
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

A CONCURRENT PROGRAMMING LANGUAGE
WITH SESSION TYPES

Juliana Patrícia Vicente Franco

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/19338586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

A CONCURRENT PROGRAMMING LANGUAGE
WITH SESSION TYPES

Juliana Patrícia Vicente Franco

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

Dissertação orientada pelo Prof. Doutor Vasco Manuel Thudichum de Serpa Vasconcelos
e co-orientado pelo Prof. Doutor Francisco Cipriano da Cunha Martins

2013

Agradecimentos

Agradeço ao meu orientador, professor Vasco Vasconcelos, pela constante disponi-
bilidade, apoio e pela oportunidade que me deu para fazer um projeto numa área tão
interessante. Foi incansável durante o desenvolvimento deste trabalho de modo a torná-lo
o melhor possível. Foi sem dúvida um ano em que aprendi bastante e grande parte do que
aprendi foi graças a ele. Muito obrigada professor. Tem sido uma excelente experiência
trabalhar consigo!

Não posso deixar de agradecer à minha família pois sem eles não teria sido possível
alcançar esta meta. Aos meus pais, Júlio e Ana, agradeço todo o apoio e incentivo que
sempre me deram e também pela educação que me proporcionaram e que me permitiu
chegar até aqui. Agradeço também ao meu irmão, Flávio, por me ter feito ver que Enge-
nharia Informática era o curso certo para mim e à minha irmã, Cassandra, porque mesmo
não tendo idade para perceber o porquê de tanto trabalho, nunca me deixou desanimar. A
vocês os quatro, muito obrigada. Foram essenciais!

Por fim, mas não menos importante, quero agradecer a todas as pessoas, que ao longo
do meu percurso na FCUL me ajudaram a alcançar os meus objetivos. Em especial a
três pessoas que me acompanharam e tornaram tudo mais fácil desde os primeiros dias
de faculdade. À Rita Henriques pela companhia em muitos fins de semana e noites de
trabalho, e por uma amizade que tornou tudo mais fácil. E também à Hélia Grilo e à
Mafalda Gomes por toda a amizade e apoio que me deram ao longo destes cinco anos e,
principalmente, nesta recta final. Foram muito importantes no caminho até aqui!

iii

Aos meus pais e irmãos.

Resumo

Em computações concorrentes complexas onde os processos comunicam por troca de
mensagens existe normalmente um elevado número de mensagens trocadas. Geralmente,
estes programas são muito difíceis de implementar visto que a ordem e o tipo das mensa-
gens enviadas e recebidas são muitas vezes alvos de erros dos programadores.

Numa comunicação entre dois processos que partilham o mesmo meio de comunica-
ção é necessário garantir que estes trocam as mensagens de forma correcta: quando um
envia um valor de tipo inteiro, o outro deve estar a espera de receber um valor de tipo
inteiro, quando um oferece um conjunto de opções, o outro deve estar pronto a selecionar
uma dessas opções e quando um tem de terminar a sua interação nesse canal, o outro
também deve terminar. Também é importante garantir a não ocorrência de condições de
corrida, assegurando que durante uma comunicação entre dois intervenientes, outros não
interferem. Por isso, é útil abstrair protocolos que governam as interações entre os inter-
venientes de uma comunicação descrevendo quando e quais são as mensagens trocadas
entre eles. Temos então os tipos de sessão que descrevem as contínuas interações entre os
diferentes parceiros de uma comunicação.

Para definir quantos parceiros conhecem um dado canal de comunicação em qualquer
ponto do programa, é possível qualificar o tipo de sessão, associado a esse canal, como
linear ou partilhado. Os tipos qualificados como lineares representam extremidades de
canais que apenas podem aparecer em exatamente um fio de execução, enquanto que
os partilhados representam extremidades que podem ocorrer num número ilimitado de
fios de execução. Deste modo podemos garantir que não existem condições de corrida,
pois em situações sujeitas a tal pode-se usar tipos lineares. Mas por outro lado, se for
necessário que muitos processos tenham acesso ao canal podemos usar tipos partilhados.

Com vista a facilitar a programação concorrente, construímos uma nova linguagem de
programação chamada SePi. Esta é uma linguagem de programação concorrente baseada
no cálculo pi que usa tipos de sessão linearmente refinados para descrever as operações
realizadas nos canais de comunicação. Esta linguagem concorrente, onde os processos
comunicam de forma síncrona através canais bidirecionais (cada canal é definido por duas
extremidades), permite que as interações entre processos sejam verificadas em tempo de
compilação utilizando os tipos de sessão para descrever o tipo e a ordem das mensagens,
bem como o número de processos que podem partilhar os canais.

vii

A linguagem SePi tem construtores de processos para enviar e receber uma men-
sagem, para representar a receção replicada, a composição paralela, com zero ou mais
processos a serem executados concorrentemente, o processo condicional e a criação de
novos canais definidos por duas extremidades. Os processos podem enviar mensagens de
tipo inteiro, booleano, string ou extremidades de canais. Para além dos tipos primitivos,
a linguagem apresenta também tipos para descrever o envio e receção de mensagens, a
oferta e a seleção de opções, um tipo para representar canais onde não é possível ocorrer
mais interações, tipos refinados e tipos recursivos. Por exemplo o tipo lin?boolean.lin!

integer.end representa uma extremidade de um canal que recebe um valor booleano e de
seguida envia um inteiro. Os tipos recursivos permitem efetuar a mesma operação, ou o
mesmo conjunto de operações, no mesmo canal um número indeterminado de vezes. Os
tipos refinados, uma forma de tipos dependentes, aparecem com o objetivo de especificar
certas propriedades dos valores de um programa SePi anexando fórmulas a tipos. Estas
fórmulas podem ser predicados não interpretados, na forma de p(v1, ..., vn), tensores na
forma de A x A ou unit. Por exemplo, um cliente que queira efetuar um pagamento a uma
loja utilizando o seu cartão de crédito quer ter a certeza que este é utilizado apenas uma
vez e para cobrar a quantia certa. Os tipos de sessão não são suficientes para assegurar
este comportamento, pois podemos garantir que a loja cobra um inteiro, mas não podemos
garantir que cobra o montante exato da compra. No entanto podemos usar tipos refinados
para especificar o montante que vai ser cobrado no cartão de crédito e o número de vezes
que esta cobrança é feita. Um exemplo de tipos refinados é então {x:integer | charge(x

, card)}. Para conseguirmos obter este comportamento, tratamos das fórmulas como se
fossem recursos. Elas são introduzidas no sistema de tipos através do processo assume,
passadas entre processos através dos tipos refinados e removidas através do processo as-
sert.

Existe outro conceito muito importante na nossa linguagem, a dualidade, que nos per-
mite garantir que dois processos que partilham um canal comportam-se de forma com-
plementar. Dizemos então que as duas extremidades de um canal têm tipos duais ou
complementares. Isto é, quando uma extremidade é usada para enviar uma mensagem a
outra deve ser usada para receber, quando uma é usada para selecionar uma opção então
a outra tem de ser usada para oferecer um conjunto de opções. O tipo que define canais
sem interação é dual dele próprio e os tipos primitivos e refinados não têm a função de
dualidade definida. Por exemplo o tipo lin?boolean.lin!integer.end é dual de lin !boolean.

lin?integer.end.

Até agora descrevemos apenas a linguagem “base”. A versão mais recente da lingua-
gem SePi é baseada na primeira mas apresenta mais construtores, tais como construtores
derivados e abreviaturas. Como abreviaturas temos o uso opcional do qualificador linear
ou o uso de um * para representar uma classe comum de tipos partilhados, o operador
dualof que permite obter o tipo dual de outro, e a composição paralela de zero valores que

viii

também é opcional. Como construtores derivados dos da linguagem base, temos o envio
e receção de múltiplos valores, a definição de processos (que deriva de uma criação de
um novo canal seguido de uma receção replicada em paralelo com o resto do programa)
e a declaração de tipos mutuamente recursivas. A linguagem SePi também apresenta ex-
pressões binárias, como as aritméticas, lógicas e relacionais, ou expressões unárias, como
a negação.

O nosso objetivo ao introduzir estes novos construtores é o de capturar com uma
sintaxe especial, os idiomas e padrões de programação mais comuns e assim reduzir o
número de linhas de código SePi e eventuais erros associados. Esta linguagem é baseada
nos trabalhos de Vasconcelos [36] e Baltazar et al. [3]. Para facilitar a programação em
SePi desenvolvemos um plugin para o Eclipse de modo a permitir a validação sintática
e semântica, completação e refactoring de código, bem como interpretação. Para além
disso, implementamos também uma versão para a linha de comandos.

A nossa implementação foi feita utilizando a framework Xtext que permite o desen-
volvimento de novas linguagens de programação e plugins para o Eclipse. Sendo que
o Xtext gera vários dos componentes de um compilador/interpretador, podemos dividir
a nossa implementação em quatro partes: escrita da gramática, implementação de um
mecanismo para verificar se todas as variáveis de um programa estão devidamente decla-
radas, implementação do algoritmo de verificação de tipos e escrita do interpretador. O
interpretador é baseado na máquina abstrata de estados de Turner [32].

Este trabalho resulta assim numa linguagem de programação concorrente, baseada no
cálculo pi monádico onde a comunicação entre os processos de um programa é gover-
nada por tipos que resultam de uma combinação entre tipos de sessão e tipos linearmente
refinados.

Palavras-chave: Concorrência, tipos de sessão, tipos refinados, cálculo pi, canais de
comunicação

ix

Abstract

We present a concurrent programming language based on the monadic pi-calculus,
where communication among processes is governed by linearly refined session types. In
SePi, processes communicate synchronously via bi-directional channels (defined by two
end-points) by message-passing. Interactions on channels are statically verified against
session types describing the type and order of messages exchanged, as well as the number
of processes that may share a channel.

We first implement a core language where there are constructs to send and receive
(including a form of replicated input) messages, select and offer a set of options, parallel
composition, conditional and channel creation.

In order to allow describing more precise properties of programs, SePi includes as-
sume and assert primitives at the process level and refinements at the type level. Refine-
ments are treated linearly, which allows a finer, resource-oriented use: each assumption is
asserted exactly once, and conversely each assertion is also assumed exactly once.

On top of this core language we provide some abbreviations and some derived con-
structs with the purpose of facilitate code development, resulting in the current version
of SePi. We introduced a few abbreviations, as for instance the dualof operator or the
optional qualifiers, and derived constructs, such as the input and output of multiple values
and mutually recursive process definitions and type declarations.

SePi is currently implemented as an Eclipse plugin, allowing code development (and
interpretation) with the usual advantages of an IDE, such as syntax highlighting, syntactic
and semantic validation, code completion and refactoring.

The syntax, type system and operational semantics of SePi are introduced in refer-
ences [3, 36] and the interpreter is based on Turner’s abstract machine [32].

Keywords: Concurrency, session types, refinement types, pi-calculus, communication
channels

xi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Deviations from the original plan thesis 3
1.4 Structure of the document . 3

2 The pi-calculus, session types and related programming languages 5
2.1 The pi-calculus . 5
2.2 Session types . 6
2.3 Session types in functional languages 7
2.4 Session types in object-oriented languages 8
2.5 Session types in imperative languages 10
2.6 Programming languages based on the pi-calculus 10

3 The SePi programming language 13
3.1 The core language . 13
3.2 The SePi language . 16

3.2.1 Rationale . 16
3.2.2 Introducing the language via an example 17

3.3 Algorithmic type checking . 22
3.3.1 Well-formed types and formulae 23
3.3.2 Formulae normalisation, normalise A 7→ Γ 23
3.3.3 Context normalisation, normalise Γ 7→ Γ 23
3.3.4 Formula subtraction, Γ ` A 7→ Γ 24
3.3.5 Type equivalence, Γ ` v : T ≡ T 7→ Γ 24
3.3.6 Typing rules for expressions, Γ ` e 7→ T ; Γ 24
3.3.7 Typing rules for processes, Γ ` P 7→ Γ;L 25

3.4 Derived constructs . 29
3.5 Programming in SePi . 32

3.5.1 A print server that makes sure values are printed in order 32
3.5.2 Channel forwarding . 33

xiii

3.5.3 Request on a channel; respond on a distinct channel 35

4 Implementation 37
4.1 Xtext and plugin implementation . 37
4.2 The validation phase . 39

4.2.1 The symbol table . 40
4.2.2 Value hierarchy . 41
4.2.3 Formulae hierarchy . 41
4.2.4 Type hierarchy . 42
4.2.5 The validation process . 44

4.3 The interpreter . 46
4.3.1 Machine states . 46
4.3.2 The interpretation process . 46

4.4 Metrics . 49
4.5 Testing the compiler and the interpreter 49
4.6 Installing & running SePi . 50

5 Conclusion 53

Bibliography 58

xiv

xvi

Chapter 1

Introduction

1.1 Motivation

In complex concurrent computations where processes communicate via message-passing,
there is, a large number of exchanged messages. Message-passing programs are hard
to implement correctly. The order and type of these messages are a common target of
programmer mistakes. When two processes, P and Q are communicating, if P sends a
message thenQmust be ready to receive this message; if P sends an integer and after that,
it is expecting to receive a string, then Q must be ready to receive an integer and then to
send a string. A programmer can easily write a wrong program to describe the interactions
between these two processes. For instance, if he writes that while one process sends an
integer the other is prepared to receive a string (incorrect type of messages), or even, if he
writes a program where one process sends a boolean value followed by a string value and
the other receives first the string and then the boolean (wrong order of messages). Other
kind of errors occur when multiple processes are trying to use the same resources. It may
occur race conditions.

It is then useful to abstract protocols that govern the interactions between processes,
describing when and what messages are sent or received by the communication parties.
Session types appear in this context as a formalism to describe continuous interactions
among different partners in a concurrent computation.

Furthermore, there are some properties about the messages exchanged by the pro-
cesses that we want to ensure. For instance we may allow the programmer to define how
many times a given value is used, or even constrain the name of the channels. We may
look to the Online store example of Baltazar et al. [3]. In this example, there is an online
store interacting with a bank and with multiple clients. Each client provides the store with
the product that he wants to buy, his credit card and the product price. In turn, the store
sends to the Bank the credit card and the amount in order to charge the client. The bank
receives the credit card and the amount and proceeds with the charging. But what ensures
that the store charges the exact amount, sent by the client, and that the credit card is used

1

Chapter 1. Introduction 2

to charge the agreed amount exactly once? Session types are not enough to ensure this
behaviour (with session types we can describe that the store must send an integer to the
bank, but we cannot tell that when a client sends an amount of 10, the store must forward
10 to the bank, for example). The answer lies on refinement types—a form of dependent
types which allow to specify properties of values in programs by attaching formulae to
types.

There are multiple works that incorporates session types in functional [5, 27, 30]
or object-oriented [8, 9, 23, 24] paradigms but, even being originally proposed for pi-
calculus, there is no programming language pi-based that uses session types to describe
the communication among the different partners of communication, where we may exer-
cise examples, test program idioms and experiment with type systems. Besides, according
with our knowledge, there is no language that combines the session types with linear re-
finement types.

What we propose is SePi, an exercise in the design and implementation of a concurrent
programming language based on the pi calculus. The language features synchronous, bi-
directional channel-based communication between concurrent processes. Processes use
channel ends to read, write, offer a menu of choices or else select one such choice from
a menu. There are also constructs to create a new channel and constructs to represent the
parallel composition and the conditional process. At any point in a program, a channel end
may be held by exactly one process or else shared by an unbounded number of processes.
Interactions on channels are statically verified against session types describing the kind
and order of messages exchanged, as well as the number of processes that may share a
channel. In order to facilitate a more precise control on the properties of programs, SePi
includes assume and assert primitives at the process level and refinements at the type
level. Refinements are treated linearly, which allows a finer, resource-oriented use: each
part of an assumption made with linear mode supports exactly one part of an assertion.

The formal foundation of the language can be found in references [3, 36]. On the top
of this core language we introduced a number of abbreviations and derived constructs, in
order to facilitate programming, such as, dualof operator, input/output of multiple values
and mutually recursive process definitions and type declarations. These new constructs
allows us to reduce the number of lines of code produced and the potentially associated
errors. We implemented an interpreter based on the Turner’s abstract machine [32]. In
order to increase the productivity of the programmer, we created an Eclipse plugin to our
language.

1.2 Contributions

The main contributions of this work can be summarized as follows:

• a new concurrent, message passing programming language based on the monadic

Chapter 1. Introduction 3

pi-calculus that features synchronous, bi-directional channel-based communication
between concurrent processes.

• the implementation of a type system that combines session types and linear refine-
ments to govern and describe interactions in concurrent programs.

• an Eclipse plugin that allows to develop with the usual advantages of an IDE, such
as code completion, syntax highlighting, syntactic and semantic validation and in-
terpreting SePi programs. We have also developed a SePi interpreter to be run from
the command line.

From this work resulted the paper in reference [13].

1.3 Deviations from the original plan thesis

This section briefly compares what we planned to do in the beginning of this thesis and
what we achieved. Initially we planned to implement the language as described in this
thesis except for all aspects dealing with the formulae. Later on, we incorporate in SePi
assume and assert processes, refinement types (and the formulae themselves). Other fea-
tures of the language, such as derived constructs (input and output of multiple values,
mutually recursive process definitions and type declarations), as well as some abbrevi-
ations, arisen naturally from the experience of programming in SePi. We estimate that
these extensions implied an extra 3 months cost with respect to our initial schedule.

1.4 Structure of the document

The current chapter introduces our work, its motivations and contributions. The rest of
the chapters are structured as follows:

Chapter 2 briefly reviews the notions of the pi-calculus and of session types, followed
by programming languages that either incorporate session types or are based on the
pi-calculus.

Chapter 3 presents the SePi language. First it describes the syntax of our core language
and then it introduces the SePi language via the use of a running example of an
Online Donation Service. The remaining sections describe the algorithmic type
checking of the core language, the derived constructs that we introduced in the
language and, finally, some examples written in SePi.

Chapter 4 describes how we have implemented our language and its Eclipse plugin,
what classes we wrote to implement the validation and interpretation phases. It

Chapter 1. Introduction 4

also presents some metrics and how we have tested our work. The last section
presents some informations about installing and running SePi.

Chapter 5 presents our conclusions and our plans for future work.

Chapter 2

The pi-calculus, session types and
related programming languages

This chapter briefly reviews related work including the pi-calculus (Section 2.1) and con-
cept of session types (Section 2.2), how session types can be incorporated in functional
languages (Section 2.3), object-oriented languages (Section 2.4) and in imperative lan-
guages (Section 2.5). Finally we present two languages based on the pi-calculus (Sec-
tion 2.6). The material in this chapter may be complemented with a recent survey [11].

2.1 The pi-calculus

Milner et al. [25, 26] introduce a calculus of concurrent communicating processes called
the pi-calculus. Pi-calculus is a basic model of computation that uses a primitive notion of
interaction based on reading and writing on channels. It can be used to model a network
of interconnected processes that exchange messages and where messages may contain
links to active processes. Figure 2.1 shows the syntax of processes of a variant in pi-
calculus [36].

P ::= Processes:
x!vP send y along x
x?y.P receive y along x
x∗?y.P replicated reception
P1 | P2 parallel composition
(νab)P scope restriction

Figure 2.1: Syntax of pi-calculus processes

Output process, of the form x!vP , writes on channel x the value v before continuing
as process P . Input process, of the form of x(y).P , reads on channel x a value and binds it

5

Chapter 2. The pi-calculus, session types and related programming languages 6

to variable y before proceeding as P . Replicated reception provides for a persistent input.
The syntax also introduces the parallel composition P1|P2 which represents two different
processes running concurrently and the scope restriction where we say that a and b are
bound names in P .

We now show the reduction rules to writing and receiving processes.

(νxy)(x!vP | y?z.Q) → (νxy)(P | Q[v/z])

(νxy)(x!vP | ∗y?z.Q) → (νxy)(P | Q[v/z] | y? ∗ z.Q)

In the first case channel creation binds two new variables, called x and y, that may be
used in processes composed of the output of value v on channel x and a process ready to
receive this value and to replace z by v in the continuation process. The prefixes are then
consumed but the scope restriction remains in the resulting process in order to be used
in processes P and Q. The input of the second case is replicated. The reduction rule is
similar except that the replicated input remains in the resulting process.

2.2 Session types

Session types are a formalism that allows a concise description of the continuous interac-
tions among different partners in a concurrent computation [35, 36].

Session types were first introduced with the purpose of specifying interactions be-
tween two participants running in parallel and communicating via message passing [21,
31]. These two works propose an extension of the pi-calculus with session types allowing
to specify structured patterns of communication and verify whether processes are well-
formed via type checking. Later, Gay and Hole [16], introduced a notion of subtyping for
session types, while working on a more conventional pi-calculus.

Consider two processes that can communicate through a channel defined by two end-
points, named x and y. In order to write an integer on channel x and to read on channel
y, the session types that describe the behaviour of x and y are, respectively, !integer.end

and ?integer.end, where the output is represented by ! and the input by ?. The end type
means that no further interaction may occur in the given channel end. On the other hand,
if the objective is to offer a set of options on channel end x and to select on channel y,
the types of the end-points x and y are &{li : Ti}i∈I and ⊕{li : Ti}i∈I , respectively, where
branching is represented by &, selection by ⊕ and I is an index set.

Session types are used to describe interactions between exactly two threads. Certain
communication patterns require channels shared by more than two threads. In order to
describe linear and shared objects, and based on the ideas of a linear type system of
functional programming [37], we may equip a pretype with a linear qualifier to obtain a
traditional session type, or with an unrestricted qualifier to describe a channel shared by
an unbounded number of threads.

Chapter 2. The pi-calculus, session types and related programming languages 7

Baltazar et al. combine session types with linear refinements resulting in an original
system of linearly refined session types [3]. Refinement types are a form of dependent
types which allow attaching formulae to types [14], thus specifying properties of values
in programs. The refinement type {x : T | A} represents a value v of type T that must
respect formula A. Formula A may refer to v via variable x. For instance, the type
{x : integer | x > 0} describes a natural number.

Honda et al. presented the Scribble framework [18, 19], whose purpose is to provide
a formal and intuitive language and tools to specify communication protocols and their
implementations, using the theory of multiparty session types. Multiparty session types
are described by Honda et al. [22] as an extension of binary session types able to describe
interactions among multiple partners of the communication.

A protocol describes globally the interactions among two or more participants and
stipulate, for each participant, its role in the communication. Scribble includes constructs
to describe interactions in protocols, such as, the interaction signature to specify what
kind of message is sent from one participant to another one, the sequencing to represent
a sequence of multiple interactions where a given role name appears, the parallel or un-
ordered to represent interactions that may occur in any order, the directed choice to define
an interaction in form of branching, the recursion to repeat an interaction and, finally, the
nested protocol where a new interaction may be instantiated in a nested protocol. Using
the Scribble’s development tools, a programmer may specify a set of protocols to be used
in a given program, check if they are valid and free from deadlocks and he may validate a
program against these protocols using a protocol type checker. Scribble supports bindings
for various high-level languages such as ML, Java, Python, C# or C++.

2.3 Session types in functional languages

In this section we describe how the notion of session types was introduced in functional
programming languages.

Neubauer and Thiemann presented an implementation of session types in Haskell [27].
In this language, communicating parties exchange messages via channels whose behaviour
is described by session types encoded in terms of type classes with functional dependen-
cies, using the session monad. To model the parties (for instance a server or a client) the
authors use functions with polymorphic parameters. The operations supported are recur-
sive types, message sending and reception (each message is a value tagged with a label)
and the closing of a communication channel, which requires that the closed channel has
reached its end meaning that there are no message exchanges left.

Sackman and Eisenbach describe a similar work that also incorporates session types
in Haskell [30]. In this implementation, the communication is made via bidirectional
channels. The behaviour of each channel is governed by a session type, in order to ensure

Chapter 2. The pi-calculus, session types and related programming languages 8

that the two processes that use this channel communicate smoothly. In order to construct
session types, the authors use a Domain Specific Language (DSL), which works within an
extended Monad type class (each channel is represented by a value which is an instance of
this type class). The use of DSL allows to assign labels to session types, or fragments of
session types, and to refer them using these labels. This language also supports operations
to send and receive messages, and in addition, it includes primitives to offer, select, jump
and termination (end). The send and receive operations are used to exchange messages,
the choice operations have a behaviour similar to a switch statement, where a process pro-
duces a list of options (offer) and another one chooses one option from this list (selection).
The jump operation is used to specify recursive types and loops (including infinite loops).

Both papers prove that session types can be embedded in Haskell in a type-safe way
and that it is possible to encode all the invariants and properties of session types in the
Haskell type system, allowing to statically verify the use of communication primitives
without any modification to the compiler, type checker or preprocessor.

Given that session types are encoded, the Haskell code can be difficult to read. SePi
works directly with session types, thus hopefully leading to readable programs.

Bhargavan et al. [4] present a high-level language to specify multiparty sessions. Their
compiler generates from a session language cryptographic protocols encoded as ML mod-
ules and proof annotations, making sure that messages are exchanged with strong security
guarantees such as integrity and secrecy. The verification of security of the generated code
is based on the work of Bhargavan et al. [5] that verifies executable protocol code instead
of abstract protocol models. Participants of a session are represented by roles where
each role has its local implementation and code for sending and receiving messages (the
compiler generates cryptographic operations to this code). The patterns of communica-
tion allowed between two roles are defined by session types. In addition to the send and
receive operations, the language also provides for loops and branches.

2.4 Session types in object-oriented languages

In this section we introduce a few object-oriented languages equipped with session types.
Fähndrich et al. present a type-safe object-oriented and garbage collected program-

ming language called Sing#, a variant of C#, that supports message-based communication
via shared-memory [12]. This language was used to write the Singularity operating sys-
tem [24], ensuring process isolation (a process cannot access or corrupt data or code of an-
other process) and inter-process communication (processes may exchange messages and
signal events), two important services of the operating system. Communication in Sing#
is via bidirectional channels, where each channel is characterized by two end-points, one
to read and the other to write, that are created by a specific channel creation operation.
Channels can be used to receive, to asynchronously send messages and also to offer a set

Chapter 2. The pi-calculus, session types and related programming languages 9

of options, using a switch-receive statement. Their behaviour is governed by statically
verified contracts, a mechanism similar to session types.

Hu et al. introduced SJ, an extension of Java with a concise and clear syntax for session
types and structured communication operations [23]. SJ is a language for session-based
distributed programming that features asynchronous message passing, delegation, session
subtyping and interleaving. SJ ensures communication safety for distributed applications
via a combination between static and dynamic validations (the first to ensure that each ses-
sion behaves as prescribed by a locally declared protocol and the second to verify whether
the parties of the communication implement compatible protocols). It also supports ses-
sion abstraction over concrete transports, that is, session operations are mapped to runtime
communication primitives that can be implemented over concrete transports, using TCP.
SJ programming can be divided in the definition of communication protocols (session
types) and in their implementation using the session operations. This implementation re-
quires the creation of session sockets. A client may use a session socket (representing one
end-point of the communication) to request a new session to the server using a session
server-address (this one is responsible to define the address of a server using its IP ad-
dress and a TCP port). When a session server socket accepts the request, it creates a new
session socket (the other end-point), to be used in the server side to communicate with the
client. After the session is established, session sockets may be used to send and receive
messages, iterate or offer a menu of options.

Bica and Mool are two object-oriented programming languages where session types
describe the order by which methods in classes should be called. Caldeira and Vasconce-
los [8] presented an extension to Java5, called Bica, that checks Java source code against
session types specifications for classes , based on the work by Gay et al. [15]. The exten-
sion allows attaching session types to classes, in the form of Java annotations, that specify
the possible orders of method calls, as well as the tests that clients must perform on the
results of method calls.

Following a similar approach, Campos and Vasconcelos [9, 10] introduced the Mool
programming language, a mini object-oriented language based on Java, with support for
concurrency. Mool formalizes protocols, called usage types, that define how and when
the method of a class should be called. These protocols are attached to class definitions in
order to specify the available methods, what tests clients must perform, and the object sta-
tus: linear or shared. While in SePi and in general approaches the communication occurs
by exchanging messages on session governed channels, in this language communication
occurs by calling methods on session governed object references, as described in [35].

Chapter 2. The pi-calculus, session types and related programming languages 10

2.5 Session types in imperative languages

Ng et al. presented a programming framework for message-passing parallel algorithms
which combines session types with the C programming language, called Session C [28].
This multiparty session-based programming environment ensures deadlock freedom, com-
munication safety and global progress for well-typed programs. A Session C program is
a C program that uses communication primitives based on the theory of session types.
Besides the usual operations to send and receive values, Session C also includes multicast
sending and multicast receiving primitives, where the first one sends the same message
to all receivers and the second one receives messages from multiples senders. It also
provides a branching operation where a programmer may define different communica-
tion behaviours (different options) for a participant according to what option is selected
by another participant. Finally, this implementation also provides two methods for iter-
ation: local and communicating. A local iteration is similar to a while statement and a
communicating iteration is a distributed version of a loop to support multicast.

The Session C framework uses the programming language Scribble to describe com-
munication protocols in the form of multiparty session types.

2.6 Programming languages based on the pi-calculus

Pierce and Turner present the programming language Pict [29], a strongly typed con-
current programming language in the ML-tradition, directly based on pi-calculus, and
equipped with a combination of subtyping and polymorphism. Pict builds on a tiny core
(a variant of the asynchronous pi-calculus [7, 20]) a few derived constructs. The core
language contains two kinds of entities: processes (also called agents) and channels (or
names), where processes use channels to communicate with other processes. Processes
include asynchronous output, input prefix, parallel composition, replicated input, con-
ditional and local declaration (creation of a new channel with a type associated to the
created channel). The language grows with some derived constructs such as multiple
declarations, a primitive run operation, to run a process in parallel with the rest of the
declarations, a process abstraction in the form of a declaration using the keyword def,
which can be translated to a channel creation followed by a replicated input and mutually
recursive definitions. Pict supports types to describe which values are sent or received
through communication channels, recursive types and subtyping.

Vasconcelos presented TyCO, an object-based concurrent programming language,
which uses a variant of the asynchronous pi-calculus to capture the notions of concur-
rent objects [33, 34]. TyCO programs are composed of asynchronous labelled messages
(atomic select/output) and labelled receptors (branch/input), concurrent objects composed
of labelled methods, concurrent composition and an operator to create a new channel.
TyCO uses the notion of agents to represent processes abstracted on a set of channels

Chapter 2. The pi-calculus, session types and related programming languages 11

allowing for recursion (recursively abstracted agents) and for using more than once a de-
clared agent (simply abstracted processes) via the let constructor. Vasconcelos also added
to this language a few derived constructs such as datatype declarations, constructed data,
case expression, similar to our branching construct which can be used to write a condi-
tional expression, or functional objects.

Although typed on pi-calculus, neither of these languages uses session types. These
languages, and all others presented in this chapter do not include refinement types, linear
or classic.

Chapter 2. The pi-calculus, session types and related programming languages 12

Chapter 3

The SePi programming language

This chapter presents the SePi programming language, its type system and operational se-
mantics. Section 3.1 presents the syntax of our core language, describing processes, types
and formulae. Section 3.2 introduces the final SePi language, containing abbreviations,
new constructs derived from the core language, new primitive values and expressions.
Section 3.3 presents the algorithmic rules to type check the core language. Section 3.4
discusses the derived constructs in the language. Finally, Section 3.5 presents program-
ming examples attesting the flexibility of SePi.

3.1 The core language

The syntax, type system and operational semantics of our core language are introduced
in references [3, 36]. Figure 3.1 shows the syntax of processes and values in the core
language.

Processes require two base sets, that of program variables, ranged over by x, y, . . . and
that of choice labels ranged over by l, m, . . . The channel creation construct binds two
new variables in P , one for each of the channel’s end-points. One of these variables
is used in process P to write values into the channel while the other is used to read.
Variable x is of type T , whereas variable y is of type dual of T (a notion discussed below).
The output process x!v.P is used to send (or to write) value v on channel end-point x
before continuing with the process P . The input process x?y.P reads on channel end-
point x a value, before continuing with process P , where the received value replaces
the bound variable y. Input processes are linear, x?y.P , or replicated, x∗?y.P . The
difference between them is that the second remains after the reception of the value while
the first does not, meaning that a replicated input can be used by multiple clients whereas
a linear input can be used by a single client. In this way, a replicated input provides for
unbounded behaviour. The parallel composition {P1 | ... | Pn} allows n processes to
run concurrently. A parallel composition of zero processes, {}, represents the terminated
process. The conditional construct if v then P else Q executes P if the boolean value v is

13

Chapter 3. The SePi programming language 14

P ::= Processes:
new xy : T P channel creation
x!v.P output
x?x.P linear input
x∗?x.P replicated input
{P1 | ... | Pn} parallel composition, n ≥ 0

if v then P else P conditional
x select l.P selection
case x of l1 → P1 · · · ln → Pn branching, n ≥ 0

assume A assume
assert A.P assert

v ::= Values:
x variable
true | false boolean values

Figure 3.1: Syntax of core processes and values

true, and Q otherwise. There are two choice constructs: the selection process x select l.P

denotes a process, that chooses, on channel end x, the option labelled with l from a set
of multiple options, before continuing as process P . This set of options is offered by a
branching process of the form case x of l1 → P1 · · · ln → Pn. The construct assume A

denotes a process that introduces an assumption A in the form of a formula. Conversely
the assertion process, assert A.P , checks that formula A holds before continuing with P .
Assumptions and assertions are treated linearly: for each assert there must be exactly one
assume and, conversely, for each assume there must be exactly one assert.

Values include the boolean literals, true and false, as well as variables denoting chan-
nel ends.

The syntax of types is introduced in Figure 3.2. Types rely on one further base set,
that of type variables, ranged over by a, b, . . . Types include the primitive type boolean,
used to describe boolean values, the termination type end, used to describe end-points
where no further interaction is possible, qualified pretypes, type variables, recursive types
and refinement types.

Qualified pretypes represent channel end-points ready to

• !x : T.U , send a value of type T and then continuing its interaction as defined by
type U , where the value sent replaces (free) occurrences of x in U .

• ?x : T.U , receive a value of type T before behaving as defined by type U , where the
value received replaces (free) occurrences of x in U .

Chapter 3. The SePi programming language 15

q ::= Qualifiers:
lin linear
un unrestricted

p ::= Pretypes:
x : ?T.T receive
x : !T.T send
+{li : Ti}i∈I select
&{li : Ti}i∈I branch

T ::= Types:
boolean boolean
end termination
q p qualified pretype
a type variable
rec a.T recursive type
{x : T | A} refinement

Figure 3.2: The syntax of types

• +{li : Ti}i∈I , select an option labelled with one of the labels in set {li}i∈I , before
behaving as Tj if the label lj is selected, for some index set I .

• &{li : Ti}i∈I , offer a set of options, each labelled with a different li, and behaving
as prescribed in Tj if label lj is selected.

Qualified pretypes qp describe how many parties (or threads) know the communication
medium: linearly qualified pretypes (q = lin) represent channel end-points that occur in
exactly one thread and unrestricted pretypes (q = un) represent channel ends that may
appear in an unbounded number of threads.

The recursive type rec a. T represents a channel end that behaves according the type
T with all occurrences of a replaced by rec a. T . For instance, the type rec a. lin!boolean.

lin?boolean.a defines an end-point that after sending and receiving a boolean value is
ready to send and receive boolean values again. These types are required to be contrac-
tive, that is, they may not contain subexpressions of the form rec a1 . . . rec an.a1, for
n > 1 .

Finally, the refinement type constructor, {x : T | A}, is used to incorporate logical
information into session types. Such type describes a channel end of type T that conforms
to formula A. Formula A may refer to variable x or to data appearing “previously” in
the type via the bound type variables in send and receive types. For instance, the type

Chapter 3. The SePi programming language 16

A ::= Formulae:
p(v1, ..., vn) predicate on v1, ..., vn
A ∗ A joining
unit identity

Figure 3.3: Syntax of formulae

lin?x : integer.lin?{y : integer | y > x} describes a channel end that receives an integer
and then receives another integer greater than the first one.

Figure 3.3 shows the syntax of formulae. There are three kinds of formulae: the
uninterpreted predicate constructor, which may refer to channel names or primitive values
(boolean values in case of our core language), the linear logic connective of tensor, ∗, and
the identity constructor, unit.

Program variables may occur in processes, types and formulae, whereas type variables
may occur in types only. We say that program variable y occurs bound in Q in processes
of the form qx?y.Q or new yz : T Q. In the latter case, z is also bound in Q. We also say
that the same program variable is bound in U in types of the form q?y : T.U and q!y : T.U ,
and in formulae A in types of the form {y : T | A}. A variable that is not bound is said
to be free. The set of free variables in a process, type or formula is denoted by free(P),
free(T), free(A), respectively. We omit the inductive definition. For type variables we
say that type variable a occurs bound in U in types of the form rec a.U .

3.2 The SePi language

3.2.1 Rationale

The SePi language is based on the core language introduced above. However it includes
further primitive types, expressions that extend values, abbreviations and a few derived
constructs, such as process definitions, type declarations and input/output of multiple
values.

We can write multiple programs with the core language alone. In fact, except for the
new primitive types and expressions, every program that we write in SePi can be written
in the core language, since the new constructs are derived from those in the core language.
The SePi language however allows us to capture, with a special syntax, the most common
idioms and programming patterns, thus reducing the number of lines of code produced
and the potentially associated errors.

The SePi language further allows arithmetic expressions (+, binary and unary −, %, /

and *), logical expressions (and, or and not) and relational expressions (<, >, <=, >=, ==,
/=).

Chapter 3. The SePi programming language 17

3.2.2 Introducing the language via an example

We use a running example to informally introduce the SePi language. The example is
that of an online donation service, that manages donation campaigns, based on the online
petition service [35] and on the online store [3] examples.

Clients seeking to start a donation campaign for a given cause begin by setting up a
session with the server. The server should create a new channel and respond to the client,
sending an end-point of the new channel. The session is conducted by this channel on
which the campaign related data is provided (title and deadline for donation collection for
example). The server should offer, a menu of options to edit the campaign data. When
a client finishes the campaign creation, the promotion phase starts. During this phase,
the campaign channel may be disseminated and used by different donors for the purpose
of collecting donations. Parties donating for some cause do so by providing a name, a
credit card number and an amount to be charged in the card. When the server receives the
donation data it forwards these information to the bank.

We may divide the example in three distinct parts: the bank, the donation server and
the clients. Communication happens between the bank and the server, and between the
server and the clients, which means that clients never communicate directly with the bank.
Communication among the different participants is by message passing on bidirectional
synchronous channels.

We start with a few type abbreviations that will ease programming.

1 type Credi tCard = str ing
2 type Promotion = * ! (string , c : CreditCard , { x : integer | charge (c , x) })
3 type Decis ion = &{ accepted : Promotion ,
4 denied : ? str ing . end }
5 type Donation = +{ s e t T i t l e : ! str ing . Donation ,
6 setDate : ! integer . Donation ,
7 submit : Decis ion }

The first lines of our program (lines 1–7) show some examples of type abbreviations.
The type declaration construct, type a = T, introduces the name T representing the solution
of equation a = T (details in Section 3.4). Line 1 says that CreditCard is another name to
type string. On line 2, we have a prefix type, !, that represents an unbounded number, *,
(in sequence or in parallel) of outputs of multiple values each. In other words, we may
use a channel with type Promotion to send, as many times as needed, a triple composed of
a string, a value of type CreditCard (another string) and an integer value that respects the
formula charge(c, x), where c denotes the credit card and x the amount to be charged. Input
and output of multiple values are natural extensions of those in Figure 3.2. The details
are discussed in Section 3.4. The * syntax introduces an unrestricted recursive type. In
general, *!T abbreviates rec a. un!T.a where a does not occur in T.

In the Decision type we have a branching choice type (&). A channel with this type
should be used in a case process with labels accepted and denied. In type Donation we

Chapter 3. The SePi programming language 18

dualof q ! (x1 : T1 , . . . , xn : Tn) .U = q?(x1 : T1 , . . . , xn : Tn) . dualof U
dualof q?(x1 : T1 , . . . , xn : Tn) .U = q ! (x1 : T1 , . . . , xn : Tn) . dualof U
dualof q&{ l 1 : T1 ; . . . ; l n : Tn } = q+{ l 1 : dualof T1 ; . . . ; l n : dualof Tn }
dualof q+{ l 1 : T1 ; . . . ; l n : Tn } = q&{ l 1 : dualof T1 ; . . . ; l n : dualof Tn }
dualof rec a . T = rec a . dualof T
dualof a = a
dualof end = end

Figure 3.4: The dualof partial function

have a selection choice (+); in this case, the channel should be used on a select process,
with one of the three labels, setTitle , setDate, or submit.

We also add to the SePi language another abbreviation that it is not used in this exam-
ple. The unrestricted choice types rec a. un&{l: a; m: a} and rec a. un+{l: a; m: a} may be
abbreviated to *&{l ; m} and *+{ l ; m}, respectively. These abbreviations allow to succinctly
describe the types of (shared) boolean values: *&{True; False} and *+{True; False}.

Prefix and choice types are qualified as linear (lin) or unrestricted (un). In our example
we all omit qualifiers since the lin keyword is optional and we may use * to represent the
most common class of unrestricted types, as in Promotion. As a result, explicit occurrences
of the lin/ un qualifiers are rarely needed in SePi.

The Promotion type shows an example of refinement types. Refinement types describe
properties of exchanged values. The type {x: integer | charge(c, x)} describes an integer
value for which the charge(c, x) capability must be respected.

There is an important concept in our language—duality. The two end-points of a
channel are supposed to have a dual behaviour. That is, when an end-point sends a value,
the other must be ready to receive it and, in the same way, when an end-point offers a set
of options, the other must be ready to select one of the multiple option. Figure 3.4 shows
the definition of the dual function. Duality is not defined for boolean, integer, string and
refinement types. We introduce, in the syntax of our language, an abbreviation to obtain
a dual type, dualof, allowing programmer to obtain the dual type of a session type.

Now we introduce the clients of our example. Each client receives from server a
channel end of type Donation that allows to create a new campaign. Clients create a new
donation campaign by choosing its name and the deadline for the donative collection.
These two operations can be performed in any order and more than once each, due the
recursion present in the Donation type when the setDate and setTitle options are chosen.
When a client is happy with the donation data, he submits the proposal and waits for the
server’s reply. The server evaluates the received data and decides whether the campaign
should be accepted or not. If accepted, the client may start promoting the donation, oth-
erwise, when denied, the client receives a string with the reason. During the promotion
phase, a client may donate and/or disseminate the donation channel.

Chapter 3. The SePi programming language 19

8 / / A c l i e n t i n two par ts
9 def helpSavingTheWolf (ps : *? Donation) =
10 def donate (p : Promotion , donor : string , ccard : CreditCard , amount :

integer) = {
11 assume charge (ccard , amount) |
12 p ! (donor , ccard , amount)
13 }
14 ps?p .
15 p select setDate . p !2012.
16 p select s e t T i t l e . p ! " Help Saving the Wolf " .
17 p select setDate . p !2013.
18 p select commit .
19 case p of
20 accepted → {
21 Donate ! (p , " Donor1 " , " 2345 " , 5) |
22 Donate ! (p , " Donor2 " , " 1234 " , 10) |
23 Donate ! (p , " Donor3 " , " 1004 " , 20)
24 }
25 denied → p?reason . p r i n t S t r i n g ! reason

An example of a client is in lines 8–25. The client code is divided in two parts: the
HelpSavingTheWolf and the Donate processes. The first definition shows some examples of
the constructs described in Section 3.1, such as input (line 14) and output (line 25) of one
value, selection (line 15), branching (lines 19–25) and assume (line 11), but it also shows
new constructs, such as the process definition (def) and the output of multiple values (line
21). The client uses selection followed by output (in lines 15–18) to choose the name
and the date of the campaign, a selection process to commit the data, and the branching
process of lines 19–25 to offer the server the accepted and denied options, meaning that
he is waiting for an answer. If the server accepts the donation the execution continues on
lines 21–23, otherwise, it continues on line 25.

The process definition construct, represented by the keyword def, is an abbreviation
of a channel creation with a replicated input in parallel with the rest of the program. For
instance, the meaning of the def Donate is given by the following process:

new donate donateReader : * ! (Promotion , string , CreditCard , integer)
donateReader *? (p , donor , ccard , integer) .
assume charge (ccard , amount) |
p ! (donor , ccard , amount)

Given that def is an abbreviation for an input, we invoke definitions using conventional
output processes, as in line 17, donate!(p, "Donor1", "2345", 5).

Our core language is based on the monadic pi-calculus [26]. However it includes con-
structs to send and receive multiple values, free from interference. Such constants derive
from output and input of core language, as explained by Milner [25] and Vasconcelos [36].
The details can be found in Section 3.4. One example of output of multiple values is in
line 21 where it is used to invoke the process definition donate (defined in lines 10–13):
in lines 21–23 there are three clients donating to the campaign helpSavingTheWolf.

The channel end p, which behaves as defined by Donation type, is linear while the

Chapter 3. The SePi programming language 20

client is sending the donation data but becomes unrestricted when the server accepts the
campaign. Due the linear behaviour of the channel during the setup phase we are sure
that there are no race conditions while reading/writing from the channel, whereas, due its
unrestricted nature, during the promotion phase, multiple clients may concurrently try to
donate.

In order to make possible printing primitive values we add to SePi language three
channel end-points: printBoolean, printInteger and printString . These channel ends must be
used in output processes, according to their types: *!boolean, *!string and *! integer. See
an example in line 25.

Figure 3.1 shows that input, output and selection processes have a continuation pro-
cess, but as we can see in our code, for instance in line 21, the process printString !reason

does not present any continuation. This happens because continuations of the form {} may
be omitted.

The donate definition receives as parameters a channel with type Promotion, two strings
with the name of the donor and the credit card and an integer with the donated amount.
In our example, a donation consists in sending to server the donor name, his credit card
number and the amount to be donated. But type Promotion (line 2) describes a channel
that sends a triple with a string, a credit card and a refinement type describing an integer
that respects the formula charge(c, x), meaning that a simple output process of the form
p!(donor, ccard, amount) it is not enough. Due the refinement type, the client must assume

first the formula charge(ccard, amount), as in line 11, which will eventually allow the bank
to charge the credit card.

We now explain the server side code. Our server is divided in one main process
definition, the donationServer, and four auxiliary process definitions: the promotion, the
denied, the accepted and the setup.

26 / / The donat ion server i n f i v e par t s
27 def donat ionServer (ps : * ! Donation) =
28 def setup (p : dualof Donation , t i t l e : string , date : integer) =
29 case p of
30 setDate → p?d . setup ! (p , t i t l e , d)
31 s e t T i t l e → p? t . setup ! (p , t , date)
32 commit → i f date < 2013 then denied ! p else accepted ! p
33 def denied (p : dualof Decis ion) =
34 p select denied .
35 p ! "We can only accept 2013 donat ions \ n "
36 def accepted (p : dualof Decis ion) =
37 p select accepted .
38 promotion ! p
39 def promotion (p : dualof Promotion) =
40 p?(donor , ccard , amount) .
41 promotion ! p . / / recur
42 bank ! (ccard , amount) / / charge the c r e d i t card
43
44 new p1 p2 : Donation
45 ps ! p1 .

Chapter 3. The SePi programming language 21

46 setup ! (p2 , " Help me" , 2000) . / / c a l l w i th d e f a u l t values
47 donat ionServer ! ps / / recur

The donationServer starts with the creation of a new channel, in line 44. The keyword
new creates a new channel defined by the two ends p1 and p2 and allows the ensuing
process to use them. In lines 44–46, we have an example of the technique known as
session initiation where the server creates a new channel, sends the end-point p1 to the
client, and keeps the other, p2, to itself, in order to receive the requests from client. The
rest of the code should be easy to follow based on the preceding explanation.

The behaviour of the setup process (lines 28–32), is that of a loop. It collects data from
client and when the client commits, it evaluates whether the campaign should be accepted
or not, using a conditional process. If accepted then the server delegates the channel p

to the accepted process, otherwise to the denied process. The denied process selects on
channel p the option denied and sends to client the reason for denial option. The accepted

process selects the accepted option and the protocol passes to the promotion phase, where
the server waits for donations.

The promotion process receives the donor name, the credit card and the defined amount
and sends them to the bank, by invoking the bank process.

Lines 48–50 present a simplistic bank that receives a credit card and the amount to be
charged and that requires the capability charge(ccard,amount) to have been granted.

47 / / The bank t h a t charges c r e d i t cards
48 def Bank (ccard : CreditCard , amount : { x : integer | charge (ccard , x) }) =
49 assert charge (ccard , amount) .
50 p r i n t I n t e g e r ! amount

When a client donates an amount, he wants to be sure that his credit card is used
exactly once, and charged the agreed amount (not more, not less). In order to avoid
misbehaving donation servers that forward an incorrect amount or that invoke the Bank

definition twice we use the refinement type {x: integer | charge(ccard, x)} together with
assume and assert processes. First, in the donate definition, the client assumes charge(

ccard, x) and then the bank asserts the same formula (line 49). But the bank can only assert
this formula if, during the promotion phase, the server forwards the exact values received
from the client.

However, there is one way to charge a credit card twice or more: assuming on behalf
of the client and asserting on behalf of the bank. For instance if we replace the current
promotion process by the following one:

39 def promotion (p : dualof Promotion) =
40 p?(donor , ccard , amount) .
41 promotion ! p . / / recur
42 assert charge (ccard , amount) . {
43 assume charge (ccard , amount) * charge (ccard , amount) |
44 bank ! (ccard , amount) . bank ! (ccard , amount)
45 }

Chapter 3. The SePi programming language 22

Finally, lines 52–54 show the main process of our program. It consists the creation
of a new channel defined by two end-points ps1 and ps2 where the first is sent to the
donationServer and the second to the helpSavingTheWolf client, thus allowing communica-
tion between both.

51 / / Main
52 new ps1 ps2 : * ! Donation
53 DonationServer ! ps1 |
54 HelpSavingTheWolf ! ps2

3.3 Algorithmic type checking

To complete the description of the language we introduce the static semantics (type check-
ing) and the operational semantics of the language. Table 3.1 summarises where the rules
can be found.

Rules
Declarative

system
Algorithmic

system
Implementation

detais

Type
checking

Session
types

Fundamentals of
Session Types

[36]

Fundamentals of
Session Types

[36]

This thesis
(Chapter 4)

Refinements
Linearly Refined

Session Types
[3]

This thesis
(Section 3.3)

This thesis
(Chapter 4)

Reduction
Fundamentals of

Session Types
[36]

The Polymorphic
Pi-calculus:
Theory and

Implementation
[32]

This thesis
(Chapter 4)

Table 3.1: Provenance of the rules for type checking and reduction

Processes, types and formulae are checked against typing contexts. A typing context Γ

is a finite map from variables to types. A context can be empty, ·; of the form Γ, x : T to
represent a map which contains the entry x : T ; or of the form Γ, A to represent a map
that contains a formulaA. Notation dom(Γ) denotes the set of variables associated to type
entries: x ∈ dom(Γ) if x : T ∈ Γ.

There are two important typing contexts operations. The context update + which,
given a variable x and a type T returns Γ, x : T if there is no entry for x in Γ, or returns Γ

if x : T is already in Γ and T is unrestricted. The context difference (or quotient)÷, which
given a typing context Γ and a set of program variables L removes from the context the
entries associated to the variables in L if their types are unrestricted, and is undefined if

Chapter 3. The SePi programming language 23

the type is linear. Note that a type is unrestricted when is pretype qualified as unrestricted,
boolean, integer, string or end. The formal definition is in [36].

There is another important concept in our language: the substitution of variable x by
value v in a type or a formula, denoted by [v/x]T and [v/x]A, respectively. For instance
the substitution [v/x]{x : boolean | p(x)} results in type {x : boolean | p(v)}. One cannot
replace variables by expressions.

3.3.1 Well-formed types and formulae

Types and formulae may contain free program variables, but these must be declared in
the typing context. Sets free(T) and free(A), the free program variables in T and A were
introduced in Section 3.1.

An example of a well-formed formula with respect to context x : boolean, y : integer is
p(x) because the set of free variables of p(x) is {x}, dom(Γ) = {x, y} and {x} ⊆ {x, y}.
Such variables must have been declared, which in our case means to be in the domain of
the typing context. We write Γ ` T when the free variables of T are in the domain of Γ,
and similarly for formulae.

free(T) ⊆ dom(Γ)

Γ ` T
free(A) ⊆ dom(Γ)

Γ ` A

3.3.2 Formulae normalisation, normalise A 7→ Γ

All rules below are the form of X 7→ Y where X represents the input and Y the output of
the rule.

The purpose of formulae normalisation is to obtain a multiset of the uninterpreted
predicates that the formula contains, which turns out to be a typing context. The normal-
isation of the unit formula returns the empty list, the normalisation of a predicate returns
the predicate itself and the normalization of a tensor invokes the normalisation of the left
formula and the right formula.

normalise unit 7→ ·
normalise p(v1, · · · , vn) 7→ {p(v1, · · · , vn)}

normalise A1 ∗ A2 7→ normalise A1, normalise A2

3.3.3 Context normalisation, normalise Γ 7→ Γ

The purpose of context normalisation is to extract all formulae from refinement types. The
normalisation of an empty context results in an empty context. If the context contains a
non refinement type then this type remains and the rest of the context is normalised.
Otherwise, if the context contains an entry with refinement type in form of x : {y : T |A}

Chapter 3. The SePi programming language 24

then we further normalise x : T (for may be a refinement type). We must also normalise
formula A after replacing all occurrences of variable y for x.

normalise · 7→ ·
normalise (Γ, x : T) 7→ normalise (Γ), x : T if T 6= {y : U |A}

normalise (Γ, x : {y : T | A}) 7→ normalise (Γ, x : T), normalise [x/y]A

3.3.4 Formula subtraction, Γ ` A 7→ Γ

The purpose of formula subtraction is to remove from the multiset of predicates a given
formula.

There are three kinds of formulae: the unit, the uninterpreted predicate and the tensor
formula. Subtracting the unit formula from a context results in the original context. Sub-
tracting a predicate p(~v) results in a context without p(~v). Finally, subtracting a tensor
formula A1 ∗ A2 results in the subtraction of formulas A1 and A2 individually.

Γ ` unit 7→ Γ

Γ1, p(~v),Γ2 ` p(~v) 7→ Γ1,Γ2

Γ1 ` A1 7→ Γ2 Γ2 ` A2 7→ Γ3

Γ1 ` A1 ∗ A2 7→ Γ3

3.3.5 Type equivalence, Γ ` v : T ≡ T 7→ Γ

The type equivalence rules compare the infinite trees associated to types. The co-inductive
definition is outside the scope of this thesis. We however show how type equivalence deals
with refinement types, using an inductive version of a rule that compares a refinement
type of form {x : T1|A} with an arbitrary type T2. The rule first compares the inner type
of refinement, T1, with the second type T2 and subtracts the formula A after replace all
occurrences of x by v.

Γ1 ` v : T1 ≡ T2 7→ Γ2 Γ2 ` [v/x]A 7→ Γ3

Γ1 ` v : {x : T1|A} ≡ T2 7→ Γ3

3.3.6 Typing rules for expressions, Γ ` e 7→ T ; Γ

A sequent of the form of Γ1 ` e 7→ T ; Γ2 assigns type T to expression e, given a context
Γ1, and producing a new context Γ2. Γ2 may differ from Γ1 due the behaviour of linear

Chapter 3. The SePi programming language 25

channels.

Γ ` true 7→ boolean; Γ Γ ` false 7→ boolean; Γ [A-TRUE] [A-FALSE]
Γ1 ` e1 7→ integer; Γ2 Γ2 ` e2 7→ integer; Γ3

Γ1 ` e1 + e2 7→ integer; Γ3

[A-PLUS]

un(T)

Γ1, x : T,Γ2 ` x 7→ T ; (Γ1, x : T,Γ2)
[A-UNVAR]

Γ1, x : lin p,Γ2 ` x 7→ lin p; (Γ1,Γ2) [A-LINVAR]

Rules [A-TRUE] and [A-FALSE] say that boolean values have type boolean and, similarly,
integer and string values have types integer and string (not shown). We also present an
example of algorithmic rule for a binary expression, the addition. The rule returns the
integer type if both expressions have integer types. The incoming context Γ1 is passed
to the call for e1 obtaining context Γ2 that is passed to the call for e2. The output of the
second call is the output of the binary expression. We can easily see that, in this case,
Γ1 = Γ2 = Γ3. Rules [A-UNVAR] and [A-LINVAR] return, for a variable x, the type
contained in the context. The first rule keeps the entry x : T in the context, if the resulting
type T is unrestricted, while the second removes the entry if the type is linear.

Predicate un (T) says that type T is unrestricted and is true if T is boolean, integer,
string, end or if it is a pretype classified as unrestricted.

3.3.7 Typing rules for processes, Γ ` P 7→ Γ;L

The process type checking function as input receives a typing context Γ and a process P ,
and returns a new context Γ2 and a set L of variables. L contains the free linear variables
in P that occur in a subject position. We say that x occurs bound in subject position in
the following processes: x!e.P , x?y.P , x select l.P and case x of li → Pi.

Γ1 ` P1 7→ Γ2;L1 Γ2 ÷ L1 ` P2 7→ Γ3;L2 . . . Γn ÷ Ln−1 ` Pn 7→ Γn+1;Ln

Γ1 ` {P1 | . . . | Pn} 7→ Γn+1;Ln

[A-PAR]

To type check the parallel composition of n processes against a typing context Γ1 we re-
cursively type check process P1 resulting in a typing context Γ2 and a set L1 of channel
end-points. Then, before type checking the process P2, the rule calls the quotient oper-
ation to check that the linear variables used in process P1 do not remains in the context.
The quotient operation ensures that process P2 does not refers to the linear variables used
in process P1. In other words, the linear channel ends used in P1 are either delegated (sent
on a message) or else turned into an unrestricted type. The result of type checking process
Pn is the result of type checking the parallel composition.

When we type check a parallel composition of zero processes the rule return the in-
coming context and the empty set of variables.

Chapter 3. The SePi programming language 26

Γ1 ` e 7→ boolean; Γ2 Γ2 ` P 7→ Γ3;L1 Γ2 ` Q 7→ Γ4;L2 Γ3 ≡ Γ4 L1 ≡ L2

Γ1 ` if e then P else Q 7→ Γ3;L1

[A-IF]

To type check a conditional process if e then P else Q against a typing context Γ1 the
rule verifies that expression e has type boolean, thus obtaining the typing context Γ2. Γ2

is used to recursively verify both processes P and Q because only one branch is executed.
The output contexts and variable sets must be equal.

Γ1 ` A 7→ Γ2 Γ2 ` P 7→ Γ3;L

Γ1 ` assert A.P 7→ Γ3; L
[A-ASSERT]

To type check a process of the form assert A.P against a typing context Γ1 we first
subtract the formula A from context Γ1 to obtain Γ2. Then we recursively type check
process P against Γ2. The result of this call (a pair composed of a typing context Γ3 and
a set of channel end points L) is the result of type checking the assert process.

Γ ` A
Γ ` assume A 7→ (Γ, normalise A); ∅

[A-ASSUME]

To type check the process of the form assume A we verify whether formula A is
well-formed under the incoming context Γ, the rule then adds to the context the formula
in normalised form. Given that there is no continuation process the rule returns an empty
set of linear variables.

Γ1 ` T Γ1, x : T, y : dualof T ` P 7→ Γ2;L

Γ1 ` new x y : T P 7→ Γ2 ÷ {x, y};L\{x, y}
[A-RES]

To type check a channel creation of the form new xy : T P against a typing context
Γ1 the rule checks whether type T is well-formed and then adds two new entries to the
context Γ1, namely x : T and y : dualof T , due to the dual behaviour of the channel end-
points. The resulting context is used to recursively type check the process P obtaining a
new typing context Γ2 and a set of linear variables in subject position L. Finally, the rule
applies the quotient operation Γ2 ÷ {x, y} to ensure that these two end-points are either
delegated or turned into unrestricted types in P . It also removes them from L.

Γ1 ` x 7→ q&{l : T ;m : U}; Γ2 Γ2 + x : T ` P 7→ Γ3;L1

Γ2 + x : U ` Q 7→ Γ4;L2 Γ3 ≡ Γ4 L1\{x} = L2\{x}
Γ1 ` case x of l→ P m→ Q 7→ Γ3;L1\{x} ∪ (if q = lin then {x}else∅)

[A-BRANCH]

Chapter 3. The SePi programming language 27

We address the particular case of branching processes with two branches. The general
case should be easy to derive. To type check a branching process of the form case x of l→
P m→ Q using a context Γ1, the [A-BRANCH] rule first searches for the type of subject
x which must be of the form q&{l : T ;m : U}. For each option, l or m, the rule updates
the context with x : T or x : U respectively, and recursively type checks P or Q. Each
call results in a pair composed of a typing context and a set of linear variables in subject
position L. As in [A-IF] and given that only one process is executed, the rule type checks
all alternatives using the same typing context Γ2 and checks that all calls result in same
the context (that is, Γ3 ≡ Γ4). Furthermore, all branches must use the same set of linear
end-points except for x, that is L1\{x} ≡ L2\{x}.

Γ2 ` x : q+{li : Ti}i∈I ; Γ2 Γ2 + x : Tj ` P : Γ3;L j ∈ I
Γ1 ` x select lj.P : Γ3;L ∪ (if q = lin then {x}else∅)

[A-SEL]

In order to type check a selection process, x select lj.P , given a typing context Γ1,
the rule [A-SEL] searches the type of end-point x and must obtain a type of the form
q+{li : Ti}i∈I and an arbitrary context Γ2. The rule then updates context Γ2 with entry
x : Tj . The obtained context is used to recursively type check the continuation process P ,
obtaining Γ3 and L. The result of type checking the selection process is the pair Γ3 and
set L extended with variable x, if q is linear.

To type check an input process prefixed at x, we look for the type of x in Γ. If the
type is of the form of lin?z : T.U then the rule [A-LININP] is used; if the type is of the
form of un?z : T.U then the rule [A-UNINP] is used; if the type is of another form, then
the type checking fails.

Γ1 ` x 7→ un?z : T.U ; Γ2 Γ2 ` x : T ` un?z : T.U ≡ U 7→ Γ3

Γ2, normalise (y : T) ` P 7→ Γ4;L if q = ∗ then Γ3 ≡ Γ4\{y}
Γ1 ` qx?y.P 7→ Γ4 ÷ {y};L\{y}

[A-UNINP]

To type check an input process prefixed by a variable of an unrestricted type against
a typing context Γ1 the [A-UNINP] rule searches the type of end-point x and must obtain
the type of the form un?z : T.U and context Γ2. The [A-UNVAR] rule allows to conclude
that Γ1 ≡ Γ2. Context Γ2 is used to check whether the continuation type U is equivalent
to type un?z : T.U resulting in a new typing context Γ3. The rule adds to context Γ3

the entry y : T in its normalised form (thus extracting the formulae from type T). Such
context is then used to type check the process P . This results in a new typing context Γ4

and a set of linear variables in subject position L, both used in the result of the type check
of the input process. To ensure that the replicated input process does not use free linear
variables the rule compares the contexts Γ3 and Γ4\{y}. Due to rule [A-LINVAR], when
a linear variable is used it is removed from the typing context meaning that Γ4 becomes

Chapter 3. The SePi programming language 28

different from Γ3. The end-point x is qualified as unrestricted so it is not necessary add x
to set L.

Γ1 ` x 7→ lin?z : T.U ; Γ2 Γ2, normalise (y : T), x : [y/z]U ` P 7→ Γ3;L
if q = ∗ then Γ2 ≡ Γ3\{y}

Γ1 ` xq?y.P 7→ Γ3 ÷ {y};L\{y} ∪ x
[A-LININP]

Type checking an input process prefixed by x of linear type lin?z : T.U uses a rule
similar to the previous one. The [A-LININP] rule searches the type of x in Γ1 obtaining a
typing context Γ2 that does not contain the entry x : lin?z : T.U (due to rule [A-LINVAR]).
The rule adds to typing context Γ2 an entry for the input parameter y : T , normalised, and
another entry x : U for the continuation type of x, replacing all occurrences of the bound
variable z by y. This context is used to type check the continuation process P resulting in
a new typing context Γ3 and a set of variables in subject position L. Since x is of a linear
type we add it to the set L in order to ensure that the linear part of x consumed in P .

Γ1 ` x 7→ un!z : T1.U ; Γ2 Γ2 ` v 7→ T2; Γ3 Γ3 ` v : T1 ≡ T2 7→ Γ4

Γ4 ` x : un!z : T1.U ≡ U 7→ Γ5 Γ5 ` P 7→ Γ6;L

Γ1 ` x!v.P 7→ Γ6;L
[A-UNOUT]

Type checking an output process of form x!e.P using the [A-UNOUT] rules requires
that the lookup of the type of x in Γ1 results in a type of the form un!z : T1.U . Given that
the type is unrestricted the typing context remains the same, as in [A-UNINP]. The rule
calls expression typing to obtain the type T2 of the value v, and a new typing context Γ3.
The rule compares the obtained type T2 with T1 to ensure that the value sent respects the
type of x. As in [A-UNINP] the rule verifies if the continuation type U is equivalent to the
type un!z : T1.U and uses the resulting context, Γ5, to recursively type check the process
P . The result of this type checking is the result of type checking the output process, a pair
composed of Γ6 and L.

Γ1 ` x 7→ lin!z : T1.U ; Γ1 Γ1 ` v 7→ T2; Γ2 Γ2 ` v : T1 ≡ T2 7→ Γ3

Γ3, normalise (x : [v/z]U) ` P 7→ Γ5;L

Γ1 ` x!v.P 7→ Γ5;L ∪ {x}
[A-LINOUT]

Rule [A-LINOUT], used to type check output processes prefix by linear channel ends
is similar to [A-UNOUT]. Given that the channel end x is linear, we must add its continu-
ation type U to the context after replacing all occurrences of z by e. The resulting context
is normalised and used to type check process P . The result of this call is a pair composed
of Γ5 and L. Furthermore, the rule adds channel end x to the set L of linear variables in
subject position.

Chapter 3. The SePi programming language 29

3.4 Derived constructs

In Section 3.2, we introduce new constructs to our language derived from those in the
core language. These constructs are process definitions, the type declarations and output
and input of multiple values (processes and types). This section shows how we obtained
the derived constructs from those in the core language. The purpose of these constructs is
facilitate programming, reducing the number of lines of code and errors in SePi programs.

There are two ways to obtain derived constructors: by encoding (or translation) and by
admissible rules. The first alternative consists in visiting the AST (abstract syntax tree)
and translating the derived constructs to appropriated constructs on the core language
thus obtaining a new “core” AST. It requires one extra visit, resulting in runtime costs,
and extra code to translate the derived constructs and create a new AST. There is a further
disadvantage: each SePi program results in a “core AST” that is used in the validation
process. So, eventual errors in this AST become associated not the code present in the
source file but else to the translation. For instance, an error in a process definition may be
seen by the programmer as an error in an replicated input.

The second alternative leaves the AST unchanged but uses new typing and reduction
rules for the new constructs, obtained from the rules in the core language. This alternative
dispenses with extra visits and the creation of a new AST. Contrarily to the translation
option, errors on SePi source code are associated to the derived constructs, facilitating the
production of error messages. However to use this alternative we need to find new type
checking and reduction rules (derived from those in the core language) resulting in extra
code to type check and interpret the derived constructs. In face to these arguments, we
choose the admissible rules alternative to handle the new SePi constructs.

Below we use a translation function, denoted by [[]], that is, [[P]] = Q means that Q is
a core process equivalent to P .

Output and input of multiple values. If the expressions are sent or received along
unrestricted channels, then the output of multiple values requires the creation of a new
channel with a linear type in order to protect the sending operations from unwanted inter-
ferences. So, if expressions e1, . . . , en have types T1, . . . , Tn, we must create a chan-
nel whose end-points have types lin?T1.lin?Tn.end and lin!T1.lin!Tn.end. The
first end-point is sent to the input process while the second is used to carry expressions
e1, . . . , en. After the output of expressions we recursively call the translation function to
the continuation process P .

[[x!(e1, ..., en).P]] = new y1 y2 : lin?T1. · · · .lin?Tn.end x!y1.y2!e1. · · · .y2.en.[[P]]

Chapter 3. The SePi programming language 30

On the input side, channel x receives, not the values, but a new end-point ready to receive
them.

[[x?(y1, ..., yn).Q]] = x?z.z?y1. · · · .z?yn.[[Q]]

As expected the translation of the unrestricted types to send and receive multiple values
are as follows:

[[rec u.un!(T1, · · · , Tn).u]] = rec u.un! (lin?T1. · · · .lin?Tn.end).u

[[rec u.un?(T1, · · · , Tn).u]] = rec u.un? (lin?T1. · · · .lin?Tn.end).u

A simple optimization can be applied when the expressions are sent or received through
linear channels. In this case is not necessary to create a new channel. Instead we just re-
place x!(e1, · · · , en) by x!e1. · · · .x!en and adjust the type of x accordingly.

Finally, for the output and input of zero values, x!() and y?(), end point x must have
type ∗!() or lin!().end, and y the dual type. In this case, we may consider an equivalent
process that sends a primitive value, x!5 for instance, and receiving on a fresh variable
y?z. Types are adjusted accordingly.

Type declaration. As mentioned in Section 3.2.2 a type declaration type a = T where
amay occur in T introduces a type variable a representing the solution of equation a = T .

In the case of multiple type declarations we solve the system of equations
a1 = T1

...
an = Tn n > 0, i 6= j ⇒ ai 6= aj

Due to the requirement on contractivity (Section 3.1) and the presence of the recursive
type constructor rec, all such systems have a solution. The details are outside the scope
of this thesis. For instance the type declarations

type T = l i n ? integer . l i n ! boolean .U
type U = l i n ! str ing . T

form a system of equations whose solution is:{
T = rec a.lin?integer.lin!boolean.lin!string.a

U = rec a.lin!string.lin?integer.lin!boolean.a

Process definition The process definition construct is an abbreviation for a channel
creation followed by a replicated input in parallel with the rest of the program.

[[def X(~p : ~T) = P Q]] = new XX ′ : ∗!~T ∗X ′?~p.[[P]] | [[Q]]

Chapter 3. The SePi programming language 31

Note that ~p and ~T represent a sequence of zero or more variables and types, respectively,
and that the input of multiple values, X ′?~p, also requires the translation to the core lan-
guage. Variable X ′ is fresh, meaning that there is no other variable named X ′ in the same
program.

Using the algorithmic rules presented in previous section for channel creation [A-RES],
the parallel composition [A-PAR] and replicated input [A-UNINP] and unrestricted vari-
ables [A-UNVAR] we can obtain a new algorithmic rule for the process definition from
the following derivation.

Γ1 ` ∗!~T

Γ2 ` X ′ 7→ ∗?~T ; Γ2 (1) (2)

Γ2 ` ∗X ′?~x.[[P]] 7→ Γ3 ÷ {~x};L1\{~x} Γ3 ÷ {~x} ÷ (L1\{~x}) ` [[Q]] 7→ Γ4;L2

Γ2 , Γ1, X : ∗!~T ,X ′ : ∗?~T ` [[∗X ′?~x.P]] | [[Q]] 7→ Γ4;L2

Γ1 ` def X(~x : ~T) = P Q 7→ Γ4\{X,X ′}; L2\{X,X ′}

where (1) and (2) are the undischarged assumptions:{
Γ2, normalise (~x : ~T) ` [[P]] 7→ Γ3;L1

Γ2 = Γ3\{~x}

Noting that Γ1 ` T implies Γ1 ` ∗!T , and that Γ, X ′ : un p ` P implies Γ ` P if X ′

does not occur free in P (see [36]), we collect the four undischarged assumptions in the
above derivation to obtain the following rule.

Γ1 ` T Γ1, X : ∗!~T , normalise (~x : ~T) ` P 7→ Γ2;L1

Γ1, X : ∗!~T = Γ2\{~x} Γ2 ÷ {~p} ÷ (L1\{~x}) ` Q 7→ Γ3;L2

Γ1 ` def X(~x :
−→
T) = P Q 7→ Γ3\{X}; L2\{X}

[A-DEF]

Multiple declarations. The SePi language allows for multiple unordered declarations.
In place of channel creation alone in the core language (cf. Section 3.1), SePi allows
general processes of the form D1 . . . Dn P where Di is either a process definition of the
form defX(~x : ~T) = P , a type abbreviation type x = T or a channel creation new xy : T .
All these definitions may be mutually recursive. An example of a sequence of mutually
recursive declarations is in next lines.

def P x : T = x ! true . Q! x
new r w: T
type T = ! boolean .U
def Q x :U = x?b . pr in tBoo lean ! b . P ! x
type U = ?boolean . T
P ! r | Q!w

The translation of these lines results in:

new r w: rec a . l i n ! boolean . l i n ?boolean . a
new P P1 : rec b . un ! (rec a . l i n ! boolean . l i n ?boolean . a) . b

Chapter 3. The SePi programming language 32

new Q Q1: rec b . un ! (rec a . l i n ?boolean . l i n ! boolean . a) . b
*P1?z . z ! true .Q! z |
*Q1?z . z?b . p r in tBoo lean ! b .P ! z |
P ! r | Q!w

3.5 Programming in SePi

This section presents a few examples attesting the flexibility of the SePi language.

3.5.1 A print server that makes sure values are printed in order

In Section 3.2 we introduced three primitive channels on which string, integer and boolean
values may be printed, namely printString , printInteger and printBoolean. However if we
want print two or more values in a row without interleaving we need something more that
these three channel ends.

For instance given the following definition

def pr in tTwoSt r ingsNaive (f i r s t : string , second : str ing) =
p r i n t S t r i n g ! f i r s t . p r i n t S t r i n g ! second

and a client that tries to print three groups of two strings each, as in lines below

pr in tTwoSt r ingsNaive ! (" h e l l o " , " wor ld ! ") |
p r in tTwoSt r ingsNaive ! ("bom " , " d ia ! ") |
p r in tTwoSt r ingsNaive ! (" h i " , " there ! ")

one of the possible outputs is hello bom hi world! dia! there!.
In order to overcome this situation we start to define type PrintChannel representing a

print channel as seen from the side of the client.

1 type Pr intChannel = +{ pr in tBoo lean : ! boolean . Pr intChannel ,
2 p r i n t I n t e g e r : ! integer . Pr intChannel ,
3 p r i n t S t r i n g : ! str ing . Pr intChannel ,
4 q u i t : end }

The next lines depict an example of a client composed of three concurrent processes,
printing two strings each one. The definition printTwoStrings prints two strings in a row.

def pr in tTwoSt r ings (f i r s t : string , second : str ing) =
p r i n t S e r v e r ?p .
p select p r i n t S t r i n g . p ! f i r s t .
p select p r i n t S t r i n g . p ! second .
p select q u i t

p r in tTwoSt r ings ! (" h e l l o " , " wor ld ! ") |
p r in tTwoSt r ings ! ("bom " , " d ia ! ") |
p r in tTwoSt r ings ! (" h i " , " there ! ")

The process definition printTwoStrings asks the server for a print channel and using
this channel sends to the server the two strings that he wants to print and selects quit .
Before sending to the server the value that he wants to print, the client selects the type

Chapter 3. The SePi programming language 33

of the value. Each process that calls the printTwoStrings process receives a different print
channel p. A possible result of interpreting this code is hello world! bom dia!

hi there!.
The next lines of code show a print server that prints an arbitrary sequence of values

without interleaving from other print commands.

5 def p r i n t S e r v e r pr in tServer Imp : * ! Pr in tChannel =
6 def pr in tLoop p : dualof Pr intChannel =
7 case p of
8 pr in tBoo lean → p?x . p r in tBoo lean ! x . p r in tLoop ! p
9 p r i n t I n t e g e r → p?x . p r i n t I n t e g e r ! x . p r in tLoop ! p

10 p r i n t S t r i n g → p?x . p r i n t S t r i n g ! x . p r in tLoop ! p
11 q u i t → p r i n t S e r v e r ! p r in tServer Imp / / recur once done
12
13 new w r i t e read : Pr in tChannel
14 pr in tServer Imp ! w r i t e .
15 pr in tLoop ! read
16
17 new pr in tServer Imp p r i n t S e r v e r : * ! Pr in tChannel
18 p r i n t S e r v e r ! p r in tServer Imp |

The process definition printLoop is responsible for conducting a print session. The
server (the printLoop in particular) offers to the client a menu with options to print primitive
values (boolean, integer and string) and to close the channel (the option quit). When the
client selects quit , the PrintServer is called in order to serve another client. Otherwise,
if the client select a printing option, the server receives the value, prints this value and
calls the printLoop definition in order to allow to print another value in the same row. On
lines 13–15 we create a new print channel. The server keeps the end point read to itself
in order to be used in the process definition printLoop while the other is published to be
used by a client. On lines 17 and 18 we create a shared print server channel allowing the
communication among server and clients.

3.5.2 Channel forwarding

The next example deals with interactions among sender, forwarder and receiver processes,
as introduced by Bonelli et al. [6]. The sender process sends to the forwarder process a
channel end. In turn, the forwarder process forwards the channel end to the receiver. But
what guarantees that a channel-forwarder process does forward the received channel? The
answer lies on dependent session types.

The program starts with two type declarations to define the type of the values to be
forwarded and the type of “certified” channels to be forwarded. The following declara-
tions create channels to be forwarded (lines 3 and 4), the channel that allow the sender
process communicates with the forwarder process (line 5), with end-points toForwarder

and forwarderIn, and a channel to ensure the communication between the forwarder and
the receiver processes (line 6), with end-points fromForwarder and forwarderOut.

Chapter 3. The SePi programming language 34

1 type ChannelType = end
2 type T = { x : ChannelType | from (x) }
3 new aChannelEnd anotherChannelEnd : ChannelType
4 new anotherChannel v : ChannelType
5 new toForwarder fo rwarder In : * ! T
6 new fromForwarder forwarderOut : *?T
7 / / senders
8 assume from (aChannelEnd) | toForwarder ! aChannelEnd |
9 assume from (anotherChannelEnd) | toForwarder ! anotherChannelEnd |

10 / / r ece i ve r
11 fromForwarder *?x . assert from (x) . p r i n t S t r i n g ! " got i t ! "
12 / / A we l l behaved forwarder
13 f o rwarder In *?x . forwarderOut ! x

The example is not typable in the type system of Bonelli et al. [6] since channel names
may not appear in assertion labels, that is to say, types may only depend on shared names
(which are assigned “plain types”, ie., un types in our terminology).

Before outputting aChannelEnd, the sender process must assume the formula from(

aChannelEnd). So, in the presence of a well behaved forwarder, the receiver process asserts
the formula from(x), consuming the formula introduced in the type system by the sender
process. We now discuss the (incorrect) alternatives. The following line of code shows a
forwarder process trying to cheat by sending a different value from x.
f o rwarder In *?x . forwarderOut ! v

This process results in two errors:

• the sent value has type ChannelType and the type of channel forwarderOut requires
an argument of type {x: ChannelType | from(x)}. This happens because there is no
process that assumes the formula from(v).

• when the forwarder receives the channel end, forwarderIn*?x it is introduced the
formula from(x) in the type system and there is no process to consume this formula.
For each asserted formula, there must be an assume.

Next process depicts another incorrect forwarder process. The forwarder tries to as-
sume a fake value meaning that the original assumption is not matched. Some process
must consume the original assumption from(x).
f o rwarder In *?x . {

assume from (anotherChannelEnd) |
forwarderOut ! anotherChannelEnd

}

There is however one case where the forwarder may send an incorrect value: by as-
serting formula from(x), which consumes the client assumption, while assuming a new
from formula.
f o rwarder In *?x . assert from (x) . {

assume from (anotherChannelEnd) |
forwarderOut ! anotherChannelEnd

}

Chapter 3. The SePi programming language 35

3.5.3 Request on a channel; respond on a distinct channel

Now we show an example of a request/response between client and server. The example
is presented by Gordon and Fournet [17]. This example can be divided in two process
definitions, the service and the client. The first reads request messages from a channel and
replies on a distinct channel. The second invokes the service and receives the response.

Session types were introduced exactly to allow “request/respond” on the same chan-
nel. However we use separate channels to allow a direct comparison with [17]. This is an
exercise on refinement types.

The client and the service interact on a linear channel. The reply-to channel is linear,
meaning that the server must respond exactly once. The type Request describes a channel
that receives a boolean value in form of a request and a channel end to respond with an
integer.

1 / / The type of a request−response as seen by the serv i ce
2 type Request =
3 / / The request value
4 ?x : { y : boolean | request (y) } .
5 / / The " rep ly−to " channel
6 ? (! { y : integer | response (x , y) } . end) .
7 end

Each channel end with type Request receives a boolean value, named y, holding request

(y) and a channel end-point ready to send an integer such that response(x, y), where x

represents the boolean previously received and y the integer value.

8 def c l i e n t (s : dualof Request , query : boolean) =
9 / / Create a " rep ly−to " channel

10 new r1 r2 : ! { y : integer | response (query , y) } . end
11 / / Request and wa i t f o r the response
12 assume request (query) |
13 s ! query . s ! r1 . r2?z . {
14 assert response (query , z) |
15 p r i n t I n t e g e r ! z
16 }

The client receives a channel with the dual type of Request. It must create a new
reply channel, send one end-point to the server and keep the other in order to receive the
response. Before requesting (line 13) the client must assume the formula request(query),
announcing its intent to request a service. After receiving the response, it must assert
response(query, z), making sure that the answer z was received as response to the query.

17 def serv i ce (s : Request , answer : integer) =
18 / / Wait f o r the request
19 s?query . assert request (query) .
20 / / Wait f o r the rep ly−to channel
21 s? r . { / / Respond
22 assume response (query , answer) |
23 r ! answer
24 }

Chapter 3. The SePi programming language 36

In turn, the service process, after receiving the query, asserts the formula request(query

), thus making sure that it received a legitimate request. Then receives the “reply-to”
channel end. To respond, it firstly assumes response(query, answer) telling that answer is
the reply to the request query, and then, it sends the answer to the client.

25 new s1 s2 : Request
26 serv i ce ! (s1 , 100) |
27 c l i e n t ! (s2 , fa lse)

The main code of this example only creates a new channel, whose end-points have
types Request and dualof Request. The first is sent to the server and the second to the
client. The example as described by Gordon and Fournet [17] allows a server that respond
twice, and when written in SePi such server is not typable, since that they work with
classical logic and we with linear refinements.

Chapter 4

Implementation

In order to implement the SePi language we use Xtext, a framework that allows to develop
new languages while building Eclipse plugins. This chapter starts with the explanation
of relevant Xtext features, in Section 4.1. Section 4.2 describes how we implemented the
validation phase, by introducing the symbol table and the hierarchies of values, formulae
and types. Section 4.3 explains the implementation of the interpreter. Then, Section 4.4
presents some metrics on the implementation (such as lines of code). Section 4.5 briefly
describes how we tested the compiler and the interpreter. Finally, Section 4.6 shows how
to install and run SePi.

4.1 Xtext and plugin implementation

In order to implement the SePi language and its Eclipse plugin we use Xtext, a language
development framework [39]. This framework provides useful mechanisms to write the
grammar and to implement the validation and interpretation rules.

We may split the implementation in four parts: parsing, scoping, validation and in-
terpretation. Xtext provides for some important components such as lexer and parser
generators, classes to represent the nodes of an abstract syntax tree (AST) and other use-
ful classes for scoping, validation and interpretation, such as appropriated classes to visit
the AST. After writing the grammar we generate the Xtext artefacts, obtaining all these
classes.

Xtext uses ANTLR (Another Tool for Language Recognition) which implements a
LL(*) parser [1]. In order to understand how Xtext works see figure 4.1. The lexer

Figure 4.1: Front end of the compiler

37

Chapter 4. Implementation 38

receives a sequence of characters (from a SePi file) and converts them in a sequence of
tokens. These tokens consist of one or more characters that match a particular lexer rule
defined in lexer—grammar file. These tokens are then sent to the parser, which produces
a AST. Furthermore, the parser is responsible for the creation of EObjects that constitute
the semantic model or AST, but only if there are no syntactic errors in the source file.

When Xtext parses the source code, the result is an AST that can be used in the scoping
and linking, validation and interpretation phases. The next figure shows a graphical repre-
sentation, generated by Xtext, of part of the AST of our running example code (promotion

type declaration).

In order to visit the AST, we use a visitor generated by the framework called, in our
case, SePiSwitch. This Java class contains a method to visit each kind of node in the
AST and, given that SePiSwitch is a generic class, we may define the return type of these
methods. As an example, suppose that we want to build the textual representation of an
AST. All we have to do is to create a new Java class (subclass of SePiSwitch) and write
methods for all sorts of nodes in the AST. That for a type declaration is exemplified below.

@Override
public S t r i n g caseTypeDeclarat ion (TypeDeclarat ion td) {

return " type " +
caseTypeVariable (td . getTypeName ()) +
" = " +
caseType (td . getType ()) ;

}

The first step in checking a syntactically correct program amounts to verify whether all
variables are declared. Xtext provides a mechanism to achieve this. First, we identify all
the cross-references in the grammar and second, we must find a scope for each reference.
The next lines show how cross references are identified in ANTLR using square brackets.

Chapter 4. Implementation 39

Var iab le :
name=ID ;

Process :
{ Output } channel =[Var iab le] " ! " exprs=Express ionL is t

(" . " proc=Process) ?
. . .

To find the scope for each reference, we use SePiScopeProvider, one of the classes gen-
erated by the framework. In this class, we override the method IScope getScope(EObject

context, EReference reference), where the parameter context, in the case above, is an output
node and the parameter reference represents the variable whose binder we are looking for.
This method returns an IScope that represents the inner most scope of the context. In order
to find a scope, we traverse the AST towards its root, looking for variable declarations.
Since our language allows nested scopes we must find each scope’s outer scope.

If the programmer uses an undeclared variable Xtext issues an error message. How-
ever, we must also provide for three implicitly declared variables: printInteger , printBoolean

and printString . We create the printing variables, add them to a temporary file and Xtext
will find the variable in the AST of this temporary file.

The figure below is an example of an undeclared variable error: in line 36 we typed
Read rather than read.

After Xtext successfully terminates the variable declaration checking (linking and
scoping), the framework starts the validation phase. To perform this phase, we use
SePiJavaValidator, one of the generated classes by Xtext. This class allows to verify the
code in a declarative way. All we have to do is to write the following method and then
Xtext visits the SePi node (the root node of any AST in our language) automatically when
validation starts.

1 @Check
2 public void checkSePi (sePi sep i) { . . . }

This method uses the visitors described in Section 4.2 to carry out the type checking
algorithm.

4.2 The validation phase

This sections describes the main components of the validation phase implementation,
such as the symbol table, the type checking process and the hierarchies of values, types
and formulae.

Chapter 4. Implementation 40

4.2.1 The symbol table

We based our symbol table on the one proposed by Appel [2]. We need to use a class
Symbol with two methods: a method fresh () that returns a fresh symbol that does not
occur in the program and was not generated before and a method symbol(String n) that
returns an unique object.

The interface to our symbol table is as follows:

• Type get(Symbol symbol) – returns the Type associated with the symbol symbol in the
current scope, or null, if the identifier is undefined.

• void put(Symbol symbol, Type type) – puts the type type into the table, bound to the
symbol symbol.

• void update(Symbol symbol, Type type) – updates the entry of symbol with the new
type, but checking if the old type and the new type are equal, in the case of unre-
stricted types. When the types are unrestricted and they are not equal, this operation
results in an error.

• void beginScope() – starts a new scope and remembers the current state of the table.

• void endScope() – closes the current scope, restoring the table to the previous scope.

• void delegate(Symbol symbol) – replaces the type associated to symbol by the end

type.

The particular behaviour of delegate can be exemplified with the following code
taken from our running example (Section 3.2).

32 def setup (p : dualof Donation , t i t l e : string , date : integer) =
33 case p of
34 setDate → p?d . setup ! (p , t i t l e , d)
35 s e t T i t l e → p? t . setup ! (p , t , date)
36 commit → i f date < 2013 then denied ! p else accepted ! p
37 def denied (p : dualof Decis ion) =
38 p select denied .
39 p ! "We can only accept 2013 donat ions \ n "
40 def accepted (p : dualof Decis ion) =
41 p select accepted .
42 promotion ! p

When the donation campaign is denied, channel p finishes its interaction; when ac-
cepted p is delegated to process donation. The [A-IF] algorithmic rule (Section 3.3)
makes sure that the symbol tables and the sets of linear variables of both branches
are equal. In the last line of the definitionDenied, p is of type end. According to
rule [A-IF] p must also be of type end in the last line of definition accepted. This is
the reason why when we delegate a channel (when we remove it from the symbol
table), an entry p: end is left in its place.

Chapter 4. Implementation 41

• Set<Symbol> quotient(Set<Symbol> set) – used to check whether the symbols con-
tained in set are all of an unrestricted type, returning a set of symbols. This set
contains all the variables that are not unrestricted and it is used for error message
purposes.

• Set<Symbol> equivalent(Table other) – compares this table with another one, return-
ing the set of symbols where the comparison fails. The set is then used for error
message purposes.

• Set<Symbol> getDomain() – returns a set of all variables (symbols) that appear as
keys in the symbol table.

Prior to the validation phase we add to the symbol table the implicitly declared print
variables printString , printBoolean and printInteger with types *!string, *!boolean and *!

integer, respectively.

4.2.2 Value hierarchy

Figure 4.2 shows the value hierarchy of the compiler. As described in Chapter 3, pred-
icates may refer to values and program variables, which are represented by objects of
subclasses of the Value interface.

«interface»
Value

ProgramVariable

+getValue(): Symbol

IntegerValue

+getValue(): Integer

StringValue

+getValue(): Symbol

BooleanValue

+getValue(): Symbol

Figure 4.2: The value hierarchy

4.2.3 Formulae hierarchy

Figure 4.3 shows the formulae hierarchy. The abstract class Formula contains the replace

Chapter 4. Implementation 42

Formula

+ UNIT_FORMULA : Unit

+ replace(substitution : Map<Symbol, Value>) : Formula
+ getFreeVariables() : Set<Symbol>

Unit
Tensor

+ getLeft() : Formula
+ getRight() : Formula

Predicate

+getPredicateName(): Symbol
+getArguments(): List<Value>

Figure 4.3: The formulae hierarchy

and getFreeVariables methods. Its subclasses are Unit to represent the unit formula, Tensor

to represent a left * right formula and the Predicate class to represent predicates with
form p(v1, ... vn), where the getPredicateName() method returns the symbol p and the
getArguments() returns a list with the values v1, ..., vn.

4.2.4 Type hierarchy

Figure 4.4 describes the type hierarchy of our compiler. The classes that represent primi-
tive types Boolean, Integer and String are the simplest classes of this hierarchy. The method
hasDual returns false and the method dual throws an UnsupportedOperationException. They
do not have free variables and the application of a substitution to a primitive type returns
the same type. The End class is similar to the primitive types classes, except that its dual()

method returns the End type, because end is dual of itself. We use the singleton pattern to
represent these types where each type is a constant in the class Type.

Class Refinement represents a refinement type of the form {x: T | A}, where the meth-
ods getBoundVar(), getType() and getFormula() return the bound variable x, the type T and the
formula A respectively. The dual operation is not defined for refinement types; methods
hasDual() and dual() behave as for the primitive types.

Class Choice contains a method to check whether the choice is unrestricted or not
(lin or un), a method to check whether the choice is a selection or a branching (+ or &)
and a method to obtain all options (a Map from Symbols representing labels to Types).
For instance, for the type Decision of our running example, methods isUnrestricted () and
isSelect () return false and the method options() returns a map with accepted and denied

keys.

Chapter 4. Implementation 43

Type

+ END _TYPE : Type
+ BOOLEAN_TYPE : Type
+ STRING_TYPE : Type
+ INTEGER_TYPE : Type

+dual() : Type
+replace(substitution : Map<Symbol, Value>) : Type
+equivalent(type : Type, table : Table) : boolean
+hasDual() : boolean
+getFreeVariables(visited : Set<Type>) : Set<Symbol>

End Boolean Integer String

Prefix

+isUnrestricted(): boolean
+isOutput():boolean
+setIsUnrestricted(isUnrestricted: boolean): boolean
+setIsOutput(isOutput: boolean):boolean
+getBoundVars(): List<Symbol>
+getParameters(): List<Type>
+getNext(): Type
+setParameters(newParameters: List<Type>): void
+setNext(newNext: Type): void
+setBoundVars(boundVars: List<Symbol>): void

Choice

+isUnrestricted(): boolean
+isSelect(): boolean
+setIsUnrestricted(
isUnrestricted: boolean): boolean
+setIsSelect(isSelect: boolean): boolean
+options(): Map<Symbol, Type>
+addOption(label: Symbol, type: Type):
boolean

Refinement

+getBoundVar(): Symbol
+setBoundVars(boundVars: List<Symbol>)
+getType(): Type
+setType(type: Type): void
+getFormula(): Formula
+setFormula(formula: Formula): void

Figure 4.4: The type hierarchy

Chapter 4. Implementation 44

Class Prefix represents a prefix type where methods isUnrestricted () and isOutput() re-
turn true if the type is qualified as linear and if the type represents an output operation,
respectively. Methods getBoundVars(), getParameters() and getNext() return the bound vari-
ables of the type, its parameters and its continuation type, respectively. Explicit bound
variable for type prefixes are optional, as in, e.g., lin?boolean.end. In this case, we gen-
erate a fresh variable to represent the bound variable. Each parameter must have a bound
variable associated.

The methods of the abstract class Type should be redefined by its subclasses. The
replace method returns the type resulting from replacing all symbols by their respective
values in the substitution map. This method only modifies formulae.

The equivalent method compares two potentially recursive types. The Table is neces-
sary because when one of the types is a refinement we must call the formulaSubtraction

method. The getFreeVariables() method is implemented conform described in Chapter 3.
All setter methods in our type classes are necessary due recursion (see Section 4.2.5).

4.2.5 The validation process

This section describes the implementation of the algorithmic rules in Section 3.3. In
order to understand the validation phase, consider the following program with mutually
recursive declarations (cf. Section 3.4).

1 def P x : T = x ! true . Q! x
2 new r w: T
3 type T = ! boolean .U
4 def Q x :U = x?b . pr in tBoo lean ! b . P ! x
5 type U = ?boolean . T
6 P! r | Q!w

The validation phase starts with a few visits to the AST in order to fill the symbol table
with all the top level program variables (from process definitions and channel creations)
and type variables (from type declarations). Program variables and type variables are
stored in different symbol tables.

Mutually recursive declarations are solved in four phases:

Visiting the left hand side of all sorts of declarations. We visit all declarations and for
each one we store in the respective symbol table the declared variable. Only, in the
case of type declarations we add, to the symbol table, a symbol representing the type
variable associated to a skeleton of the type on the right hand side. For instance,
if the type is a prefix then, we use the object constructor Prefix () . At the end of
this first visit, the map of type variables contains two entries: (T, Prefix())

and (U, Prefix()) and the map of program variables contains the entries (r,
null), (w, null), (Q, null).

Solving the right hand side of type declarations. We solve the system of equations of

Chapter 4. Implementation 45

type declarations, as introduced in Section 3.4, using the previous visitor and a new
one that visits the right hand side of the type declaration. During this second visit
we initialise the types contained in the table. When the second pass is finished, for
instance, the mapping of type T is a prefix that represents the type rec a.!boolean.?

boolean.a.

Checking the right hand side of channel creations. The visit to the channel creation of
this example results in the addition of the entries (r, T) and (w, T’) to the
symbol table, where T’ is the result for the call dual() on type T.

Analysing the right hand side of process definitions. We split this analysis in two vis-
its. The first visits all process definitions and adds to the symbol table the Prefix type
corresponding to the definitions. The second visits all process definitions again to
add the parameters and respective types to the table and to type check the continu-
ation process.

We also implemented a TypeVisitor, to visit and build new types, a ValueVisitor, to build
new values (used in predicates) and a FormulaeVisitor to build new formulae. The types,
values and formulae created are those described in the Value hierarchy (4.2.2), Formulae

hierarchy (4.2.3) and Type hierarchy (4.2.4) sections.
The typing rules for expressions and processes, described in Section 3.3, are imple-

mented in two new classes—ProcessesTypingRules and ExpressionsTypingRules. When this
visitor visits the first output node of the first line of the example presented above, it calls
the ExpressionsTypingRules to obtain the type of the argument true, the SePi type boolean.

The following lines show the simplified implementation of one typing checking rule,
in class ProcessesTypingRules—the output rule. We omit some code for simplicity.
@Override
public Set<Symbol> caseOutput (Output out) {

ExpressionsTyping t r v = new ExpressionsTyping (th is . tab le ,
super . g e t V a l i d a t o r ()) ;

Type channelType = t r v . caseVar iab le (out . getChannel ()) ;
i f (! isOutputType (channelType , out))

return new HashSet<Symbol > () ;
P r e f i x subjectType = (P r e f i x) channelType ;
Symbol sub jec t = Symbol . symbol (out . getChannel () . getName ()) ;
ELis t <Expression > expressions = out . getExpressions () ;

i f (! sameNumberOfArguments (out , subjectType , expressions))
return new HashSet<Symbol > () ;

/ / Code to perform s u b s t i t u t i o n s i n the con t i nua t i on type here

/ / Code to compare the subjectType wi th i t s cont inuat ionType i f i t
/ / i s u n r e s t r i c t e d , or to update the subjectType i f i t i s l i n e a r
/ / here

/ / Recurs ive ly type check the con t i nua t i o n process

Chapter 4. Implementation 46

Set<Symbol> r e s u l t = caseProcess (out . getProc ()) ;
i f (! subjectType . i s U n r e s t r i c t e d ())

r e s u l t . add (sub jec t) ;
return r e s u l t ;

}

4.3 The interpreter

The current SePi interpreter is based on the Turner abstract machine [32], a single pro-
cesses machine, that allows an implementation on a uni-processor, where concurrent pro-
grams are simulated by interleaving the execution of the various processes. This section
describes how the interpreter was implemented.

4.3.1 Machine states

A state of the Turner abstract machine is a pair composed of an heap and a run queue.
The heap stores channels. Channels are queues of processes waiting to read or to write
in channels. The run queue stores processes that are runnable. We use a Closure object
to represent a process (an EObject) and its environment (a Map<Symbol, Value> that maps
variables to values). We have seen that an input process x?y.P replaces the bound variable
y with the received value before continuing with process P. This replacing, in our inter-
preter, means to add a new entry to the environment of process P, comprising y and its
value. For instance, in the below program

1 new reader w r i t e r : ? str ing . end
2 w r i t e r ! " He l lo wor ld ! " |
3 reader?message . p r i n t S t r i n g ! message

input reader?message, receives a string from the output process writer ! "Hello world!", which
means that during the interpretation we create a new Closure with process printString !

message (the continuation process) and with an environment containing the entry message

: "Hello world!". In line 3 the interpreter uses the string "Hello world!" in place of variable
message. The run queue is a Deque<Closure> which stores the closures in the order in
which processes should be executed. The heap is a Map<Symbol, Deque<Closure>>. A
Deque<Closure> is referred to as a channel queue.

4.3.2 The interpretation process

We implemented three classes in our implementation: the Closure, the ExpressionEvaluator

and the Interpreter . The ExpressionEvaluator visits and evaluates all expressions sub-trees
to obtain integers, strings, boolean values or channels. For instance in the following
conditional process,

1 new w r i t e r reader : ! integer . end
2 w r i t e r ! 5 0 .

Chapter 4. Implementation 47

3 reader?x .
4 i f x < 0
5 then p r i n t S t r i n g ! " negat ive number "
6 else p r i n t S t r i n g ! " p o s i t i v e number "

the visitor visits the nodes of the boolean expression x < 0 and obtains the boolean value
false because the evaluation of x results in 50 (defined by the writer process).

The Interpreter class implements the reduction rules of the abstract machine. This
class only visits processes nodes in the AST, other kinds of nodes are ignored. At the
beginning of the interpretation phase, the interpreter takes the closure at the head of the
run queue and executes one reduction step in the process of that closure, and it repeats
this process until the run queue is empty. When the visited process is a channel creation,
the interpreter creates a new fresh variable to represent the channel, and adds a new entry
to the heap with the new variable and the continuation process. The interpreter does
no distinguish the two ends of a channel — the two end points are collapsed into a newly
created channel (that is a program variable). The visit of the assumption process produces
no effect and the visit of the assertion of the form assert A.P puts a new closure with
process P at the head of the run queue. When the process at the head of the run queue is a
parallel composition, we add the various parallel processes to the run queue. The visit to
a conditional process puts at the head of the run queue the then branch if the expression
is true or the else branch otherwise.

The reduction rule of the process definition behaves as the channel creation, but given
that the continuation process of the channel creation is a replicated input we put a new
closure with the process definition at the heap.

To understand the reduction rules of input and output processes suppose that the head
of the run queue contains the closure defined by the environment [x: c; y: c] and the
process x?z.P. Using the environment we obtain from x channel c and we search in the
heap for an output process ready to send values via channel c, y!v.Q. If there is one, then
we create a new closure with the environment [x: c; y: c; z: v] and process P. We add
this new closure to the head of the run queue. We also create a new closure for process
Q and we add it to the end of the run queue. If, otherwise, the heap does not contain
an output process, we remove the closure from the run queue and we add it to the heap.
On the other hand, if the closure at the head of the run queue contains an output process
y!v.Q and the environment [x: c; y: c; v: 5], and if the heap contains an input process
x?z.P, we insert the closure of process Q at the front of the run queue and the closure of
the process P to the end, with a new entry z: 5 in the environment. In a given reduction
rule, if there is an output closure at the head of the run queue and a replicated input (or a
process definition) in the heap, the replicated input remains in the heap (but placed at the
end of the channel queue). And conversely, if there is a replicated input at the head of the
run queue it remains there.

Chapter 4. Implementation 48

Figure 4.5: Interpreting a program

Turner does not describe reduction rules for selection and branching processes; our
implementation follows the ideas of the output/input rules. If the closure at the head of
the run queue is a selection process of the form x select l .P, the environment contains the
entry x: c and the heap contains a branching process waiting to use the channel c, then we
add new closures with the two continuation processes to the run queue. If the heap does
not contain a branching process prefixed by a channel c then we put the closure of the
selection process in the heap. When the visited node corresponds to a branching process
it is necessary to verify if there is a selection process in the heap ready to select a label in
the same channel. If yes then the continuation of selection and branching processes are
added to the run queue, otherwise, if there is not, we put the closure with the branching
process in the heap.

Linear channels are amenable to more efficient implementations. We did not pursued
that line of work in this thesis.

Interpreting a program We implement a Java class that calls our interpreter when the
programmer requests so. Since our language allows programs that may never terminate,
we added to the console a Terminate button that stops the execution of the interpreter.
Figure 4.5 shows a simple process that represents an infinite loop. This process definition
receives an integer and prints it before calling recursively the definition loop. To interrupt
the execution of this program, the programmer uses the Terminate button, as exemplified
Figure 4.5.

Chapter 4. Implementation 49

4.4 Metrics

When we create a Xtext project, the framework generates three new Java projects: the
main project that contains the grammar and all the runtime components, such as parser,
lexer, linker, validator and interpreter; the tests project and the UI (user interface) project
which contains the components for the Eclipse editor and all the other workbench related
functionality.

Table 4.1 shows the distribution of the lines of code of these three projects. Note that
the grammar was written in a xtext file, the SePi code was written in pi file and all the
other components in Java. The numbers for lines of Java code do not include comments or
blank spaces. SePi and Xtext code do so. We may conclude that the largest effort was put
in the implementation of the validation phase. All classes for lexer, parser and auxiliary
classes of scoping and validation were generated by Xtext.

Number of files Lines of code
source generated total source generated total

Main
grammar 1 0 1 151 0 151
scoping 7 n.a. n.a. 408 n.a. n.a.

validation 32 n.a. n.a. 2.911 n.a. n.a.
interpretation 5 n.a. n.a. 566 n.a. n.a.
other classes 4 n.a. n.a. 119 n.a. n.a.

Total 49 482 531 4.155 29.229 33.384
Tests

Java code 3 2 5 161 41 202
SePi code 287 0 287 9.713 0 9.713

Total 290 2 292 9.874 41 9.915
UI 3 25 28 167 22.678 22.845

Table 4.1: The statistics of the project

4.5 Testing the compiler and the interpreter

We implemented SePi gradually. First we implemented a small language with a few
constructs. Then we created a set of SePi programs in order to test this small language.
When the language was tested, we introduced new constructs and we added new tests to
the first set. In this way we use the new tests to validate the new version of the language
and use the old tests for regression testing. We have repeated this process until we have
achieved the current version of SePi. Currently we have a set of invalid SePi programs
(117 tests), which must result in errors, and a set of valid programs (170 tests), whose
result of interpretations must be equal to the expected results (and free from validation

Chapter 4. Implementation 50

errors). We use JUnit4 to test these files. Xtext provides mechanisms to test the language.
We combined these mechanisms with other plugin to write our test suites [38]. In this
way we can easily run the test suit and, for each test in the test suit, call some methods
that verifies whether the test contains syntactic errors, undeclared variables or validation
errors. For valid source code, we can also annotate programs with the expected result,
interpret the program and compare the obtained result with the expected.

4.6 Installing & running SePi

This section explains how to program in SePi using the Eclipse plugin or the command
line. For further details please visit our website http://gloss.di.fc.ul.pt/

sepi/.

Developing and running in Eclipse

1. Download an Eclipse with Xtext installed. See how at http://www.eclipse.
org/Xtext/download.html.

2. Choose Help → Install New Software. Insert the update site URL (http://
download.gloss.di.fc.ul.pt/sepi/update/).

3. Restart eclipse when the installation is completed.

4. Create a new project and a new file with the extension .pi. At this point the editor
asks if you want to add the Xtext nature to your project. Select yes.

5. Write your first program. Use the left button→ Interpret to run your program. See
figure 4.6.

Running from the command line This constitutes an alternative to the Eclipse plugin.

1. Download SePi.jar available in http://download.gloss.di.fc.ul.
pt/sepi/SePi.jar.

2. Create a new file with the extension .pi and write your program.

3. Open a command line and type java -jar SePi.jar myprogram.pi.

http://gloss.di.fc.ul.pt/sepi/
http://gloss.di.fc.ul.pt/sepi/
http://www.eclipse.org/Xtext/download.html
http://www.eclipse.org/Xtext/download.html
http://download.gloss.di.fc.ul.pt/sepi/update/
http://download.gloss.di.fc.ul.pt/sepi/update/
http://download.gloss.di.fc.ul.pt/sepi/SePi.jar
http://download.gloss.di.fc.ul.pt/sepi/SePi.jar

Chapter 4. Implementation 51

Figure 4.6: A simple hello world program

Chapter 4. Implementation 52

Chapter 5

Conclusion

We presented a new concurrent, message-passing programming language based on the
monadic pi-calculus, called SePi. The language features synchronous, bi-directional
channel-based communication between concurrent processes, where the interactions on
channels are statically verified against session types. The session types that we use de-
scribe the kind and the order of messages exchanged, as well as the number of processes
that may share a given channel. In order to obtain a more precise control on the properties
of programs, our language includes primitives to assume and assert formulae at the pro-
cess level and refinement types at the type level. The formal foundation of the language
can be found in references [3, 36]. We implemented an interpreter for SePi based on the
Turner’s abstract machine [32]. Moreover, we wrote an Eclipse plugin that allows to de-
velop SePi code with the usual advantages of an IDE, such as code completion, syntax
highlighting, syntactic and semantic validation. According to our knowledge, there is no
implementation that combines session types with refinement types, linear or classic.

Through examples, such as the online donation service, print server, channel forward-
ing and request and respond on distinct channels, we show that SePi allows to describe
complex interactions between concurrent processes and to specify precise properties of
the exchanged values.

There are some aspects of the language that we leave for future work. The current
version of SePi only allows predicates over values. Predicates in the form of p(x + 1)

are not allowed. We plan to add expressions to predicates together with the appropriate
theories (e.g. arithmetic). The type system would make use of an SMT solver. SePi can
also be extended with a new abbreviation for session initiation where a process creates a
new channel, sends an end-point and keeps the other to itself (as explained in Chapter 3).
Polymorphism and subtyping may be incorporated in future versions of the language.
Moreover, we plan to add unrestricted formulae allowing to provide for the persistent
availability of resources. We also intend to add to our language an import clause allowing
the inclusion in code of a different source file thus providing for a limited form of libraries.

53

Chapter 5. Conclusion 54

Bibliography

[1] Antlr parser generator. http://www.antlr.org/.

[2] Andrew W. Appel. Modern Compiler implementation in Java. Cambridge Univer-
sity Press, 2002.

[3] Pedro Baltazar, Dimitris Mostrous, and Vasco T. Vasconcelos. Linearly refined ses-
sion types. EPTCS, 101:38–49, 2012.

[4] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and
James J. Leifer. Cryptographic protocol synthesis and verification for multiparty
sessions. In Computer Security Foundations Symposium, pages 124–140. IEEE,
2009.

[5] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Stephen Tse. Ver-
ified interoperable implementations of security protocols. In Computer Security
Foundations Workshop, pages 139–152. IEEE, 2006.

[6] Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunter. Correspondence assertions
for process synchronization in concurrent communications. Journal of Functional
Programming, 2005.

[7] Gérard Boudol. Asynchrony and the pi-calculus. Rapport de Recherche 1702, IN-
RIA, Sophia-Antipolis, 1992.

[8] Alexandre Caldeira and Vasco T. Vasconcelos. Bica. http://gloss.di.fc.
ul.pt/bica.

[9] Joana Campos and Vasco T. Vasconcelos. Mool. http://gloss.di.fc.ul.
pt/mool.

[10] Joana Campos and Vasco T. Vasconcelos. Channels as objects in concurrent object-
oriented programming. In Programming Language Approaches to Concurrency and
Communication-cEntric Software, volume 69 of EPTCS, pages 12–28, 2011.

55

http://www.antlr.org/
http://gloss.di.fc.ul.pt/bica
http://gloss.di.fc.ul.pt/bica
http://gloss.di.fc.ul.pt/mool
http://gloss.di.fc.ul.pt/mool

Bibliography 56

[11] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and Session Types:
an Overview. In Web Services and Formal Methods, WS-FM’09, pages 1–28.
Springer, 2010.

[12] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,
James R. Larus, and Steven Levi. Language support for fast and reliable message-
based communication in singularity OS. Operating Systems Review, 40(4):177–190,
2006.

[13] Juliana Franco and Vasco T. Vasconcelos. A concurrent programming language with
refined session types. In Behavioural Types, LNCS. Springer, 2013.

[14] Tim Freeman and Frank Pfenning. Refinement types for ML. In Programming
Language Design and Implementation, volume 26, pages 268–277. ACM, 1991.

[15] Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z.
Caldeira. Modular session types for distributed object-oriented programming. In
Principles of Programming Languages, pages 299–312. ACM, 2010.

[16] Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi calculus.
Acta Informaticæ, 42(2/3):191–225, 2005.

[17] Andrew D. Gordon and Cédric Fournet. Principles and applications of refinement
types. Technical Report MSR-TR-2009-147, Microsoft Research, 2009.

[18] Kohei Honda and Gary Brown. Scribble. http://www.jboss.org/

scribble.

[19] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu chun Chen, and Nobuko
Yoshida. Scribbling interactions with a formal foundation. In Distributed computing
and internet technology, LNCS. Springer, 2011.

[20] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communi-
cation. In Object-Oriented Programming, volume 512 of LNCS, pages 133–147.
Springer, 1991.

[21] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In European
Symposym on Programming, volume 1381 of LNCS, pages 22–138. Springer, 1998.

[22] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous ses-
sion types. In Principles of Programming Languages, pages 273–284. ACM, 2008.

http://www.jboss.org/scribble
http://www.jboss.org/scribble

Bibliography 57

[23] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed pro-
gramming in Java. In Object-Oriented programming, volume 5142 of LNCS, pages
516–541. Springer, 2008.

[24] Galen Hunt, James R. Larus, Martin Abadi, Mark Aiken, Paul Barham, Manuel Fah-
ndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steens-
gaard, David Tarditi, Ted Wobber, and Brian D. Zill. An overview of the singularity
project. Technical report, Microsoft Research, 2005.

[25] Robin Milner. Communicating and Mobile Systems: the pi-calculus. Cambridge
University Press, 1999.

[26] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
part I/II. Information and Computation, 100:1–77, 1992.

[27] Matthias Neubauer and Peter Thiemann. An implementation of session types. In
Practical Aspects of Declarative Languages, volume 3057 of LNCS, pages 56–70.
Springer, 2004.

[28] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session C: safe par-
allel programming with message optimisation. In Objects, Models, Components,
Patterns, volume 7304 of LNCS, pages 202–218. Springer, 2012.

[29] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. In Proof, language and interaction: essays in honour of Robin
Milner, pages 455–494. MIT Press, 1997.

[30] Matthew Sackman and Susan Eisenbach. Session types in Haskell: Updating mes-
sage passing for the 21st century. Technical report, Imperial College, Department of
Computing, 2008.

[31] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language
and its typing system. In Parallel Architectures and Languages Europe’94, volume
817 of LNCS, pages 398–413. Springer, 1994.

[32] David N. Turner. The Polymorphic Pi-calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1995.

[33] Vasco T. Vasconcelos. Typed concurrent objects. In Object-Oriented Programming,
volume 821 of LNCS, pages 100–117. Springer, 1994.

[34] Vasco T. Vasconcelos. TyCO gently. DI/FCUL TR 01–4, Department of Informatics,
Faculty of Sciences, University of Lisbon, 2001.

Bibliography 58

[35] Vasco T. Vasconcelos. Sessions, from types to programming languages. Bulletin of
the European Association for Theoretical Computer Science, 103:53–73, 2011.

[36] Vasco T. Vasconcelos. Fundamentals of session types. Information and Computa-
tion, 217:52–70, 2012.

[37] David Walker. Advanced Topics in Types and Programming Languages, chapter
Substructural Type Systems. MIT Press, 2005.

[38] Xpect. http://www.xpect-tests.org/.

[39] Xtext—language development made easy! http://www.eclipse.org/

Xtext/.

http://www.xpect-tests.org/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/

	Introduction
	Motivation
	Contributions
	Deviations from the original plan thesis
	Structure of the document

	The pi-calculus, session types and related programming languages
	The pi-calculus
	Session types
	Session types in functional languages
	Session types in object-oriented languages
	Session types in imperative languages
	Programming languages based on the pi-calculus

	The SePi programming language
	The core language
	The SePi language
	Rationale
	Introducing the language via an example

	Algorithmic type checking
	Well-formed types and formulae
	Formulae normalisation, normalise A
	Context normalisation, normalise
	Formula subtraction, A
	Type equivalence, v2mu-:6muplus1muT T
	Typing rules for expressions, e T;
	Typing rules for processes, P ; L

	Derived constructs
	Programming in SePi
	A print server that makes sure values are printed in order
	Channel forwarding
	Request on a channel; respond on a distinct channel

	Implementation
	Xtext and plugin implementation
	The validation phase
	The symbol table
	Value hierarchy
	Formulae hierarchy
	Type hierarchy
	The validation process

	The interpreter
	Machine states
	The interpretation process

	Metrics
	Testing the compiler and the interpreter
	Installing & running SePi

	Conclusion
	Bibliography

