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For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable
uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback
control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey
on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and
methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning
control of quantum systems, we survey and introduce such learning controlmethods as gradient-basedmethods, genetic algorithms
(GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the
feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and
coherent-feedback control. Then such topics in the field of quantum robust control as𝐻∞ control, sliding mode control, quantum
risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research
directions that are likely to attract more attention.

1. Introduction

Quantum mechanical systems model the dynamical evolu-
tion characterizing physical phenomena at atomic andmolec-
ular scales. Recent progress in theories and experiments has
shown that such technologies as quantum information [1]
and quantum control [2–4] have many advantages over their
traditional counterparts. However, practical applications of
quantum information technology are still confronted with
some important technical difficulties such as the control of
quantum systems in the presence of uncertainties or without
explicit modeling information. Developing effective control
theory andmethods has been recognized as a solution to such
difficulties. Some tools from classical control theory have
been used to analyze and solve quantum control problems,
among which we recall the most widely developed ones as
follows.

Closed-Loop Learning Control. Closed-loop learning control
has achieved great successes in controlling the laboratory

quantum phenomena [5, 6], where the optimal open-loop
control strategy is hard to design directly due to the incom-
plete knowledge of the system models or unexpected uncer-
tainties.

Feedback Control. When a control is added to a quantum
system, adjusting the control parameters according to instan-
taneous state of the system can make quantum control more
pertinent and more effective, which will improve the control
result with robustness and reliability. Feedback is such an
effective control strategy in classical control theory as well
as in quantum control theory, especially in the system with
unpredictable disturbances in the evolution. During the past
decades, different types of feedback control design methods
have been studied for various applications [7–15].

Robust Control. In realistic environment, the quantum system
is unavoidable to be subject to disturbances, uncertainties,
and incomplete knowledge.These factors can all be viewed as
uncertainties in the control field, in the Hamiltonian system,
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in the field-coupling coefficient (e.g., the dipole moment),
and so forth andmight affect the control results [16]. In order
to achieve robustness in control method and to develop new
insights into complicated quantum plants (such as quantum
networks), it is desirable to apply classical robust control
theory into quantumdomain. Various kinds of robust control
approaches [17–23] have been proposed, especially in the
communities of control science.

All of these three kinds of approaches aim at optimizing
the control performances for quantum systems that have
no perfect models or are subject to uncertainties. But they
are different from each other regarding specific motivations,
methods, and applications. A brief comparison between these
three kinds of approaches is shown in Table 1, and, in the
following sections, we give a self-contained survey on these
promising research areas and provide interested readers with
a general idea for further studies.

The remaining of the paper is organized as follows.
In Section 2, the closed-loop learning control problems of
quantum systems are defined with the concept of quantum
control landscape, and three kinds of closed-loop learning
control methods (e.g., gradient-based, GA, and RL methods)
are reviewed. Section 3 introduced several feedback control
approaches including Lyapunov control, measurement-based
feedback control, and coherent-feedback control. Then such
quantum robust control approaches as 𝐻∞ control, sliding
mode control, quantum risk-sensitive control, and quantum
ensemble control are surveyed in Section 4. Conclusions
and the authors’ perspective on the future challenges in the
associated fields are summarized in Section 5.

2. Closed-Loop Learning Control

Learning control is an effective control method that can
learn from experience and optimize the system performance
by searching for the best control strategy in an iterative
way. When applied to the control of quantum systems, as
presented in [5], the closed-loop learning control procedure
generally involves three elements: (i) a trial laser control
input design, (ii) the laboratory generation of the control that
is applied to the sample and subsequently observed for its
impact, and (iii) a learning algorithm that considers the prior
experiments and suggests the form of the next control input.
It is clear that, for each trial of control, it is an open-loop
control, while the control performancewill be sent back to the
learning algorithm to direct the optimization for the optimal
control strategy.

The control objective is usually formulated as an optimal
control problem by converting the problem into a problem
of optimizing a functional of such control parameters as the
quantum states, control inputs, control time, and so on. In
order to systematically study the relationship between the
time-dependent controls and the associated values of the
objective functional, a notion of quantum control landscape
[24, 25] is defined and related theories are alsowell developed.
In this section, we will survey the area of closed-loop learning
control from the point of view of quantum control landscape

and introduce several practical and promising learningmeth-
ods to explore the quantumcontrol landscape, which includes
the gradient-based methods, stochastic searching methods
(e.g., genetic algorithm), and reinforcement learning meth-
ods.

2.1. Quantum Control Landscape: A Unified View for Closed-
Loop Learning Control. In recent years, quantum control
landscapes [25] have attracted more and more attention in
the research field of quantum control. A control landscape
is defined as the map between the time-dependent control
Hamiltonian and associated values of the control perfor-
mance functional. For example, as shown in Figure 1, the
performance function 𝐽(𝑢) is defined as the functional of the
control strategy 𝑢 = 𝑢

𝑖
, 𝑖 = 1, 2, . . . ,𝑀, where𝑀 is a positive

integer that indicates the number of the control variables
(𝑀 = 2 for the case shown in Figure 1).

Quantum control aims to manipulate the dynamics of
system evolution on the atomic and molecular scales, and
most quantum control problems can be formulated as the
maximization of an objective performance function. From
a unified point of view, the closed-loop learning control is
the approach of exploring a quantum control landscape to
find the optimal control strategy where the objective function
reaches its maximum or minimum. For the past decades,
various algorithms have been proposed to explore the control
landscapes for both theoretical studies and applications [24–
29].Most traditional learningmethods can also be adopted to
analyze or explore different kinds of control landscapes. In the
next subsection, we survey these existing successful methods
and classify them into three categories, that is, gradient-based
methods, stochastic searching methods, and reinforcement
learning methods.

2.2. Typical Learning Control Methods to Explore
Quantum Control Landscape

2.2.1. Gradient-Based Methods. Gradient-based methods are
one of themost important kinds of learning and optimization
control methods for quantum systems [30, 31]. A well-
developed gradient-based method called D-MORPH search
algorithm is introduced in [32].

For most gradient-base methods, for example, we can
introduce a time-like variable 𝑠 to characterize different
control strategies 𝑢(𝑠)(𝑡). A gradient flow in the control space
can be defined as

𝑑𝑢
(𝑠)

(𝑡)

𝑑𝑠
= −∇𝐽 (𝑢

(𝑠)

(𝑡))

= −(
𝜕𝐽

𝜕𝑢
1
(𝑡)
,
𝜕𝐽

𝜕𝑢
2
(𝑡)
, . . . ,

𝜕𝐽

𝜕𝑢
𝑀
(𝑡)
) ,

(1)

where ∇𝐽(𝑢(𝑠)(𝑡)) is the gradient of 𝐽 with respect to the
control strategy 𝑢(𝑠)(𝑡).



The Scientific World Journal 3

Table 1: Closed-loop and robust control approaches for quantum systems.

Motivations Typical methods Applications

Closed-loop learning
control

Direct the control results and
procedures in an iteratively
learning way

(1) Gradient-based methods
(2) Stochastic searching (GA)
(3) RL methods

Controlling laboratory quantum
phenomena with incomplete knowledge
or unexpected uncertainties, for example,
optimal laser control design.

Feedback control
Adjust control parameters
according to instantaneous
feedback information

(1) Lyapunov control
(2) Measurement-based control
(3) Coherent-feedback control

Quantum state transition control,
entanglement control, design of quantum
gates, and so forth.

Robust control
Design control to achieve the best
objective functional under the
possible worst uncertainties

(1)𝐻∞ control
(2) Sliding mode control
(3) Risk-sensitive control
(4) Quantum ensemble control

Control design for quantum systems that
are fragile and are subject to various
kinds of uncertainties.

Choosing an arbitrary control strategy 𝑢0(𝑡), 𝑡 ∈ [0, 𝑇],
we can find the optimal one using gradient flow by solving
the following initial value problem:

𝑑𝑢
(𝑠)

𝑑𝑠
= −∇𝐽 (𝑢

(𝑠)

(𝑡)) ,

𝑢
(0)

(𝑡) = 𝑢
0

(𝑡) .

(2)

According to (2), generally, we can approach the optimal
control strategy by a forward Euler method over the 𝑠-
domain; that is,

𝑢 (𝑠 + Δ𝑠, 𝑡) = 𝑢 (𝑠, 𝑡) − Δ𝑠∇𝐽 (𝑢
(𝑠)

(𝑡)) . (3)

It is clear that, for a quantum control problem, the
gradient-based methods are most likely effective provided
that (i) we can get the gradient easily and (ii) there are
no traps on the control landscape (otherwise, the learning
process may get into the traps and cannot reach themaxima).
Fortunately, as argued in [5, 33], it is surprising that, under
certain conditions, most of the control landscapes are trap
free, and it is easy to find the optimal solution for controlling
most of the quantum phenomena. But for more complex
tasks, we cannot guarantee the previous conditions or the
gradient is hard to acquire, and hence other global searching
methods for the closed-loop learning control are necessary.

2.2.2. Stochastic Searching Methods. Most of the stochastic
searchingmethods are global searchingmethods and can step
over traps of local maxima. One of the most widely used
methods is genetic algorithm (GA), which has also achieved
great success in the closed-loop learning control of laboratory
quantum systems.

In the early 1990s, Judson and Rabitz [34] use a GA learn-
ing procedure to direct the production of pulses with a lab-
oratory measurement device. Thereafter, GA methods have
been widely applied to various quantum control problems.
For example, in [35], an evolutionary algorithm is applied
to femtosecond pulse shaping in optimal control experi-
ments. Tsubouchi and Momose [36] use the GA algorithm
to optimize the pulse shape for rovibrational wave-packet
manipulation. Atabek et al. [37] use evolutionary algorithms
for the optimal laser control of molecular orientation. The
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Figure 1: An example of quantum control landscape.

control and optimization prospects in the frequency domain
are also studied theoretically using GA and shaping Fourier-
limited pulses [38].

For more details about stochastic learning control meth-
ods like GA, for the laboratory closed-loop learning control,
please refer to [6], where these methods are discussed within
the concept of experimental adaptive feedback control (AFC).

2.2.3. Reinforcement Learning Methods. Reinforcement
learning (RL) [39] is an active area of machine learning
and has been extensively applied to traditional control
problems ranging from operations research to robotics
[40, 41]. Compared with other learning methods, RL is a
learning technique based on trial and error and is a more
general learning approach that can learn from experience
and show great adaptability through an iterative way. That
is to say, RL involves approximating solutions to stochastic
optimal control problems under the condition of incomplete
knowledge of the system, where the feedback for the closed
loop is an imprecise value called reward or penalty. So RL
methods are also suitable for control design of quantum
systems [18] where it is difficult to get a good model or
the searching problems are too complex to solve with
computational efficiency.
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On the other hand, the quantum characteristics also have
inspired new algorithms for traditional RL methods. Dong et
al. [42] proposed a new learning paradigm called quantum
reinforcement learning (QRL) which fuses quantum compu-
tation with RL. In their study, the states {𝑠

𝑖
} or actions {𝑎

𝑖
} in

traditional RL are denoted as the corresponding orthogonal
quantum states and are called the eigen states {|𝑠

𝑖
⟩} or eigen

actions {|𝑎
𝑖
⟩} in QRL. Here the action 𝑎

𝑖
represents the

possible operation (or control) that can accomplish the state
transition between two states. The state 𝑠

𝑖
can represent |𝜙

𝑙𝑖
⟩

and the action 𝑎
𝑖
represents the control function that can

drive |𝜙
𝑙𝑖
⟩ to |𝜙

𝑙𝑖+1
⟩.This kind of representation with a parallel

updating mechanism can speed up the learning process
and improve the learning performance as well. Compared
with the traditional RL, the QRL algorithm learns faster, its
convergence range is much larger, and the learning rate is
much easier to tune. QRL has been successfully applied for
incoherent control of quantum systems [18]. Other quantum-
inspired RL methods have also been studied for traditional
control problems [43, 44].

Due to the strong learning and adaptive abilities, RL-
based methods are promising for the exploration of quantum
control landscapes and can be used for those quantumcontrol
problems where gradient-based or GA methods cannot
work well. Thus the gradient-based methods (local search
methods), GA methods (stochastic global search methods),
and RL methods (global search methods but sometimes use
the direction of gradient-like rewards) constitute three typical
and different searching methods to explore the quantum
control landscapes.

3. Feedback Control of Quantum Systems

Quantum feedback control includes two central steps, that
is, getting the information from the system and adding
the control to the quantum system. The information of the
quantum system can be obtained by two ways, precisely
calculating the evolution of the system or fetching it from the
quantum systems by some methods such as measurement.
The former method is limited since a quantum system
may have many unexpected affections during its evolution,
while for the latter method, the measurement on a quantum
system will unavoidably influence the states of the measured
quantum system, making the situation more complex when
applying feedback to quantum systems.

For a system with predictable state in the system, one can
easily design the control field according to the instantaneous
state of the system, and quantum Lyapunov control theory
is such a kind of quantum control methods which obtain the
message by exact simulation of the system. Actually, quantum
Lyapunov control theory is only a feedback design of open-
loop control theory, based on the artificial simulation of the
system; thus it cannot be used in the case of unknown initial
states or in the presence of unpredictable disturbance to the
system.

There are two strategies for feedback control of quan-
tum systems, measurement-based feedback, and coherent-
feedback quantum control.The former strategy is to measure

some quantum observable or signals of the system and to
use and process the measurement results in a controller
to produce a classical control signal that drives a suitable
actuator, such as a laser beam or a potential well, which exerts
direct influence on the quantum system to be controlled.
The latter strategy is to use another quantum system without
measurement, a full quantum controller, and connect it with
the quantum system to be controlled in a feedback loop.

In the next three subsections, we will give a detailed
survey of the above mentioned Lyapunov, measurement-
based, and coherent quantum feedback control theories.

3.1. Feedback-Designed Open-Loop Quantum Control: Lya-
punov Control. Quantum Lyapunov control uses feedback
design to construct control fields but applies the fields into
quantum systems in an open-loop way. It has been proposed
as a good candidate for quantum state transfer [45, 46] and
provides us with a simple way to design control fields without
measurement and feedback ([47–57]).

Lyapunov function of quantum states is the central
concept in quantum Lyapunov control theory; a function 𝑉
is specified to design time-varying control fields. The system
with state 𝜌 converges to the target state given by 𝑉 which
monotonically decreases (or increases) to its minimum (or
maximum), which is an observation 𝑃 of the dynamics that
are closely related to some property of target states,

𝑉 (𝜌) = Tr (𝑃𝜌) , (4)

and 𝑉 just stands for the distance between the present state
and the target state. Then let the derivation of the Lyapunov
function 𝑉̇ < 0, which leads to the evolution of the system to
the target state.

Assume that a closed quantum system with the free
Hamiltonian 𝐻

0
and the time-dependent control Hamil-

tonian 𝐻
𝑐
(𝑡) can be described by the following Liouville

equation

𝑑𝜌 (𝑡)

𝑑𝑡
= −𝑖 [𝐻

0
+ 𝐻
𝑐
(𝑡) , 𝜌 (𝑡)] . (5)

Then the time derivative of the Lyapunov function can be
calculated to design the control fields. By requiring

𝑉̇ = Tr (−𝑖𝑃 [𝐻
0
+ 𝐻
𝑐
(𝑡) , 𝜌 (𝑡)]) < 0, (6)

one can work out the requirement of the parameter of the
control Hamiltonian 𝐻

𝑐
(𝑡). Since the previous requirement

may not completely determine the parameter, one can also
find some further constraints to improve the control effi-
ciency [57]. In essence, Lyapunov control uses the informa-
tion of the system by simulation of the system, and it is a kind
of feedback design control strategies.

This theory can be easily extended to the open quantum
systems, such as the systems determined by

𝑑𝜌 (𝑡)

𝑑𝑡
= −𝑖 [𝐻

0
+ 𝐻
𝑐
(𝑡) , 𝜌 (𝑡)] +L (𝜌 (𝑡)) , (7)

to study the control in open quantum systems.
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In recent years, quantum Lyapunov control has been used
to transfer quantum states [45, 46], to drive the states of open
quantum system into the decoherence free subspaces [53],
and to control the states in the decoherence free subspaces
[54]. Also, Lyapunov control can be used to control the
entanglement of the quantum systems [48, 52].

3.2. Measurement-Based Feedback Control. Measurement-
based feedback (MFC) uses the measurement results to
produce a classical control signal to drive a suitable actuator
which exerts direct influence on the quantum system to be
controlled [4]. During the MFC process, one can perform
measurement on the system to get some information of
the system state and then design the control law based on
the estimation of the state. The system to be controlled is
a quantum system, while the controller may be quantum,
classical, or a quantum-classical hybrid. Different from the
classical feedback control process, which can obtain the
information of the system easily without disturbing it, the
collapse of quantum state under the measurement process
makes the problem of quantum systems rather complex.

Markovian Quantum Feedback. The general theory of
quantum-limited feedback for continuously monitored sys-
tems was presented by Wiseman and Milburn, based on
quantum measurement theory and on Hamiltonian system
bath interactions [11, 58]. They considered the instantaneous
feedback of some measured photocurrent (homodyne detec-
tion) onto the dynamics of a quantum system, and themaster
equation for the resulting evolution was Markovian; that
is, the measurement record is immediately fed back into
the system to alter the system dynamics and may then be
forgotten, while any time delay is ignored and a memoryless
controller is assumed. Hence, the equation describing the
resulting evolution is aMarkovianmaster equation.This kind
of feedback has already been used to reduce laser noise below
the shot-noise level [59] and also has been used in many
aspects of physical problems, such as the control of quantum
qubits [60] and quantum entanglement [61–64]. In case the
feedback delay cannot be ignored, the feedback Hamiltonian
must include a delay parameter. Time delay effect of the
measurement was investigated in [65].

Bayesian Feedback Method. Doherty and Jacobs presented
a formulation of feedback in quantum systems in which
the best estimates of the dynamical variables are obtained
continuously from the measurement record and fed back to
control the system [7, 12]. They considered some arbitrary
functional of the entire history of the measurement results
that can be used to alter the system evolution. The resulting
equation dynamics of the system are then non-Markovian.
However, the dynamics of the system and controller remain
Markovian, and this is completely analogous to the situation
in classical control theory. In Bayesian quantum feedback,
the control process is also divided into two steps involving
state estimation and feedback control. Due to the fact that,
in linear systems, the estimation process may be modeled by
its classical analogue, Kalman filtration and classical linear
quadratic Gaussian (LQG) control theory may be applied

to quantum feedback by estimation. For Bayesian quantum
feedback, it uses a more general form of control Hamiltonian
with more information from the measurement.

It has been compared in [14] the Bayesian and Marko-
vian feedback quantum controls, where it was proved that
Bayesian feedback is never inferior, and since it uses more
information, it is usually superior to Markovian feedback.
However, it would be far more difficult to implement than
Markovian feedback and it loses its superiority when obvious
simplifying approximations are made. Thus, it is not clear
which form of feedback would be better in the face of
inevitable experimental imperfections. Bayesian feedback
has also been used in many aspects of systems, such as
the preparation of quantum states [66], and quantum error
correction [67, 68].

Weak Measurement and Nondemolition Measurement. Mak-
ing as little influence as possible during themeasurement pro-
cess is important to minimize disturbance to the system to be
controlled. Weak measurement makes it possible to modify
the evolution continuously via Hamiltonian feedback, where
the Hamiltonian feedback applied to the system depends on
the measurement record [69], and it can also be modeled by
a stochastic master equation by introducing an ancilla system
weakly coupled to the systemof interest.Weakmeasurements
and local feedback can be used to control the generation
of entanglement between two qubits [70]. Motivated by the
proposal of Brańczyk et al. [71], experimentally exploring
the use of weak measurement [72] in feedback control on
a photonic polarization qubit is given in [73], as well as in
the control of nonlinear quantum systems [74]. Quantum
nondemolition measurement preserves the integrity of the
system and the value of the measured observable, which is
best thought of as the ideal quantumprojectivemeasurement.
Nevertheless, nondemolition does not mean that the state of
the system haas no wave collapse, and it is extremely difficult
to carry out experimentally [75].

Although measurement-based feedback control is effec-
tive in many quantum control systems, its drawbacks are
also evident. Firstly, measuring a quantum system almost
inevitably disturbs it. Even a nondemolition measurement
that leaves the system in the state in which it was mea-
sured still typically alters the states of the system prior to
the measurement [76, 77]. After fluorescence determines
whether the ion is in its ground state or excited state, the
initial quantum coherence between those states is irrevocably
lost. Secondly, the information from the measurement is
stochastic because a result of the measurement of the system
jumps to one state or another probabilistically. Although
the ability to apply coherent operations conditioned on the
results of measurements allows the controller to compensate
for the probabilistic nature of their results, the introduction
of stochastic effects significantly complicates the control
process. Furthermore, the measurement-based feedback is
limited by its information processing speed that has to be kept
up with the evolution of the system dynamics, and it cannot
be used in most solid state systems whose time scales range
from picoseconds to nanoseconds.
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3.3. Coherent-Feedback Control. Coherent-feedback quan-
tum control uses another quantum system as a full quantum
controller and connects it with the quantum system to be
controlled in a feedback loop; that is, the feedback controller
itself is a quantum system, and the control operations
consist of unitary transformations. This is greatly different
from Markovian and Bayesian quantum feedback controls
where the feedback information frommeasurement results is
classical information and the feedback controller is a classical
controller.

Since this control uses full quantum information of the
system, it can perform a number of tasks that controllers
using a classical information feedback loop cannot [15].
Compared with the measurement-based feedback control,
coherent-feedback control does not involve measurement,
avoiding the introduction of excessmeasurement noise, while
the controller and the system plant can be both quantum
systems and are coherently connected. By coherent-feedback
control, one can use coherent feedback to guide a quantum
system from an unknown initial state to a desired final state
without destroying the initial state. In addition, a controller
can use a quantum feedback loop to drive a quantum system
to a target state that is entangled with another quantum sys-
tem,while entanglement is a nonlocal quantumphenomenon
that cannot be created by controllers using classical feedback
loops.

The very successful noise-reducing controllers, the 𝐻∞
and the linear quadratic Gaussian (LQG) controllers, have
natural coherence control analogues [17, 78, 79]. By basic
principles of linear quantum stochastic control theory, it has
been presented that optimal and robust design of quantum
coherent-feedback loops can be accomplished using sophisti-
catedmethods of system engineering [17], and an experimen-
tal implementation of coherent-feedback quantum control
with optical resonators as the dynamical systems and laser
beams as the coherent disturbance and feedback signals has
been presented [80]. The experiments of coherent-feedback
control in optical field squeezing are proposed in [81], and it
was also applied to many other interesting problems, such as
cooling quantum oscillator [82], spontaneous switching sup-
pression [83],multipartite quantumentanglement generation
[84], and producing optical quantum gates in a four-wave
mixing process [85].

Traditional coherence feedback control was established
for the Markovian environment. Recently, the non-Mark-
ovian coherence feedback control was presented [86]. How-
ever, in coherence feedback control, the controller itself will
cause quantum decoherence to the controlled system even
though it coherently entangles with the system [87]; thus,
whether the coherent feedback is better than the open-loop
control for quantum control systems needs to be investigated
in depth [88].

4. Robust Control

A general formalism of quantum robust optimal control
problem was given in [16], which pointed out that to design
a control field that achieves the best objective functional

under possible worst uncertainties is in essence a minimax
problem. Reference [16] also provided a method to calculate
the worst possible disturbance to the control process and
to design a corresponding robust optimal control field.
Another noticeable early attempt to apply robust control
theory in quantum field is [89], where the small gain theorem
was extended to analyze the stability of quantum feedback
networks. Later, different robust control tools were systemati-
cally introduced into the quantumdomain, which formulated
the early development of quantum robust control.

4.1. 𝐻∞ Control of Quantum Systems. For several typical
classes of noncommutative linear stochastic systems with
many interesting examples in quantum technology, 𝐻∞
control theorywas introduced to obtain robust controllers and
developed for diverse situations and requirements.

Take the class of linear noncommutative stochastic sys-
tems in [17] for example, which encompasses some quantum
and classical systems:

𝑑𝑥 (𝑡) = 𝐴𝑥 (𝑡) 𝑑𝑡 + 𝐵𝑑𝜔 (𝑡) , 𝑥 (0) = 𝑥
0
,

𝑑𝑦 (𝑡) = 𝐶𝑥 (𝑡) 𝑑𝑡 + 𝐷𝑑𝜔 (𝑡) ,

(8)

where 𝐴, 𝐵, 𝐶, and 𝐷 are, respectively, real R𝑛×𝑛, R𝑛×𝑛𝜔 ,
R𝑛𝑦×𝑛, and R𝑛𝑦×𝑛𝜔 matrices with 𝑛, 𝑛

𝜔
, and 𝑛

𝑦
all positive

integers and 𝑥(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is a vector of self-

adjoint possibly noncommutative system variables, whose
initial value 𝑥

0
consists of operators satisfying the commu-

tation relations

[𝑥
𝑗
(0) , 𝑥

𝑘
(0)] = 2𝑖Θ

𝑗𝑘
, 𝑗, 𝑘 = 1, . . . , 𝑛, (9)

where [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 is the commutation operator, Θ
𝑗𝑘

are components of the real antisymmetric matrix Θ, and 𝑖 is
the imaginary unit. 𝑥

0
is also assumed to be Gaussian with

density operator 𝜌. The vector quantity 𝜔 describes the input
signals and is assumed to have the decomposition

𝑑𝜔 (𝑡) = 𝛽
𝜔
(𝑡) 𝑑𝑡 + 𝑑𝜔̃ (𝑡) , (10)

where 𝛽
𝜔
(𝑡) is a self-adjoint, adapted process (see [90, 91]).

The noise part of𝜔(𝑡) is 𝜔̃(𝑡), a vector of self-adjoint quantum
noises with Ito table

𝑑𝜔̃ (𝑡) 𝑑𝜔̃
𝑇

(𝑡) = 𝐹
𝜔̃
𝑑𝑡, (11)

where𝐹
𝜔̃
is a nonnegativeHermitianmatrix (see [91, 92]). For

more detailed description and assumptions and the physical
realisability of this class of systems, one can refer to [17].

The 𝐻∞ controller synthesis problem for the class of
systems described by (8)–(11) was first formulated and solved
in [17]. Furthermore, this quantum𝐻

∞ control problem was
extended to a time-varying version, and the corresponding
solution was obtained by a dynamic game approach in [93].
For the same plant, the finite horizon dynamic game theory
approach was applied in [94], and the solving process was
proved equivalent to solving a corresponding deterministic
continuous-time problem with imperfect state information.
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The finite horizon 𝐻∞ control problem in [94] was then
extended to the case of delayed measurements in [95].

To simplify the deduction process and obtain more
profound results, a more special class of linear quantum
systemswas considered in [79], which proposed a robust con-
troller designing method probably more easy to implement
experimentally.

4.2. Sliding Mode Control of Quantum Systems. Sliding mode
control (SMC) approach is a useful robust control tool in
classical control theory and industrial applications, especially
for nonlinear systems. Since many quantum systems evolve
with nonlinear equations, SMC is therefore supposed to be
capable of controlling some quantum phenomena [96, 97].

Reference [98] applied the SMC control method into
quantum systems. Similar to the classical theory, quantum
sliding mode is a system state where the system has some
desirable features, such as robustness to a class of uncertain-
ties, and features brought by eigenstates, features brought by
invariant state subspaces. Once the sliding mode is selected,
one needs to design control laws that can drive the system
onto its sliding mode and keep the system on it, which were
designed in detail by combining unitary control and periodic
projective measurements in [98].

In [99], a sliding mode design method for two-level
quantum systems with bounded uncertainties was proposed.
The uncertainties were assumed to take the form of perturba-
tions in the Hamiltonian, and the controller design method
used the Lyapunov methodology and periodic projective
measurements. These results were extended in [100], where
the effect of uncertainties in driving the system state back
to the sliding mode domain from outside was considered,
and the measurement periods were modified when consid-
ering uncertainties described as perturbations in the free
Hamiltonian. In [101], a sampled-data design approach for
decoherence control of a single qubit with operator errors
was proposed using a sliding mode domain concept as the
required control performance.

Though sliding mode control approach was introduced
into quantum systems, the appropriate combination of the
essential characters of these two focuses is still worth digging.
Furthermore, one may consider extending sliding mode con-
trol to open quantum systems and applying other branches of
classical nonlinear control theories into the quantumdomain.

4.3. Quantum Risk-Sensitive Control. As a modification of
the common integral form of criterion, or the so-called
a risk-neutral criterion, a risk-sensitive criterion takes the
form of an exponential function, which results in the close
connections between robust control and risk-sensitive control
[102–104]. For example, risk-sensitive control is anticipated
to be useful in designing robust controllers [105]. Reference
[106] formulated a risk-sensitive optimal control problem for
quantum systems, obtained a solution using dynamic pro-
gramming, and briefly discussed the robustness properties
of the risk-sensitive controllers. Reference [107] considered
a risk-sensitive optimal control problem for continuously
monitored open quantum systems within the framework of

quantum Langevin equations and solved the problem with
quantum stochastic calculus and dynamic programming.
Reference [105] collected related research and systematically
illustrated a quantum risk-sensitive control problem and the
corresponding dynamic-programming solution. At the end
of [105], the author proposed several developing directions
for quantum risk-sensitive control, which include theoretical
development, practical applications in quantum field, and the
exploration of robustness properties.

Filtering aims to extract information from noisy signals
and is inherently connected with robust control, which there-
fore forms robust estimation. Guaranteed-cost filtering and
risk-sensitive filtering are two branches of robust estimation,
which are quite promising to be extended into quantum
theory. Reference [108] obtained a quantum version of the
guaranteed-cost filter and showed its unique robustness char-
acter compared with optimal Kalman filter and risk-sensitive
observer. Reference [23] studied a quantum risk-sensitive
estimation problem and analyzed robustness properties of
the filter under a discrete approximation model of the aimed
quantum system.More systematic work within the associated
topics remains to be done.

4.4. Quantum Ensemble Control. Ensemble control means
controlling a continuum of dynamical systems with different
values of parameters characterizing the system dynamics
by using the same control signal. Ensemble control derives
from the manipulation of an ensemble of nuclear spins in
nuclear magnetic resonance (NMR) spectroscopy and imag-
ing (MRI), where one often needs to develop external excita-
tions that can simultaneously steer the ensemble of systems
with variations in their internal parameters from a fiducial
state to a target state [109]. Here we view the difference in
parameters as system uncertainties. Hence, ensemble control
forms a new systematic branch of robust control.

A fundamental question in quantum ensemble control
is controllability, which determines whether the control
function that transfers the system from initial states to
desired target states can exist. Reference [110] introduced the
notion of simultaneous controllability; that is, all individuals in
the system are simultaneously controllable, and generalized
controllability criteria for decomposable systems. References
[111, 112] formally proposed the definition of ensemble con-
trollability for quantum systems described by Bloch equations
depending continuously on a finite number of scalar param-
eters and with a finite number of control inputs and analyzed
ensemble controllability and optimal control of linear time-
invariant systems. Ensemble controllability concerns finding
open-loop controls to compensate for the dispersion in
element parameters. Reference [113] cast the design of control
pulses as an optimal ensemble control problem and intro-
duced a multidimensional pseudospectrum-based solution,
whose convergence was shown in [114]. Reference [115]
studied the controllability of an ensemble of general finite-
dimensional time-varying linear systems and gave necessary
and sufficient conditions, which is in connection with singu-
lar values of the operator characterizing the system dynamics.
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Reference [116] introduced a universal numerical method
based on the singular value decomposition to approximate
optimal ensemble control problems.

Furthermore, since ensemble is originally a notion in
quantum statistics, one may anticipate introducing tools and
methods in quantum statistical mechanics into quantum
ensemble control to give new in sights and approaches.

5. Conclusions and Discussions

Manipulating system dynamics at the quantum scale is full
of challenges for both theoretical and laboratory researchers.
Closed-loop and robust control approaches are of most
importance to deal with uncertainties and incomplete knowl-
edge about the system dynamics or unexpected disturbances.
To conclude this paper, we briefly discuss some open prob-
lems and promising research directions as follows.

Learning skills is very important for the control design
of quantum systems where no good solutions can be easily
obtained from a specific model. Although the closed-loop
learning control approach for controlling quantum phenom-
ena has been well developed since the early 1990s, more
effective learning theories and algorithms need to be further
explored. The experts from different fields such as quantum
physics, chemical physics, control theory, computer science,
and artificial intelligence need to cooperate on this exciting
research area.

Feedback control is one of the most important control
strategies for traditional control problems. Almost all the
practical industrial control systems use feedback controllers
such as PID controllers. In the feedback control approach,
the deviations between the measured variable and a set point
are fed back to the controller to generate appropriate control
actions. When we apply feedback control methods for the
quantum control systems, two problems are unavoidable, that
is, the problems of measurement and time scale. Quantum
state measurement is difficult and much more complex than
its counterpart of traditional control systems. Time scale is
another nontrivial issue for the control of quantum systems
since the feedback signals are always lagging. The feedback
control design needs to incorporate the time delay of the
feedback signal and satisfy the time scale of the controlled
quantum systems.

For practical applications, robustness is an important
aspect for the design of controllers, especially for quantum
systems that are subject to various kinds of uncertainties
and are more fragile. The existing results mainly focus on
certain kinds of quantum systems with specific models, and
experiments temporarily fall behind the development of
theory. In the future,more general and systematic approaches
of robust control need to be developed formore general kinds
of uncertainties which exist in practical applications.

Acknowledgments

This work was supported by the Natural Science Founda-
tion of China under Grant nos. 61273327, 51007019, and

10905007and by the Fundamental Research Funds for the
Central Universities under Grant no. DUT12LK28.

References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, 1st edition,
2000.

[2] C. Altafini and F. Ticozzi, “Modeling and control of quantum
systems: an introduction,” IEEE Transactions on Automatic
Control, vol. 57, no. 8, pp. 1898–1917, 2012.

[3] D. Dong and I. R. Petersen, “Quantum control theory and
applications: a survey,” IETControlTheory andApplications, vol.
4, no. 12, pp. 2651–2671, 2010.

[4] H. M.Wiseman and G. J. Milburn,QuantumMeasurement and
Control, Cambridge University Press, Cambridge, Mass, USA,
2010.

[5] H. Rabitz, R. De Vivie-Riedle, M. Motzkus, and K. Kompa,
“Whither the future of controlling quantum phenomena?”
Science, vol. 288, no. 5467, pp. 824–828, 2000.

[6] C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum
phenomena: past, present and future,” New Journal of Physics,
vol. 12, Article ID 075008, 68 pages, 2010.

[7] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M.
Tan, “Quantum feedback control and classical control theory,”
Physical Review A, vol. 62, no. 1, pp. 012105–012101, 2000.

[8] R. van Handel, J. K. Stockton, and H. Mabuchi, “Feedback
control of quantum state reduction,” IEEE Transactions on
Automatic Control, vol. 50, no. 6, pp. 768–780, 2005.

[9] M.Mirrahimi andR.VanHandel, “Stabilizing feedback controls
for quantum systems,” SIAM Journal on Control and Optimiza-
tion, vol. 46, no. 2, pp. 445–467, 2007.

[10] M. Yanagisawa and H. Kimura, “Transfer function approach
to quantum control-part I: dynamics of quantum feedback
systems,” IEEE Transactions on Automatic Control, vol. 48, no.
12, pp. 2107–2120, 2003.

[11] H. M. Wiseman and G. J. Milburn, “Quantum theory of optical
feedback via homodyne detection,” Physical Review Letters, vol.
70, no. 5, pp. 548–551, 1993.

[12] A. C. Doherty and K. Jacobs, “Feedback control of quantum
systems using continuous state estimation,” Physical Review A,
vol. 60, no. 4, pp. 2700–2711, 1999.

[13] J. Zhang, R.-B. Wu, C.-W. Li, and T.-J. Tarn, “Protecting
coherence and entanglement by quantum feedback controls,”
IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 619–
633, 2010.

[14] H. M. Wiseman, S. Mancini, and J. Wang, “Bayesian feedback
versus Markovian feedback in a two-level atom,” Physical
Review A, vol. 66, no. 1, pp. 138071–138079, 2002.

[15] S. Lloyd, “Coherent quantum feedback,” Physical Review A, vol.
62, no. 2, pp. 022108–022101, 2000.

[16] H. Zhang and H. Rabitz, “Robust optimal control of quantum
molecular systems in the presence of disturbances and uncer-
tainties,” Physical Review A, vol. 49, no. 4, pp. 2241–2254, 1994.

[17] M. R. James, H. I. Nurdin, and I. R. Petersen, “H∞ control
of linear quantum stochastic systems,” IEEE Transactions on
Automatic Control, vol. 53, no. 8, pp. 1787–1803, 2008.

[18] D. Y. Dong, C. Chen, T.-J. Tarn, A. Pechen, and H. Rabitz,
“Incoherent control of quantum systems with wavefunction-
controllable subspaces via quantum reinforcement learning,”



The Scientific World Journal 9

IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38,
no. 4, pp. 957–962, 2008.

[19] D. Dong, J. Lam, and T. J. Tarn, “Rapid incoherent control
of quantum systems based on continuous measurements and
reference model,” IET Control Theory and Applications, vol. 3,
no. 2, pp. 161–169, 2009.

[20] C. Altafini, “Feedback stabilization of isospectral control sys-
tems on complex flag manifolds: application to quantum
ensembles,” IEEETransactions onAutomatic Control, vol. 52, no.
11, pp. 2019–2028, 2007.

[21] M. A. Pravia, N. Boulant, J. Emerson et al., “Robust control of
quantum information,” Journal of Chemical Physics, vol. 119, no.
19, pp. 9993–10001, 2003.

[22] C. Chen, D. Dong, J. Lam, J. Chu, and T. J. Tarn, “Control
design of uncertain quantum systems with fuzzy estimators,”
IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 820–831,
2012.

[23] N. Yamamoto and L. Bouten, “Quantum risk-sensitive estima-
tion and robustness,” IEEE Transactions on Automatic Control,
vol. 54, no. 1, pp. 92–107, 2009.

[24] H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum
optimally controlled transition landscapes,” Science, vol. 303,
no. 5666, pp. 1998–2001, 2004.

[25] R. Chakrabarti and H. Rabitz, “Quantum control landscapes,”
International Reviews in Physical Chemistry, vol. 26, no. 4, pp.
671–735, 2007.

[26] H. Rabitz, M. Hsieh, and C. Rosenthal, “Landscape for optimal
control of quantum-mechanical unitary transformations,”Phys-
ical Review A, vol. 72, no. 5, Article ID 052337, 2005.

[27] A. Rothman, T.-S. Ho, and H. Rabitz, “Exploring the level sets
of quantum control landscapes,” Physical Review A, vol. 73, no.
5, Article ID 053401, 2006.

[28] Z. Shen, M. Hsieh, and H. Rabitz, “Quantum optimal control:
hessian analysis of the control landscape,” Journal of Chemical
Physics, vol. 124, no. 20, Article ID 204106, 2006.

[29] R. Wu, H. Rabitz, and M. Hsieh, “Characterization of the
critical submanifolds in quantum ensemble control landscapes,”
Journal of Physics A, vol. 41, no. 1, Article ID 015006, 2008.

[30] J. Roslund and H. Rabitz, “Gradient algorithm applied to
laboratory quantum control,” Physical Review A, vol. 79, no. 5,
Article ID 053417, 2009.

[31] D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling
vibrational excitation with shaped Mid-IR pulses,” Physical
Review Letters, vol. 99, no. 3, Article ID 038102, 2007.

[32] A. Rothman, T.-S. Ho, and H. Rabitz, “Observable-preserving
control of quantum dynamics over a family of related systems,”
Physical Review A, vol. 72, no. 2, Article ID 023416, 2005.

[33] A. N. Pechen and D. J. Tannor, “Are there traps in quantum
control landscapes?” Physical Review Letters, vol. 106, no. 12,
Article ID 120402, 2011.

[34] R. S. Judson and H. Rabitz, “Teaching lasers to control
molecules,” Physical Review Letters, vol. 68, no. 10, pp. 1500–
1503, 1992.

[35] D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolution-
ary algorithms and their application to optimal control studies,”
Physical Review A, vol. 64, no. 2, p. 023420/13, 2001.

[36] M. Tsubouchi and T. Momose, “Rovibrational wave-packet
manipulation using shaped midinfrared femtosecond pulses
toward quantum computation: optimization of pulse shape by a
genetic algorithm,” Physical Review A, vol. 77, no. 5, Article ID
052326, 2008.

[37] O. Atabek, C. M. Dion, and A. Ben Haj Yedder, “Evolutionary
algorithms for the optimal laser control of molecular orienta-
tion,” Journal of Physics B, vol. 36, no. 23, pp. 4667–4682, 2003.

[38] C. Gollub and R. De Vivie-Riedle, “Theoretical optimization
and prediction in the experimental search space for vibrational
quantum processes,” Physical Review A, vol. 78, no. 3, Article ID
033424, 2008.

[39] C. Chen, D. Dong, H.-X. Li, and T.-J. Tarn, “HybridMDP based
integrated hierarchical Q-learning,” Science China Information
Sciences, vol. 54, no. 11, pp. 2279–2294, 2011.

[40] C. Chen, H.-X. Li, and D. Dong, “Hybrid control for
robot navigation—a hierarchical Q-learning algorithm,” IEEE
Robotics and Automation Magazine, vol. 15, no. 2, pp. 37–47,
2008.

[41] C. Chen and D. Dong, “Grey system based reactive navigation
of mobile robots using reinforcement learning,” International
Journal of Innovative Computing, Information and Control, vol.
6, no. 2, pp. 789–800, 2010.

[42] D. Dong, C. Chen, H. Li, and T.-J. Tarn, “Quantum rein-
forcement learning,” IEEE Transactions on Systems, Man, and
Cybernetics B, vol. 38, no. 5, pp. 1207–1220, 2008.

[43] C. L. Chen,D.Y.Dong, andZ.H.Chen, “Quantumcomputation
for action selection using reinforcement learning,” International
Journal of Quantum Information, vol. 4, no. 6, pp. 1071–1083,
2006.

[44] D. Dong, C. Chen, J. Chu, and T.-J. Tarn, “Robust quantum-
inspired reinforcement learning for robot navigation,” IEEE/
ASME Transactions on Mechatronics, vol. 17, no. 1, pp. 86–97,
2012.

[45] S. Grivopoulos and B. Bamieh, “Lyapunov-based control of
quantum systems,” in Proceedings of the 42nd IEEE Conference
on Decision and Control, pp. 434–438, December 2003.

[46] P. Vettori, “On the convergence of a feedback control strategy
for multilevel quantum systems,” in Proceedings of the MTNS
Conference, 2002.

[47] M. Mirrahimi, P. Rouchon, and G. Turinici, “Lyapunov control
of bilinear Schrödinger equations,” Automatica, vol. 41, no. 11,
pp. 1987–1994, 2005.

[48] X. Wang and S. G. Schirmer, “Analysis of Lyapunov method
for control of quantum states,” IEEE Transactions on Automatic
Control, vol. 55, no. 10, pp. 2259–2270, 2010.

[49] S. Kuang and S. Cong, “Lyapunov control methods of closed
quantum systems,” Automatica, vol. 44, no. 1, pp. 98–108, 2008.

[50] J.-M. Coron, A. Grigoriu, C. Lefter, and G. Turinici, “Quantum
control design by Lyapunov trajectory tracking for dipole and
polarizability coupling,” New Journal of Physics, vol. 11, Article
ID 105034, 2009.

[51] K. Beauchard, J. M. Coron, M. Mirrahimi, and P. Rouchon,
“Implicit Lyapunov control of finite dimensional Schrödinger
equations,” Systems and Control Letters, vol. 56, no. 5, pp. 388–
395, 2007.

[52] X.Wang and S.G. Schirmer, “Entanglement generation between
distant atoms by Lyapunov control,” Physical Review A, vol. 80,
no. 4, Article ID 042305, 2009.

[53] X. X. Yi, X. L. Huang, C. Wu, and C. H. Oh, “Driving quantum
systems into decoherence-free subspaces by Lyapunov control,”
Physical Review A, vol. 80, no. 5, Article ID 052316, 2009.

[54] W. Wang, L. C. Wang, and X. X. Yi, “Lyapunov control on
quantumopen systems in decoherence-free subspaces,”Physical
Review A, vol. 82, no. 3, Article ID 034308, 2010.



10 The Scientific World Journal

[55] X. X. Yi, S. L. Wu, C. Wu, X. L. Feng, and C. H. Oh, “Time-
delay effects and simplified control fields in quantum Lyapunov
control,” Journal of Physics B, vol. 44, no. 19, Article ID 195503,
2011.

[56] X. X. Yi, B. Cui, C. Wu, and C. H. Oh, “Effects of uncertainties
and errors on a Lyapunov control,” Journal of Physics B, vol. 44,
no. 16, Article ID 165503, 2011.

[57] S. C. Hou, M. A. Khan, X. X. Yi, Daoyi Dong, and R.
L. Petersen, “Optimal Lyapunov-based quantum control for
quantum systems,” Physical ReviewA, vol. 86, Article ID 022321,
7 pages, 2012.

[58] H. M. Wiseman, “Quantum theory of continuous feedback,”
Physical Review A, vol. 49, no. 3, pp. 2133–2150, 1994.

[59] S. Machida and Y. Yamamoto, “Observation of sub-poissonian
photoelectron statistics in a negative feedback semiconductor
laser,” Optics Communications, vol. 57, no. 4, pp. 290–296, 1986.

[60] H. Mabuchi and P. Zoller, “Inversion of quantum jumps in
quantum optical systems under continuous observation,” Phys-
ical Review Letters, vol. 76, no. 17, pp. 3108–3111, 1996.

[61] J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical
creation of entanglement by homodyne-mediated feedback,”
Physical Review A, vol. 71, no. 4, Article ID 042309, 2005.

[62] R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering
steady states using jump-based feedback for multipartite entan-
glement generation,” Physical ReviewA, vol. 84, no. 2, Article ID
022332, 2011.

[63] A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling
entanglement by direct quantum feedback,” Physical Review A,
vol. 78, no. 1, Article ID 012334, 2008.

[64] R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering
steady states using jump-based feedback for multipartite entan-
glement generation,” Physical ReviewA, vol. 84, no. 2, Article ID
022332, 2011.

[65] S. S. Ge, T. L. Vu, and T. H. Lee, “Quantummeasurement-based
feedback control: a nonsmooth time delay control approach,”
SIAM Journal on Control and Optimization, vol. 50, pp. 845–
863, 2012.

[66] R. Ruskov and A. N. Korotkov, “Quantum feedback control of
a solid-state qubit,” Physical Review B, vol. 66, no. 4, Article ID
041401, pp. 414011–414014, 2002.

[67] C.Ahn,A. C.Doherty, andA. J. Landahl, “Continuous quantum
error correction via quantum feedback control,”Physical Review
A, vol. 65, no. 4, pp. 423011–4230110, 2002.

[68] M. Sarovar, C. Ahn, K. Jacobs, and G. J. Milburn, “Practical
scheme for error control using feedback,” Physical ReviewA, vol.
69, no. 5, 2004.

[69] J. Combes and K. Jacobs, “Rapid state reduction of quantum
systems using feedback control,” Physical Review Letters, vol. 96,
no. 1, 2006.

[70] C. Hill and J. Ralph, “Weak measurement and control of
entanglement generation,” Physical Review A, vol. 77, Article ID
014305, 2008.
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