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We use the theory of teleparallelism equivalent to general relativity based on noncommutative spacetime coordinates. In this
context, we write the corrections of the Schwarzschild solution.We propose the existence of aWeitzenböck spacetime that matches
the corrected metric tensor. As an important result, we find the corrections of the gravitational energy in the realm of teleparallel
gravity due to the noncommutativity of spacetime. Then we interpret such corrections as a manifestation of quantum theory in
gravitational field.

1. Introduction

Thenotion of noncommutative spatial coordinates arose with
Heisenberg, who wrote a letter to Peierls, in 1930, about the
existence of an uncertain relation between coordinates in
space-time as a possible solution to avoid the singularities
in the self-energy terms of pontual particles. Based on such
an advice, Peierls applied those ideas on the analysis of
the Landau problem which can be described by an electric
charge moving into a plane under the influence of a per-
pendicular magnetic field. Since then, Peierls commented
about it with Pauli, who included Oppenheimer in the
discussion. Oppenheimer presented the ideas to Hartrand
Snyder, his former Ph.D. student [1–3]. Thus Snyder was the
first to discuss the idea that spatial coordinates could not
commutate to each other at small distances which is a change
of perspective of tiny scales [4, 5]. It is worth recalling that
the concept of noncommutativity itself is not new in Physics;
in fact in Quantum Mechanics the uncertain principle,
which is a noncommutative relation between coordinates
and momenta, plays a fundamental role. Therefore at the
beginning, with the pioneer works of Snyder, the idea was to
use the noncommutativity between spacetime coordinates to
control the ultraviolet divergences into the realm of quantum
electrodynamic. Such an approach, however, got into oblivion

due to the success achieved by the so-called renormalization
process.More recently the interest of the physical community
resurfacedwith the application of noncommutative geometry
in nonabelian theories [6], in gravitation [7–9], in standard
model [10–12], and in the problem of the quantic Hall effect
[13]. Certainly the discover that the dynamics of an open
string can be explained by noncommutative gauge theories
at specific limits [14] has contributed to this renewed interest
of the scientific community in the topic.

From themathematical point of view, the simplest algebra
of the Hermitian operators 𝑥

𝜇, whose mean values corre-
spond to observable coordinates, is given by

[𝑥

𝜇
, 𝑥

]
] = 𝑖𝜃

𝜇]
, (1)

where 𝜃

𝜇] is an antisymmetric constant tensor. From the
above expression it is possible to obtain the following uncer-
tain relations
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which suggest that effects due to the noncommutativity into
spacetime turn out to be relevant at scales of the order
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of √|𝜃

𝜇]
|. Usually the noncommutativity is introduced by

means of useing the Moyal product [15] defined as

𝑓 (𝑥) ⋆ 𝑔 (𝑥) ≡ exp (
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(3)

with a constant 𝜃𝜇]. The procedure used for the construction
of field theory in noncommutative coordinates is to write
the actions replacing the usual product, in the classical
lagrangian density, by the Moyal product. In this way, using
the properties of noncommutative algebra, we can see that a
free field theory has the action of noncommutative field equal
to the action of the field in ordinary coordinates. Moreover,
in the presence of interactions, effects of noncommutativity
are quite significant [14].

An alternative theory of gravitation is the so-called
teleparallel gravity which was introduced by Einstein, as an
attempt to unify gravity and electromagnetic field [16], and
Cartan, who developed the main part of the theory [17].
From the dynamics point of view, teleparallel gravity and
general relativity predict the same results. On the other hand,
teleparallel gravity allows for the definition of quantities
that are physically of interest, such as the gravitational
energy momentum and angular momentum tensors which
are well behaved [18] when compared to attempts made in
the context of general relativity [19, 20]. In addition, none of
such expressions obtained in the realm of general relativity
are dependant on the reference frame, which is certainly
not a desirable feature for energy, momentum, and angular
momentum.

The expressions for the energy momentum and angular
momentum of the gravitational field, in the context of the
Teleparallelism Equivalent to General Relativity (TEGR), are
invariant under transformations of the coordinates of the
three-dimensional spacelike surface; they are also dependent
on the frame of reference, as is to be expected.They have been
applied consistently over the years for many different systems
[21–25]. The frame dependence is an expected condition for
any expression due to the field since in special relativity the
energy of a particle for a stationary observer is𝑚 (with 𝑐 = 1),
but it is 𝛾𝑚 for an observer under a Lorentz transformation
boost (here 𝛾 is the Lorentz factor). There is no reason
to abandon this feature once dealing with the gravitational
field, and similar behaviour is expected for momentum and
angular momentum.

Therefore we have two successful theories described
above and a natural forward step is to combine both of
them. Then here our aim is to study the Teleparallelism
Equivalent to General Relativity in the noncommutative
spacetime context. In Section 2 we introduce the concepts
of teleparallel gravity, giving the definition of gravitational

energy. In this way, in Section 3 we present the corrections of
the Schwarzschild solution due to the noncommutativity of
tetrad fields and the respective correction in the gravitational
energy of the whole spacetime. Finally in last section we
address our concluding remarks.

Notation. Spacetime indices 𝜇, ], . . . and SO(3,1) indices
𝑎, 𝑏, . . . run from 0 to 3. Time and space indices are indicated
according to 𝜇 = 0, 𝑖, 𝑎 = (0), (𝑖). The tetrad field is denoted
by 𝑒

𝑎

𝜇 and the determinant of the tetrad field is represented
by 𝑒 = det (𝑒𝑎𝜇).

2. Teleparallel Gravity

The Teleparallelism Equivalent to General Relativity (TEGR)
is constructed out of tetrad fields (instead of a metric tensor)
in the Weitzenböck (or Cartan) spacetime, in which it is
possible to have distant (or absolute) parallelism [16]. The
tetrad field and metric tensor are related by

𝑔

𝜇]
= 𝑒

𝑎𝜇
𝑒𝑎

]
,

𝜂

𝑎𝑏
= 𝑒

𝑎𝜇
𝑒

𝑏

𝜇,

(4)

where 𝜂𝑎𝑏 = diag (− + ++) is the metric tensor of Minkowski
spacetime. Then, the Minkowski spacetime metric tensor
raises and lowers tetrad indices, similar to the metric tensor
in curved spacetime.

Let us start with a manifold endowed with a Cartan
connection [17], Γ𝜇𝜆] = 𝑒

𝑎

𝜇𝜕𝜆𝑒𝑎], which can be written as

Γ𝜇𝜆] =
0
Γ𝜇𝜆] +𝐾𝜇𝜆], (5)

where 0Γ𝜇𝜆] are the Christoffel symbols and𝐾𝜇𝜆] is given by

𝐾𝜇𝜆] =
1

2

(𝑇𝜆𝜇] + 𝑇]𝜆𝜇 + 𝑇𝜇𝜆]) . (6)

𝐾𝜇𝜆] is the contortion tensor defined in terms of the torsion
tensor constructed from the Cartan connection. The torsion
tensor is 𝑇𝜇𝜆] = 𝑒𝑎𝜇𝑇

𝑎

𝜆], with
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𝑎

] − 𝜕]𝑒
𝑎

𝜆. (7)

The curvature tensor obtained from Γ𝜇𝜆] is identically
zero which, using (5), leads to
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) ,

(8)

where 𝑅(𝑒) is the scalar curvature of a Riemannian manifold
in terms of the tetrad field and 𝑇

𝜇
= 𝑇

𝑏

𝑏

𝜇

. Since the
divergence term in (8) does not contribute to the field
equations, the teleparallel lagrangian density is

L (𝑒𝑎𝜇) = − 𝜅𝑒 (
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(9)
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where 𝜅 = 1/(16𝜋), L𝑀 is the Lagrangian density of matter
fields, and Σ

𝑎𝑏𝑐 is given by

Σ

𝑎𝑏𝑐
=

1

4

(𝑇

𝑎𝑏𝑐
+ 𝑇

𝑏𝑎𝑐
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𝑇
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𝑐
) , (10)

with 𝑇

𝑎
= 𝑒

𝑎

𝜇𝑇
𝜇. It is important to note that the Einstein-

Hilbert Lagrangian density is equivalent to its teleparallel
version given by (9).Thus both theories share the same results
concerning dynamics and, up to now, observational data.

Performing a variational derivative of the Lagrangian
density with respect to 𝑒𝑎𝜇, which are the dynamical variables
of the system, the field equations are

𝑒𝑎𝜆𝑒𝑏𝜇𝜕] (𝑒Σ
𝑏𝜆]

) − 𝑒 (Σ
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(11)

where 𝑇𝑎𝜇 = 𝑒𝑎

𝜆
𝑇𝜇𝜆 = (1/𝑒)(𝛿L𝑀/𝛿𝑒

𝑎𝜇
) is the energy-

momentum tensor of matter fields. It is possible to show
by explicit calculations the equivalence of (11) and Einstein
equations [26].

The field equations can be rewritten as
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where 𝑡𝜆𝜇 is defined by
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Since Σ𝑎𝜆] is skew symmetric in the last two indices, it follows
that
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) ≡ 0. (14)

Thus we get
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which yields the continuity equation:
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(16)

It should be noted that the above expression works as a
conservation law for the sum of energy-momentum tensor of
matter fields and for the quantity 𝑡𝜆𝜇. Thus 𝑡𝜆𝜇 is interpreted
as the energy momentum tensor of the gravitational field
[27]. Therefore, one can write the total energy-momentum
contained in a three-dimensional volume 𝑉 of space as

𝑃

𝑎
= ∫

𝑉

𝑑

3
𝑥 𝑒𝑒

𝑎

𝜇 (𝑡
0𝜇

+ 𝑇

0𝜇
) . (17)

It is worth noting that the above expression is invariant
under coordinate transformation and transforms like a vector
under Lorentz transformations. Such features are desirable
and expected for a true energy-momentum vector.

3. Noncommutative Corrections for the
Gravitational Energy in Schwarzschild
Spacetime

In this section we will start with Schwarzschild spacetime
[28], described by the following line element:

𝑑𝑠

2
= − (1 −

2𝑀

𝑟

)𝑑𝑡

2
+ (1 −

2𝑀

𝑟

)

−1
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2

+ 𝑟

2
(𝑑𝜃

2
+ sin2𝜃𝑑𝜙2) ,

(18)

where 𝑀 is the mass of font. Then a tetrad field adapted to
an observer at rest at spatial infinity, which yields the above
metric, is

𝑒

𝑎

𝜇
=

[

[

[

[

[
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]
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]

.

(19)

The noncommutativity is introduced by means of the Moyal
product, defined in (3), between two tetrad fields, given by

𝑔𝜇] =
1

2

(𝑒

𝑎

𝜇 ⋆ 𝑒𝑎] + 𝑒

𝑎

] ⋆ 𝑒𝑎𝜇) .
(20)

Such a procedure could seem ad hoc; however this is well
established; see, for instance, [29]. It constitutes a deformed
algebra of diffeomorphisms which modifies only the Leibniz
rule, leaving the other quantities unaltered. Although we
use the same relation between the new metric tensor and
the tetrad field, we point out that our formalism is focused
on the teleparallel version in which realm is possible to
define and give the corrections of the gravitational energy.
Thus the new components of the metric tensor due to the
noncommutativity of spacetime are written in terms of the
old ones, up to the second order in 𝜃

𝜇], as
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𝜕𝜃

)

− 𝜃

23
𝑔22 cos 𝜃(

𝑑𝑔22

𝑑𝑟

) ⋅ (

𝜕𝑔33

𝜕𝜃

)

2

+ 2 𝜃

23
𝑔33𝑔22 cos 𝜃(

𝑑𝑔22

𝑑𝑟

)(

𝜕

2
𝑔33

𝜕𝜃

2
)

+ 2 𝜃

13
𝑔33𝑔22 sin 𝜃(

𝑑𝑔22

𝑑𝑟

)(

𝜕𝑔33

𝜕𝑟

)

− 𝜃

13
𝑔22 cos 𝜃(

𝑑𝑔22

𝑑𝑟

)(

𝜕𝑔33

𝜕𝜃

)(

𝜕𝑔33

𝜕𝑟

)

+ 2 𝜃

13
𝑔22𝑔33 cos 𝜃(

𝑑𝑔22

𝑑𝑟

)(

𝜕

2
𝑔33

𝜕𝜃𝜕𝑟

)

+4 𝜃

23
𝑔

2

22
𝑔33 sin 𝜃(

𝜕

2
𝑔33

𝜕𝜃𝜕𝑟

)] .

(21)

It should be noted that such components are always quadratic
in the noncommutative parameter 𝜃𝑖𝑗 which was first deci-
sively pointed out in [30] and corroborated in [31]. This indi-
cates that the corrections have very tiny values. Therefore the
new metric tensor obeys approximately Einstein’s equations.
We point out that the corrections above are different from the
ones presented in [31], for a great review we recommend [32].
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Now we have to write another tetrad field for the new
components of the metric tensor, but still adapted to a
rest frame, which is the referential frame we would like
to analyze the problem of the gravitational energy. This
means that we suppose that a relation exists between the

spacetimewhich is defined by the correctedmetric tensor and
a Weitzenböck spacetime. Indeed we are assuming that the
Lorentz symmetry still holds. We, in this sense, assume the
following correspondence 𝑔𝜇] = 𝑒

𝑎

𝜇𝑒𝑎], where 𝑒
𝑎

𝜇 is given by

𝑒

𝑎

𝜇 =

[

[

[

[

𝐴 0 0 0

0 𝐵 sin 𝜃 cos𝜙 + 𝐸𝑟 cos 𝜃 cos𝜙 − 𝐹𝑟 sin 𝜃 sin𝜙 𝐶𝑟 cos 𝜃 cos𝜙 − 𝐺𝑟 sin 𝜃 sin𝜙 −𝐻𝑟 sin 𝜃 sin𝜙

0 𝐵 sin 𝜃 sin𝜙 + 𝐸𝑟 cos 𝜃 sin𝜙 + 𝐹𝑟 sin 𝜃 cos𝜙 𝐶𝑟 cos 𝜃 sin𝜙 + 𝐺𝑟 sin 𝜃 cos𝜙 𝐻𝑟 sin 𝜃 cos𝜙
0 𝐵 cos 𝜃 − 𝐸𝑟 sin 𝜃 −𝐶𝑟 sin 𝜃 0

]

]

]

]

, (22)

where

𝐴 =
√
−𝑔00,

𝐵 =

𝛿1

𝛿

,

𝐶 =

𝛿

𝑟√𝑔33

,

𝐸 =

𝑔12𝑔33 − 𝑔23𝑔13

𝑟√𝑔33 𝛿

,

𝐹 =

𝑔13

√𝑔33 𝑟 sin 𝜃

,

𝐺 =

𝑔23

√𝑔33 𝑟 sin 𝜃

,

𝐻 =

√𝑔33

𝑟 sin 𝜃

.

(23)

The quantities 𝛿 and 𝛿1 are defined by

𝛿

2
= 𝑔22𝑔33 − 𝑔

2

23
,

𝛿

2

1
= 𝑔11𝛿

2
− 𝑔22𝑔

2

13
− 𝑔33𝑔

2

12
+ 2𝑔12𝑔23𝑔13.

(24)

At this point we would like to clarify some aspects. Firstly we
are not dealing with a full noncommutative theory, but we are
rather looking for some corrections of the classical theory. In
this sense the noncommutativity was introduced in order to
construct the correctedmetric tensor, and thenwe assume the
existence of a Weitzenböck spacetime which matches such a
metric tensor. In this context the tetrad field 𝑒

𝑎

𝜇 is classical
since it is induced by the new metric tensor. Thus we can
use the prescriptions of teleparallel gravity to work on the
corrections of the gravitational energy. In order to compute
such a quantity, the relevant nonvanishing components of
torsion tensor are

̃

𝑇112 = −

1

2

(

𝜕𝑔11

𝜕𝜃

)

+

1

2𝛿

2
[𝛼(

𝜕𝑔22

𝜕𝑟

) + 𝛽(

𝑔23

𝑔33

)(

𝜕𝑔33

𝜕𝑟

)

−2𝛽(

𝜕𝑔23

𝜕𝑟

)] ,

̃

𝑇212 =

1

2

(

𝜕𝑔22

𝜕𝑟

) − (

𝜕𝑔12

𝜕𝜃

) − 𝛿1𝑔
−1/2

33

+

1

2𝛿

2
[𝛼(

𝜕𝑔22

𝜕𝜃

) + 𝛽(

𝑔23

𝑔33

)(

𝜕𝑔33

𝜕𝜃

)

−2𝛽(

𝜕𝑔22

𝜕𝜃

)] ,

̃

𝑇312 =

1

2𝑔33

[2𝑔33 (

𝜕𝑔23

𝜕𝑟

) − 𝑔23 (

𝜕𝑔33

𝜕𝑟

)

+𝑔13 (

𝜕𝑔33

𝜕𝜃

) − 2𝑔33 (

𝜕𝑔13

𝜕𝜃

)] ,

̃

𝑇113 =

1

2

(

𝑔13

𝑔33

)(

𝜕𝑔33

𝜕𝑟

) ,

̃

𝑇213 = −

1

2𝑔33𝛿

[2𝑔33𝛽 cos 𝜃 + 2𝑔23𝑔
1/2

33
− 𝑔23𝛿(

𝜕𝑔33

𝜕𝑟

)] ,

̃

𝑇313 =

1

2

(

𝜕𝑔33

𝜕𝑟

) −

1

𝛿

(𝛼 cos 𝜃 + 𝛿1𝑔
1/2

33
sin 𝜃) ,

̃

𝑇123 = −

1

2

(

𝑔13

𝑔33

)(

𝜕𝑔33

𝜕𝜃

) −

1

𝛿

(𝛽 cos 𝜃 + 𝛿1𝑔23𝑔
−1/2

33
sin 𝜃) ,

̃

𝑇223 =

1

2

(

𝑔23

𝑔33

)(

𝜕𝑔33

𝜕𝜃

) ,

̃

𝑇323 =

1

2

(

𝜕𝑔33

𝜕𝜃

) − 𝛿 cos 𝜃,

(25)

where

𝛼 = 𝑔33𝑔12 − 𝑔23𝑔13,

𝛽 = 𝑔12𝑔23 − 𝑔22𝑔13.

(26)

Using (10), it yields

̃

Σ

001

=

1

2 (−𝑔00) 𝛿
2

1

× [−

̃

𝑇112 (𝛿
2
𝑔12 + 𝛼𝑔11)
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−

̃

𝑇212 (𝛿
2
𝑔22 + 𝛼𝑔12) −

̃

𝑇312 (𝛿
2
𝑔23 + 𝛼𝑔12)

−

̃

𝑇113 (𝛿
2
𝑔13 − 𝛽𝑔11) −

̃

𝑇213 (𝛿
2
𝑔23 − 𝛽𝑔12)

−

̃

𝑇313 (𝛿
2
𝑔33 − 𝛽𝑔13) +

̃

𝑇123 (𝛼𝑔13 + 𝛽𝑔12)

+

̃

𝑇223 (𝛼𝑔23 + 𝛽𝑔22) +
̃

𝑇323 (𝛼𝑔33 + 𝛽𝑔23)] ,

(27)

then it is possible to find ̃

Σ

(0)01

= 𝑒

(0)

0
̃

Σ

001, which after some
algebraic manipulations, is written as

4𝑒

̃

Σ

(0)01

= (

2

𝛿1

){𝑔

1/2

33
𝛿1 + (

𝛿𝛿1

√𝑔33

) sin 𝜃 −

1

2

𝜕

𝜕𝑟

(𝑔33𝑔22)

+

𝜕

𝜕𝜃

(𝑔33𝑔12)

+𝑔23 [(

𝜕𝑔23

𝜕𝑟

) − (

𝜕𝑔13

𝜕𝜃

)]}

+ (

1

𝛿

2
𝛿1

){(𝑔23𝑔13 − 𝑔12𝑔33) [

𝜕 (𝑔22𝑔33)

𝜕𝜃

]

+2𝑔33 (𝑔12𝑔23 − 𝑔22𝑔13) (

𝜕𝑔23

𝜕𝜃

)} .

(28)

Then taking the limit 𝑟 → ∞ it yields

4𝑒

̃

Σ

(0)01

= 4𝑀 sin 𝜃 − (𝜃

23
)

2

(

cos2𝜃
sin 𝜃

)

× [𝑀(

11

8

+ cos2𝜃) + lim
𝑟→∞

3

2

𝑟 (

1

4

+ cos2𝜃)] .
(29)

The energy is calculated using (17) and performing a reg-
ularization procedure in order to avoid divergences. Such
a regularization procedure is necessary mainly because the
limit of 𝑔𝜇] for 𝑟 → ∞ does not lead to Minkowski metric
tensor: instead it produces (in spherical coordinates)

�̃�

𝜇] =

(

(

(

(

(

(

(

(

−1 0 0 0

0 1 +

(𝜃

23
)

2

cos (2𝜃)
4

−

(𝜃

23
)

2

𝑟 sin (2𝜃)

4

𝜃

12
𝜃

23
(sin2𝜃 − cos 𝜃)

4

0 −

(𝜃

23
)

2

𝑟 sin (2𝜃)

4

[

[

1 −

(𝜃

23
)

2

cos (2𝜃)
4

]

]

𝑟

2
0

0

𝜃

12
𝜃

23
(sin2𝜃 − cos 𝜃)

4

0

[

[

1 +

(𝜃

23
)

2

cos (2𝜃)
4sin2𝜃

]

]

𝑟

2sin2𝜃

)

)

)

)

)

)

)

)

, (30)

which generates nonvanishing components of the torsion
tensor. This procedure consists of subtracting from the
quantity analyzed what stands when a physical parameter,
such as the mass of the black hole, is set to zero. Hence we
get

̃

𝑃

(0)
= 𝑀 +

1

4

(

49

3

−

15

2

ln 2) (𝜃

23
)

2

𝑀, (31)

thus the correction in the gravitational energy due to the
noncommutativity of spacetime is

Δ𝑃

(0)
=

1

4

(

49

3

−

15

2

ln 2) (𝜃

23
)

2

𝑀. (32)

Alternatively the need for a regularization procedure could be
contoured bymeans of the choice 𝜃23 = 0, in such a way there
would be no correction for the Schwarzschild energy.

4. Conclusion

In this work we start with Schwarzschild spacetime, and
then we give the corrections due to the noncommutativity
of spacetime. Here it is introduced by replacing the nor-
mal product between tetrads by the Moyal product, rather

than applying such a procedure in lagrangian density. This
approach is well known in the literature to predict some
noncommutative corrections in the metric tensor. The new
metric tensor leads to a new tetrad field which is used to
calculate the gravitational energy of spacetime. It is well
known that the energy of Schwarzschild spacetime is equal to
𝑀; therefore we get a correction in the energy equal to Δ𝑃

(0).
We stress out that the expression for the gravitational field
has been developed and tested over the years in the context
of TEGR. Since the noncommutative parameter is arbitrary
(it should be given by experimental data), we speculate that
such a correction in the gravitational energy can be associated
to quantum effects in the realm of gravitational field. If the
correction represents the energy of gravitons, then it should
be proportional to the Planck’s constant. On the other hand
the correction is proportional to the mass of the font, which
could mean a new kind of quantization associated to the
mass of a black hole or a star, for example. This has been
expressed in [33].Therefore the gravitational energy turns out
to be of fundamental importance (experimental purposes),
since it can tell if the spacetime is commutative or not. For
future works we intend to investigate the corrections of the
gravitational energy in the context of Kerr spacetime on the
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outer event horizon.We alsowant to study the solutions of the
noncommutative equations that come from the lagrangian
density replaced by the Moyal product.
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