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We consider the Ornstein-Uhlenbeck-type model. We first introduce the model and then find the ordinary differential equations
and boundary conditions satisfied by the dividend functions; closed-form solutions for the dividend value functions are given.
We also study the distribution of the time value of ruin. Furthermore, the moments and moment-generating functions of total
discounted dividends until ruin are discussed.

1. Introduction

In recent years, the dividend problem has gained a lot of
attention in the actuarial literature. Dividend strategies for
insurance risk model were first proposed by de Finetti [1],
who considered a discrete time random walk with step size
±1 and found that the optimal dividend strategy must be
a barrier strategy. From then on, the problem of optimal
dividend strategy has been studied in continuous time, for
example, Asmussen and Taksar [2], Albrecher et al. [3], Gao
and Yin [4], Gerber and Shiu [5, 6], Wan [7] and so on. The
optimal dividend problem in a compound Poisson model
was studied by Gerber and Shiu [8]. Optimal dividend in
an Ornstein-Uhlenbeck-type model with credit and debit
interest was considered in Cai et al. [9]. For a class of
compound Poisson process perturbed by diffusion with a
threshold dividend strategy, the expected discounted penalty
function has been studied by Wan [7]. The perturbed Sparre
Andersen model with a threshold dividend strategy was
settled by Gao and Yin [10].

Recently, the multilayer dividend strategy as an extension
of the threshold dividend strategy has drawn many authors
attention. For example, the perturbed Sparre Andersen and
compound Poisson risk models with multilayer dividend
strategy have been studied by Yang and Zhang [11, 12].
The integrodifferential equations for the expected discounted
penalty function were derived and solved; when the claims
are subexponentially distributed, the asymptotic formula for

ruin probability is obtained. The Ornstein-Uhlenbeck-type
model is a very importantmodel in applied probability which
has recently gained a lot of attention. See, for example, Cai
et al. [9] and Fang and Wu [13]. More general, Wong and
Zhao [14] consider the optimal dividends and bankruptcy in
an Ornstein-Uhlenbeck process with the surplus-dependent
credit/debit interest rate. Motivated by the above work, in
this paper, we consider a hybrid dividend strategy which
combined a barrier strategy with a threshold strategy in an
Ornstein-Uhlenbeck-type model. For simplicity, we consider
only one threshold and one barrier.

The remainder of the paper is organized as follows. In
Section 2, we describe the model and discuss the dividend
functions until ruin, in Section 3, we give the limit of divi-
dends level, and in Section 4 we get the expression by Laplace
transform of ruin time. The partial differential equation with
boundary conditions satisfied by the moments and moment-
generating function is proved in Section 5.

2. The Model

Consider the following surplus process:

d𝑈
𝑡
= (𝜇 + 𝜌𝑈

𝑡
) d𝑡 + 𝜎d𝑊

𝑡
, 𝑡 ≥ 0, (1)

where 𝜌 > 0 is the force of interest, 𝜇 > 0 is the
drift coefficient, 𝜎 > 0 is the diffusion coefficient, and
{𝑊
𝑡
}
𝑡≥0

is the standard Brownianmotion.Wewill assume that
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the company pays dividends according to the following
strategy governed by parameters 𝑏

2
> 𝑏
1
> 0 and 𝛼 >

0. Whenever the modified surplus is below the level 𝑏
1
, no

dividends are paid. However, when the modified surplus is
above 𝑏

1
and below the 𝑏

2
, dividends are paid continuously

at a constant rate 𝛼. When the modified surplus is above 𝑏
2
,

dividends are completely paid. For 𝑡 ≥ 0, let

𝐷 (𝑡) = 𝐷
1
(𝑡) + 𝐷

2
(𝑡) (2)

denote the aggregate dividend paid by time 𝑡, where 𝐷
1
(𝑡)

and 𝐷
2
(𝑡) are caused by the different parts of dividends,

respectively. Thus,

𝑈
𝑡
= 𝑈
𝑡
− 𝐷 (𝑡) (3)

is the modified surplus at time 𝑡. Let 𝛿 > 0 be the force of
interest for valuation; in this paper, we assume that 𝜌 < 𝛿. Let
𝐼(𝐴) be the indicator function of event𝐴 and let𝐷 denote the
present value of all dividends until ruin

𝐷 = ∫

𝑇

0

𝑒
−𝛿𝑡d𝐷

1
(𝑡) + ∫

𝑇

0

𝑒
−𝛿𝑡d𝐷

2
(𝑡) , (4)

where

𝑇 = inf {𝑡 ≥ 0 : 𝑈
𝑡
≤ 0} , (5)

is the time of ruin, and

𝐷
1
(𝑡) = 𝛼∫

𝑡

0

𝐼 (𝑏
1
≤ 𝑈
𝑠
≤ 𝑏
2
) d𝑠,

𝐷
2
(𝑡) = 𝜂 − 𝑏

2
,

𝜂 = max
0≤𝑠≤𝑡

{𝑈
𝑠
− 𝐷
1
(𝑠)} .

(6)

For 𝑥 ≥ 0, we use the symbol 𝑉(𝑥; 𝑏
1
, 𝑏
2
) to denote the

expectation of𝐷. That is,

𝑉 (𝑥; 𝑏
1
, 𝑏
2
) = 𝐸 [𝐷 | 𝑈

0
= 𝑥] = 𝐸

𝑥
[𝐷] . (7)

Define the random times

𝜏
−

0
= inf (𝑡 ≥ 0 : 𝑈

𝑡
≤ 0) ,

𝜏
+

𝑏
1

= inf (𝑡 ≥ 0 : 𝑈
𝑡
≥ 𝑏
1
) ,

𝜏
−

𝑏
1

= inf (𝑡 ≥ 0 : 𝑈
𝑡
≤ 𝑏
1
) ,

𝜏
+

𝑏
2

= inf (𝑡 ≥ 0 : 𝑈
𝑡
≥ 𝑏
2
) ,

𝜏 = inf (𝑡 ≥ 0 : 𝑈
𝑡
= 𝑏
1
or 𝑈
𝑡
= 𝑏
2
) ,

(8)

with the convention inf 0 = ∞.

Lemma 1. Assume that 𝑉(𝑥) is twice continuously differen-
tiable on (0, 𝑏

1
) ∪ (𝑏

1
, 𝑏
2
) ∪ (𝑏

2
,∞). For 0 < 𝑥 ≤ 𝑏

1
, 𝑉(𝑥)

satisfies the following ordinary differential equation:

1

2

𝜎
2
𝑉

(𝑥) + (𝜇 + 𝜌𝑥)𝑉


(𝑥) − 𝛿𝑉 (𝑥) = 0; (9)

for 𝑏
1
< 𝑥 ≤ 𝑏

2
,𝑉(𝑥) satisfies the following ordinary differential

equation:

1

2

𝜎
2
𝑉

(𝑥) + (𝜇 + 𝜌𝑥 − 𝛼)𝑉


(𝑥) − 𝛿𝑉 (𝑥) = 0; (10)

for 𝑥 > 𝑏
2
, 𝑉(𝑥) satisfies the following equation:

𝑉 (𝑥) = 𝑥 − 𝑏
2
+ 𝑉 (𝑏

2
) , (11)

with boundary conditions

𝑉 (0; 𝑏
1
, 𝑏
2
) = 0, 𝑉


(𝑏
2
; 𝑏
1
, 𝑏
2
) = 1. (12)

Proof. By virtually the same arguments as in Yin and Wen
[15], we can prove (9) and (10). The boundary conditions can
be derived the same as in Gerber and Shiu [6] or Cai et al. [9].

The ordinary differential equation (9) has two positive
independent solutions𝑓

1
,𝑓
2
such that𝑓

1
is strictly decreasing

and 𝑓
2
is strictly increasing (see e.g., [16]). Let 𝑓

3
, 𝑓
4
be such

solution for the ordinary differential equation (10), where 𝑓
3

is strictly decreasing and 𝑓
4
is strictly increasing. In Cai et al.

[9], the authors pointed out that these independent solutions
are given by

𝑓
1
(𝑥) = exp{− 1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

}

× 𝑈(
1

2

+
𝛿

2𝜌

,
1

2

,
1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

) ,

(13)

𝑓
2
(𝑥) = (𝜇 + 𝜌𝑥) exp{− 1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

}

×𝑀(1 +
𝛿

2𝜌

,
3

2

,
1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

) ,

(14)

𝑓
3
(𝑥) = exp{− 1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

}

× 𝑈(
1

2

+
𝛿

2𝜌

,
1

2

,
1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

) ,

(15)

𝑓
4
(𝑥) = (𝜇 − 𝛼 + 𝜌𝑥) exp{− 1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

}

×𝑀(1 +
𝛿

2𝜌

,
3

2

,
1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

) ,

(16)

where 𝑀 and 𝑈 are called the confluent hypergeometric
functions of the first and second kind, respectively.

Denote

ℎ (𝑥) = 𝑓
1
(0) 𝑓
2
(𝑥) − 𝑓

2
(0) 𝑓
1
(𝑥) ,

𝑔 (𝑥) = 𝑓
3
(𝑏
2
) 𝑓
4
(𝑥) − 𝑓

4
(𝑏
2
) 𝑓
3
(𝑥) ,

𝑘 (𝑥) = 𝑓
3
(𝑥) 𝑓
4
(𝑏
1
) − 𝑓
3
(𝑏
1
) 𝑓
4
(𝑥) .

(17)

The expressions of the expected discounted dividend
payments are given byTheorem 2.
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Theorem 2. (i) For 0 ≤ 𝑥 ≤ 𝑏
1
,

𝑉 (𝑥; 𝑏
1
, 𝑏
2
)

= ( (−𝛼𝑔

(𝑏
1
) 𝑘

(𝑏
2
) + 𝑘

(𝑏
1
) 𝑔 (𝑏
1
) 𝛿 + 𝛼𝑘


(𝑏
1
) 𝑔

(𝑏
1
))

× (𝛿 [ℎ

(𝑏
1
) 𝑔 (𝑏
1
) 𝑘

(𝑏
2
) − 𝑔

(𝑏
1
) ℎ (𝑏
1
) 𝑘

(𝑏
2
)

+𝑘

(𝑏
1
) 𝑔

(𝑏
1
) ℎ (𝑏
1
)] )

−1

) ℎ (𝑥) .

(18)

(ii) For 𝑏
1
< 𝑥 ≤ 𝑏

2
,

𝑉 (𝑥; 𝑏
1
, 𝑏
2
)

=
𝛼

𝛿

+
𝑘 (𝑥)

𝑘

(𝑏
2
)

+ ( [𝛿ℎ (𝑏
1
) 𝑘

(𝑏
1
) − 𝛼ℎ


(𝑏
1
) 𝑘

(𝑏
2
)]

× [(𝑔 (𝑥) 𝑘

(𝑏
2
) − 𝑔

(𝑏
2
) 𝑘 (𝑥))])

× (𝑘

(𝑏
2
) 𝛿 [ℎ

(𝑏
1
) 𝑔 (𝑏
1
) 𝑘

(𝑏
2
)−𝑔

(𝑏
1
) ℎ (𝑏
1
) 𝑘

(𝑏
2
)

+𝑘

(𝑏
1
) 𝑔

(𝑏
1
) ℎ (𝑏
1
)])

−1

.

(19)

Proof. When 0 < 𝑥 ≤ 𝑏
1
, by the strong Markov property of

the process 𝑈
𝑡
, we have

𝐸
𝑥
[𝐷] = 𝐸

𝑥
[𝐷𝐼 (𝜏

+

𝑏
1

< 𝜏
−

0
)] + 𝐸

𝑥
[𝐷𝐼 (𝜏

+

𝑏
1

> 𝜏
−

0
)]

= 𝐸
𝑥
[𝐷𝐼 (𝜏

+

𝑏
1

< 𝜏
−

0
)]

= 𝐸
𝑥
[𝑒
−𝛿𝜏
𝑏
+

1 𝐼 (𝜏
+

𝑏
1

< 𝜏
−

0
)]𝑉 (𝑏

1
; 𝑏
1
, 𝑏
2
) .

(20)

For 0 < 𝑥 ≤ 𝑏
1
, using Itô’s formula or Dynkin’s formula

as in Li et al. [17], we find that 𝑓(𝑥) := 𝐸
𝑥
[𝑒
−𝛿𝜏
𝑏
+

1 𝐼(𝜏
+

𝑏
1

< 𝜏
−

0
)]

satisfies the ordinary differential equation (9), with boundary
conditions 𝑓(𝑏

1
) = 1, 𝑓(0) = 0. Assume that the solution of

the equation is 𝑓(𝑥) = 𝑐
1
𝑓
1
(𝑥) + 𝑐

2
𝑓
2
(𝑥); from the boundary

conditions, we obtain

𝑐
1
=

−𝑓
2
(0)

𝑓
1
(0) 𝑓
2
(𝑏
1
) − 𝑓
2
(0) 𝑓
1
(𝑏
1
)

,

𝑐
2
=

𝑓
1
(0)

𝑓
1
(0) 𝑓
2
(𝑏
1
) − 𝑓
2
(0) 𝑓
1
(𝑏
1
)

.

(21)

So we have

𝐸
𝑥
[𝑒
−𝛿𝜏
𝑏
+

1 𝐼 (𝜏
+

𝑏
1

< 𝜏
−

0
)] =

ℎ (𝑥)

ℎ (𝑏
1
)

. (22)

Similarly, when 𝑏
1
< 𝑥 ≤ 𝑏

2
,

𝐸
𝑥
[𝐷] = 𝐸

𝑥
[∫

𝜏

0

𝛼𝑒
−𝛿𝑡
𝑑𝑡] + 𝐸

𝑥
[𝑒
−𝛿𝑡
]𝑉 (�̃�

𝜏
; 𝑏
1
, 𝑏
2
)

= 𝐸
𝑥
[(−

𝛼

𝛿

) (𝑒
−𝛿𝜏

− 1)]

+ 𝐸
𝑥
[𝑒
−𝛿𝜏
𝐼 (𝜏
−

𝑏
1

< 𝜏
+

𝑏
2

)]𝑉 (𝑏
1
; 𝑏
1
, 𝑏
2
)

+ 𝐸
𝑥
[𝑒
−𝛿𝜏
𝐼 (𝜏
+

𝑏
2

< 𝜏
−

𝑏
1

)]𝑉 (𝑏
2
; 𝑏
1
, 𝑏
2
) .

(23)

For 𝑏
1
< 𝑥 ≤ 𝑏

2
, using Itô’s formula or Dynkin’s formula,

we have that 𝑓(𝑥) := 𝐸
𝑥
[𝑒
−𝛿𝜏
−

𝑏1 𝐼(𝜏
−

𝑏
1

< 𝜏
+

𝑏
2

)] satisfies the
ordinary differential equation (10) with boundary conditions
𝑓(𝑏
1
) = 1, 𝑓(𝑏

2
) = 0. Assume that the solution of the

equation is 𝑓(𝑥) = 𝑐
3
𝑓
3
(𝑥) + 𝑐

4
𝑓
4
(𝑥); from the boundary

conditions, we obtain

𝑐
3
=

−𝑓
4
(𝑏
2
)

𝑓
3
(𝑏
2
) 𝑓
4
(𝑏
1
) − 𝑓
4
(𝑏
2
) 𝑓
3
(𝑏
1
)

,

𝑐
4
=

𝑓
3
(𝑏
2
)

𝑓
3
(𝑏
2
) 𝑓
4
(𝑏
1
) − 𝑓
4
(𝑏
2
) 𝑓
3
(𝑏
1
)

,

(24)

so we have

𝐸
𝑥
[𝑒
−𝛿𝜏
−

𝑏1 𝐼 (𝜏
−

𝑏
1

< 𝜏
+

𝑏
2

)] =
𝑔 (𝑥)

𝑔 (𝑏
1
)

. (25)

Similarly, 𝑓(𝑥) := 𝐸𝑥[𝑒−𝛿𝜏
+

𝑏2 𝐼(𝜏
+

𝑏
2

< 𝜏
−

𝑏
1

)] satisfies (10) with
boundary conditions 𝑓(𝑏

1
) = 0, 𝑓(𝑏

2
) = 1, so we get

𝐸
𝑥
[𝑒
−𝛿𝜏
+

𝑏2 𝐼 (𝜏
+

𝑏
2

< 𝜏
−

𝑏
1

)] =

𝑓
3
(𝑥) 𝑓
4
(𝑏
1
) − 𝑓
3
(𝑏
1
) 𝑓
4
(𝑥)

𝑔 (𝑏
1
)

=
𝑘 (𝑥)

𝑔 (𝑏
1
)

,

(26)

where

𝑔 (𝑏
1
) = 𝑘 (𝑏

2
) . (27)

For 0 < 𝑥 ≤ 𝑏
1
, dividends will be payable if the surplus

process without ruin and reaches 𝑏
1
, so that

𝑉 (𝑥; 𝑏
1
, 𝑏
2
) = 𝐸
𝑥
[𝑒
−𝛿𝜏
𝑏
+

1 𝐼 (𝜏
+

𝑏
1

< 𝜏
−

0
)]𝑉 (𝑏

1
; 𝑏
1
, 𝑏
2
)

=
ℎ (𝑥)

ℎ (𝑏
1
)

𝑉 (𝑏
1
; 𝑏
1
, 𝑏
2
) .

(28)
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For 𝑏
1
< 𝑥 ≤ 𝑏

2
, dividends are paid continuously at a

constant rate 𝛼, so we obtain

𝑉 (𝑥; 𝑏
1
, 𝑏
2
) =

𝛼

𝛿

+ 𝐸
𝑥
[𝑒
−𝛿𝜏
𝐼 (𝜏
−

𝑏
1

< 𝜏
+

𝑏
2

)] (𝑉 (𝑏
1
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

)

+ 𝐸
𝑥
[𝑒
−𝛿𝜏
𝐼 (𝜏
+

𝑏
2

< 𝜏
−

𝑏
1

)] (𝑉 (𝑏
2
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

)

=
𝛼

𝛿

+
𝑔 (𝑥)

𝑔 (𝑏
1
)

(𝑉 (𝑏
1
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

)

+
𝑘 (𝑥)

𝑔 (𝑏
1
)

(𝑉 (𝑏
2
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

) .

(29)

Using 𝑉(𝑏
2
; 𝑏
1
, 𝑏
2
) = 1 and 𝑉(𝑏

1
+; 𝑏
1
, 𝑏
2
) = 𝑉


(𝑏
1
−; 𝑏
1
,

𝑏
2
), we get

𝑔

(𝑏
2
)

𝑔 (𝑏
1
)

(𝑉 (𝑏
1
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

)+

𝑘

(𝑏
2
)

𝑔 (𝑏
1
)

(𝑉 (𝑏
2
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

)=1,

ℎ

(𝑏
1
)

ℎ (𝑏
1
)

𝑉 (𝑏
1
; 𝑏
1
, 𝑏
2
) =

𝑔

(𝑏
1
)

𝑔 (𝑏
1
)

(𝑉 (𝑏
1
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

)

+

𝑘

(𝑏
1
)

𝑔 (𝑏
1
)

(𝑉 (𝑏
2
; 𝑏
1
, 𝑏
2
) −

𝛼

𝛿

) .

(30)

With some careful calculations, we obtain𝑉(𝑏
1
; 𝑏
1
, 𝑏
2
) and

𝑉(𝑏
2
; 𝑏
1
, 𝑏
2
), so we get the results (18) and (19).

3. The Special Dividends Strategy

In this section, we consider the limit of dividends level. Let
𝑏
2
→ ∞; by the expressions of 𝑘 and 𝑔, we have

𝑔 (𝑏
1
) ∼ −𝑓

3
(𝑏
1
) 𝑓
4
(𝑏
2
) ,

𝑔

(𝑏
1
) ∼ −𝑓


(𝑏
1
) 𝑓
4
(𝑏
2
) ,

𝑘

(𝑏
2
) ∼ −𝑓

3
(𝑏
1
) 𝑓


4
(𝑏
2
) ,

(31)

where

𝑓
4
(𝑏
2
) → ∞, 𝑓



4
(𝑏
2
) → ∞. (32)

Substituting the above expressions into (18) and (19), and
setting

𝐴 = −𝛼𝑓


3
(𝑏
1
) 𝑓
4
(𝑏
2
) 𝑓
3
(𝑏
1
) 𝑓


4
(𝑏
2
) ,

𝐵 = 𝛿𝑘

(𝑏
1
) 𝑓
3
(𝑏
1
) 𝑓
4
(𝑏
2
) ,

𝐶 = 𝛼𝑘

(𝑏
1
) 𝑓


3
(𝑏
1
) 𝑓
4
(𝑏
2
) ,

𝐷 = ℎ

(𝑏
1
) 𝑓
3
(𝑏
1
) 𝑓


4
(𝑏
2
) 𝑓
3
(𝑏
1
) 𝑓
4
(𝑏
2
) ,

𝐸 = 𝑓


3
(𝑏
1
) 𝑓
4
(𝑏
2
) 𝑓
3
(𝑏
1
) 𝑓


4
(𝑏
2
) ,

𝐹 = 𝑓


3
(𝑏
1
) 𝑓
4
(𝑏
2
) 𝑘

(𝑏
1
) ℎ (𝑏
1
) ,

(33)

we obtain, for 0 < 𝑥 ≤ 𝑏
1
,

𝑉 (𝑥; 𝑏
1
, 𝑏
2
) =

𝐴 − 𝐵 − 𝐶

𝛿 [𝐷 − 𝐸 − 𝐹]

ℎ (𝑥) . (34)

Let
𝐴

= 𝛿ℎ (𝑏

1
) 𝑘

(𝑏
1
) + 𝛼ℎ


(𝑏
1
) 𝑓
3
(𝑏
1
) 𝑓


4
(𝑏
2
) ,

𝐵

= − (𝑔 (𝑥) 𝑓

3
(𝑏
1
) 𝑓


4
(𝑏
2
) − 𝑔

(𝑏
2
) 𝑘 (𝑥)) ,

𝐶

= ℎ

(𝑏
1
) 𝑓
2

3
(𝑏
1
) 𝑓
4
(𝑏
2
) 𝑓


4
(𝑏
2
) ,

𝐷

= 𝑘

(𝑏
1
) 𝑓
4
(𝑏
2
) ℎ (𝑏
1
) 𝑓
3
(𝑏
1
) 𝑓


4
(𝑏
2
) ,

𝐸

= 𝑘
2
(𝑏
1
) 𝑓
4
(𝑏
2
) ℎ (𝑏
1
) ;

(35)

we obtain, for 𝑏
1
< 𝑥 ≤ ∞,

𝑉 (𝑥; 𝑏
1
, 𝑏
2
) =

𝛼

𝛿

+
𝑘 (𝑥)

−𝑓
3
(𝑏
1
) 𝑓


4
(𝑏
2
)

−
𝐴

𝐵


𝑓
3
(𝑏
1
) 𝑓


4
(𝑏
2
) 𝛿 [𝐶


− 𝐷

− 𝐸

]

.

(36)

Then dividing numerator and denominator of (34) and
(36) by𝑓

4
(𝑏
2
)𝑓


4
(𝑏
2
), we get the expected discounted dividend

payments for the threshold strategy

𝑉 (𝑥; 𝑏)

=

{
{
{
{
{

{
{
{
{
{

{

𝛼

𝛿

𝑓


3
(𝑏) ℎ (𝑥)

𝑓


3
(𝑏) ℎ (𝑏) − 𝑓

3
(𝑏) ℎ

(𝑏)

, if 0 < 𝑥 ≤ 𝑏
1
,

𝛼

𝛿

+
𝛼

𝛿

𝑓
3
(𝑥) ℎ

(𝑏)

𝑓


3
(𝑏) ℎ (𝑏) − 𝑓

3
(𝑏) ℎ

(𝑏)

, if 𝑥 > 𝑏
2
,

(37)

which is (15) in Fang and Wu [13].

Remark 3. Similarly, when 𝑏
1
= 𝑏
2
= 𝑏, we get the expected

discounted dividend payments for the barrier strategy

𝑉 (𝑥; 𝑏) =

{
{
{

{
{
{

{

ℎ (𝑥)

ℎ

(𝑏)

, if 0 < 𝑥 ≤ 𝑏,

𝑥 − 𝑏 +
ℎ (𝑏)

ℎ

(𝑏)

, if 𝑥 > 𝑏,
(38)

which is (9) and (10) in Cai et al. [9].

4. The Time Value of Ruin under
a Hybrid Dividend Strategy

In this section, we focus on the Laplace transform of the
time value of ruin. We assume that dividends are paid
according to threshold strategy with parameters 𝑏

1
, 𝛼 and

barrier strategy with parameter 𝑏
2
. Let 𝐿(𝑥; 𝑏

1
, 𝑏
2
) denote the

Laplace transform of the time value of ruin; for 𝑥 ≥ 0,

𝐿 (𝑥; 𝑏
1
, 𝑏
2
) = 𝐸 [𝑒

−𝛿𝑇
| 𝑈
0
= 𝑥] . (39)

Let

𝜌 (𝑥) = 𝑓
1
(𝑥) 𝑓
2
(𝑏
1
) − 𝑓
2
(𝑥) 𝑓
1
(𝑏
1
) . (40)
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Theorem 4. For 0 < 𝑥 ≤ 𝑏
1
, one has

𝐿 (𝑥; 𝑏
1
, 𝑏
2
) =

ℎ (𝑥)

ℎ (𝑏
1
)

𝐴 +
𝜌 (𝑥)

ℎ (𝑏
1
)

, (41)

and, for 𝑏
1
< 𝑥 ≤ 𝑏

2
, one has

𝐿 (𝑥; 𝑏
1
, 𝑏
2
) =

𝑔 (𝑥)

𝑔 (𝑏
1
)

𝐴 +
𝑘 (𝑥)

𝑔 (𝑏
1
)

𝐵, (42)

where

𝐴= (𝑘

(𝑏
1
) ℎ (𝑏
1
) 𝑔 (𝑏
1
) − 𝜌

(𝑏
1
) 𝑘

(𝑏
2
) 𝑔 (𝑏
1
))

× (𝑔

(𝑏
2
) 𝑘

(𝑏
1
) ℎ (𝑏
1
) + 𝑔 (𝑏

1
) ℎ

(𝑏
1
) 𝑘

(𝑏
2
)

−𝑔

(𝑏
1
) ℎ (𝑏
1
) 𝑘

(𝑏
2
))

−1

,

𝐵= (𝑔
2
(𝑏
1
) ℎ

(𝑏
1
) − 𝑔 (𝑏

1
) 𝑔

(𝑏
1
) ℎ (𝑏
1
)

+𝑔 (𝑏
1
) 𝑔

(𝑏
2
) 𝜌

(𝑏
1
))

× (𝑔

(𝑏
2
) 𝑘

(𝑏
1
) ℎ (𝑏
1
) + 𝑔 (𝑏

1
) ℎ

(𝑏
1
) 𝑘

(𝑏
2
)

−𝑔

(𝑏
1
) ℎ (𝑏
1
) 𝑘

(𝑏
2
))

−1

.

(43)

Proof. For 0 < 𝑥 ≤ 𝑏
1
, applying the strong Markov property,

we obtain

𝐿 (𝑥; 𝑏
1
, 𝑏
2
) = 𝐸
𝑥
[𝑒
−𝛿𝑇

]

= 𝐸
𝑥
[𝑒
−𝛿𝑇

𝐼 (𝜏
+

𝑏
1

< 𝜏
−

0
)] + 𝐸

𝑥
[𝑒
−𝛿𝑇

𝐼 (𝜏
+

𝑏
1

> 𝜏
−

0
)]

= 𝐸
𝑥
[𝑒
−𝛿𝜏
+

𝑏1 𝐼 (𝜏
+

𝑏
1

< 𝜏
−

0
)] 𝐿 (𝑏

1
; 𝑏
1
, 𝑏
2
)

+ 𝐸
𝑥
[𝑒
−𝛿𝜏
−

0
𝐼 (𝜏
+

𝑏
1

> 𝜏
−

0
)]

=
ℎ (𝑥)

ℎ (𝑏
1
)

𝐿 (𝑏
1
; 𝑏
1
, 𝑏
2
) +

𝜌 (𝑥)

ℎ (𝑏
1
)

.

(44)

Similarly, for 𝑏
1
< 𝑥 ≤ 𝑏

2
,

𝐿 (𝑥; 𝑏
1
, 𝑏
2
) = 𝐸
𝑥
[𝑒
−𝛿𝑇

]

= 𝐸
𝑥
[𝑒
−𝛿𝜏
] 𝐿 (𝑥 (𝜏) ; 𝑏

1
, 𝑏
2
)

= 𝐸
𝑥
[𝑒
−𝛿𝜏
𝐼 (𝜏
−

𝑏
1

< 𝜏
+

𝑏
2

)] 𝐿 (𝑏
1
; 𝑏
1
, 𝑏
2
)

+ 𝐸
𝑥
[𝑒
−𝛿𝜏
𝐼 (𝜏
−

𝑏
1

> 𝜏
+

𝑏
2

)] 𝐿 (𝑏
2
; 𝑏
1
, 𝑏
2
)

=
𝑔 (𝑥)

𝑔 (𝑏
1
)

𝐿 (𝑏
1
; 𝑏
1
, 𝑏
2
) +

𝑘 (𝑥)

𝑔 (𝑏
1
)

𝐿 (𝑏
2
; 𝑏
1
, 𝑏
2
) .

(45)

It can be verified that 𝐿(𝑏
2
; 𝑏
1
, 𝑏
2
) = 1 and 𝐿(𝑏

1
+; 𝑏
1
, 𝑏
2
) =

𝐿

(𝑏
1
−; 𝑏
1
, 𝑏
2
), so we get

𝑔

(𝑏
2
)

𝑔 (𝑏
1
)

𝐿 (𝑏
1
; 𝑏
1
, 𝑏
2
) +

𝑘

(𝑏
2
)

𝑔 (𝑏
1
)

𝐿 (𝑏
2
; 𝑏
1
, 𝑏
2
) = 1,

ℎ

(𝑏
1
)

ℎ (𝑏
1
)

𝐿 (𝑏
1
; 𝑏
1
, 𝑏
2
) +

𝜌

(𝑥)

ℎ (𝑏
1
)

=

𝑔

(𝑏
1
)

𝑔 (𝑏
1
)

𝐿 (𝑏
1
; 𝑏
1
, 𝑏
2
)

+

𝑘

(𝑏
1
)

𝑔 (𝑏
1
)

𝐿 (𝑏
2
; 𝑏
1
, 𝑏
2
) .

(46)

From (46) we obtain 𝐿(𝑏
1
; 𝑏
1
, 𝑏
2
) and 𝐿(𝑏

2
; 𝑏
1
, 𝑏
2
), so we

get the results (41) and (42).

Remark 5. (1) Let 𝜙(𝑥; 𝑏
1
, 𝑏
2
) denote the expected discounted

penalty at ruin; in this model, the penalty at ruin is a constant
𝑀 > 0, so we get

𝜙 (𝑥; 𝑏
1
, 𝑏
2
) = 𝑀𝐿 (𝑥; 𝑏

1
, 𝑏
2
) . (47)

Substitution of (41) and (42) into (47) yields an expression for
𝜙(𝑥; 𝑏

1
, 𝑏
2
).

(2) Let 𝜓(𝑥; 𝑏
1
, 𝑏
2
) = 𝑃(𝑇 < ∞ | 𝑈

0
= 𝑥) be the pro-

bability of ruin. Note that

𝐸 [𝑒
−𝛿𝑇

| 𝑈
0
= 𝑥] = 𝐸

𝑥
[𝑒
−𝛿𝑇

𝐼 (𝑇 < ∞)]

+ 𝐸
𝑥
[𝑒
−𝛿𝑇

𝐼 (𝑇 = ∞)]

= 𝐸
𝑥
[𝑒
−𝛿𝑇

𝐼 (𝑇 < ∞)] ;

(48)

then
𝜓 (𝑥; 𝑏

1
, 𝑏
2
) = lim
𝛿→0

𝐿 (𝑥; 𝑏
1
, 𝑏
2
) = 𝑃 (𝑇 < ∞) . (49)

From (14)–(18), we have

lim
𝛿→0

𝑓
1
(𝑥) = exp{− 1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

}

× 𝑈(
1

2

,
1

2

,
1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

) ,

lim
𝛿→0

𝑓
2
(𝑥) = (𝜇 + 𝜌𝑥) exp{− 1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

}

×𝑀(1,
3

2

,
1

𝜌𝜎
2
(𝜇 + 𝜌𝑥)

2

) ,

lim
𝛿→0

𝑓
3
(𝑥) = exp{− 1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

}

× 𝑈(
1

2

,
1

2

,
1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

) ,

lim
𝛿→0

𝑓
4
(𝑥) = (𝜇 − 𝛼 + 𝜌𝑥) exp{− 1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

}

×𝑀(1,
3

2

,
1

𝜌𝜎
2
(𝜇 − 𝛼 + 𝜌𝑥)

2

) .

(50)

Taking limit in (41) and (42) yields 𝜓(𝑥; 𝑏
1
, 𝑏
2
).
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5. The Moment-Generating Function of 𝐷

In this section, themoment-generating function of the hybrid
dividend payments is discussed.We adopt a similar approach
to that of Gao and Yin in Section 3 [10].

Let

𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
) = 𝐸 [𝑒

𝑦𝐷
| 𝑈
0
= 𝑥] (51)

denote the moment-generating function of𝐷, and let

𝑉
𝑚
(𝑥; 𝑏
1
, 𝑏
2
) = 𝐸 [𝐷

𝑚
𝑈
0
= 𝑥] , 𝑚 = 1, 2, 3, . . . , (52)

denote the 𝑚th moment function. The following theorem
provides differential equations for the function 𝑀(𝑥, 𝑦; 𝑏

1
,

𝑏
2
).

Theorem 6. The moment-generating function 𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
)

satisfies the partial differential equations

𝜎
2

2

𝜕
2
𝑀

𝜕𝑥
2
+
𝜕𝑀

𝜕𝑥

(𝜌𝑥 + 𝜇) −
𝜕𝑀

𝜕𝑦

𝑦𝛿 = 0, 0 < 𝑥 ≤ 𝑏
1
,

𝜎
2

2

𝜕
2
𝑀

𝜕𝑥
2
+
𝜕𝑀

𝜕𝑥

(𝜌𝑥 + 𝜇 − 𝛼) −
𝜕𝑀

𝜕𝑦

𝑦𝛿 = 0, 𝑏
1
< 𝑥 ≤ 𝑏

2
,

(53)

with boundary conditions

𝑀(0, 𝑦; 𝑏
1
, 𝑏
2
) = 1, lim

𝑥→∞
𝑀(𝑥, 𝑦; 𝑏

1
, 𝑏
2
) = 𝑒
𝑦𝛼/𝛿

. (54)

Proof. (i) We first provide the solution of 𝑈
𝑡
. Consider the

SDE

d𝑈
𝑡
= (𝜇 + 𝜌𝑈

𝑡
) d𝑡 + 𝜎d𝑊

𝑡
; (55)

note that, in the case 𝜎 = 0, the solution to the ODE is
(1/𝜌)(𝜌𝑈

0
+𝜇)𝑒
𝜌𝑡
−𝜇/𝜌. To solve the SDE, consider the process

𝑌 (𝑡) =
1

𝜌

(𝜌𝑈
0
+ 𝜇) 𝑒

−𝜌𝑡
−
𝜇

𝜌

. (56)

Let 𝑃(𝑡) = 𝑈
𝑡
𝑒
−𝜌𝑡 and 𝑄(𝑡) = (𝜇/𝜌)(𝑒−𝜌𝑡 − 1), so we have

𝑑𝑌(𝑡) = 𝑑𝑃(𝑡) + 𝑑𝑄(𝑡),

𝑑𝑃 (𝑡) = 𝑑𝑈
𝑡
𝑒
−𝜌𝑡

= 𝑈
𝑡
(−𝜌) 𝑒

−𝜌𝑡
𝑑𝑡 + 𝑒

−𝜌𝑡
𝑑𝑈
𝑡
+ 𝑑 [𝑈

𝑡
, 𝑒
−𝜌𝑡
]

= 𝑈
𝑡
(−𝜌) 𝑒

−𝜌𝑡
𝑑𝑡 + 𝑒

−𝜌𝑡
𝑑𝑈
𝑡

= 𝑈
𝑡
(−𝜌) 𝑒

−𝜌𝑡d𝑡 + 𝑒−𝜌𝑡 (𝜇 + 𝜌𝑈
𝑡
) d𝑡 + 𝜎d𝑊

𝑡

= 𝑒
−𝜌𝑡
𝜇𝑑𝑡 + 𝑒

−𝜌𝑡
𝜎d𝑊
𝑡
,

𝑑𝑄 (𝑡) = −𝑒
−𝜌𝑡
𝜇𝑑𝑡;

(57)

we get 𝑑𝑌(𝑡) = 𝑒−𝜌𝑡𝜎d𝑊
𝑡
, so we obtain

𝑌 (𝑡) = 𝑌 (0) + ∫

𝑡

0

𝑒
−𝜌𝑠
𝜎d𝑊
𝑠
. (58)

Now the solution for 𝑈
𝑡
is

𝑈
𝑡
= 𝑒
𝜌𝑡
{𝑈
0
−
𝜇

𝜌

(𝑒
−𝜌𝑡

− 1) + ∫

𝑡

0

𝑒
−𝜌𝑠
𝜎d𝑊
𝑠
} . (59)

(ii) Now we derive the integrodifferential equations for
𝑀(𝑥, 𝑦; 𝑏

1
, 𝑏
2
).

For 0 < 𝑥 ≤ 𝑏
1
, we consider a small time interval [0, 𝑡],

the time 𝑡 > 0 such that the surplus will not reach 𝑏
1
before 𝑡;

in view of the strong Markov property of the surplus process
{𝑈
𝑡
, 𝑡 ≥ 0}, we have

𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
) = 𝐸 [𝑀(𝑈

𝑡
, 𝑦𝑒
−𝛿𝑡
; 𝑏
1
, 𝑏
2
)] + 𝑜 (𝑡) . (60)

By Taylor expansion, we have

𝐸 [𝑀(𝑈
𝑡
, 𝑦𝑒
−𝛿𝑡
; 𝑏
1
, 𝑏
2
)]

= 𝐸 [𝑀 (𝑥, 𝑦; 𝑏
1
, 𝑏
2
)] +

𝜕𝑀

𝜕𝑥

(𝑈
𝑡
− 𝑥) +

𝜕𝑀

𝜕𝑦

(𝑦𝑒
−𝛿𝑡

− 𝑦)

+
1

2

(
𝜕
2
𝑀

𝜕𝑥
2
(𝑈
𝑡
− 𝑥)
2 𝜕
2
𝑀

𝜕𝑦
2
(𝑦𝑒
−𝛿𝑡

− 𝑦)

2

)

+
𝜕𝑀

𝜕𝑥𝜕𝑦

(𝑈
𝑡
− 𝑥) (𝑦𝑒

−𝛿𝑡
− 𝑦) + 𝑜 (𝑡) .

(61)

Subtracting 𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
) from each side of the above

equation, dividing by 𝑡, and then letting 𝑡 → 0, we achieve

𝜎
2

2

𝜕
2
𝑀

𝜕𝑥
2
+
𝜕𝑀

𝜕𝑥

𝜌(𝑥 +
𝜇

𝜌

) −
𝜕𝑀

𝜕𝑦

𝑦𝛿 = 0. (62)

Similarly, for 𝑏
1
< 𝑥 ≤ 𝑏

2
, we consider a small time

interval [0, 𝑡], the time 𝑡 > 0 such that the surplus will not
reach 𝑏

2
; we have

𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
) = 𝐸 [𝑀(𝑈

𝑡
− 𝛼𝑡, 𝑦𝑒

−𝛿𝑡
; 𝑏
1
, 𝑏
2
)] + 𝑜 (𝑡) .

(63)

By Taylor expansion, we get

𝐸 [𝑀(𝑈
𝑡
− 𝛼𝑡, 𝑦𝑒

−𝛿𝑡
; 𝑏
1
, 𝑏
2
)]

= 𝐸 [𝑀 (𝑥, 𝑦; 𝑏
1
, 𝑏
2
)] +

𝜕𝑀

𝜕𝑥

(𝑈
𝑡
− 𝑥 − 𝛼𝑡)

+
𝜕𝑀

𝜕𝑦

(𝑦𝑒
−𝛿𝑡

− 𝑦)

+
1

2

(
𝜕
2
𝑀

𝜕𝑥
2
(𝑈
𝑡
− 𝑥 − 𝛼𝑡)

2 𝜕
2
𝑀

𝜕𝑦
2
(𝑦𝑒
−𝛿𝑡

− 𝑦)

2

)

+
𝜕𝑀

𝜕𝑥𝜕𝑦

(𝑈
𝑡
− 𝑥 − 𝛼𝑡) (𝑦𝑒

−𝛿𝑡
− 𝑦) + 𝑜 (𝑡) .

(64)

Subtracting𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
) from each side of (63), divid-

ing by 𝑡, and then letting 𝑡 → 0, we achieve

𝜎
2

2

𝜕
2
𝑀

𝜕𝑥
2
+
𝜕𝑀

𝜕𝑥

(𝜌𝑥 + 𝜇 − 𝛼) −
𝜕𝑀

𝜕𝑦

𝑦𝛿 = 0. (65)

The proof of boundary conditions is routine. This ends
the proof of Theorem 6.
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Theorem 7. For 0 < 𝑥 ≤ 𝑏
1
, 𝑉
𝑚
(𝑥; 𝑏
1
, 𝑏
2
) satisfies

𝜎
2

2

𝑉


𝑚
(𝑥; 𝑏
1
, 𝑏
2
) + (𝜌𝑥 + 𝜌)𝑉



𝑚
(𝑥; 𝑏
1
, 𝑏
2
)

− 𝛿𝑚𝑉
𝑚
(𝑥; 𝑏
1
, 𝑏
2
) = 0,

(66)

and, for 𝑏
1
< 𝑥 ≤ 𝑏

2
, 𝑉
𝑚
(𝑥; 𝑏
1
, 𝑏
2
) satisfies

𝜎
2

2

𝑉


𝑚
(𝑥; 𝑏
1
, 𝑏
2
) + (𝜌𝑥 + 𝜌 − 𝛼)𝑉



𝑚
(𝑥; 𝑏
1
, 𝑏
2
)

− 𝛿𝑚𝑉
𝑚
(𝑥; 𝑏
1
, 𝑏
2
) = 0,

(67)

with the boundary conditions

𝑉
𝑚
(0; 𝑏
1
, 𝑏
2
) = 0, 𝑉



𝑚
(𝑥; 𝑏
1
, 𝑏
2
)
𝑥=𝑏
2

= 𝑚𝑉
𝑚−1

(𝑏
2
; 𝑏
1
, 𝑏
2
) .

(68)

Proof. Recall that𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
) = 𝐸[𝑒

𝑦𝐷
], and 𝑉

𝑚
(𝑥; 𝑏
1
, 𝑏
2
)=

𝐸[𝐷
𝑚
]; using the representation

𝑀(𝑥, 𝑦; 𝑏
1
, 𝑏
2
) = 1 +

∞

∑

𝑚=1

𝑦
𝑚

𝑚!

𝑉
𝑚
(𝑥; 𝑏
1
, 𝑏
2
) (69)

and equating the coefficients of 𝑦𝑚 in (53) yield the ordinary
differential equations (66) and (67).

Remark 8. When𝑚 = 1, we get 𝑉
1
(𝑥; 𝑏
1
, 𝑏
2
) = 𝑉(𝑥; 𝑏

1
, 𝑏
2
).
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