
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2012, Article ID 907853, 7 pages
doi:10.1155/2012/907853

Research Article

A Crossover Bacterial Foraging Optimization Algorithm

Rutuparna Panda and Manoj Kumar Naik

Department of Electronics and Telecommunication Engineering, VSS University of Technology, Burla 768018, India

Correspondence should be addressed to Rutuparna Panda, r ppanda@yahoo.co.in

Received 16 April 2012; Revised 11 July 2012; Accepted 9 August 2012

Academic Editor: Jun He

Copyright © 2012 R. Panda and M. K. Naik. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a modified bacterial foraging optimization algorithm called crossover bacterial foraging optimization
algorithm, which inherits the crossover technique of genetic algorithm. This can be used for improvising the evaluation of optimal
objective function values. The idea of using crossover mechanism is to search nearby locations by offspring (50 percent of bacteria),
because they are randomly produced at different locations. In the traditional bacterial foraging optimization algorithm, search
starts from the same locations (50 percent of bacteria are replicated) which is not desirable. Seven different benchmark functions
are considered for performance evaluation. Also, comparison with the results of previous methods is presented to reveal the
effectiveness of the proposed algorithm.

1. Introduction

Nowadays several algorithms are developed that are inspired
by the nature. The main principle behind the nature-inspired
algorithm is interpreted as the capacity of an individual
to obtain sufficient energy source in the least amount of
time. In the process of foraging, the animals with poor
foraging strategies are eliminated, and successful ones tend
to propagate [1]. One of the most successful foragers is E. coli
bacteria (those living in our intestines), which use chemical
sensing organs to detect the concentration of nutritive and
noxious substances in its environment. The bacteria then
move within the environments via tumble and runs, avoiding
the noxious substances and getting closer to food patch areas
in a process called chemotaxis. Based on the E. coli foraging
strategy, Passino proposed bacterial foraging optimization
algorithm (BFOA) [2–4] which maximizes the energy intake
per unit time. So as to improve BFOA performance, a large
number of modifications have already been undertaken.
Some of the modifications are directly based on analysis of
the components [5–8] while others are named as hybrid
algorithms [9–11].

During the past two decades, the genetic algorithm (GA)
has claimed its suitability for dealing with optimization prob-
lems by academic and industrial communities. A possible

solution to a specific problem is encoded as a chromosome,
which consists of a group of genes. Each chromosome refers
to a search space and is decided by a fitness evaluation.
The GA uses basic genetic operators such as crossover and
mutation to produce the genetic composition of a popu-
lation. The crossover operator produces two offspring by
recombining the information of two parents. Randomly
gene values are changed using the mutation operator. The
crossover and mutation applicability is determined by the
crossover probability and mutation probability [12].

In this paper, we present some modifications for the
BFOA by adapting the crossover operator used in GA.
Here 50 percent of healthier bacteria are used for crossover
with some crossover probability to produce 50 percent of
bacteria as offspring. These offspring bacteria are produced
at different locations and start searching. But in BFOA,
50 percent of bacteria are replicated at the same location
and start searching from the same location. As a result
they miss some useful parameters in the search space. This
has motivated us to investigate crossover BFOA, which can
find global optimal solution more effectively. The paper is
organised as follow. In Section 2, we describe the bacterial
foraging optimization algorithm. Section 3 presents the
proposed modification to the BFOA. Section 4 deals with the
comparison of the proposed algorithm CBFOA with BFOA,
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Adaptive BFOA (ABFOA) [8], and genetic algorithm (GA)
[12] using some common benchmark functions. Finally,
conclusion and future scope of the work are presented in
Section 5.

2. The Bacterial Foraging
Optimization Algorithm

Suppose that we want to find the minimum of J(θ), θ ∈
�p, where we do not have measurements or an analytical
description of the gradient ∇J(θ). Here, we use BFOA to
solve this nongradient optimization problem. Let θ be the
position of the bacterium and let J(θ) represent the cost
of the optimization problem, with J(θ) < 0, J(θ) = 0,
and J(θ) > 0. These values guide us about the bacterium
location (whether in nutrient-rich, neutral, or noxious envi-
ronments). So basically the BFOA consists of four principal
mechanisms known as chemotaxis, swarming, reproduction,
and elimination-dispersal.

2.1. Chemotaxis. The process simulates the movement of
the bacteria via swimming and tumbling. Let J(i, j, k, l)
denote the cost at the location of the ith bacterium, and let
θi( j, k, l) represent jth chemotactic, kth reproduction, and
lth elimination-dispersal events. Let C steps (during runs) be
taken in the random direction specified by the tumble. Then
the chemotactic movement can be represented as

θi
(
j + 1, k, l

) = θi
(
j, k, l

)
+ C(i)

Δ(i)
√
ΔT(i)Δ(i)

, (1)

where Δ(i) is a random vector with each elements lying
in [−1, 1].

2.2. Swarming. During the movements, cells release attrac-
tants and repellents to signal other cells so that they should
swarm together, provided that they get nutrient-rich envi-
ronment or avoided the noxious environment. The cell-to-
cell attraction and repelling effects are denoted as
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where Jcc(θ,P( j, k, l)) is the objective function value to be
added to the actual objective function to present time varying
objective function, S is the total number of bacteria, p is
the number of variables involved in the search space, θ =
[θ1, θ2, . . . , θp]T is a point on the optimization domain, and
θim is the mth components of the ith bacterium position θi.

dattract, wattract, hrepellant, and wrepellant are different coefficients
used for signalling.

2.3. Reproduction. The population is sorted in ascending
order of accumulated cost, then Sr(= S/2) least healthy
bacteria die and the other Sr(= S/2) healthiest bacteria are
considered for reproduction, each split into two bacteria,
which are placed at the same location. This allows us to keep
a constant population size, which is convenient in coding the
algorithm.

2.4. Elimination Dispersal. Due to gradual or sudden change
in the local environment, the life of the bacteria may be
affected. So in order to incorporate this phenomenon, we
eliminate each bacterium in the population with the proba-
bility ped and a new replacement is randomly initialized over
the search space.

3. The Crossover Bacterial Foraging
Optimization Algorithm

The main aim of the CBFOA is to find the minimum of
a function J(θ), θ ∈ �p, which is not in the gradient
∇J(θ). Here J(θ) is an attractant-repellent profile and θ is
the position of a bacterium. Let P( j, k, l) = {θi( j, k, l) | i =
1, 2, . . . , S} represent the position of each bacterium in the
population of S bacterium at the jth chemotactic step, kth
crossover-reproduction step, and lth elimination-dispersal
events. Here, let J(i, j, k, l) denote the cost at the location of
the ith bacterium at position θi( j, k, l) ∈ �p. Let C(i) > 0 the
step size taken in the random direction represent a tumble.
Note that the position of bacterium for the next chemotactic
steps will be

θi
(
j + 1, k, l

) = θi
(
j, k, l

)
+ C(i)∅(i). (3)

If at the location θi( j + 1, k, l) the cost J(i, j + 1, k, l) is
better (lower) than the location at θi( j, k, l), then another
step of size C(i) (in the same direction) will be taken. This
swim is continued as long as it reduces the cost, but it is
allowed only up to a maximum number of steps Ns. We
have to implement in such a manner that the bacterium
can swarm together via an attractant and repellent, cell-to-
cell signalling effect as modelled in (2). We consider the
swarming effects, the ith bacterium, i = 1, 2, . . . , S, will hill
climb on

J
(
i, j, k, l

)
+ Jcc(θ,P), (4)

so that the cells will try to find nutrients, avoid noxious sub-
stances, and at the same time try to move towards other cells,
but not too close to them.

After the Nc chemotactic steps, a crossover-reproduction
step is taken. Let Ncr be the number of crossover-repro-
duction steps to be taken. After the chemotactic steps, the
population is going to reproduce for the next generation
which consists of sufficient nutrients. For the convenience,
we consider S to be a positive number (divisible by (4)). Let

Sc = S

2
(5)
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be the number (population) having sufficient nutrients,
which can go for next generation. For the crossover-
reproduction steps, the population is sorted in order of
ascending accumulated cost (higher cost means the nutrient
value is less); then the Sc least healthy bacteria die and the
other Sc healthiest bacteria have gone through the crossover
with the probability pc to get Sc child bacteria. Then the new
set of bacteria can be formed by appending the Sc number
healthiest (parent) bacteria and Sc number of child bacteria.
This helps that search domain is more dynamic in nature
as parent bacteria start search in the next generation where
nutrient concentration is more and child bacterium searches
its nearby place that may be untouched due to using the
BFOA search strategy.

Let Ned be the number of elimination-dispersal events,
and for each elimination-dispersal event each bacterium
in the population is subjected to eliminate dispersal with
probability ped. This helps to keep track of sudden change
in the environmental condition, which may affect life of the
bacterium, so new set of bacterium can be introduced in the
search domain.

3.1. Crossover Bacterial Foraging Optimization Algorithm.
First initialize the parameters p, S, Nc, Ns, Ncr, Ned, pc,
ped, and C(i), where p represent dimension of search
space, S represent the number of bacterium involved in
the population, Nc represent the number of chemotactic
steps, Ns represent the maximum swim length, Ncr represent
the number of crossover-reproduction steps, Ned represent
the number of elimination-dispersal steps, pc represent the
probability of crossover, ped represent the probability of
elimination dispersal event, and C(i) is size of the step
taken in the random direction specified by a tumble. If we
use the swarming, we have to pick the parameters of the
cell-to-cell attractant as dattract (depth of the attractant by
the cell), wattract (width of the attractant signals), hrepellant

(magnitude of the height repellent effect), and wrepellant

(magnitude of the width repellent effect). We have also
initialized θi, i = 1, 2, . . . , S randomly within the search
space. This algorithm also modelled bacterial population
chemotaxis, elimination, and dispersal steps as reported by
Passino [2] and explained in Section 2. In this paper, what is
new is the reproduction step. Instead of using the procedure
for reproduction explained in Section 2, here a new idea of
crossover-reproduction is introduced:

(initially, j = k = l = 0).

Step 1. Elimination-dispersal loop: l = l + 1.

Step 2. Crossover-reproduction loop: k = k + 1.

Step 3. Chemotaxis loop: j = j + 1.

(a) For i = 1, 2, . . . , S take a chemotactic step for bac-
terium i as follows.

(b) Compute cost function J(i, j, k, l).

(c) Then compute J(i, j, k, l) = J(i, j, k, l) + J(θ,P) (i.e.,
add on the cell-to-cell signalling effects).

(d) Let Jlast = J(i, j, k, l) to save this value since we may
find a better cost via a run.

(e) Tumble: generate a random vector Δ(i) ∈ �p with
each element Δm(i), m = 1, 2, . . . , p, a random
number on [−1, 1].

(f) Move: let θi( j + 1, k, l) = θi( j, k, l) + C(i)(Δ(i)/√
ΔT(i)Δ(i)). This results in step size taken in the

direction of tumble of the ith bacterium.

(g) Then compute J(i, j + 1, k, l) and let J(i, j + 1, k, l) =
J(i, j + 1, k, l) + Jcc(θi( j + 1, k, l), P( j + 1, k, l)).

(h) Swim:

(i) Let m = 0 (counter for swim length).

(ii) While m < Ns (it have not climbed down too
long),

(1) let m = m + 1;
(2) if J(i, j + 1, k, l) < Jlast (if doing better), let

Jlast = J(i, j + 1, k, l) and let θi( j + 1, k, l) =
θi( j + 1, k, l) + C(i)(Δ(i)/

√
ΔT(i)Δ(i)) and

use this θi( j + 1, k, l) to compute the new
J(i, j + 1, k, l) as we did in (g);

(3) else, let m = Ns, come out from the while
loop;

(iii) go to next bacterium (i + 1) if i /= S, then go to
(b) to process the next bacterium.

Step 4. If j < Nc, go to Step 3. In this case, continue chemo-
taxis, since the life of the bacteria is not over.

Step 5. Crossover reproduction.

(a) For the given k and l, and for each i = 1, 2, . . . , S, let
J ihealth =

∑Nc+1
j=1 J(i, j, k, l) be the health of bacterium

i (a measure of how many nutrients it got over its
lifetime and how successful it was at avoiding noxious
substances). Sort bacteria and chemotactic parameter
C(i) in ascending order of cost Jhealth (higher cost
means lower health).

(b) The Sc bacteria with the highest Jhealth values die and
the other Sc bacteria are treated as parent bacterium
for the next generation.

(c) Then we choose two sets of parent bacterium from
the Sc healthiest bacteria and crossover them with
probability pc to get Sc number of offspring bac-
terium.

(d) Then append the Sc number of parent (healthiest)
bacterium and Sc number of offspring bacterium to
form complete set of S bacterium.

Step 6. If k < Ncr, go to Step 2. In this case we have not
reached the number of specified reproduction steps, so we
start the next generation of the chemotactic loop.

Step 7. Elimination dispersal: for i = 1, 2, . . . , S, with prob-
ability ped, eliminate and disperse each bacterium, which
results in keeping the number of bacteria in the population
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Table 1: Description of benchmark functions used.

Function Mathematical representation Range of search Theoretical optima
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Table 2: Parameters used for the benchmark.

Algorithm Parameters

CBFOA Nc = 50, Ncr = 20, Ns = 3, pc = 0.7, C(i) = 0.01× Range, dattract = 0.001, wattract = 0.02, hrepellant = 0.001, wrepellant = 10

BFOA Nc = 50, Ncr = 20, Ns = 3, C(i) = 0.01× Range, dattract = 0.001, wattract = 0.02, hrepellant = 0.001, wrepellant = 10

ABFOA Nc = 50, Ncr = 20, Ns = 3, dattract = 0.001, wattract = 0.02, hrepellant = 0.001, wrepellant = 10, λ = 4000

GA pc = 0.7, pm = 0.3

constant. To do this, if we eliminate a bacterium, simply dis-
perse one to a random location on the optimization domain.

Step 8. If l < Nre, then go to Step 1; otherwise end.

4. Experimental Results

This section illustrates some comparisons between the pro-
posed CBFOA, BFOA [2], adaptive BFOA [8], and GA [12]
using some numerical benchmark test functions described in
Table 1.

The search dimensions for all test problems we consider
here are 50 and 500 for comparing algorithm performance.
We also choose two variants in the bacterial or gene
population, one with S = 4 and other with S = 20. Here

we take the crossover rate fixed and implement uniform
crossover. For the simplicity of the algorithm, we neglect the
elimination and dispersal event. Note that the parameters
considered for the algorithms are given in Table 2. We take
results for 100 independent runs and report the minimum,
the mean, and the standard deviation of the final objective
function values for all four algorithms. These results are
shown in Table 3. Finally, the performances of all four
different algorithms are illustrated in Figure 1.

5. Conclusion

Recently, many modified bacterial foraging optimization
algorithms have been investigated for improving the learn-
ing and speed for convergence. Research is more or less
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Table 3: Minimum, mean values, and standard deviation for the benchmark function for f1– f7 (represent up to three fractional points).

Function Statistical measurement
CBFOA BFOA

p = 50, S = 4 p = 50, S = 20 p = 500, S = 4 p = 50, S = 4 p = 50, S = 20 p = 500, S = 4

f1

Minimum 1.525 1.319 3.262 1.715 1.456 3.305

Mean 2.160 1.613 3.392 2.267 1.741 3.437

Std. Dev. 0.225 0.113 0.048 0.270 0.146 0.052

f2

Minimum 0.136 0.134 0.421 0.151 0.136 0.449

Mean 0.201 0.166 0.485 0.208 0.172 0.498

Std. Dev. 0.028 0.013 0.021 0.023 0.016 0.019

f3

Minimum 164.455 152.077 2712.102 172.454 154.242 2895.302

Mean 197.770 175.040 2908.327 202.866 183.931 2980.910

Std. Dev. 15.348 11.728 86.705 15.732 11.577 85.742

f4

Minimum 73.536 68.936 5233.215 74.104 70.381 5312.160

Mean 172.978 112.322 5641.901 163.977 104.736 5806.152

Std. Dev. 44.929 35.153 218.398 41.819 26.631 219.462

f5

Minimum 0.932 0.811 75.667 0.935 0.850 78.766

Mean 1.302 1.054 88.812 1.363 1.106 91.327

Std. Dev. 0.193 0.095 4.865 0.195 0.113 4.838

f6

Minimum 0.838 0.829 75.353 0.998 0.892 81.900

Mean 1.319 1.053 88.355 1.366 1.096 91.500

Std. Dev. 0.193 0.091 5.161 0.203 0.111 4.493

f7

Minimum 23.091 19.592 15919.004 23.241 20.682 18340.260

Mean 33.173 25.865 19284.121 33.991 26.904 20135.431

Std. Dev. 4.810 2.804 1232.30 6.039 3.076 1050.504

Function Statistical measurement
ABFOA GA

p = 50, S = 4 p = 50, S = 20 p = 500, S = 4 p = 50, S = 4 p = 50, S = 20 p = 500, S = 4

f1

Minimum 3.274 3.182 3.756 3.253 3.334 3.734

Mean 3.620 3.450 3.837 3.529 3.521 3.797

Std. Dev. 0.120 0.089 0.030 0.063 0.054 0.015

f2

Minimum 0.299 0.256 0.542 0.248 0.225 0.512

Mean 0.428 0.363 0.648 0.299 0.273 0.560

Std. Dev. 0.059 0.039 0.040 0.020 0.019 0.014

f3

Minimum 16.401 16.526 4265.352 337.504 354.976 4616.801

Mean 27.678 24.500 4559.012 405.755 401.736 4820.149

Std. Dev. 5.028 3.219 74.756 18.318 15.624 53.202

f4

Minimum 52.703 49.708 8809.955 542.544 486.038 8413.197

Mean 669.706 233.259 9583.201 615.075 571.955 8814.362

Std. Dev. 217.473 237.100 318.864 35.159 31.871 139.747

f5

Minimum 7.596 6.305 109.191 10.536 9.701 143.726

Mean 10.175 8.998 118.319 11.954 11.874 151.972

Std. Dev. 0.949 0.665 4.176 0.593 0.777 2.242

f6

Minimum 8.270 7.543 104.974 10.350 9.736 142.649

Mean 10.181 9.086 118.443 12.179 11.957 152.154

Std. Dev. 0.792 0.576 3.774 0.635 0.684 2.076

f7

Minimum 12.845 11.466 37978.059 230.363 233.034 35713.922

Mean 18.035 14.753 39957.690 288.583 282.761 37448.482

Std. Dev. 2.381 1.197 1189.191 20.812 20.009 641.561
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Figure 1: Continued.
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Figure 1: Performance of the CBFOA, ABFOA, BFOA and GA for the various functions for dimension = 50.

concentrated to get local optimal or suboptimal solutions.
However, this paper proposes a modified bacteria foraging
optimization algorithm for finding global optimal solutions
with adapted crossover properties of genetic algorithm.
The performance of the proposed algorithm is illustrated
by taking various benchmark test functions. From the
numerical results, it is evident that the proposed CBFOA
outperforms ABFOA, BFOA, and GA reported earlier. The
proposed algorithm has potential and can be used in various
optimization problems, where social foraging model works.
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