

𝑃(
→

𝑉),

lim
𝑘→∞

Λ
𝑘

(
→

𝑉) = Λ[
→

𝑉 (𝑡)] → Functional. (14


)

3. Structure of Statistical Strategy for Two
Statistical Hypotheses

Let us consider two statistical hypotheses defined as follows:

�̂�
0

: 𝑉 (𝑡) = 𝑛 (𝑡) ,

�̂�
1

: 𝑉 (𝑡) = 𝑠 (𝑡) + 𝑛 (𝑡) .

(15)

From measurements, we obtained

→

𝑉 (𝑡) = {𝑉
1

(𝑡) , 𝑉
2

(𝑡) . . . 𝑉
𝑛

(𝑡)} . (16)

Probability densities associated with the statistical hypothesis
will be 𝑃

0

(𝑉), 𝑃
1

(𝑉) [10]:

�̂�
0

→ null hypoyhesis,

�̂�
1

→ alternative hypothesis.
(17)

The risk functions are calculated as follows:

𝑊
1

(
→

𝑉) = 𝜉
1

𝐶
11

𝑃
1

(
→

𝑉) + 𝜉
0

𝐶
10

𝑃
0

(
→

𝑉) ,

𝑊
0

(
→

𝑉) = 𝜉
1

𝐶
01

𝑃
1

(
→

𝑉) + 𝜉
0

𝐶
00

𝑃
0

(
→

𝑉) .

(18)

Bayes’ strategy consists in choosing statistical hypothesis {�̂�
1

}

if the following relation is valid:

𝑊
1

(
→

𝑉) < 𝑊
0

(
→

𝑉) , (19)

(see [10]).
From (18) and (19) one can get

𝑃
1

(
→

𝑉)

𝑃
0

(
→

𝑉)

>
𝜉
0

(𝐶
10

− 𝐶
00

)

𝜉
1

(𝐶
01

− 𝐶
11

)
,

Λ
1

=

𝑃
1

(
→

𝑉)

𝑃
0

(
→

𝑉)

.

(20)

The a posteriori probability has the form:

𝑃
𝑟

{
�̂�
0

→

𝑉

} =
1

1 + (𝜉
1

/𝜉
0

) (Λ
1

/Λ
0

)
,

Λ
0

=
𝜉
0

(𝐶
10

− 𝐶
00

)

𝜉
1

(𝐶
01

− 𝐶
11

)
.

(21)

𝑄𝑑(�̂�)

𝑄0(�̂�)

(𝐿)

(Γ1)

𝑃(𝑄0, 𝑄𝑑)

Figure 1: Simple convex region (𝑄
𝑑

, 𝑄
0

).

We calculate the probability to choose {�̂�
1

} hypothesis for a
system retrieved in {�̂�

0

} hypothesis:

𝑄
0

def
= 𝑃

𝑟

{

{

{

→

𝐻
1

→

𝐻
0

}

}

}

= ∫ �̂�
1

(
→

𝑉)𝑃
0

(
→

𝑉)[𝑑
→

𝑉] (22)

and also we calculate the probability to choose for a selected
physical system the {�̂�

1

} hypothesis which can be found in
the {�̂�

1

} hypothesis

𝑄
𝑑

def
= 𝑃

𝑟

{
�̂�
1

�̂�
1

} = ∫ �̂�
1

(
→

𝑉)𝑃
1

(
→

𝑉)[𝑑
→

𝑉] . (23)

Actually, the strategy consists in 𝑄
𝑑

maximization for a
certain given value of 𝑄

0

(the Neyman-Pearson criteria).
In this case, if the verisimilitude ratio has the form:

Λ [𝑉 (𝑡)] =

𝑃
1

(
→

𝑉)

𝑃
0

(
→

𝑉)

(24)

then for (22) and (23) we obtain, [11],

𝑄
0

(�̂�) = ∫ �̂� (
→

𝑉)𝑃
0

(
→

𝑉)[𝑑
→

𝑉] ,

𝑄
𝑑

(�̂�) = ∫ �̂� (
→

𝑉)Λ [𝑉 (𝑡)] 𝑃
0

(
→

𝑉)[𝑑
→

𝑉] .

(25)

Let us define a phase space (𝑄
0

, 𝑄
𝑑

) with parameter function
{�̂�(

→

𝑉)}. This is a simple convex space:

0 ≤ 𝑄
0

≤ 1,

0 ≤ 𝑄
𝑑

≤ 1.

(26)

D (a simple convex region) is the field of possible values for
𝑄
0

and 𝑄
𝑑

(0), as shown in Figure 1.
A reliability assessment of equipment compliance indi-

cators based on these calculations is performed. Values 𝑏st
and 𝑟st are chosen to use the test plan for testing (𝑏st—
standardized coefficient calculated in one step).

At limits of compliance for 𝑟
1

= 0 the value 𝑛𝑡/𝑇
0

is calculated, the number of failures for 𝑛𝑡/𝑇
0

= 𝑏st is
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determined and, in rectangular coordinate system, a trace line
by the two points is obtained (Figure 2(a)).

For areas of inadequacy 𝑛𝑡/𝑇
0

= 0 the number of failures
𝑟
2

is determined, the value 𝑛𝑡/𝑡
0

for 𝑟 = 𝑟st is calculated, and
a trace line by the two points is obtained (Figure 2(b)).

Achieve line is represented as a process that begins right
at point zero and coincides with the horizontal axis.

Let the curve equation (Γ
1

) which upper limits the region
D be

𝑄
𝑑

= 𝑔 [𝑄
0

] . (27)

Since region D is convex, no tangent at Γ
1

curve crosses the D
region.

Let𝑃 be the point of the {𝑄
0

, 𝑄
𝑑

} coordinate tangent.The
line equation with 𝜆 slope has the expression:

𝑔 (𝑄
0

) − 𝜆𝑄
0

= 𝑄
𝑑

(�̂�) − 𝜆𝑄
0

(�̂�) . (28)

Whatever the {�̂�(
→

𝑉)} values are, the points belonging to D
region fulfill the condition:

𝑔 (𝑄
0

) − 𝜆𝑄
0

≥ 𝑄
𝑑

(�̂�) − 𝜆𝑄
0

(�̂�) . (29)

This can be rewritten as follows:

𝑔 (𝑄
0

) − 𝜆𝑄
0

≥ ∫ �̂� (
→

𝑉)[Λ(
→

𝑉 −𝜆)]𝑃
0

(
→

𝑉)[𝑑
→

𝑉] .

(30)

In this case, the statistic strategy consists in maximization of
the integral in (30):

𝛿∫ �̂� (
→

𝑉)[Λ(
→

𝑉) − 𝜆]𝑃
0

(
→

𝑉)[𝑑
→

𝑉] = 0. (31)

From (31) we obtain the parameter function, {�̂�(
→

𝑉)}, which
maximizes the value for 𝑄

𝑑

. The �̂�(
→

𝑉) can have possible
values:

�̂� (
→

𝑉) = 1 → Λ(
→

𝑉) − 𝜆 > 0,

�̂� (
→

𝑉) = 0 → Λ(
→

𝑉) − 𝜆 > 0,

�̂� (
→

𝑉) = 𝑓 → Λ(
→

𝑉) = 𝜆,
→

𝑉∈ 𝑧, {𝜆} , 0 ≤ 𝑓 < 1.

(32)

And therefore

Λ(
→

𝑉) > 𝜆 → we choose {�̂�
1

} hypothesis,

Λ (
→

𝑉) < 𝜆 → we choose {�̂�
0

} hypothesis,
(33)

In the case of equality, Λ(
→

𝑉) = 𝜆, we choose {�̂�
1

} as
hypothesis, with the probability:

𝑓 = �̂� (
→

𝑉)


→

𝑉
∈𝑧

, (34)

where 𝑧 includes D → the uncertainty region.
In this case, values of𝑄

0

and𝑄
𝑑

will have the expressions:

𝑄
0

= 𝑓𝑃
𝑟

{
→

𝑉∈
𝑧

�̂�
0

} + 𝑃
𝑟

{Λ(
→

𝑉) >
𝜆

�̂�
0

} ,

𝑄
𝑑

= 𝑓𝑃
𝑟

{
→

𝑉∈
𝑧

�̂�
1

} + 𝑃
𝑟

{Λ(
→

𝑉) >
𝜆

�̂�
1

} .

(35)

For a continuous structure on observable space [
→

𝑉] (34) and
(35) become

𝑄
0

= 𝑃
𝑟

{Λ(
→

𝑉) >
𝜆

�̂�
0

} ,

𝑄
𝑑

= 𝑃
𝑟

{Λ(
→

𝑉) >
𝜆

�̂�
1

} ,

(36)

where [𝑧] region has null probability (𝑓 = 0) for any
hypothesis {�̂�

0

, �̂�
1

}.

4. Calculation Algorithm of Statistical
Strategy (Classic Case) for Observation
and Measurement of an Optical Signal in
Presence of Gaussian Fluctuations

Let us suppose that we consider the two statistical hypotheses
case {�̂�

0

, �̂�
1

}:

�̂�
0

:
→

𝑉 (𝑡) =
→

𝑛 (𝑡) ,

�̂�
1

:
→

𝑉 (𝑡) =
→

𝑛 (𝑡) +
→

𝑠 (𝑡) ,

(37)

where
→

𝑛 (𝑡) represents the Gauss random distributed signal
(the Gauss noise) and

→

𝑠 (𝑡) the detectable useful signal.
We suppose an averaging operator 𝐸 for statistical

hypothesis {�̂�
0

, �̂�
1

} and then we have the calculation rules:

𝐸[

→

𝑛 (𝑡)

�̂�
0

] = 0,

𝐸 [

→

𝑛 (𝑡)

�̂�
1

] = 0,

𝐸[

[

→

𝑛 (𝑡
1

)
→

𝑛 (𝑡
2

)

�̂�
𝑖

]

]
𝑖=0, 1

= 𝜑 (𝑡
1

, 𝑡
2

),

(38)

where 𝜑(𝑡
1

, 𝑡
2

) represents the correlation function of Gaus-
sian noise.
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𝑟

𝑟st

𝑛𝑡st/𝑇0 𝑛𝑡/𝑇0

(a)

𝑟

𝑟st

𝑁𝑁st

(b)

Figure 2: The limits of a rectangular coordinate system.

The signal
→

𝑉 (𝑡) defined as
→

𝑉 (𝑡) = {𝑉
1

(𝑡), 𝑉
2

(𝑡), 𝑉
3

(𝑡),

. . . , 𝑉
𝑛

(𝑡)} must be “observed” and “measured” in (0, 𝑇)
period.

For {𝑉
𝑘

}
𝑘=1,...,𝑛

observables determination, which repre-
sents latent vectors, and {𝑓

𝑘

}
𝑘=1,...,𝑛

fundamental functions, we
can define the expansions:

𝑉
𝑘

= ∫

𝑇

0

𝑓
𝑘

(𝑡) 𝑉 (𝑡) 𝑑𝑡 (39)

or from (37) it results that

𝑉
𝑘

= 𝑠
𝑘

+ ∫

𝑇

0

𝑓
𝑘

(𝑡) 𝑛 (𝑡) 𝑑𝑡. (40)

Equation (39) represents spectral expansion defined by quan-
tities {𝑉

𝑘

, 𝑓
𝑘

}.
Let an observable space

{
→

𝑉} = {𝑉
1

, 𝑉
2

, . . . 𝑉
𝑛

} (41)

be defined by Gaussian fluctuations, characterized by proba-
bility functions 𝑃

0

(
→

𝑉) and 𝑃
1

(
→

𝑉). Therefore we define

𝑃
0

(
→

𝑉) = 𝑃
𝑟

{

{

{

→

𝑉

�̂�
0

}

}

}

= (2𝜋)
−𝑚/2

(det𝜑)−1/2 exp{−1
2

𝑚

∑

𝑘, 𝑙=1

𝜇
𝑘

𝑙

(𝑉
𝑘

− 𝑉
𝑘

0

)

× (𝑉
𝑙

− 𝑉
𝑙

0

)} ,

𝑃
1

(
→

𝑉) = 𝑃
𝑟

{

{

{

→

𝑉

�̂�
1

}

}

}

= (2𝜋)
−𝑚/2

(det𝜑)−1/2 exp{−1
2

𝑚

∑

𝑘, 𝑙=1

𝜇
𝑘

𝑙

(𝑉
𝑘

− 𝑉
𝑘

1

)

× (𝑉
𝑙

− 𝑉
𝑙

1

)} ,

(42)

where

→

𝑉
𝑘

0

= 𝐸[
𝑉
𝑘

�̂�
0

] = 0,

→

𝑉
𝑙

0

= 𝐸[
𝑉
𝑙

�̂�
0

] = 0,

→

𝑉
𝑘1

= 𝐸[
𝑉
𝑘

�̂�
1

] = 𝑠
𝑘

= ∫

𝑇

0

𝑓
𝑘

(𝑡) 𝑠 (𝑡) 𝑑𝑡,

𝑉
𝑙1

= 𝐸[
𝑉
𝑙

�̂�
1

] = 𝑠
𝑙

= ∫

𝑇

0

𝑓
𝑙

(𝑡) 𝑠 (𝑡) 𝑑𝑡.

(43)

Also, we build the correlation matrices (for Gaussian noise):

(𝜑
𝑘

𝑙

)
𝑖=0, 1

def
= 𝐸[(𝑉

𝑘

− 𝑉
𝑘𝑖

) (𝑉
𝑙

− 𝑉
𝑙𝑖

) �̂�
𝑖

]
𝑖=0, 1

(44)

or

(𝜑
𝑘

𝑙

)
0, 1

= ∫

𝑇

0

∫

𝑇

0

𝑓
𝑘

(𝑡
1

) 𝜑 (𝑡
1

, 𝑡
2

) 𝑓
1

(𝑡
2

) 𝑑𝑡
1

𝑑𝑡
2

. (45)

The matrix (𝜇
𝑘

𝑙

) is defined as

(𝜇
𝑘

𝑙

)
0, 1

= (𝜑
𝑘

𝑙

)
−1

0, 1

(46)

Let correlation operator be:

�̂� = ∫

𝑇

0

𝜑 (𝑡
1

, 𝑡
2

) 𝑑𝑡
1

. (47)
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And let eigenvalues equation be

�̂�𝑓
𝑘

(𝑡
1

) = 𝜆
𝑘

𝑓
𝑘

(𝑡
2

) , (48)

where

∫

𝑇

0

𝜑 (𝑡
1

, 𝑡
2

) 𝑓
𝑘

(𝑡
2

) 𝑑𝑡
2

= 𝜆
𝑘

𝑓
𝑘

(𝑡
1

) . (49)

Then we obtain the scalar matrix:

(𝜑
𝑘

𝑙

) = 𝜆
𝑘

𝛿
𝑘

𝑙

,

(𝜇
𝑘

𝑙

) = 𝜆
−1

𝑘

𝛿
𝑘

𝑙

,

(50)

where (𝜆
𝑘

) represents the measure of dispersion for every
measurement. The distribution functions 𝑃

0

(
→

𝑉) and 𝑃
1

(
→

𝑉)

acquire a factorial expression (as if every sampling quantity
has been Gaussian distributed).

Thus, we have

𝑃
0

(
→

𝑉) =

𝑚

∏

𝑘=𝑙

1

√2𝜋𝜆
𝑘

𝑒
−𝑉

2

𝑘

/2𝜆

𝑘 ,

𝑃
1

(
→

𝑉) =

𝑚

∏

𝑘=𝑙

1

√2𝜋𝜆
𝑘

𝑒
−(𝑉

𝑘

−𝑠

𝑘

)

2

/2𝜆

𝑘 .

(51)

The verisimilitude ratio can be written as

Λ(
→

𝑉) = exp{
𝑚

∑

𝑘=𝑙

𝑉
𝑘

𝑠
𝑘

− 1/2𝑠
2

𝑘

𝜆
𝑘

} ,

𝑄


0

= 𝑄
0

|
�̂�(

→

𝑉
)=1

= ∫𝑃
0

(
→

𝑉)[𝑑
→

𝑉] ,

𝑄


𝑑

= 𝑄
𝑑

|
�̂�(

→

𝑉
)=1

= ∫𝑃
1

(
→

𝑉)[𝑑
→

𝑉] .

(52)

Next, 𝑄
0

, 𝑄
𝑑

will have the following expressions:

𝑄


0

= 𝜋
𝑚

𝑘=1

1

√2𝜋
∫

+∞

𝛼/
√
𝜆

𝑘

𝑒
−𝑡

2

/2

𝑑𝑡 =

𝑚

∏

𝑘=1

erfc[ 𝛼
√𝜆

𝑘

] ,

𝑄


𝑑

= 𝜋
𝑚

𝑘=1

1

√2𝜋
∫

+∞

(𝛼−𝑠

𝑘

)/
√
𝜆

𝑘

𝑒
−𝑡

2

/2

𝑑𝑡 =

𝑚

∏

𝑘=1

erfc[
𝛼 − 𝑠

𝑘

√𝜆
𝑘

] ,

(53)

where 𝛼 is the significance threshold of statistical strategy.
If we accomplish only one measurement, the signal/noise

ratio can be considered as follows [12]:

(
𝑆

𝑍
) =
1

𝜆
[∫

𝑇

0

𝑓 (𝑡) 𝑠 (𝑡) 𝑑𝑡]

2

,

∫

𝑇

0

𝜑 (𝑡
1

, 𝑡
2

) 𝑓 (𝑡
2

) 𝑑𝑡
2

= 𝜆𝑓 (𝑡
1

) ,

𝐸 [
𝑛 (𝑡

1

) 𝑛 (𝑡
2

)

�̂�
0,1

] = 𝜑 (𝑡
1

, 𝑡
2

) ,

(54)

but only if

𝜑 (𝑡
1

, 𝑡
2

) = 𝜎
2

𝛿 (𝑡
2

− 𝑡
1

) , (55)

Then the result is

∫

𝑇

0

𝜎
2

𝛿 (𝑡
2

− 𝑡
1

) 𝑓 (𝑡
1

) 𝑑𝑡
1

= 𝜎
2

𝑓 (𝑡
2

) , ∀𝑓 (𝑡) : 𝑅 → 𝑅.

(56)

The signal/noise ratio becomes

(
𝑆

𝑍
) = [

1

𝜎
∫

𝑇

0

𝑓 (𝑡) 𝑠 (𝑡) 𝑑𝑡] . (57)

If probability distributions for the two statistical hypotheses
are characterized by a parameter, then we can write

�̂�
0

: 𝑃
0

= 𝑃
0

[𝑉 (𝑡) , 𝜃
0

] ,

�̂�
1

: 𝑃
1

= 𝑃
1

[𝑉 (𝑡) , 𝜃
1

] .

(58)

We define the probability (�̂�
0

) as

𝑃
𝑟

⌊𝑉 (𝑡) ∈
𝑊

�̂�
0

⌋ = (𝛼) ; ⇒ 𝑄
0

,

(�̂�
1

) : 𝑃
𝑟

⌊𝑉 (𝑡) ∈
𝑊

�̂�
1

⌋ = (1 − 𝛽) ; ⇒ 𝑄
𝑑

,

(59)

where (𝑊) is the critical domain in the observable space.
In the end, we can write the equations as follows:

𝑃
𝑟

{
�̂�
1

�̂�
0

} = 𝑃
𝑟

{𝑉 (𝑡) ∈
𝑊

�̂�
0

} = 𝑄
0

= 𝛼,

𝑃
𝑟

{
�̂�
1

�̂�
1

} = 𝑃
𝑟

{𝑉 (𝑡) ∈
𝑊

�̂�
1

} = 𝑄
𝑑

= 1 − 𝛽.

(60)

In this case, the statistic strategy consists in determining
the optimum critical domain {𝑊∗

} in the observable space
so that, if there is any other critical domain, the following
relation can be written:

∫
𝑊

∗

𝑃
1

[𝑉 (𝑡) , 𝜃
1

] [𝑑𝑉] ≥ ∫
𝑊

𝑃
1

[𝑉 (𝑡) , 𝜃
1

] [𝑑𝑉] . (61)

We specify (by estimation) the parameters of probability
distribution:

𝑉
𝑘

0

= 𝐸[
𝑉
𝑘

�̂�
0

] = 𝜃
0

,

𝑉
𝑘

1

= 𝐸[
𝑉
𝑘

�̂�
1

] = 𝑠
𝑘

= ∫

𝑇

0

𝑓
𝑘

(𝑡) 𝑠 (𝑡) 𝑑𝑡 = 𝜃
1

.

(62)

If alternative hypothesis (�̂�
1

) is not only a simple hypothesis:

𝑉
𝑘

= 𝑉
𝑘

1

(63)
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but a more complex hypothesis written as

𝑉
𝑘

> 𝑉
𝑘

0

or 𝑉
𝑘

̸= 𝑉
𝑘

0

(64)

then there does not always exist a validation test to be the
most powerful over any other test (so there is no most
powerful validation test).

If we verify null hypothesis

(�̂�
0

) : 𝑉
𝑘

= 𝑉
𝑘

0

(65)

against alternative hypothesis

(�̂�
1

) : 𝑉
𝑘

> 𝑉
𝑘

0

(66)

then the most powerful test will exist.
If for the alternative hypothesis (�̂�

1

) there is a value 𝑉
𝑘

1

which satisfies the following condition:

𝑉
𝑘

1

> 𝑉
𝑘

0

(𝑠
𝑘

> 𝑠
𝑘

0

) (67)

for value {𝑉
𝑘

1

}, then it results that the best test is the one for
which (𝑉

𝑘

) values (which determine the critical range) satisfy
inequality (the Neyman-Pearson auxiliary theorem)

𝑃 (𝑉
𝑘

, 𝑉
𝑘

1

, 𝜎
2

)

𝑃 {𝑉
𝑘

, 𝑉
𝑘

0

, 𝜎2}

> 𝜆. (68)

For Gaussian noise we have

Λ [𝑉
𝑘

] =

𝑃 [𝑉
𝑘

, 𝑉
𝑘

1

, 𝜎
2

]

𝑃 [𝑉
𝑘

, 𝑉
𝑘

0

, 𝜎2]

= exp(−
𝑉
2

𝑘

1

− 𝑉
2

𝑘

0

2𝜎2
) exp(𝑉

𝑘

𝑉
𝑘

1

− 𝑉
𝑘

0

𝜎2
) ≈ 𝐴𝑒

𝐵𝑉

𝑘 ,

(69)

From (69) it results that Λ(𝑉
𝑘

) increases as {𝑉
𝑘

} increases.
Thus, the highest value for {𝑉

𝑘

} that fulfills (68) will be (𝑉
𝑘

0

)

which satisfies the equality:

Λ (𝑉
𝑘

)
𝑉
𝑘

=𝑉

𝑘

𝑐

= 𝜆. (70)

By expanding (70) it results that

𝑉
𝑘

𝑐

=

2𝜎
2 ln 𝜆 + [𝑉2

𝑘

1

− 𝑉
2

𝑘

0

]

2 [𝑉
𝑘

1

− 𝑉
𝑘

0

]

. (71)

The best critical domain (critical value) {𝑊∗

} is

𝑊
∗

: 𝑉
𝑘

> 𝑉
𝑘

𝑐

. (72)

Using the following special functions:

Φ (𝑥) =
1

√2𝜋
∫

𝑥

−∞

𝑒
−𝑡

2

/2

𝑑𝑡,

erfc (𝑥) = 1

√2𝜋
∫

+∞

𝑥

𝑒
−𝑡

2

/2

𝑑𝑡,

Φ (𝑥) = 1 − erfc (𝑥) ,

1 − Φ (𝑥) = Φ (−𝑥) ,

Φ (𝑥) = 𝛼,

𝑥 = 𝑢
𝛼

,

𝑢
𝛼

= 𝑢
1−𝛼

,

(73)

we can calculate for instance

𝑃
𝑟

{𝑉
𝑘

<

𝑉
𝑘

𝑐

�̂�
0

} = 1 − 𝛼 =
1

√2𝜋𝜎2
∫

𝑉

𝑘

𝑐

−∞

𝑒
−(𝑉

𝑘

−𝑉

𝑘

0

)

2

/2𝜎

2

𝑑𝑉
𝑘

.

(74)

From (74) it results that

1 − 𝛼 = Φ[

𝑉
𝑘

𝑐

− 𝑉
𝑘

0

𝜎
] (75)

and then we find

𝑉
𝑘

𝑐

= 𝑉
𝑘

0

+ 𝜎𝑢
1−𝛼

. (76)

In similar way, it results that

𝑃
𝑟

{𝑉
𝑘

>

𝑉
𝑘

𝑐

�̂�
1

} =
1

√2𝜋𝜎2
∫

+∞

𝑉

𝑘

𝑐

𝑒
−(𝑉

𝑘

−𝑉

𝑘

1

)

2

/2𝜎

2

𝑑𝑉
𝑘

= Φ[−

𝑉
𝑘

𝑐

− 𝑉
𝑘

1

𝜎
] = Φ[𝑢

𝛼

+

𝑉
𝑘

1

− 𝑉
𝑘

0

𝜎
] .

(77)

From expressions (76) and (77) we obtain

𝑢
𝛼

+

𝑉
𝑘

1

− 𝑉
𝑘

0

𝜎
= 𝑢

1−𝛽

(78)

or in another form:

𝑉
𝑘

1

= 𝑉
𝑘

0

+ 𝜎 [𝑢
1−𝛼

+ 𝑢
1−𝛽

] . (79)

Similarly, we can write the following expressions:

𝑄
0

= erfc[
𝑉
𝑘

𝑐

− 𝑉
𝑘

0

𝜎
] = 𝛼,

𝑄
𝑑

= erfc[
𝑉
𝑘

𝑐

− 𝑉
𝑘

1

𝜎
] = 1 − 𝛽,

𝑄
𝑑

= erfc[
𝑉
𝑘

𝑐

− 𝑉
𝑘

0

𝜎
−

𝑉
𝑘

1

− 𝑉
𝑘

0

𝜎
] = 1 − 𝛽.

(80)
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From (80) we can determine the signal/noise ratio as

(
𝑆

𝑍
)

def
=

𝑉
𝑘

1

− 𝑉
𝑘

0

𝜎

𝑉
𝑘

1

>𝑉

𝑘

0

(81)

or written in a different form:
𝑆

𝑍
=

𝑉
𝑘c
− 𝑉

𝑘

0

𝜎
+ 𝑢

1−𝛽

. (82)

If 𝑉
𝑘

0

= 0 then we have

𝑆

𝑍
= 𝑢

1−𝛼

+ 𝑢
1−𝛽

= 𝑢
1−𝑄

0

+ 𝑢
𝑄

𝑑

. (83)

Let the empiric average of 𝑛measurements be

𝑉
𝑛

=
1

𝑛

𝑛

∑

𝑘=1

𝑉
𝑘

. (84)

The statistical hypothesis has the structure as follows:

�̂�
0

: 𝑉
𝑘

0

= 𝑉
0

�̂�
1

: 𝑉
𝑘

1

= 𝑉
1


𝜆

𝑘

≈𝜎

2

(𝑘=1,2,3...𝑛)

, (85)

where {𝑉
𝑘

} represents the variable of distribution function.
Now the distribution functions are written as

𝑃
0

= 𝑃
0

(
𝑉, 𝜎

𝑛, 𝑉
0

) ,

𝑃
1

= 𝑃
1

(
𝑉, 𝜎

𝑛, 𝑉
1

) ,

(86)

where 𝑉
0

, 𝑉
1

, and 𝜎/𝑛 are the parameters for distribution
functions.

Therefore, we can conclude that the probability equation
is

𝑃
𝑟

{
�̂�
1

�̂�
0

} = 𝑄
0

= ∫

+∞

𝑉

𝑐

𝑃
0

[𝑉,𝑉
0

,
𝜎

√𝑛
] [𝑑𝑉] = 𝛼 (87)

and then

𝑉
𝑐

= 𝑉
0

+
𝜎

√𝑛
𝑢
1−𝛼

,

𝑊
∗

: 𝑉 ≥ 𝑉
𝑐

; 𝑉 ∈ 𝑊
∗

.

(88)

Also

𝑃
𝑟

{
�̂�
1

�̂�
1

} = 𝑄
𝑑

= ∫

+∞

𝑉

𝑐

𝑃
1

[𝑉,𝑉
1

,
𝜎

√𝑛
] [𝑑𝑉] = 1 − 𝛽

(89)

and the result is

𝑉
1

= 𝑉
0

+
𝜎

√𝑛
𝑢
1−𝛽

. (90)

From (88) and (89) it results that

𝑉
1

= 𝑉
0

+
𝜎

√𝑛
(𝑢
1−𝛼

+ 𝑢
1−𝛽

) ,

𝑛 = 𝜎
2

(𝑢
1−𝛼

+ 𝑢
1−𝛽

)
2 1

(𝑉
1

− 𝑉
0

)
2

.

(91)

𝑛

𝑛1

𝑛2

𝑊
∗

(𝑉1)1 (𝑉1)2

Figure 3: Determination of the best critical region (𝑊∗

).

Therefore, for empirical average, the following expressions are
obtained:

𝑃
𝑟

{
�̂�
1

�̂�
0

} = 𝑄
0

= 𝑃
𝑟

{𝑉
𝑛

>
𝑉
𝑐

�̂�
0

}

= 𝛼-significance threshold of statistical test,

𝑃
𝑟

{
�̂�
1

�̂�
1

} = 𝑄
𝑑

= 𝑃
𝑟

{𝑉
𝑛

>
𝑉
𝑐

�̂�
1

}

= 1 − 𝛽-power function of test,

𝑃
𝑟

{
�̂�
0

�̂�
0

} = 𝑃
𝑟

{𝑉
𝑛

>
𝑉
𝑐

�̂�
0

} = 1 − 𝛼,

𝑃
𝑟

{
�̂�
0

�̂�
1

} = 𝑃
𝑟

{𝑉
𝑛

>
𝑉
𝑐

�̂�
1

} = 𝛽.

(92)

4.1. Application for a Particular Case with 𝑉
0

= 0 and 𝜎2 ̸= 0.
We consider as known the following expressions:

𝑉
0

= 0, 𝜎
2

̸= 0, (93)

and the parameters 𝛼 and 𝛽 need to be determined.
The signal/noise ratio will be calculated as

𝑆

𝑍
= 𝑢

1−𝛼

+ 𝑢
1−𝛽

(94)

The detection probabilities are

𝑄
0

= 𝛼,

𝑄
𝑑

= 1 − 𝛽.

(95)

And then we look for the best characteristic region (𝑊∗

):

𝑊
∗

: 𝑉
𝑛

> 𝑉
𝑐

or 𝑉
𝑛

>
𝜎

√𝑛
𝑢
1−𝛼

, (96)

where

𝑛



𝑉

1

̸= 0

𝑉

0

̸= 0

= 𝜎
2

⋅

(𝑢
1−𝛼

+ 𝑢
1−𝛽

)
2

𝜈
2

1

. (97)

The graph in Figure 3 indicates that, in case of low
amplitude signals detection, more measurements (n-bigger
values) are necessary in comparison with high amplitude
signal detection, where the number of measurements (𝑛)
must be low.
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4.2. Algorithm Regarding the Bilateral Test for Validation of
Statistical Hypothesis (Validation of Mean Value for a Given
Value of Dispersion 𝜎2). Let us put the matrix in a diagonal
form so the repartition functions will have the expression:

𝑃
0

=

𝑛

∏

𝑘=1

1

√2𝜋 ⋅ 𝜆
𝑘

⋅ 𝑒
−(𝑉

𝑘

−𝑉

𝑘

0

)

2

/2𝜆

𝑘 ,

𝑃
1

=

𝑛

∏

𝑘=1

1

√2𝜋 ⋅ 𝜆
𝑘

⋅ 𝑒
−(𝑉

𝑘

−𝑉

𝑘

1

)

2

/2𝜆

𝑘 .

(98)

We make the following hypothesis:

𝜆
𝑘

= 𝜎
2

, ∀𝑘 ∈ 𝑁,

𝑉
𝑘

0

≅ 𝑉
0

,

𝑉
𝑘

1

≅ 𝑉
1

.

(99)

In this case, we have

𝑃
0

=
1

(2𝜋𝜎2)
𝑛/2

⋅ 𝑒
−(1/2𝜎

2

) ∑

𝑛

𝑘=1

(𝑉

𝑘

−𝑉

0

)

2

,

𝑃
1

=
1

(2𝜋𝜎2)
𝑛/2

⋅ 𝑒
−(1/2𝜎

2

) ∑

𝑛

𝑘=1

(𝑉

𝑘

−𝑉

1

)

2

(100)

or, in general, we define a verisimilitude function for corre-
spondence:

𝑉
0

, 𝑉
1

→ 𝜇 (101)

or in the following form:

𝑃 (𝑉
𝑘

, 𝜇, 𝜎
2

) = (
1

2𝜋𝜎2
)

𝑛/2

⋅ 𝑒
−(1/2𝜎

2

) ∑

𝑛

𝑘=1

(𝑉

𝑘

−𝜇)

2

. (102)

For 𝜇, the maximum verisimilitude estimation will be

𝜇
def
= 𝑉

𝑛

=
1

𝑛

𝑛

∑

𝑘=1

𝑉
𝑘

. (103)

In the following we calculate the verisimilitude functions:

𝑃
Ω

def
= (

1

2𝜋𝜎2
)

𝑛/2

⋅ 𝑒
−(1/2𝜎

2

) ∑

𝑛

𝑘=1

(𝑉

𝑘

−𝑉

𝑛

)

2

,

𝑃
𝜔

def
= (

1

2𝜋𝜎2
)

𝑛/2

⋅ 𝑒
−(1/2𝜎

2

) ∑

𝑛

𝑘=1

(𝑉

𝑘

−𝑉

0

)

2

.

(104)

Also, the verisimilitude ratio is calculated as follows:

𝑙
def
=
𝑃
𝜔

𝑃
Ω

= 𝑒
−(𝑛/2𝜎

2

)(𝑉

𝑛

−𝑉

0

)

2

. (105)

The critical region is given by

0 < 𝑙 < 𝑐 (106)

and the limit of critical region will be

𝑙 = 𝑐 (107)

and then it will result that

ln 𝑐 = − 𝑛
2𝜎
2

(𝑉
𝑐

− 𝑉
0

)
2

. (108)

The final result will be

𝑉
𝑐

− 𝑉
0

= ±𝑘
𝜎

√𝑛
; 𝑘 = √−2 ln 𝑐. (109)

The test significance threshold equation will be

∫

+∞

𝑉

𝑐

𝑃
𝜔

𝑑𝑉
𝑘

=
𝛼

2
(110)

because there are two values for 𝑉
𝑐

with two equally associ-
ated areas.

From (109) we have

𝑉
𝑐

= 𝑉
0

+
𝜎

√𝑛
𝑢
1−𝛼/2

(111)

and then results the best critical domain

(𝑊
∗

) :



𝑉
𝑛

− 𝑉
0

𝜎/√𝑛



> 𝑢
1−𝛼/2

. (112)

The statistical strategy structure will be characterized by

𝑃
𝑟

{�̂�
1

| �̂�
0

}
def
= 𝑃

𝑟

{



𝑉
𝑛

− 𝑉
0

𝜎/√𝑛



> 𝑢
1−𝛼/2


�̂�
0

}

= 𝛼 = 𝑄
0

,

𝑃
𝑟

{�̂�
0

| �̂�
1

}
def
= 𝑃

𝑟

{𝑉
𝑛

> 𝑉
𝑐


�̂�
1

}

= 𝑃
𝑟

{



𝑉
𝑛

− 𝑉
0

𝜎/√𝑛



> 𝑢
1−𝛼/2


�̂�
1

}

= Φ[𝑢
𝛼/2

−
𝑉
1

− 𝑉
0

𝜎/√𝑛
]

+ Φ[𝑢
𝛼/2

+
𝑉
1

− 𝑉
0

𝜎/√𝑛
] = 1 − 𝛽 = 𝑄

𝑑

.

(113)

The following approximation is considered:


𝑉
1

− 𝑉
0

𝜎/√𝑛



≥ 0.5 (114)

and the result is

1 − 𝛽 ≅ Φ[𝑢
𝛼/2

+
𝑉
1

− 𝑉
0

𝜎/√𝑛
] (115)

and also

{
𝑆

𝑍
}

def
=
𝑉
1

− 𝑉
0

𝜎/√𝑛
≈ 𝑢

1−𝛽

+ 𝑢
1−𝛼/2

(116)

and finally

𝑛 ≈
𝜎
2

(𝑉
1

− 𝑉
0

)
2

⋅ (𝑢
1−𝛽

+ 𝑢
1−𝛼/2

)
2

. (117)
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4.3. Algorithm Regarding Bilateral Test for Validation of Sta-
tistical Hypothesis (Validation of Mean Value for an Unknown
Value of Dispersion 𝜎2). Let us consider the following equa-
tion:

→

𝑉
𝑛

=
1

𝑛

𝑛

∑

𝑘=1

𝑉
𝑘

. (118)

We define null hypothesis:

�̂�
0

: 𝑉 → 𝑉
0

(119)

and alternative hypothesis:

�̂�
1

: 𝑉 → 𝑉
1

; 𝑉
1

̸= 𝑉
0

. (120)

The general form of the verisimilitude function is

𝑃 (𝜇, 𝜎) = (
1

2𝜋𝜎2
)

𝑛/2

⋅ 𝑒
−(1/2𝜎

2

) ∑

𝑛

𝑘=1

(𝑉

𝑘

−𝜇)

2

. (121)

From the equations system:

𝜕 ln𝑃 (𝜇, 𝜎)
𝜕𝜇

= 0,

𝜕 ln𝑃 (𝜇, 𝜎)
𝜕𝜎2

= 0

(122)

the result is

𝜇 =
1

𝑛

𝑛

∑

𝑘=1

𝑉
𝑘

= 𝑉
𝑛

,

𝜎
2

=
1

𝑛

𝑛

∑

𝑘=1

(𝑉
𝑘

− 𝜇)
2

=
1

𝑛

𝑛

∑

𝑘=1

(𝑉
𝑘

− 𝑉
𝑛

)
2

.

(123)

So (121) becomes

𝑃
Ω

= [
𝑛

2𝜋 ⋅ ∑
𝑛

𝑘=1

(𝑉
𝑘

− 𝑉
𝑛

)
2

]

𝑛/2

⋅ 𝑒
−𝑛/2

. (124)

Therefore, maximum likelihood estimation for 𝜎2 in case of
null hypothesis (i.e., 𝜇 = 𝜇

0

) will be obtained from (122) and
(123).The estimated value of dispersion �̂�2 will be (in the limit
case 𝜇 = 𝑉

0

)

�̂�
2

def
= 𝜎

2

𝜇
0

=𝑉

0

=
1

𝑛

𝑛

∑

𝑘=1

(𝑉
𝑘

− 𝜇
0

)
2

. (125)

Then, by definition it results that

𝑃
Ω

= 𝑃



𝜇

0

=𝑉

0

𝜎

2

→
̂
𝜎

2

=(1/𝑛)∑

𝑛

𝑘=1

(𝑉
𝑘

−𝜇

0

)
2

= [

[

𝑛

2𝜋 ⋅ ∑
𝑛

𝑘=1

(𝑉
𝑘

− 𝑉
0

)
2

]

]

𝑛/2

⋅ 𝑒
−𝑛/2

.

(126)

The verisimilitude ratio will be in the following form:

𝑙
def
=
𝑃
𝜔

𝑃
Ω

=
1

[∑
𝑛

𝑘=1

(𝑉
𝑘

− 𝑉
0

)
2

/∑
𝑛

𝑘=1

(𝑉
𝑘

− 𝑉
𝑛

)
2

]

𝑛/2

.

(127)

If we define

𝑡
def
=

𝑉
𝑛

− 𝑉
0

√∑
𝑛

𝑘=1

(𝑉
𝑘

− 𝑉
𝑛

)
2

/𝑛 (𝑛 − 1)

,

𝑠
2

def
=

∑
𝑛

𝑘=1

(𝑉
𝑘

− 𝑉
𝑛

)
2

𝑛 − 1
,

(128)

then we can write

𝑡 =
𝑉
𝑛

− 𝑉
0

𝑠/√𝑛
, (129)

where 𝑠 is the dispersion experimentally determined accord-
ing to these values. Thus, the verisimilitude ratio gets to the
following form:

𝑙 = (
1

1 + (𝑡2/ (𝑛 − 1))
)

𝑛/2

(130)

and the following limit is verified:

lim
𝑛→∞

𝑙 = 𝑒
−𝑡

2

/2

. (131)

The best critical region is given by the following inequality:

0 < 𝑙 < 𝑐. (132)

Therefore it results that


𝑉
𝑛

− 𝑉
0

𝑠/√𝑛



> 𝑡
𝑐

. (133)

From verisimilitude threshold expression:

∫

+∞

𝑉

𝑐

𝑃
𝜔

⋅ 𝑑𝑉
𝑘

=
𝛼

2
, Φ(

𝑉
𝑐

− 𝑉
0

𝑠/√𝑛
) = 1 −

𝛼

2
, (134)

it results that

𝑉
𝑐

= 𝑉
𝑠

+
𝑠

√𝑛
𝑢
1−𝛼/2

. (135)

The best critical domains will be determined by the following
inequality:



𝑉
𝑛

− 𝑉
0

𝑠/√𝑛



> 𝑢
1−𝛼/2

(136)

so the signal/noise ratio will have the following expression:

(
𝑆

𝑍
)

def
= (
𝑉
1

− 𝑉
0

𝑠/√𝑛
) . (137)
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Consequently, it results that

𝑃
𝑟

{�̂�
1

| �̂�
0

}
def
= 𝑃

𝑟

{



𝑉
𝑛

−𝑉
0

𝑠/√𝑛



>𝑢
1−𝛼/2


�̂�
0

}=𝛼,

𝑃
𝑟

{�̂�
1

| �̂�
1

}
def
= Φ(𝑢

𝛼/2

−
𝑉
1

− 𝑉
0

𝑠/√𝑛
)

+ Φ(𝑢
𝛼/2

−
𝑉
1

− 𝑉
0

𝑠/√𝑛
) = 1 − 𝛽.

(138)

5. Conclusions

Our knowledge is achieved by observation and by measure-
ments of systems, operationswhich are affected by errors.The
aim of this paper has been to identify these natural limits
by the developing of observation and assessment algorithms
based on statistical strategy of control and checking.

It is very important to mention that statistical validation
of some communication systems based on control statistical
strategies points out that the signal/noise ratio is not the
essential parameter in characterising such a system but the
structure of the statistical strategy. In the simplest and most
relevant form it contains the false alarm probability 𝑄

0

and detection probability 𝑄
𝑑

. Therefore a system with high
signal/noise ratio will not solve the validation (good working
of this system) from the point of view of multistochastic
processes that generate noise.

Using the algorithms described in the paper an algorithm
based on the bilateral test for description of the unknown
dispersion can be further developed.

A generalized statistical strategy for observations and
measurements on the nuclear particles is based on these
results, taking into account the particular type of statistics
resulting from the measuring process also.
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