
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 463891, 8 pages
http://dx.doi.org/10.1155/2013/463891

Research Article
The Inhomogeneous Waves in a Rotating Piezoelectric Body

Xiaoguang Yuan1 and Si Chen2

1 School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2 Faculty of Metallurgical and Energy Engineering, Kunming Science and Technology University, Kunming 650093, China

Correspondence should be addressed to Xiaoguang Yuan; xgyuan@gmail.com

Received 13 August 2013; Accepted 5 September 2013

Academic Editors: K.-M. Chung and M. L. Fravolini

Copyright © 2013 X. Yuan and S. Chen.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves
propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with
respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that
rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects
of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency,
around which wave characteristics change drastically.

1. Introduction

The gyroscopes of rotating motion sensors have important
applications in automobiles, video cameras, smart weapon
systems, machine control, robotics, and navigation. Recently,
using piezoelectric materials to make vibratory gyroscopes
has been of increasing interest. Piezoelectric gyroscopes can
make use of rotation-induced frequency shifts in surface
acoustic wave (SAW) or bulk acoustic wave (BAW) piezoelec-
tric resonators to measure angular rates. The basic behaviors
of a piezoelectric gyroscope are governed by the equations of
a rotating piezoelectric body, which consist of the equations
of linear piezoelectricity with rotation-related Coriolis and
centrifugal accelerations.

As far as we know, the research of rotation-affected vibra-
tion or wave was started by Huston [1] who investigated the
effect of “rigid-body” rotation on wave propagation velocities
in elastic media. Further, rotation effect was studied in the
“in-plane” vibration of rotating circular disks [2]. It was found
that the inclusion of Coriolis and centripetal accelerations
leads to the result that the medium behaves dispersive and
anisotropic [3]. In another contribution [4], the reflection
and refraction of plane waves were considered. The effect of
rotation on surface acoustic waves was derived theoretically
in a perturbation treatment of the Coriolis force for an
isotropic medium [5]. The problem of wave propagation

in a rotating random infinite magnetothermoviscoelastic
medium was studied and a coupled dispersion relation for
longitudinal and transverse waves was deduced to determine
the effect of viscoelasticity, relaxation times, and rotation on
the phase velocity of the coupled waves [6]. In the work
of Wauer [7], the propagation of waves in a conducting
piezoelectric solid was studied for the case when the entire
medium rotates with a uniform angular velocity. Destrade
and Saccomandi [8] raised and addressed two questions
related to elastic motions and found some finite amplitude
transversewaves in rotating incompressible elastic solids with
general shear response. Auriault [9] revealed that free wave
propagation in non-Galilean rotating media gives rise to two
dispersive waves which are coupled dilatational-shear waves.
The propagation of surface (Rayleigh) waves over a rotating
orthorhombic crystal was studied [10], in which the secular
equation for the surface wave speed was found explicitly. In
the work of Ting [11], the Stroh formalism for surface waves
in an anisotropic elastic half-space was extended to the case
when the half-space rotates about an axis with a constant
rotation rate. Auriault [12] investigated wave propagation in
elastic porous media which are saturated by incompressible
viscous Newtonian fluids when the porous media are in
rotation with respect to a Galilean frame. Yang [13] presented
a review of analyses on the vibrations of rotating piezo-
electric structures for applications in piezoelectric angular
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rate sensors. Propagation of plane waves in a micropolar
porous elastic solid rotating with a uniform angular velocity
was investigated [14]. The paper [15] dealt with the prop-
agation of body waves in a rotating, generalized thermoe-
lastic solid by using Cardano’s and perturbation methods.
A two-dimensional problem in electromagnetic micropolar
generalized thermoelastic medium subjected to mechanical
force or thermal source was investigated [16]. Biryukov
et al. [17] investigated the gyroscopic effect in arbitrary crys-
tals by taking into account the medium rotation. Recently,
the paper [18] considered the propagation of body waves in
a homogenous isotropic, rotating, generalized thermoelastic
solid with voids. Wegert et al. [19] analysed theoretical upper
bounds for the size of the gyroscopic effect on the frequency
of guided acoustic waves in (piezo)elastic media, which are
valid in the regime of small rotation rates as compared to the
frequency of the guided acoustic wave.The contribution [20]
was aimed at the effects of rotation on the propagation of har-
monic plane waves under two-temperature thermoelasticity
theory. Kothari and Mukhopadhyay [21] analyzed the effects
of rotation on the propagation of harmonic plane waves in
an unbounded thermoelastic media rotating with a uniform
angular velocity. The investigation [22] was performed with
the effect of rotation on an infinite circular cylinder subjected
to certain boundary conditions.

As stated above, it is seen that many achievements have
been done about the rotation effects on waves. This paper
prefers to investigate the rotation on the inhomogeneous
waves in piezoelectric body which have been researched by
Yuan and his colleagues [23–26]. To our knowledge, no sys-
tematic empirical research exists addressing the question of
inhomogeneous wave propagation in a rotating piezoelectric
body. Our work here is to present the analysis and result
for this problem in the framework of inhomogeneous wave
theory.

The paper is organized in the following manner. In the
next section, the basic equations for motion in a rotating
piezoelectric solid and their wave dispersion equations to
harmonic waves are given. Next, using the inhomogeneous
wave theory, we recast the dispersion equations in a gen-
eral complex form which separable real solutions to define
the phase velocity and attenuation are admitted. Thus, we
can discuss the wave phase velocities, attenuations with
three independent parameters: propagation angle, attenua-
tion angle, and rotation speed. Finally, in Sections 3 and 4,
numerical results are presented and conclusions are inferred,
respectively.

2. Basic Governing Equations

We consider a linear homogeneous piezoelectric body shown
in Figure 1, and 𝑀 is the material point rotating with the
speed vectorΩ(= Ω
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Figure 1: The rotating piezoelectric body.

Thus, the momentum balance in a piezoelectric body can
be written as

𝜌 [
𝜕
2u
𝜕𝑡2

+Ω × (Ω × u) + 2Ω ×
𝜕u
𝜕𝑡

] = ∇ ⋅ 𝜎, (1)

and equivalently, in component form:

𝜌[

𝜕
2
𝑢
𝑗

𝜕𝑡2
+ 𝜀
𝑗𝑖𝑘
𝜀
𝑘𝑚𝑛

Ω
𝑖
Ω
𝑚
𝑢
𝑛
+ 2𝜀
𝑗𝑖𝑘
Ω
𝑖
×
𝜕𝑢
𝑘

𝜕𝑡
] = 𝜎

𝑖𝑗,𝑖
. (2)

In the above equation, 𝜌 is the mass density, 𝑡 is the time
variable, u is the displacement vector, 𝜎 is the Cauchy stress
tensor, and 𝜀

𝑗𝑖𝑘
is the permutation tensor. The subscripts

range from 1 to 3. On account of rotation, the termΩ×(Ω×u)
denotes the centripetal acceleration, and due to the time-
varying motion, 2Ω × (𝜕u/𝜕𝑡) corresponds to the Coriolis
acceleration [3].

Further, the electric field can be described by the electro-
static equation

𝐷
𝑖,𝑖
= 0, (3)

where 𝐷
𝑖
is the electric displacement vector, and with mate-

rial equations

𝜎
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙
− 𝑒
𝑘𝑖𝑗
𝐸
𝑘
,

𝐷
𝑖
= 𝜖
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𝑗
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𝑖𝑘𝑙
𝜀
𝑘𝑙
,

(4)

where 𝜎
𝑖𝑗
are the strain tensor and 𝐸

𝑘
the electric field vector

while 𝐶
𝑖𝑗𝑘𝑙

, 𝑒
𝑘𝑖𝑗
, and 𝜖

𝑖𝑗
are the elasticity, piezoelectricity, and

permittivity tensors of the material. The Einstein summation
is implied in the above equations over the repeated subscripts.

The electric field vector can be derived from an electric
potential, that is,

𝐸
𝑘
= −𝜑
,𝑘
, (5)

where 𝜑 is the electric potential. The geometric relationship
between the strain and the displacement tensors is defined as

𝜀
𝑘𝑙
=

1

2
(𝑢
𝑘,𝑙

+ 𝑢
𝑙,𝑘
) . (6)
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Eliminating 𝜀
𝑘𝑙
and 𝐸

𝑘
from (4), (5), and (6) yields

𝜎
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𝑖𝑗𝑘𝑙

𝑢
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.

(7)

Then, instituting (7) into (2) and (3), one obtains a set of wave
equations for rotating piezoelectric body

𝜌[
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(8)

which contains four equations (three elastic wave equations
and one electric wave equation that is associated with the
elastic waves by the material relationship equation (4) and
three independent unknown variables: 𝑢

1
, 𝑢
2
, 𝑢
3
, and 𝜑).

3. The Inhomogeneous Wave Solutions

Generally, the wave equations of (8) can be solved by
introducing complex monochromatic plane wave functions,
such as,

𝑢
𝑖
= 𝑈
𝑖
𝑒
𝐼(𝑘𝑗𝑥𝑗−𝜔𝑡),

𝜑 = Ψ𝑒
𝐼(𝑘𝑗𝑥𝑗−𝜔𝑡),

(9)

where 𝑘
𝑗
is the complex wave vector, 𝜔 is the wave circular

frequency, 𝐼 is the imaginary unit (𝐼 = √−1), 𝑡 is the
time variable, and (𝑈

𝑖
, Ψ) are the complex amplitudes of

displacements and electric potential, respectively. Inserting
(9) into (8) gives
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A nontrivial solution of these four linear homogeneous equa-
tions for𝑈

1
,𝑈
2
,𝑈
3
, andΨ exists only if the determinant of the

coefficients vanishes, which yields the governing dispersion
relation

detG = 0, (11)

in which the elements 𝑔
𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3, 4) of the matrix G are

[
[
[

[

𝑔
11

𝑔
12

𝑔
13

𝑔
14

𝑔
21

𝑔
22

𝑔
23

𝑔
24

𝑔
31

𝑔
32

𝑔
33

𝑔
34

𝑔
41

𝑔
42

𝑔
43

𝑔
44

]
]
]

]

{{{

{{{

{

𝑈
1

𝑈
2

𝑈
3

Ψ

}}}

}}}

}

=

{{{

{{{

{

0

0

0

0

}}}

}}}

}

, (12)

where
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Further, with the help of inhomogeneous wave theory [23,
25], assume that the complex wave vector can be decomposed
in terms of wave propagation direction as

𝑘
𝑗
= 𝑃
𝑗
+ 𝑖𝐴
𝑗
= 𝑃𝑛
𝑗
+ 𝑖𝐴𝑚

𝑗
, (14)

where 𝑃
𝑗
is the propagation vector with its magnitude of

𝑃 = √𝑃
𝑗
𝑃
𝑗
, 𝐴
𝑗
is the attenuation vector with its magnitude

of 𝐴 = √𝐴
𝑗
𝐴
𝑗
, and (𝑛

𝑗
, 𝑚
𝑗
) are the unit vectors along the

propagation direction (normal to the equiphase plane) and
the perpendicular to the plane of constant amplitude (normal
to the equiamplitude plane), respectively. Generally, 𝑛

𝑗
̸= 𝑚
𝑗

represents an inhomogeneous wave problem while 𝑛
𝑗
= 𝑚
𝑗

represents a special case of a homogeneous wave problem.
Further, the unit vectors (𝑛

𝑗
, 𝑚
𝑗
) can be further expressed

in terms of the angle 𝜃 between 𝑛
𝑗
and 𝑥
3
, the angle 𝛾 between

𝑛
𝑗
and𝑚

𝑗
as shown in Figure 2. Via (14), we obtain

{𝑛
1
, 𝑛
2
} = {sin 𝜃, cos 𝜃}𝑇,

{𝑚
1
, 𝑚
2
} = {sin (𝜃 + 𝛾) , cos (𝜃 + 𝛾)}

𝑇

,

𝑛
𝑗
𝑚
𝑗
= cos 𝛾.

(15)

Correspondingly, the wave vector 𝑘
𝑖
can be expressed in

terms of one complex number, the propagation angle 𝜃, and
the attenuation angle 𝛾, such that,

𝑘
1
= 𝑃 sin 𝜃 + 𝑖𝐴 sin (𝜃 + 𝛾) ,

𝑘
2
= 𝑃 cos 𝜃 + 𝑖𝐴 cos (𝜃 + 𝛾) .

(16)

Inserting (16) into the dispersion equation (11) and then
decomposing it into the real and imaginary parts leads
to solvable equations in terms of 𝑃 and 𝐴 for the given
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Table 1: Material properties of Ba2NaNb5O15 crystal.
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Figure 2: Illustration of equiphase and equiamplitude planes and
exponential variation of the amplitude along the phase propagation
direction.

attenuation angle 𝛾, propagation angle 𝜃, and rotation speed
Ω

𝐷
𝑅
(𝑃, 𝐴) = 0,

𝐷
𝐼
(𝑃, 𝐴) = 0,

𝐴 ∈ 0 ∪ 𝑅
+
, (17)

where 𝐷
𝑅
and 𝐷

𝐼
are the operators on 𝑃 and𝐴, which are

nonlinear and coupled algebraic equations in terms of (𝑃, 𝐴).
According to the definitions of𝑃 and𝐴 in (14), the right solu-
tion of 𝑃 and𝐴 should be real-valued.Therefore, the domain
of attenuation angle 𝛾 is determined by the condition that 𝑃
and 𝐴 are nonnegative real numbers (here only the positive
direction of wave propagation is considered). Thus, the wave
propagates with the phase velocity 𝑐

𝑝
and the nonnegative

attenuation 𝐴, which agrees with the Sommerfeld radiation
condition, that is, vanishing at infinity. Generally, there are
three roots of (𝑃, 𝐴) that are related to three elastic wave
modes: one quasilongitudinal (QL) and two quasitransverse
(QT 1, 2) waves for the given 𝜃, 𝛾, andΩ. It is noted that, due
to the static electric field assumption, there is no independent
wave mode in the electric field, whereas the electric wave still
can propagate with the elastic wavemodes via the constitutive

relationship (4). After 𝑃 is solved, the phase velocity can be
defined as

𝑐
𝑝
=

𝜔

𝑃
, (18)

and 𝐴 is the corresponding wave attenuation.

4. Results and Discussions

In order to discuss the problem in greater detail and to
find out the effects of the rotation speed Ω of the body,
propagation angle 𝜃, attenuation angle 𝛾 on the phase speed
𝑐
𝑝
, and attenuation coefficient𝐴 of the inhomogeneous wave,

we have computed them by taking the following piezoelectric
material parameters in Table 1. All the physical constants are
rewritten with the help of Voigt notation, whose rule is that
the subscripts of a tensor are transformed by the rule {11 →

1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6}.
For convenience, a parameter𝐾

𝑖
can be defined as

𝐾
𝑖
=

𝜔

|Ω|
,

Ω = Ω
1
e
1
+ Ω
2
e
2
+ Ω
3
e
3
,

(19)

which is used to discuss the effects of rotation speed vector
on the phase velocity and attenuation. Also the direction of
rotation speed vector along 𝑥

3
, 𝑥
1
will be considered and

compared in the following. The wave frequency 𝜔 here is set
to be 2𝜋 × 10

6 1/second.

(I) The Phase Velocity. Figures 3 and 4 illustrate the phase
velocity of QT1 wave when the piezoelectric body rotation
about the 𝑥

3
and 𝑥

1
axes with varied rotation speeds and 𝛾 =

0, respectively. The data show that the rising rotation speed
leads to declining phase velocities. Because of the anisotropic
property of piezoelectric body, the phase velocity performs
differently at different propagation angles. It can be seen that
there is a sharp drop in phase velocity at 𝐾

𝑖
= 1; that is, the

rotation speed is equal to the wave frequency; at the same
time, the rotation direction influences the velocities.When𝐾

𝑖

is below 1 or the rotation speed is more than wave frequency,
the velocity slope is larger than when𝐾

𝑖
is above 1. It is found

that the attenuation angle 𝛾 almost does not influence the
phase velocity.

The cases of quasitransverse wave QT2 are found in
Figures 5 and 6, which is similar with QT1, except that the
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1
e1.

phase velocity of 𝐾
𝑖
= 1 is larger than that of other values of

𝐾
𝑖
at most propagation angles.
Figures 7 and 8 illustrate the quasilongitudinal wave (QL)

velocities along 𝑥
3
, 𝑥
1
axes. The data suggest that there is

no quasilongitudinal QL wave in the case of 𝐾
𝑖
= 1 (when

rotation speed is equal to wave frequency). Rather than QT1,
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Figure 5: Phase velocity of quasitransverse wave (QT2) versus
propagation angle 𝜃 ranging from 0∘ to 360∘ with 𝛾 = 0 and varied
𝐾
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, whenΩ =Ω
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Figure 6: Phase velocity of quasitransverse wave (QT2) versus
propagation angle 𝜃 ranging from 0∘ to 360∘ with 𝛾 = 0 and varied
𝐾
𝑖
, whenΩ =Ω

1
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2, the phase velocities of𝐾
𝑖
= 0.1, 0.01 and𝐾

𝑖
= infinite, 1000,

100, 10 are very close.

(II)TheAttenuation. Instead of phase velocity, the attenuation
angle 𝛾 influences the wave attenuation notably, which can be
demonstrated in Figures 9–14. These figures imply that only
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Figure 7: Phase velocity of quasilongitudinal wave (QL) versus
propagation angle 𝜃 ranging from 0∘ to 360∘ with 𝛾 = 0 and varied
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large rotation speed or small 𝐾
𝑖
can affect wave attenuation,

and attenuation angle can amplify such effect significantly.
Therefore, the cases of 𝐾

𝑖
= 0.01 are taken to demonstrate

the attenuation angle influences.
Figures 9 and 10 depict the wave attenuations of QT1

wave mode. It is seen that when attenuation angle 𝛾 = 0 of
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Figure 10: Attenuation of quasitransverse wave (QT1) versus prop-
agation angle 𝜃 ranging from 0∘ to 180∘ with 𝛾 = 0

∘, 60∘, when
Ω
1
= 2𝜋 × 10

8 or 𝐾
𝑖
= 0.01.

homogeneous wave, no attenuation is found to exist for any
rotation speed; only when the attenuation angle is above zero,
that is 𝛾 = 60, the wave attenuation gains sharply around
propagation angle 𝜃 = 140 for piezoelectric body rotating
around 𝑥

3
and 0, 180 for rotating around 𝑥

1
. With the same

value of rotation speed, the rotation around 𝑥
1
axis shows
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Figure 12: Attenuation of quasitransverse wave (QT2) versus
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more impact on the wave attenuation than that around 𝑥
3

axis.
Turning back to QT2 wave, it is revealed that there is

slight oscillating when attenuation angle 𝛾 = 0. Likewise,
nonzero attenuation angle plays large roles, which are shown
in Figures 11 and 12.

Further, the attenuations of quasilongitudinal wave (QL)
are shown in Figures 13 and 14. The largest increase in
attenuation is found at propagation angle 𝜃 = 0, 180 for

0

100

200

300

400

500

600

700

At
te

nu
at

io
n

Propagation angle
0∘ 30∘ 60∘ 90∘ 180∘150∘120∘

𝛾 = 0∘

𝛾 = 60∘

Figure 13: Attenuation of quasilongitidinal wave (QL) versus
propagation angle 𝜃 ranging from 0∘ to 180∘ with 𝛾 = 0

∘, 60∘, when
Ω
3
= 2𝜋 × 10

8 or 𝐾
𝑖
= 0.01.

Propagation angle
0∘ 30∘ 60∘ 90∘ 180∘150∘120∘

𝛾 = 0∘

𝛾 = 60∘

0

1

2

3

4

5

6

7

8

At
te

nu
at

io
n

×104
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rotating about 𝑥
3
axis.The attenuation of 𝛾 = 60 jumps when

propagation angle is above 120, when the body rotates about
𝑥
1
.

5. Conclusions

In the framework of inhomogeneous wave theory, the prop-
agation of waves in rotating piezoelectric solid has been
analyzed firstly. Throughout this paper, four independent
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parameters are used to study the waves of rotating body,
which are rotation speed value and its direction, propa-
gation angle, and attenuation angle. The obtained results
demonstrate that the rotation speed influences the wave
characteristics significantly. It is found that 𝐾

𝑖
= 1 is

the critical point, that is, when rotation speed is equal
to the wave frequency, around which the phase velocity
varies substantially; at this point, no quasilongitudinal wave
exists. Even though no damping parameters are taken into
account, still tiny wave attenuation can be induced by the
rotation speed. The large rising attenuations are attributable
to attenuation angle. If there is no rotation, the attenuations
of QT1, QT2, and QL waves are found to be zero. It is also
noted that the wave velocity, as well as attenuation, behaves
differently for different directions of rotation speed vector.
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