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André Filipe Agostinho Lopes

DISSERTAÇÃO
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Resumo

A Web Semântica pretende fornecer formatos comuns para caracterizar semantica-
mente os dados publicados na Web, melhorando a interoperabilidade e integração de da-
dos. A iniciativa Linked Data visa ligar dados relacionados que não foram previamente
ligados. As ontologias têm um papel fundamental nisso, pois, fornecem vocabulários
controlados, para caracterizar semanticamente os dados de uma forma inequı́voca.

Conforme definido por Gruber, uma ontologia é uma especificação de uma conceitua-
ção, que se destina a modelar um domı́nio em particular. A especificação de uma ontolo-
gia é composto por dois tipos de declarações: TBox (classes) e ABox (exemplares). TBox
são classes que são interpretadas como um conjunto de indivı́duos no domı́nio; ABox são
exemplares que são interpretados como indivı́duos particulares de um domı́nio. Além
disso, uma ontologia também é composta por: Relacionamentos ou relações entre clas-
ses e/ou exemplares; Tipos de dados são partes particulares do domı́nio que especificam
valores; Valores de dados são valores simples.

Apesar de uma ontologia se destinar a modelar um domı́nio em particular, existem
muitas ontologias de diferentes fontes a modelar o mesmo domı́nio, isto é, existe um pro-
blema de sobreposição. O problema de sobreposição consiste em ontologias distintas que
representam as mesmas entidades de uma forma diferente. É, portanto, necessário criar
processos capazes de encontrar as sobreposições e fundi-las.

Emparelhamento de ontologias é geralmente aplicado para alinhar duas TBox de duas
ontologias diferentes, ou seja, para encontrar relações ou correspondências entre as clas-
ses ontológicas.

Há um caso particular de emparelhamento de ontologias, o Emparelhamento de Exem-
plares. O objetivo do emparelhamento de exemplares é alinhar dois ABox de duas onto-
logias diferentes, ou seja, encontrar as correspondências entre exemplares de diferentes
ontologias. O Emparelhamento de Exemplares adota o princı́pio de que, quanto maior for
a semelhança entre duas descrições de exemplares de duas ontologias distintas, maior é
a probabilidade de estes exemplares representarem a mesma entidade de um determinado
domı́nio. Por exemplo, no domı́nio polı́tico, vamos considerar o actual Presidente da Co-
missão Europeia, Durão Barroso e assumir que na Ontologia 1 tem um exemplar com o
descritor: “José Manuel Durão Barroso”, e Ontologia 2 tem um exemplar com o descritor:
“José Durão Barroso”. Portanto, é necessário implementar técnicas de emparelhamento
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de exemplares, para descobrir se estes dois exemplares destas duas ontologias diferentes
correspondem à mesma pessoa/entidade, isto é, se eles emparelham.

Os objectivos desta dissertação eram:

Desenvolvimento de algoritmos de emparelhamento de exemplares Que visou o de-
senvolvimento de algoritmos para o emparelhamento de ontologias ao nı́vel dos
seus exemplares, de forma a resolver problemas de emparelhamento de exempla-
res. O desenvolvimento de algoritmos foi baseado em técnicas de emparelhamento
de exemplares já propostas por outros;

Alinhamento de exemplares do mundo real Que visou a aplicação dos algoritmos de-
senvolvidos, para gerar emparelhamentos de alta qualidade em exemplares do mundo
real, e avaliar a sua qualidade em termos de Precisão, Sensibilidade, Medida-F, Exa-
tidão e Exatidão Unilateral;

Desenvolvimento de um emparelhador de exemplares Web Que visou o desenvolvi-
mento de uma ferramenta capaz de realizar emparelhamento de exemplares através
da Web, incorporando os algoritmos desenvolvidos por mim.

Os resultados alcançados por esta dissertação foram a produção de alinhamentos
de exemplares, entre as ontologias POWER-DBpediaPT, POWER-Verbetes e POWER-
POWER. Estas três ontologias contêm exemplares que representam entidades polı́ticas. E
também entre as ontologias provenientes do OAEI 2012. O OAEI (Ontology Alignment
Evaluation Initiative), é um concurso international, realizado todos os anos, que entre
vários tipos de competições, tem uma dedicada à avaliação de ferramentas e de técnicas
de emparelhamento de exemplares. Para avaliar a qualidade dos alinhamentos produ-
zidos foram implementadas as seguintes métricas: Precisão; Sensibilidade; Medida-F;
Exatidão; e Exatidão Unilateral. Esta dissertação também produziu um emparelhador de
exemplares disponı́vel através da Web, que implementa as métricas mencionadas para
avaliar os alinhamentos produzidos por ele.

POWER (Politics Ontology for Web Entity Retrieval) é uma ontologia que modela
o domı́nio da polı́tica Portuguesa, que foi desenvolvida e fornecida pela grupo REAC-
TION. Os seus exemplares foram alinhados com os das ontologias DBpediaPT e Verbe-
tes. A DBpediaPT é uma ontologia que contém exemplares que representam entidades da
DBpedia versão 3.8. Cada entidade é referida na versão Portuguesa da Wikipedia. Esta
ontologia foi construı́da a partir de uma lista, fornecida pelo grupo REACTION. Verbetes
é uma ontologia, cujos os exemplares representam entidades que têm pelo menos cinco
ocorrências nas notı́cias agregadas pelo serviço SAPO Verbetes.

Para avaliar o alinhamento POWER-DBpediaPT foi usada a métrica Exatidão Unila-
teral. Usando o algoritmo de emparelhamento FirstLastNamePlusJaccard, alcançou-se
97.29% de Exatidão Unilateral para o POWER, e 87.25% de Exatidão Unilateral para o
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DBpediaPT. Usando o algoritmo de emparelhamento Stratified 10-fold Cross-Validation,
alcançou-se 99.11% de Exatidão Unilateral para o POWER, e 95.97% de Exatidão Uni-
lateral para o DBpediaPT. Estes foram os melhores resultados consigos para este ali-
nhamento. No caso do alinhamento POWER-Verbetes não foram calculadas métricas
mas, fez-se uma avaliação manual pela minha parte e pela parte do grupo REACTION,
e foi positiva. Além disso, porque o POWER contém exemplares duplicados, ou seja,
dois ou mais exemplares a representarem a mesma entidade, foi efectuado o alinhamento
POWER-POWER de forma a encontrar os exemplares duplicados. No caso do POWER,
estas situações não podiam acontecer. O alinhamento foi entregue ao grupo REACTION,
para eles poderem melhorar a sua ontologia. Estes dois alinhamentos, POWER-Verbetes
e POWER-POWER, foram realizados pelo algoritmo de emparelhamento MachineLear-
ning.

Foram também realizados alinhamentos de exemplares entre as ontologias fornecidas
pelo OAEI 2012. Estas ontologias encontram-se divididas em dois grupos: o Sandbox
que contém onze ontologias; e o IIMB que contém oitenta ontologias. Os alinhamentos
produzidos foram realizados dentro de cada grupo. Neste caso, os algoritmos de em-
parelhamento utilizados foram FirstLastNamePlusJaccard e o Stratified 10-fold Cross-
Validation. Na maioria dos alinhamentos produzidos a Medida-F foi maior no segundo
algoritmo do que no primeiro.

Todas as ontologias cujos os exemplares foram alinhados, e os seus respectivos ali-
nhamentos e métricas, estão disponı́veis através da ligação: http://lasige.di.fc.ul.
pt/webtools/instancematcher/dissertation_work.zip.

O emparelhador de exemplares Web, foi outra realização desta dissertação, e está dis-
ponı́vel através da ligação: http://lasige.di.fc.ul.pt/webtools/instancematcher/.
Este disponibiliza aos utilizadores dois algoritmos de emparelhamento: o FirstLastNa-
mePlusJaccard; e o MachineLearning. Além disso, também permite que o utilizador
escolha que tipo de alinhamentos quer. Um-para-um (em Inglês: one-to-one) ou muitos-
para-muitos (em Inglês: many-to-many). No primeiro caso, cada exemplar só pode estar
presente uma vez no alinhamento, isto é, não pode haver mais do que um emparelha-
mento por exemplar; no segundo caso, cada exemplar pode estar presente várias vezes
no alinhamento, ou seja, pode haver mais do que um emparelhamento por exemplar. Os
alinhamentos POWER-DBpediaPT e POWER-Verbetes foram um-para-um. E os alinha-
mentos OAEI 2012 e POWER-POWER foram muitos-para-muitos. Há ainda a opção
Limiar (em Inglês: Threshold) que permite ao utilizador indicar qual é o valor mı́nimo
dos alinhamentos devolvidos pelo emparelhador de exemplares Web. Em cada alinha-
mento de exemplares é atribuı́do um valor [0,1] pelos algoritmos de emparelhamento, que
determina o grau de confiabilidade/certeza do alinhamento estabelecido. No alinhamento
também se podem encontrar exemplares que emparelham para nada, ou seja, para NULL.
Estes, são os exemplares para os quais o algoritmo de emparelhamento escolhido, não
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encontrou nenhum exemplar correspondente. Para que o emparelhador de exemplares
Web devolva métricas que atestem a qualidade do alinhamento produzido, o utilizador
tem que introduzir o alinhamento de referência (em Inglês: Reference Alignment). Este é
um documento, que se assume, que contenha todos os emparelhamentos correctos entre
os exemplares de duas ontologias. As métricas são calculadas aquando da comparação
do alinhamento produzido com o alinhamento de referência. Existem ainda as opções
POWER 2010 e OAEI 2012, que permitem indicar ao emparelhador de exemplares Web,
que os exemplares a emparelhar são do POWER e do OAEI 2012. É também necessário
que o utilizador insira os identificadores dos descritores dos exemplares, para que o em-
parelhador obtenha a informação necessária para poder efectuar os alinhamentos. Cada
identificador tem que começar pelo prefixo http.

Palavras-chave: Web Semântica, Ontologias, Emparelhamento de Ontologias,
Emparelhamento de Exemplares, Emparelhamento de cadeia de caracteres,
Aprendizagem Automática
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Abstract

An ontology is an object-based conceptualization of some particular domain. An on-
tology provides a shared controlled vocabulary to semantically characterize the data of the
modelled domain. But it often happens that independently created ontologies model the
same domain in different ways. This constitutes a problem because there may be entities
being represented differently, therefore creating ambiguity and interoperability problems
when linking related data characterized by two ontologies. So it is necessary to develop
processes capable of matching the data.

The matching can be made at the class level or at the instance level. The goal of the
instance matching is to find the correspondences between instances from different ontolo-
gies, called instance alignments.

The objective of this dissertation was the development of instance matching algo-
rithms for generating instance alignments of real world instances. And the creation of an
instance matcher Web tool, where the algorithms developed by me were incorporated.

The outcome of this dissertation was the generation of instance alignments between
POWER-DBpediaPT, POWER-Verbetes and POWER-POWER. All these three ontolo-
gies have instances representing political entities. Furthermore, it was generated in-
stance alignments between ontologies from the OAEI 2012. OAEI (Ontology Alignment
Evaluation Initiative), is an international contest, that has a track focus on evaluation of
instance matching tools and techniques. To assess the quality of the instance alignments
produced, it was implemented the metrics of Precision, Recall, F-measure, Accuracy and
Unilateral Accuracy.

Another outcome of this dissertation is the instance matcher tool, available through
the Web. The tool implements two instance matchers. The FirstLastNamePlusJaccard
which is based on element-level matching techniques, that uses the descriptors of the in-
stances to correspond them. And the MachineLearning matcher that uses machine learn-
ing approaches to find those correspondences. This Web tool also assesses the instance
alignments that it produces, because it implements the already mentioned metrics.

Keywords: Semantic Web, Ontologies, Ontology Matching, Instance Matching, String
matching, Machine Learning

xii





xiv



Contents

List of Figures xx

List of Tables xxiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 OAEI 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 DBpediaPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Verbetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Element-level matching techniques . . . . . . . . . . . . . . . . . . . . . 10
2.3 Machine Learning techniques . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Set of Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Cross-Validation technique . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Performance Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 PHP built-in Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Implementation 21
3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Pre-Processing Sub-Modules . . . . . . . . . . . . . . . . . . . . 23
3.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Element-level matcher . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Machine Learning matcher . . . . . . . . . . . . . . . . . . . . . 24

xv



3.3.3 Instances matching to NULL . . . . . . . . . . . . . . . . . . . . 25
3.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Instances matching to NULL . . . . . . . . . . . . . . . . . . . . 27
3.5 Performance Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 OAEI 2012 instance matching . . . . . . . . . . . . . . . . . . . 29
3.5.2 POWER-DBpediaPT instance matching . . . . . . . . . . . . . . 30

3.6 Instance Matcher Web Tool . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.1 Web Tool Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.6 Web Tool Screenshots . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results 41
4.1 OAEI 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Attributes selection . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 POWER-DBpediaPT Alignment . . . . . . . . . . . . . . . . . . . . . . 54
4.3 POWER-Verbetes Alignment . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 POWER-POWER Alignment . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusion 57
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 64

xvi





xviii



List of Figures

2.1 Sample instance from the Sandbox and IIMB reference ontology . . . . . 6
2.2 Sample instance from the Sandbox 001 ontology . . . . . . . . . . . . . 6
2.3 Sample instance from the IIMB 018 ontology . . . . . . . . . . . . . . . 7
2.4 Predefined reference alignment sample . . . . . . . . . . . . . . . . . . . 7
2.5 Sample instance from POWER . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Sample labels from POWER . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Sample instances from DBpediaPT . . . . . . . . . . . . . . . . . . . . . 9
2.8 Sample instance from the Supporting ontology . . . . . . . . . . . . . . . 10
2.9 Sample instances from Verbetes . . . . . . . . . . . . . . . . . . . . . . 10
2.10 Jaccard formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.11 Training set .ARFF example . . . . . . . . . . . . . . . . . . . . . . . . 12
2.12 Test set .ARFF example . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.13 Predictions example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.14 The evidence content formula for a word . . . . . . . . . . . . . . . . . . 14
2.15 The evidence content formula for a name . . . . . . . . . . . . . . . . . 14
2.16 The inverse document frequency formula . . . . . . . . . . . . . . . . . 16
2.17 Classification table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.18 Precision formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.19 Recall formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.20 F-measure formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.21 Accuracy formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Overview of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 NULL’s confidence score setting . . . . . . . . . . . . . . . . . . . . . . 25
3.3 NULL’s confidence score setting in the one-to-one matcher - scenario 1 . 27
3.4 NULL’s confidence score setting in the one-to-one matcher - scenario 2 . 28
3.5 POWER-DBpediaPT reference alignment sample . . . . . . . . . . . . . 31
3.6 Sample instances from DBpediaPT before the filter process . . . . . . . . 32
3.7 Supporting instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Sample instances from DBpediaPT after the filter process . . . . . . . . . 32
3.9 Web tool header screenshot . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Web tool input screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xix



3.11 Web tool output screenshot - part 1 . . . . . . . . . . . . . . . . . . . . . 37
3.12 Web tool output screenshot - part 2 . . . . . . . . . . . . . . . . . . . . . 37
3.13 Web tool output screenshot - alternative . . . . . . . . . . . . . . . . . . 37
3.14 Missing compulsory input . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15 Input length violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.16 Instance matching execution error . . . . . . . . . . . . . . . . . . . . . 39
3.17 Alignment assessment error . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.18 Instance sets too big error . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Precision/recall results of the Sandbox task . . . . . . . . . . . . . . . . 42
4.2 Precision/recall results of the IIMB task . . . . . . . . . . . . . . . . . . 43
4.3 Precision/recall results of the Sandbox task - Attributes selection . . . . . 44
4.4 Times Selected/Attributes’ References of the Sandbox task - Attributes

selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Precision/recall results of the IIMB task - Attributes selection . . . . . . . 46
4.6 Times Selected/Attributes’ References of the IIMB 001-020 - Attributes

selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Times Selected/Attributes’ References of the IIMB 021-040 - Attributes

selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Times Selected/Attributes’ References of the IIMB 041-060 - Attributes

selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 Times Selected/Attributes’ References of the IIMB 061-080 - Attributes

selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.10 Precision/recall results of the Sandbox task - Resample Uniform Distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11 Precision/recall results of the Sandbox task - SpreadSubsample Uniform

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.12 POWER-Verbetes Alignment sample . . . . . . . . . . . . . . . . . . . . 55
4.13 POWER-POWER Alignment sample . . . . . . . . . . . . . . . . . . . . 56

xx





xxii



List of Tables

1.1 The milestones set in the Preliminary report . . . . . . . . . . . . . . . . 3

3.1 Paper Attributes overview . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Results of the Sandbox task . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Results of the IIMB task . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Results of the Sandbox task - Attributes selection . . . . . . . . . . . . . 44
4.4 Table showing the times each attribute was selected, and their respective

references. Sandbox task - Attributes selection . . . . . . . . . . . . . . . 45
4.5 Results of the IIMB task - Attributes selection . . . . . . . . . . . . . . . 46
4.6 Table showing the times each attribute was selected, and their respective

references. IIMB 001-020 - Attributes selection . . . . . . . . . . . . . . 47
4.7 Table showing the times each attribute was selected, and their respective

references. IIMB 021-040 - Attributes selection . . . . . . . . . . . . . . 48
4.8 Table showing the times each attribute was selected, and their respective

references. IIMB 041-060 - Attributes selection . . . . . . . . . . . . . . 49
4.9 Table showing the times each attribute was selected, and their respective

references. IIMB 061-080 - Attributes selection . . . . . . . . . . . . . . 50
4.10 Results of the Sandbox task - Resample Uniform Distribution . . . . . . . 52
4.11 Results of the Sandbox task - SpreadSubsample Uniform Distribution . . 53
4.12 POWER-DBpediaPT Alignment Results . . . . . . . . . . . . . . . . . . 54

xxiii





Chapter 1

Introduction

1.1 Motivation

The Semantic Web intends to provide common formats for semantically characterizing
data published on the web, improving interoperability and integration of data (Berners-
Lee et al., 2001). The Linked Data initiative aims at connecting related data that wasn’t
previously linked (Bizer et al., 2009). Ontologies have a crucial role on this, since they
provide shared controlled vocabularies to semantically characterize the data in an unam-
biguous way.

As defined by Gruber, an ontology is a specification of a conceptualization (Gruber,
2008), that is meant to model some particular domain. The specification of an ontology
is composed by two types of statements: TBox (classes) and ABox (instances). TBox are
classes which are interpreted as a set of individuals in the domain; ABox are instances
which are interpreted as particular individuals of a domain. Moreover, an ontology is also
composed by: Relationships or relations between classes and/or instances; Data types
are particular parts of the domain which specify values; Data values are simple values
(Euzenat and Shvaiko, 2007).

Although an ontology is meant to model some particular domain, there are many on-
tologies from different sources modelling the same domain, i.e., there is an overlapping
problem. The overlapping problem consists on distinct ontologies representing the same
entities in a different manner. It is thus necessary to create processes capable of finding
those overlaps and merge them.

Ontology matching is usually applied to align two TBox from two different ontolo-
gies, i.e., to find relationships or correspondences between ontological classes. These
correspondences are the relation holding, or supposed to hold according to a particular
matching algorithm, between classes of different ontologies (Euzenat and Shvaiko, 2007).

There is a particular case of ontology matching, the Instance Matching. The goal of
instance matching is to align the two ABox from two different ontologies, i.e., to find the
correspondences between instances of different ontologies. An instance matching will

1
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adopt the principle that the higher is the similarity between two instance descriptions of
two distinct ontologies, the higher is the probability of these instances represent the same
entity in a given domain. For example, in the political domain, let us consider the current
President of the European Commission, Durão Barroso and assume that Ontology 1 has an
instance with the label: “José Manuel Durão Barroso”; and Ontology 2 an instance with
a label: “José Durão Barroso”. Therefore, it is necessary to implement instance matching
techniques to find if these two instances of these two different ontologies correspond to
the same entity, i.e., if they match. Another example, is the POWER, DBpediaPT and
Verbetes ontologies that have instances representing political entities.

1.2 Goals

The objectives of this work were:

Development of instance matching algorithms That aimed at developing algorithms for
ontology matching at the instance level, in order to solve instance matching prob-
lems. The development of algorithms was based on current instance matching tech-
niques already proposed by others;

Real world instance alignments That aimed at applying the algorithms developed to
generate high quality matches for real world instances and assess their quality in
terms of Precision, Recall, F-measure, Accuracy and Unilateral Accuracy;

Instance matcher Web tool development That aimed at developing a tool capable of
performing instance matching through the Web, incorporating the algorithms de-
veloped by me.

1.3 Contributions

The contributions of this work are the following:

• Development of instance matching algorithms;

• Real world instance alignments, namely: POWER-DBpediaPT and POWER-Verbetes;

• POWER-POWER alignment to help the POWER developers to improve it;

• The creation of a Instance Matcher tool, available through the Web.
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1.4 Planning

Date Milestones
1st of October 2012 Familiarization with the work nature
5th of November 2012 First set of instance matching algorithms, Reference alignment and Preliminary report
1st of December 2012 First Tool Prototype, and Reference alignment update
1st of January 2013 Real world instance alignments
1st of February 2013 Second set of instance matching algorithms
1st of March 2013 Second Tool Prototype, and Reference Alignment update
1st of April 2013 Real world instance alignments
1st of May 2013 Master thesis and OAEI 2013 participation
1st of June 2013 Article about the obtained results

Table 1.1: The milestones set in the Preliminary report

The Table 1.1 presents the milestones of the original planning, set for this dissertation
in the preliminary report. There was some deviations from the original milestones. The
original planning supposed an iteration workflow that did not occur, because during the
term of this work, in practice, it did not justify. The OAEI 2013 participation did not
happen and an article about the obtained results was not made, due to the additional work
caused by the POWER-DBpediaPT alignment. This also contributed to the delay in the
delivery of the dissertation report. This milestone suffered a delay of almost 5 months.

Although the OAEI 2013 participation did not occur, it was performed instance align-
ments between the ontologies provided by the OAEI 2012, for preparation. OAEI (Ontology
Alignment Evaluation Initiative) (Ehrig and Sure, 2005) is an international contest, held
every year, that has a track focus on evaluation of instance matching tools and techniques.

1.5 Document Structure

This document is structured as follows:

Chapter 2 – Presents some concepts and subjects necessary to understand this work;

Chapter 3 – Describes the architecture of the system developed and its modules;

Chapter 4 – Presents the results obtained by the system;

Chapter 5 – Shows conclusions and future work.

This work was done in the scope of the Master in Informatics provided by the De-
partment of Informatics of the Faculty of Sciences of University of Lisbon. This work also
occurred within the SOMER project (PTDC/EIA-EIA/119119/2010), that is financially
supported by the Portuguese Fundação para a Ciência e a Tecnologia.
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Chapter 2

Related Work

This chapter presents some concepts and subjects necessary to understand this work and,
it also introduces available instance matching resources and techniques that were used in
this dissertation.

2.1 Ontologies

In the following sections it is presented the ontologies from where it was performed the
instance alignments. It is also presented the sources from where the ontologies are from.

2.1.1 OAEI 2012

The Ontology Alignment Evaluation Initiative (Ehrig and Sure, 2005), held every year,
it is an international contest, that among different kinds of competitions, has a track fo-
cus on evaluation of instance matching tools and techniques. That evaluation relates to
the outcome of these tools and techniques, i.e., the alignments produced by them. The
quality of these alignments are evaluated by comparing them with predefined reference
alignments, provided by the contest, which are used to produce Precision, Recall and F-
measure metrics.

The dissertation focuses on two tasks of the OAEI 20121 instance matching track:
the Sandbox task which is composed by eleven ontologies, and contains light matching
problems such as, labels containing light textual changes; and the IIMB task which is
composed by eighty ontologies, and contains hard matching problems such as, strong
textual changes, and stronger structural and logical transformations. This track has a set
of rules to follow: the alignments produced must be between two ontologies, and one
of them must be the reference ontology. For example, the Sandbox or IIMB reference
ontologies must be matched against each of the ontologies that respectively compose the
Sandbox and IIMB tasks. The alignments produced are many-to-many, i.e., one instance

1http://oaei.ontologymatching.org/2012/
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from one ontology can be matched to multiple instances of the other ontology. Finally,
the alignments must respect the .RDF OAEI 2012 format.

Figure 2.1: Sample instance from the Sandbox and IIMB reference ontology

Figure 2.2: Sample instance from the Sandbox 001 ontology
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Figure 2.3: Sample instance from the IIMB 018 ontology

Figure 2.4: Predefined reference alignment sample

The Figure 2.1 shows that the reference ontologies of both Sandbox and IIMB are
duplicates, i.e., have the same type of instances. The difference relies on the ontologies
that compose the Sandbox and IIMB tasks. As shown in the Figure 2.3, the properties
name, date of birth and gender have suffered more changes in their content than in the
instance shown in the Figure 2.2. These three figures represent three different ways of
describing the same entity. The entity is this case, is an actor called Andrew Secombe
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born in 26th of April 1953, belonging to the male gender, and with the profession of
actor. More details about the entity is then given by the article property.

The Figure 2.4 shows a sample of a predefined reference alignment, provided by the
contest, between the IIMB reference ontology and the IIMB 018 ontology. Each map
tag contains within: the pair of instances that are possible to be match, represented by
their unique identifiers; the relation between them; and the confidence score of the match,
represented by the measure tag. The first map tag of the example, shows that the instance
present in the Figure 2.1 and the instance present in the Figure 2.3 are to be matched,
because they are referring to the same entity. The alignments produced must be in the
format shown in the Figure 2.4.

The OAEI 2012 instance matching track is no longer available, because it has been
replaced by the OAEI 2013 instance matching track version. The Sandbox and IIMB
group of ontologies of the OAEI 2012 can be accessed through this link: http://lasige.
di.fc.ul.pt/webtools/instancematcher/dissertation_work.zip

2.1.2 POWER

POWER - Politics Ontology for Web Entity Retrieval - is an ontology that models the Por-
tuguese political domain, that was built and provided by the REACTION group2. More
precisely, POWER is an ontology of political processes and entities. It is designed for
tracking politicians, political organizations and elections, both in mainstream and social
media (Moreira et al., 2012). POWER is an ontology which needs yet to be improved,
because it has duplicate instances. This situation in POWER, is considered not to be cor-
rect. It is available in the following site:http://dmir.inesc-id.pt/project/
POWER-PT_01_in_English.

Figure 2.5: Sample instance from POWER. In bold, the labels’ references. The labels
were the only data from POWER that were used on this dissertation.

2http://dmir.inesc-id.pt/project/Reaction

http://lasige.di.fc.ul.pt/webtools/instancematcher/dissertation_work.zip
http://lasige.di.fc.ul.pt/webtools/instancematcher/dissertation_work.zip
http://dmir.inesc-id.pt/project/POWER-PT_01_in_English
http://dmir.inesc-id.pt/project/POWER-PT_01_in_English
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Figure 2.6: Sample labels from POWER. In bold, the labels’ content from the instance of
the Figure 2.5.

2.1.3 DBpediaPT

DBpediaPT is an ontology that contains instances that represent people from the DBpedia
version 3.8. Each person is referred in the Portuguese version of Wikipedia. This ontology
was built from the Person list3, provided by the REACTION group. I took the list and
converted it into an ontological format (.NT).

Figure 2.7: Sample instances from DBpediaPT

Supporting ontology

The supporting ontology is of the same version of the DBpedia (3.8), and it is available in
the following site:http://downloads.dbpedia.org/3.8/pt/. This ontology
contains abstract texts for each person of the Portuguese version of Wikipedia, giving
several types of information such as the complete name of the person, its nationality, and
profession.

3http://dmir.inesc-id.pt/project/DBpediaEntities-PT 01 in English

http://downloads.dbpedia.org/3.8/pt/
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Figure 2.8: Sample instance from the Supporting ontology. In bold, the complete name,
the nationality and the profession, of the person represented in the instance.

2.1.4 Verbetes

Verbetes is an ontology, which instances represent people that have at least five occur-
rences in the news aggregated by the SAPO Verbetes service4. I took the list of people
returned by the service and converted it into an ontological format (.NT).

Figure 2.9: Sample instances from Verbetes

2.2 Element-level matching techniques

Terminological approaches (Couto and Pinto, 2013) focus on the descriptors of the classes
or of the instances, as opposed to structural approaches that explore the structure of the
classes or of the instances, i.e., their relations to other classes or to other instances. The
element-level matching techniques encompass several techniques, although only string-
based techniques, were used in this dissertation.

String-based techniques (Euzenat and Shvaiko, 2007) are often used in order to match
names of ontology entities. They are typically based on the following intuition: the more
similar the names/strings, the more likely they denote the same entities. This disserta-
tion used the Jaccard Similarity Coefficient (Jaccard, 1912) string-based technique, which
given two strings (for example, instance labels) produces a (confidence) score [0,1] that
represents the degree of similarity between them. Higher is the score, higher is the proba-
bility of these instances correspond to the same entity. This technique measures similarity

4http://softwarelivre.sapo.pt/projects/developers/wiki/Services/InformationRetrieval/Verbetes EN
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between strings through the size of the intersection divided by the size of the union of the
words composing the strings:

Figure 2.10: Jaccard formula
Source: http://en.wikipedia.org/wiki/Jaccard_index

For example, A = “José Durão Barroso”; B = “Durão Barroso” = |“Durão”∩“Barroso”|/
|“José”∪ “Durão”∪“Barroso”|= 2/3 = 0.66.

2.3 Machine Learning techniques

Machine learning techniques can be used in Instance Matching to determine if two in-
stances of two different ontologies correspond or not to the same entity, i.e., if they match.
In order to do that, the machine learning system learns, through a set of examples called
training set, how to distinguish between matching or non-matching instances. The train-
ing set works as empirical data that teaches the system how to predict the matches on
input data, i.e., the test set.

The training set is a set of examples which contains many correct matches (positive
examples) and incorrect matches (negative examples), that is used to train a classifier, re-
sulting in the creation of a model. The model classifies/predicts each example of the test
set as belonging to the categories of yes or no match. Furthermore, the model assigns to
both of its predictions a probability distribution, that works as a confidence score for its
decisions. In the yes category, higher is the probability distribution stronger is the predic-
tion; in the no category, lower is the probability distribution stronger is the prediction.

The examples of either training and test sets are organized as a set of features/attributes
that are used by the machine learning system as a criteria where it can learn (in the train-
ing set) and predict (in the test set). The set of attributes, defined by the developer, can
be composed of: the instances’ labels and their length; the Jaccard Similarity Coefficient
between the labels; a Boolean value representing if both first and last names of two in-
stances’ labels are equal; etc.

In order to implement the machine learning matcher, the Weka software (Hall et al.,
2009) provides the necessary packages to do it. Here, the training and test sets are repre-
sented in ARFF (attribute-relation format file) format.

http://en.wikipedia.org/wiki/Jaccard_index
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Figure 2.11: Training set .ARFF example

Figure 2.12: Test set .ARFF example

Figure 2.13: Predictions example
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The Figures 2.11 and 2.12 represent examples of training and test sets in the .ARFF
format. The .ARFF files have two distinct sections: the Header section, which is com-
posed of the name of the relation, a set of attributes and their types (STRING, NU-
MERIC, nominal-specification . . . ); the Data section, where each line corresponds to
a data to predict and each column, separated by comma, corresponds to the respective
attribute.

In these Figures the set of attributes has the following elements: the pair of instances
(instanceA and instanceB); the instances’ labels (instanceALabel and instanceBLabel);
their length (instanceALabelLen and instanceBLabelLen); a Boolean value representing
if both first and last names of two instances’ labels are equal (firstLastSame); the Jaccard
Similarity Coefficient between the labels (JCValue). There is also the match? attribute
where it is indicated if the pair of instances match (yes) or not (no). In the training set,
the attribute is already assigned (yes - positive examples or no - negative examples) in
the Data section, in order to teach the system how to distinguish between matching or
non-matching instances. And in the test set, the same attribute as a question mark in the
Data section, where the system places its prediction (yes or no). Note: in both sets, the
STRING type attributes are merely for human information purposes. They are not con-
sidered in the processes of training and prediction.

The Figure 2.13 represents the system’s prediction, and the question marks originally
from the test set (Figure 2.12), were replaced by yes or no. According to the system’s pre-
diction, the pair of instances (“http://instanceA/paulo portas”,“http://instanceB/paulo portas”) and
(“http://instanceA/paulo portas”,“http://instanceB/paulo sacadura cabral portas”) match, i.e., they cor-
respond to the same entity. The last value of each line represents the probability distribu-
tion of each prediction.

2.3.1 Set of Attributes

As said before, both training and test sets have a set of attributes, defined by the developer,
that gives to the machine learning system a set of criteria where it can learn (in the training
set) and predict (in the test set). This dissertation used attributes for its instance matching
work, that were already proposed in other works. The attributes based on the paper (Rong
et al., 2012): double idfSim1; double topIdfSim2; double idfSim3; double topIdfSim4;
double cosSim5; double idfSim6; double topIdfSim7; double editSim8; double countSim9;
double countSim10; double countSim11; and the attributes proposed by the REACTION
group: int name1Len; int name2Len; boolean firstSame; double firstSameEC; boolean
lastSame; double lastSameEC; boolean twoLastSame; double twoLastSameEC; boolean
firstLastSame; double firstLastSameEC; double jcValue.

There are some considerations to be made about the attributes proposed by the RE-
ACTION group. In this dissertation, they were only used for instance’s labels.
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Figure 2.14: The evidence content formula for a word
Source: (Couto et al., 2005)

The evidence content formula works as follows: the less frequent is a word within a
domain, higher is its evidence content. The idea is: if the instance A1 from the Ontology
1 and the instance B1 from the Ontology 2 have in their labels the same uncommon word
(low frequency), they are more likely to represent the same entity, i.e., to match.

In this work, the domain corresponds to all instances belonging to the ontologies under
process, where the frequency of a word (Freq(w)) is just counted once per instance. The
MaxFreq corresponds to the maximum frequency found. A word that is just found once
has high evidence content, and a word that corresponds to the maximum frequency has
no evidence content.

Figure 2.15: The evidence content formula for a name. The evidence content of a name
is the sum of the evidence content of its words.

Source: (Couto et al., 2005)

Considering that a name is composed of a set of words (Words(n)), its evidence
content (NameEC(n)) is calculated through the sum of the evidence content of them
(
∑

WordEC(w)).

int nameXLen The length of the label of an instance. For example, instance A1 with the
label: “blue”; nameXLen = 4. The name1Len and name2Len attributes represent
respectively the length of the labels of the pair of instances under process;

boolean firstSame Whether or not two instances have in their labels equal first names.
For example, the instance A1 from the Ontology 1 with the label: “jose manuel
durao barroso”; and the instance B1 from the Ontology 2 with the label: “jose durao
barroso”. firstSame = true. Moreover, for cases where the labels have just one
name, the attribute works as well. For example, the instance A2 from the Ontology
1 with the label: “barroso”; and the instance B2 from the Ontology 2 with the label:
“barroso”. firstSame = true;

double firstSameEC It returns the evidence content of the word (Figure 2.14) that rep-
resents the equal first name between two instances’ labels. If the first name is not
the same, i.e., boolean firstSame = false, it returns 0.0;
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boolean lastSame Whether or not two instances have in their labels equal last names. For
example, the instance A1 from the Ontology 1 with the label: “jose manuel durao
barroso”; and the instance B1 from the Ontology 2 with the label: “jose durao
barroso”. lastSame = true. Moreover, for cases where the labels have just one
name, the attribute works as well. For example, the instance A2 from the Ontology
1 with the label: “barroso”; and the instance B2 from the Ontology 2 with the label:
“barroso”. lastSame = true;

double lastSameEC It returns the evidence content of the word (Figure 2.14) that repre-
sents the equal last name between two instances’ labels. If the last name is not the
same, i.e., boolean lastSame = false, it returns 0.0;

boolean twoLastSame Whether or not two instances have in their labels equal two last
names. For example, the instance A1 from the Ontology 1 with the label: “jose
manuel durao barroso”; and the instance B1 from the Ontology 2 with the label:
“jose durao barroso”. twoLastSame = true. But, for cases where the labels have
just one name, the attribute does not work (it returns false). For example, the
instance A2 from the Ontology 1 with the label: “barroso”; and the instance B2

from the Ontology 2 with the label: “barroso”. twoLastSame = false;

double twoLastSameEC It returns the evidence content of the name (Figure 2.15) that
represents the equal two last names between two instances’ labels. If the two last
names are not the same, i.e., boolean twoLastSame = false, it returns 0.0;

boolean firstLastSame Whether or not two instances have in their labels equal first and
last names. For example, the instance A1 from the Ontology 1 with the label: “jose
manuel durao barroso”; and the instance B1 from the Ontology 2 with the label:
“jose durao barroso”. firstLastSame = true. Moreover, for cases where the labels
have just one name, the attribute works as well. For example, the instance A2 from
the Ontology 1 with the label: “barroso”; and the instance B2 from the Ontology 2
with the label: “barroso”. firstLastSame = true;

double firstLastSameEC It returns the evidence content of the name (Figure 2.15) that
represents the equal first and last names between two instances’ labels. If the first
and last names are not the same, i.e., boolean firstLastSame = false, it returns 0.0;

double jcValue This attributes is related with the Jaccard Similarity Coefficient, already
presented in the section: Element-level matching Techniques.
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There are also some considerations to be made about the attributes based on the paper
(Rong et al., 2012).

Figure 2.16: The inverse document frequency formula
Source: http://en.wikipedia.org/wiki/Tf-idf

The inverse document frequency is a measure of whether the term is common or rare
across all documents. In this work, the total number of documents (|D|) corresponds
to the: Instances(ontology 1) + Instances(ontology 2); each document d correspond to each
instance, and each term/word is just counted once per instance. Lower is the number of
instances where the word appears, higher is the IDF for that word. The idea is: if the
instance A1 from the Ontology 1 and the instance B1 from the Ontology 2 have in their
textual information the same uncommon word (low frequency), they are more likely to
represent the same entity, i.e, to match.

double topIdfSim The topIdfSim2, topIdfSim4 and topIdfSim7 attributes are calculated
based on the same formula. Given two sets of words T1 and T2, it is extracted
respectively from them, the words with the highest IDF values (topIdf): W1 and
W2. Then, the IDF values of the words from W1 that intersect the words from the
T2, and the IDF values of the words from W2 that intersect the words from the T1,
are all summed. This sum is then divided by the value that results from the sum of
the W1 and W2 IDF values;

double idfSim The idfSim1, idfSim3 and idfSim6 attributes are calculated based on the
same formula. This formula is the same of the double topIdfSim, but with the
difference that the words with the highest IDF values (topIdf) are not extracted.
Thus, the W1 and W2 represent all the words that make part of the sets of words T1

and T2 respectively, and not just the ones with the highest IDF values;

double cosSim The double cosSim5 attribute is calculated as follows: given two sets of
words T1 and T2 is computed their cosine similarity5;

double editSim The double editSim8 attribute is calculated through a formula that uses
the edit distance principle. Given two sets of words T1 and T2, it is measured the
minimum number of single-character edits necessary to make the T1 and T2 the
same. These edits can be the insertion of a character, the deletion of a character, or
the substitution of a character in either T1 or T2. The edit distance algorithm used
was the Levenshtein distance (Levenshtein, 1966);

5http://en.wikipedia.org/wiki/Cosine similarity

http://en.wikipedia.org/wiki/Tf-idf
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double countSim The countSim9, countSim10 and countSim11 attributes are calculated
through a formula that counts the number of common words between two sets of
words T1 and T2.

2.3.2 Cross-Validation technique

Cross-Validation is a technique for estimating the performance of a predictive model.
Here, the training and test sets are from the same dataset. In machine learning approaches
is common to use the 10-fold cross-validation, where the dataset is divided into 10 equally
(or nearly equally) sized parts/folds. Then, 10 iterations are performed such that within
each iteration a different fold is used to validate the model (the fold is used as test set), be-
ing the other 9 folds (the training set), along with a classifier, used to generate the model.
Furthermore, in the stratified 10-fold cross-validation, the dataset is stratified to make
sure that each of the 10 folds contains roughly the same proportions of the two categories
(in the context of this work: yes - correct matches and no - incorrect matches). Note:
when a fold is used as test set, the already known categories are not considered. Once
again, the Weka software provides the necessary packages to implement this technique.

2.3.3 Classifiers

The Weka software already provides several classifiers. The classifiers used in this work
are presented in the list below. The criteria to choose them was to encompass a variety
of groups of classifiers. The groups are: Trees; Meta; Bayes; Functions; and Neural
Networks.

Trees
J48 (Quinlan, 1993) is an open source Java implementation of the C4.5 algorithm
in the Weka data mining tool;
Random forests are an ensemble learning method for classification (and regres-
sion) that operate by constructing a multitude of decision trees at training time and
outputting the class that is the mode of the classes output by individual trees6. The
algorithm was developed by Leo Breiman (Breiman, 2001) and Adele Cutler;
Random Tree constructs a tree that considers K randomly chosen attributes at each
node7.

Meta
Rotation forest (Rodriguez et al., 2006) every decision tree is trained by first apply-
ing principal component analysis (PCA) on a random subset of the input features.

6http://en.wikipedia.org/wiki/Random forest
7http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomTree.html
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Bayes
NaiveBayes classifier (John and Langley, 1995) is a simple probabilistic classifier
based on applying Bayes’ theorem with strong (naive) independence assumptions8.

Functions
SMO (Platt, 1998) implements John Platt’s sequential minimal optimization algo-
rithm for training a support vector classifier9.

Neural Networks
Multilayer Perceptron (Rosenblatt, 1961) utilizes a supervised learning technique
called back propagation for training the network.

2.4 Performance Evaluator

The Precision, Recall and Accuracy metrics are used to assess the quality of the align-
ments produced by the instance matching techniques, and they are calculated when the
comparison between the alignment and the reference alignment is made. The alignment
can be one-to-one or many-to-many. In the first case, each instance is only present once
in the alignment, i.e., there are no more than one match per instance; in the second case,
each instance can be present several times in the alignment, i.e., it can be more than one
match per instance. Furthermore, there is also the F-measure metric that is the harmonic
mean of Precision and Recall.

In order to calculate these metrics it is necessary to make the further calculation:

Figure 2.17: Classification table
Source:http://en.wikipedia.org/wiki/Precision_and_recall

Actual class (expectation) = Reference alignment
Predicted class (observation) = Alignment

Instances (ontology a) = {a1,...,an}
Instances (ontology b) = {b1,...,bm}

8http://en.wikipedia.org/wiki/Naive Bayes classifier
9http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html

http://en.wikipedia.org/wiki/Precision_and_recall
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Reference alignment = {(ai,bj),...} 1<= i <=n and 1<= j <=m
Alignment = {(ak,bl),...} 1<= k <=n and 1 <= l <=m
Total domain (one-to-one) = reference alignment + Instances(ontology a)− reference alignment

+ Instances(ontology b)− reference alignment

Total domain (many-to-many) = Instances(ontology a) ∗ Instances(ontology b)

TP ={(ax, by) : (ax, by) in alignment and (ax, by) in reference alignment}
= {alignment ∩ reference alignment}

FP = {(ax, by) : (ax, by) in alignment and (ax, by) not in reference alignment}
= {alignment − TP}

FN = {(ax, by) : (ax, by) not in alignment and (ax, by) in reference alignment}
= {reference alignment − TP}

TN = {(ax, by) : (ax, by) not in alignment and (ax, by) not in reference alignment}
= {total domain − {alignment + {reference alignment − TP}}}

Precision: is the fraction of correct matches in the alignment. The correct matches are
the matches present in the reference alignment.

Figure 2.18: Precision formula
Source:http://en.wikipedia.org/wiki/Precision_and_recall

Recall: is the fraction of matches of the reference alignment that are present in the align-
ment.

Figure 2.19: Recall formula
Source:http://en.wikipedia.org/wiki/Precision_and_recall

F-measure: is the average of Precision and Recall rates.

Figure 2.20: F-measure formula
Source:http://en.wikipedia.org/wiki/F-measure

http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/F-measure
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Accuracy: is the fraction of true results over all the matching possibilities (total domain)
between the ontologies aligned.

Figure 2.21: Accuracy formula
Source:http://en.wikipedia.org/wiki/Precision_and_recall

2.5 PHP built-in Functions

PHP10 is a server-side scripting language designed mainly for web development, which
provides several built-in functions.

1. trim function — Strip white space (or other characters) from the beginning and end
of a string.

2. strip tags function — Strip HTML and PHP tags from a string.

3. htmlentities function — Convert all applicable characters to HTML entities; flags:
ENT QUOTES - Will convert both double and single quotes; encoding: UTF-8 -
ASCII compatible multi-byte 8-bit Unicode.

4. urlencode function — URL-encodes string. This function is convenient when en-
coding a string to be used in a query part of a URL, as a convenient way to pass
variables to the next page.

10http://php.net/

http://en.wikipedia.org/wiki/Precision_and_recall


Chapter 3

Implementation

This chapter describes the architecture of the system developed and its modules. The
system’s main goal was solving OAEI 2012 and POWER instance matching problems, as
any other instance sets following the same formats.

3.1 System Architecture

This section presents the input and output of the system, its modules, their relations, and
the data that flows between them.

Figure 3.1: Overview of the System. This Figure shows the modules that are part of the
system, the data flow between them, the user input and what it receives as output.

Based on: (Larman, 2004)

The system receives as input two instance sets introduced by the user of the system,
and produces to the output the final alignment. The final alignment is composed of: in-
stances for which was identified a match, i.e., the pairs of instances matched; the instances
to which no match was identified, i.e., the instances matching to NULL; and their con-
fidence score. The confidence score [0,1] represents the probability of each match to be
true. Optionally, the user can also input a reference alignment. This allows the system
to output metrics that attest the quality of the final alignment, by comparing it with the

21
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reference alignment. It is assumed that the reference alignment contains all the correct
matches between the two instance sets.

In order to do that, the system on receiving as input the two instances sets, performs
a pre-processing operation, in order to extract the data of each instance, i.e., the literal
information. This is fundamental to perform the instance matching process because, it
provides to the matcher the necessary information to determine if two instances corre-
spond to the same entity or not, i.e., if they match. The outcome of it is the alignment.
Furthermore, before becoming the final alignment, is applied to it a filtering process.
This process receives two parameters given by the user on input. The first parameter is
the Threshold and allows the user to select the minimum confidence score (0.0 by de-
fault) of the matches to be included in the final alignment; and the second parameter is
the one-to-one matcher, which is optional, and guarantees that in the final alignment, each
instance is only present once in the final alignment, i.e., there are no more than one match
per instance. If a reference alignment is given as well, the final alignment is assessed
in its performance, through the metrics of Precision, Recall, F-measure, Accuracy and
Unilateral Accuracy.

3.2 Pre-Processing
This module receives as input two instance sets, introduced by the user of the system, and
through the Apache Jena1, extracts the literal information belonging to each instance.

The literal information of an instance is the textual content of its properties, and can
be composed of: labels, dates, articles, codes, etc. For example, the following instance
representation:

<instance:Instance rdf:about="http://tool.for.ontology.instance.matching/jose_manuel_durao_barroso">
<instance:name>José Manuel Durão Barroso</instance:name>
<instance:date_of_birth>23/03/1956</instance:date_of_birth>
<instance:article>José Manuel Durão Barroso é um polı́tico e professor português,
actual presidente da Comissão Europeia, cargo que ocupa desde Novembro de 2004.
Em Portugal, foi sub-secretário do ministério dos assuntos internos, em 1985,
e ministro dos Negócios Estrangeiros em 1992.
Entre 2002 e 2004, ocupou o cargo de primeiro-ministro da República Portuguesa.
</instance:article>
</instance:Instance>

Above, is shown an instance, represented in .RDF, corresponding to the Portuguese politi-
cian Durão Barroso. The first line, is the URI of the instance. The following lines corre-
spond to the properties of the instance: name (label), date of birth, and article. The content
of the properties is the literal information: José Manuel Durão Barroso, 23/03/1956, José
Manuel Durão Barroso é um polı́tico e professor português...

This pre-processing operation returns two objects, corresponding to each instance set
introduced, that maps each instance to the correspondent literal information. Because, this
system only deals with the labels of the instances, in order to be able to perform instance
matching between all kinds of instance sets, only the literal information corresponding to

1http://jena.apache.org/
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the labels is extracted. This pre-processing operation was applied in the POWER, DBpe-
diaPT and Verbetes instance sets.

However, for the OAEI 2012 matching problem the pre-processing operation had to
be different. The literal information extracted corresponded to the properties such as:
name and amount (both considered as labels); article; date of birth; form of government;
capital; etc. Furthermore, it was also necessary to recur to the SPARQL provided by
the Apache Jena to identify the instances, because this international contest introduced
transformations at logical level that made harder to identify them.

3.2.1 Pre-Processing Sub-Modules

In the sub-sections below are described the pre-processing sub-modules, that are respon-
sible for cleaning the literal information of the instances. This is done, with the purpose
of putting all of them in the same textual conditions, in order to enhance the matchers
performance.

Diacritical Eliminator

This sub-module is responsible for eliminating the diacritics that might exist in the literal
information of an instance. For example, an instance with the label: “José Manuel Durão
Barroso” is transformed to “Jose Manuel Durao Barroso”, by removing the accents. It was
applied in POWER, DBpediaPT and Verbetes, because their labels were in Portuguese.

Literal Information Normalizer

This sub-module is responsible for performing a deeper cleaning operation on the literal
information of the instances. Because, this system only deals with the labels of the in-
stances, the cleaning process consists of: putting the labels to lower case; remove all
contents placed within parentheses; remove all non-word characters; replace all under-
score characters for a single white space; replace all multiple white spaces for a single
one; remove the characters that are duplicate in row in each word; and finally, an op-
eration of trim is executed. This process was applied in the POWER, DBpediaPT and
Verbetes instance sets.

However, for the OAEI 2012 matching problem had to be created a different literal
information normalizer. Because, it was introduced strong textual changes in the literal
information of the properties. These changes were generally random text and words mod-
ifications. To face and overcome it, the cleaning process consisted of: putting the literal
information to lower case; remove all contents placed within parentheses; remove all
non-word characters; replace all underscore characters for a single white space; replace
all multiple white spaces for a single one; separate numbers from characters in a word;
remove the characters that are duplicate in row in each word; remove single characters;
remove the words that do not have vowels nor numbers; and finally, an operation of trim
is executed. This process of normalization was not perfect and could sometimes produce
errors by eliminating some important information. But, the harmful text that it cleaned
paid off.
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3.3 Matching

This module is responsible for performing instance matching between the instance sets
introduced (already pre-processed), and to return the alignment. Basically, the instance
matching mechanism tries to match each instance of one instance set with each instance
of the other instance set.

3.3.1 Element-level matcher

This sub-module implements the FirstLastNamePlusJaccard matcher. This matcher, is an
algorithm that considers a match the instances that have in their labels equal first and last
names. The confidence score of each match is set by the Jaccard Similarity Coefficient
(Jaccard, 1912) between the two labels. If the instances have multiple labels, each pair of
labels are evaluated in their first and last names. In case of draw, i.e., in cases that there
are more than one pair of labels that matches, the pair of labels that wins, is the one that
has the highest confidence score set by the Jaccard Similarity Coefficient.

For example, assume that Instance set 1 has an instance with the labels: “jose manuel
durao baroso” and “durao baroso”; and Instance set 2 has an instance with the labels:
“jose durao baroso” and “durao baroso”. The matcher will match these two instances, be-
cause the pairs of labels (“jose manuel durao baroso”,“jose durao baroso”) and (“durao
baroso”,“durao baroso”), have the same first and last names. The confidence score of the
match is set by the pair (“durao baroso”,“durao baroso”,1.0), because it is higher than the
other pair (“jose manuel durao baroso”, “jose durao baroso”,0.75). Moreover, for cases
where the labels have just one name the matcher works as well. Assume that Instance
set 1 has an instance with the label: “durao”; and Instance set 2 has an instance with
the label: “durao”; the matcher will consider that these two instances have the same first
and last names. This matcher was used as baseline in the results presented in the Results
Chapter 4.

3.3.2 Machine Learning matcher

This sub-module implements the machine learning matcher, through the Weka software
(Hall et al., 2009). To decide which pairs of instances are to be matched or not, this
matcher uses a model, whose training set was created from the POWER instance set
against the DBpediaPT instance set, and classified by the Rotation Forest. This classi-
fier was chosen because it proved to be one of the top classifiers during the OAEI 2012
tests, as explained in the Results Chapter 4. This matcher only deals with the labels of
the instances, in order to be able to perform instance matching between all kinds of in-
stance sets. For that reason, the machine learning attributes that it uses, are based on
the labels of the instances. These attributes are: boolean firstSame; double firstSameEC;
boolean lastSame; double lastSameEC; boolean twoLastSame; double twoLastSameEC;
boolean firstLastSame; double firstLastSameEC; double jcValue; double editSim; double
countSim. The last two attributes are based on the paper (Rong et al., 2012). Note: the
int name1Len and the int name2Len attributes, are not present in the set, because they
were never selected during the attribute selection exercise, that is presented in the Results
Chapter 4. Because the instance sets can have several labels for each instance, it is pos-
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sible to use them as synonyms to improve the matching possibilities. The pair of labels
that produces the highest non-boolean attributes sum, chooses the related attribute values
(including the boolean attributes) that will represent the pair of instances in the matching
process.

This matcher was used in the POWER-Verbetes and in the POWER-POWER align-
ment, that are mentioned in the Results Chapter 4.

3.3.3 Instances matching to NULL

In both matchers, they assign a confidence score to the instances matching to NULL. An
instance that matches to NULL, is an instance that was not matched to any other instance
of the other instance set. However, the matchers assign a score for each match, even if it is
a no match. The confidence score of an instance matching to NULL is set by the formula:
1− (MaxScore). Where the second term of the formula, is the maximum score, among
the no matches, assigned by the matcher for that instance. Then, it is subtracted by one,
because the higher a confidence score is, the lowest is the probability of not having a
matching instance in the other set.

Figure 3.2: NULL’s confidence score setting by the instance matching process.

The Figure 3.2 shows how the confidence score of an instance matching to NULL is
set by the instance matching process. The instance A1 of the Instance set 1, matches to
NULL because, the matcher did not match it to no-one (match:no to all instances of the
Instance set 2). But, it assigned a score to each instance matching assessment (score: X).
The maximum score is chosen (green box - score: 0,8), and the other ones are rejected
(red boxes). At the end, the instance A1 is matched to NULL, and the confidence score is
assigned (blue box - confidence score: 1 - 0,8 = 0,2).
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3.4 Filtering

This module implements a set of filters on the alignment returned by the matching pro-
cess. The set of filters is composed by two parameters given by the user. This module is
also responsible for outputting the final alignment.

Threshold is the first parameter, and allows the user to select the minimum confidence
score [0,1] of the matches to be included in the final alignment. Only the pairs of instances
matched and the instances matching to NULL, that have their confidence score within the
threshold are going to be present in the final alignment. All the results presented in the
Results Chapter 4, were produced within a threshold of 0.0.

The second parameter is the one-to-one matcher, which is optional, and guarantees
that each instance is only present once in the final alignment, i.e., there are no more
than one match per instance. This can be done by using the bipartite graph matching
approaches. This approach divides the pair of instances matched, into two disjoint sets,
being each set composed by the instances of the same instance set. In this case, it matches
one instance of one disjoint set to only one instance of the other disjoint set, guaranteeing
that the confidence score of the match is the highest possible for the instances composing
the pair. This is not valid for the (A) labels-sum+alphabetic-order one-to-one matcher,
whose algorithm is explained below. Note: the instances matching to NULL are not con-
sidered in this process, because they do not pair to any instance of the other disjoint set.
This module incorporates three one-to-one matchers, each one having their own criteria
to choose the instances that should pair. The matchers are: (A) labels-sum+alphabetic-
order; (B) confidence-score+attribute-sum; Hungarian Algorithm (Kuhn, 1955), that is an
algorithm for constructing a maximum weight perfect matching in a bipartite graph.

The (A) one-to-one matcher is based on two criteria. For example, given the instances
A1 with the label “a1”, A2 with the label “a2”, and A3 with the label “a3”, from the In-
stance set 1, that are matched with the instance B1 with the label “b1”, from the Instance
set 2. The first criteria, chooses the pair whose the sum of their labels length is the high-
est; if there is a draw (in the example there is, because “a1b1”, “a2b1”, “a3b1” length is
four), the second criteria chooses the pair, within the tied pairs, that is in the first place of
the alphabetic order. To assess that, the labels of the pair of instances are concatenated. If
there is still a draw, the pair chosen is randomly selected among the pairs that are placed
in first. Following the example, the pair (A1,B1) is chosen, this means that the instances
A2 and A3 are excluded. In this scenario, they are matched to NULL because they do
not match to any other instance. It is also assigned a new confidence score for these two
instances. Once again, they are going to be present in the final alignment, only if their
(new) confidence scores are within the threshold.

As the previous matcher, (B) one-to-one matcher is based on two criteria as well. The
first criteria is the highest confidence score, and the second criteria is the highest attribute
sum. The attribute sum for each pair is set by the matchers. In the machine learning
matcher, it corresponds to the sum of the non-boolean attributes. In the FirstLastName-
PlusJaccard matcher, it corresponds to the double editSim and double countSim sum.

If the one-to-one matcher parameter is not chosen, matches of one instance from one
disjoint set to multiple instances of the other disjoint set (many-to-many matches), may
appear in the final alignment. In practice, the alignment will just be transformed into the
final alignment (after the Threshold selection).
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3.4.1 Instances matching to NULL

As said before, in the one-to-one matcher there can be instances when are excluded match
to NULL, because they do not match to any other instance. In this case, a new confidence
score is assigned to these instances. The formula is 1− (MaxScore), which was already
introduced in a previous section. Following the example above, the second term of the
formula is the confidence score of the match of the instance excluded.

Figure 3.3: NULL’s confidence score setting in the one-to-one matcher - scenario 1

The Figure 3.3 shows how the new confidence scores of the instances of the example
are set. The instances A2 and A3 of the Instance set 1 were excluded of the match with
the instance B1 of the Instance set 2. These instances are then matched to NULL, being
their respective confidence scores (red boxes - confidence score: X) subtracted by one,
assigning to these instances new confidence scores (blue boxes - (new) confidence score:
1 - X = Y).

Furthermore, there can be situations where an instance is excluded from several matches.
In this case, the second term of the formula is the maximum confidence score among the
matches of the instance excluded.
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Figure 3.4: NULL’s confidence score setting in the one-to-one matcher - scenario 2

The Figure 3.4 shows how the confidence score of an instance that was excluded by
the one-to-one matcher is set. The instance A2 of the Instance set 1 matches to NULL
because, the one-to-one matcher decided to match the instances B1 and B2 from the In-
stance set 2, to other instances from the Instance set 1 (green boxes - chosen pair). The
maximum confidence score among the matches of the instance A2 is chosen (yellow box -
confidence score: 0,7), and the instance is matched to NULL with a new confidence score
assigned (blue box - (new) confidence score: 1 - 0,7 = 0,3).

3.5 Performance Evaluator

This module is responsible for assessing the quality of the final alignment returned by the
filtering module. In case the user gives as input a reference alignment, which contains all
the correct matches between the instance sets, it is calculated and produced to the output
the following performance metrics: Precision; Recall; F-measure; and Accuracy.

Furthermore, this module also calculates the Unilateral Accuracy metric for each in-
stance set. This metric shows the number of instances of each instance set, that are
correctly matched over the total of instances composing the respective instance set. In
this context, correctly means the instances that are matched in the final alignment that
are present in the reference alignment; and the instances matching to NULL in the final
alignment that are not present in the reference alignment.

In the sections below, it is presented the part of this work where it was implemented
the cross-validation technique. This part was used to evaluate the cross-validation matcher
performance and therefore to produce metrics.
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Cross-validation technique
In the matching problems below, it was used the machine learning technique of stratified
10-fold cross-validation. The dataset, where the training and test sets are extracted from,
is created through the association of each instance of one instance set with each instance
of the other instance set. In each association, the set of attributes is extracted and the yes
(match) and no (do not match) categories are assigned based on the reference alignment
between the instance sets. For example, on associating the instance A1 of the instance
set 1 with the instance B1 of the instance set 2, if this pair of instances is present in the
reference alignment, it is assigned the yes category.

In the following matching problems, the datasets are built from the instance sets that
are to be (re) aligned. This happened because was not used other instance sets where the
training set could have been extracted from. The reasons are explained below. The train-
ing set is used to train the classifier, resulting in the creation of the (instance matching)
predictive model.

3.5.1 OAEI 2012 instance matching
In the OAEI 2012 matching problem, the usage of stratified 10-fold cross-validation ma-
chine learning technique is justified, by the absence of other instance sets (outside the
OAEI 2012) capable of providing literal information suitable enough to fulfil the at-
tributes requirements. The set of attributes chosen were, the ones related to the instances’
labels: int name1Len; int name2Len; boolean firstSame; double firstSameEC; boolean
lastSame; double lastSameEC; boolean twoLastSame; double twoLastSameEC; boolean
firstLastSame; double firstLastSameEC; double jcValue; and the ones based on the paper
(Rong et al., 2012): double idfSim1; double topIdfSim2; double idfSim3; double top-
IdfSim4; double cosSim5; double idfSim6; double topIdfSim7; double editSim8; double
countSim9; double countSim10; double countSim11. I sent an e-mail to the authors of this
paper to find out, which datasets did they use to build the model in order to perform in-
stance matching, but the reply was inconclusive. This paper proposes an approach where
the attributes are build based on the combination of literal information:

Paper Attributes Combination of Literal Information
idfSim1 lsingle

topIdfSim2 lsingle
idfSim3 lsingle ∪ lshort ∪ llabel

topIdfSim4 lsingle ∪ lshort ∪ llabel
cosSim5 lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong
idfSim6 lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong

topIdfSim7 lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong
editSim8 llabel

countSim9 llabel
countSim10 ldate
countSim11 lnumber

Table 3.1: Paper Attributes overview. This table refers to the elements of the set of at-
tributes, used in the OAEI 2012 matching problem, that are from the paper (Rong et al.,
2012), and the way they are calculated.
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The lsingle literal information is extracted from the instance’s properties that have in
their literal information only one word; the lshort concerns the ones that have between
two and three words; the llong concerns the ones that have more than three words; the
lproperty concerns the literal information present in other properties of other instances, that
the instances point to; The lnumber and the ldate, concerns respectively to the properties
that have in their literal information numbers solely, and dates. It were just considered
dates which have only numbers in their representation separated by -, / or :. For example:
24-11-2004; or 11/24/2004. Note: the llink literal information, mentioned in the paper
(Rong et al., 2012), was not considered because, in the analysis made on the OAEI 2012
instance sets, no links in the literal information were found. At last, the llabel concerned
the label of the instances. In the Sandbox and IIMB instance sets (both belonging to the
OAEI 2012), the labels of the instances are represented by the name or amount properties,
but there are also instances that do not have labels in their properties.

3.5.2 POWER-DBpediaPT instance matching

To perform instance matching between POWER and DBpediaPT, it was necessary to use
the machine learning technique of stratified 10-fold cross-validation (using as classifier
the Random Forest), based on the attributes related with the labels of the instances. Be-
cause, POWER and DBpediaPT have several labels for each instance, it was possible to
use synonyms to improve the matching possibilities. The pair of labels that produced
the highest non-boolean attributes sum, chose the related attribute values (including the
boolean attributes) to represent the pair of instances in the matching process.

The usage of stratified 10-fold cross-validation is justified by the fact that the model,
which training set was created from the Sandbox reference instance set against the Sand-
box 001 instance set, both belonging to the OAEI 2012, and classified by the Random
Forest, did not produce good metrics in the assessment of the first final alignment. Preci-
sion equals to 31.33%, and Recall equals to 58.63%. In order to perform cross-validation
and to assess a final alignment, was necessary to have a reference alignment. The one
used in this matching problem was built manually by me and provided to the REACTION
group2, and contained instances matching to NULL to fulfil the group demands.

2http://dmir.inesc-id.pt/project/Reaction
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Figure 3.5: POWER-DBpediaPT reference alignment sample. The URL of the DBpedi-
aPT instances were changed to fulfil the REACTION group demands.

DBpediaPT Filtering

Before performing the instance matching between POWER and DBpediaPT, it was nec-
essary to filter the DBpediaPT instances. This was done because the DBpediaPT was very
large (contains 57103 instances) for the instance matching tool to handle. Basically, this
filtering process consisted of detecting only instances concerning Portuguese politicians.
To detect it, a supporting instance set of the same version of the DBpedia was used3. This
supporting instance set contains abstract texts for each person of the Portuguese version
of Wikipedia, giving several types of information such as the complete name of a person
(which was used as a second label for the DBpediaPT instances, in the instance match-
ing process), its nationality, and profession. For example, “José Manuel Durão Barroso
é um polı́tico e professor português”. More precisely, the filter looked for the following
patterns: portug; politic; ministr; dirigente; presiden; deputad; partido; autar; vereador;
secretari; parlamento; govern; legisla; regiona; assembleia; diplomata. Note that some
patterns are incomplete to encompass gender and root words. Were also included as pat-
terns the Portuguese political parties acronyms, but this was not efficient because these
patterns let many instances that were not Portuguese politicians to pass.

The outcome of this filtering process was the reduction of the DBpediaPT from 57103
instances to 596. This process was not perfect, because this reduced instance set still had
instances that were not Portuguese politicians, and it is possible that some Portuguese
politicians instances were not detected.

3http://downloads.dbpedia.org/3.8/pt/
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Figure 3.6: Sample instances from DBpediaPT before the filter process

Figure 3.7: Supporting instance. In bold, the complete name, the nationality and the
profession, of the person represented in the instance.

Figure 3.8: Sample instances from DBpediaPT after the filter process. In bold, an instance
that is not a Portuguese politician. The URL of the instances were changed to fulfil the
REACTION group demands.

3.6 Instance Matcher Web Tool
This section describes the Web tool that allows the user to perform instance matching
between two instance sets. The Web tool is a front-end for the modules described in
the sections above, except for the cross-validation technique module. Furthermore, just
one of three one-to-one matchers developed is available as an user option. The one-to-
one matcher chosen was the (A) labels-sum+alphabetic-order, because it produced the
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best results among the other two: (B) confidence-score+attribute-sum, and Hungarian
Algorithm; during the POWER-DBpediaPT alignment, presented in the Results Chapter
4.

The Web tool can be accessed through the URL: http://lasige.di.fc.ul.
pt/webtools/instancematcher/.

3.6.1 Web Tool Input

The input of the Web tool (Figure 3.10) are: Instance set 1 (compulsory) the URI for
the instance set to be matched; Instance label identifiers the identifiers that indicate
which are the instance labels in the instance set 1; Instance set 2 (compulsory) the URI
for the instance set to be matched; Instance label identifiers the identifiers that indicate
which are the instance labels in the instance set 2; Reference alignment the URI for the
reference alignment between the given instance sets; Instance relation: One-to-one and
many-to-many (selected by default); Matching algorithm allows to select the matcher
that will perform instance matching between the instance sets given. The matchers are:
FirstLastNamePlusJaccard (selected by default) and MachineLearning; Threshold allows
to select the minimum confidence score [0,1] of the alignment produced to the output;
OAEI 2012 (selected by default) indicates that the instance sets introduced are from the
OAEI 2012 contest; POWER 2010: Is1 (Instance set 1) and Is2 (Instance set 2) indicate
respectively which of the instance sets introduced are from the POWER instance set. In
both OAEI 2012 and POWER 2010 (Is1 and Is2) input, if they are selected, the Instance
label identifiers input can be left empty.

The instance label identifiers are related with the URIs of the properties, within an
instance set, that correspond to the labels of the instances. For example:

<owl:DatatypeProperty rdf:about="http://oaei.ontologymatching.org/2012/IIMBTBOX/name"/>
<owl:DatatypeProperty rdf:about="http://oaei.ontologymatching.org/2012/IIMBTBOX/amount"/>

<owl:NamedIndividual rdf:about="http://oaei.ontologymatching.org/2012/IIMBDATA/en/abuja">
...
<IIMBTBOX:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Abuja</IIMBTBOX:name>
...
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://oaei.ontologymatching.org/2012/IIMBDATA/m/01xpnvx">
...
<IIMBTBOX:amount rdf:datatype="http://www.w3.org/2001/XMLSchema#double">1.8E7</IIMBTBOX:amount>
...
</owl:NamedIndividual>

This example, extracted from the Sandbox reference instance set, indicates in the first
two lines, the two URIs that identify which are the labels in this instance set. The URIs
are: “http://oaei.ontologymatching.org/2012/IIMBTBOX/name”; and “http://oaei.ontolo-
gymatching.org/2012/IIMBTBOX/amount”. They identify respectively the labels: <IIMBT-
BOX:name...>; and <IIMBTBOX:amount...>.

http://lasige.di.fc.ul.pt/webtools/instancematcher/
http://lasige.di.fc.ul.pt/webtools/instancematcher/
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3.6.2 Usage
The input that have the (*) character are mandatory, and their URI must begin with the
http. If any of them are left empty, an error message is displayed in red color saying:
“Missing compulsory input!” (Figure 3.14). To limit the user input, the Instance set
1, 2 and Reference alignment input have a maximum length of 150 characters, and the
Instance label identifiers have a maximum length of 200 characters. If for any reason
these limits have been violated, an error message is displayed in red color saying: “Check
the input length: Max = 150 characters! For instance label identifiers: 200 characters!”
(Figure 3.15). To add multiple instance label identifiers, is not required any pattern. It is
assumed that each identifier begins with the http prefix.

The Web tool already provides default input values. In the Instance set 1, 2, Instance
label identifiers and Reference alignment, these values concern the Sandbox instance
sets from the OAEI 2012 competition. For experimental purposes these instance sets can
be changed from 001 to 011 in the input values (mind the reference alignment input value).
If the user changes any input that composes the Web tool, the values will be preserved for
the next usage, i.e., do not return to the default values.

The Web tool only supports instance sets from the following extensions: .RDF; .OWL;
.NT; and .TTL. On the violation of this requirement, an error message is displayed, in the
output page, saying: “Error on Instance Matching! - Problems on the instance matching
execution!” (Figure 3.16). If this violation occurs in the Reference alignment input, the
message will be: “Error on Instance Matching! - Problems on the alignment assessment!”
(Figure 3.17). Note that in the .NT and .TTL instance sets extensions no instance label
identifiers are needed. This situation also occurs if the OAEI 2012 and POWER 2010
input have been selected.

3.6.3 Output
The Web tool output will be in a second page, the output page, through the “Click here
to obtain the results!” link, displayed in the input page on submission (Figure 3.10 at the
bottom). Until this link does not appear, a loader is displayed near by the submit button
“Instance Matching”. The output page allows multiple instance matching submissions
without loosing the view of the input page. Each user submission has an unique identifier
to avoid overwriting. The results appear in the output page by refreshing it, although the
page auto-refreshes every 20 seconds. This feature has the advantage of avoiding network
time-outs, if the instance matching process takes too long.

The results consist of: the final alignment between the instance sets introduced, avail-
able through the link “The alignment” (Figure 3.11); a panel containing information about
the input and the elapsed time of the all process. Furthermore, if a reference alignment is
given, is also displayed information about the final alignment assessment (Figure 3.12),
or if not, just summarized information about it (Figure 3.13).

If some error occurs during the instance matching process, the output page can display
the following error messages: “Error on Instance Matching! - Problems on the instance
matching execution!” (Figure 3.16), if the error occurs during the instance matching pro-
cess; “Error on Instance Matching! - Problems on the alignment assessment!” (Figure
3.17), if the error occurs during the alignment assessment process; “Error on Instance
Matching! - Problems on the elaboration of instance matching information!”, if the error
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occurs during the elaboration of the summarized information; or just “Error on Instance
Matching!”, the default.

3.6.4 Security

Some security issues have already been addressed, such as the maximum input length
in characters. But the Web tool has other mechanisms to filter the user input. These
mechanisms are provided by the PHP language, and are applied before the input is
passed as arguments into the system, in the following order: the trim(input); the
strip_tags(input); and the htmlentities(input,ENT_QUOTES,’UTF-8’)
operations. Furthermore, is also applied the urlencode(input) function to avoid ex-
ecution of shell or other (malicious) commands. This function is applied as well to the
variables that are passed from the input page to the output page. These variables are the
unique identifier of the submission, and a flag that signals if a reference alignment was
given as input or not. In the output page, these variables are filtered based on the same
set and order of the mechanisms described above. Moreover, there is also a maximum
character check on these variables. The unique identifier has a maximum length of 30
characters, because during the Web tool tests, it never exceeded fifteen characters; and
the reference alignment flag has a maximum length of 1 character, because in the URL
variables the true value is represented by the number 1, and false value is represented by
an empty value. On the violation of these requirements the output page will display the
following red color error message: “The parameters in the URL must respect a maximum
length of: uid <= 30 characters! refAlign input: <= 1 character!”.

3.6.5 Limitations

The Web tool has some limitations that are needed to take into account. The first limita-
tion is about the maximum size of the instance sets introduced as input. If they are too
large, the web tool will not return any results, but a red color error message saying: “Error
on Instance Matching! - Instance sets too big!” (Figure 3.18), in the output page. The
biggest final alignment produced so far by the web tool occurred in the POWER-POWER
alignment (2839*2839 = 8.059.921 total instance pairs possibilities). The second limi-
tation is about the type of instances expected. It is expected that each instance follows
a pattern, where the labels are in the next lower level below the unique identifier of an
instance. This does not happen in case of the POWER instance set, and that is why there
is the POWER 2010 input option. It is also expected that the instances have no code that
make them difficult to identify in the instance set, and that all of them have labels. This
does not happen in case of the OAEI 2012 instance sets, and that is why there is the OAEI
2012 input option. The third limitation concerns the location of the label of an instance, in
the .NT and .TTL instance sets extensions. It is expected that the labels be right next of the
/ character. For example: <http://pt.wikipedia.org/wiki/António Guterres><><>.
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3.6.6 Web Tool Screenshots
In this subsection, screenshots of the web tool are presented.

Figure 3.9: Web tool header screenshot

In this Figure, it is exhibited the header of the web tool, which is present in both input
and output pages. The header is composed by the SOMER logo, which is the name of the
project that focuses on several areas where is included instance matching, and to which I
belong as well. By clicking on the logo, the SOMER official website4 will be opened in a
new tab. In the bottom right of the header, the meaning of the acronym is written out.

Figure 3.10: Web tool input screenshot. The image shows the input and their default
values. At the bottom, the link to the output page, which appears post-submission.

4http://somer.fc.ul.pt/
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Successful Scenario

Here, it is presented the successful scenario of the submission above.

Figure 3.11: Web tool output screenshot - part 1. The link corresponds to the final align-
ment produced.

Figure 3.12: Web tool output screenshot - part 2. The image shows the panel containing
the information about the input and the elapsed time of the all process. And because a
reference alignment was given, is also displayed information about the final alignment
assessment. Note: the Results size: X information is referring to the number of matches
present in the final alignment; and the Results size w/o Nulls: X information is just refer-
ring to the number of pair of instances matched, present in the final alignment, without
counting the instances matched to NULL.

Figure 3.13: Web tool output screenshot - alternative. The image shows the panel con-
taining the information about the input and the elapsed time of the all process. For the
cases when no reference alignment is given, is just displayed summarized information
about the final alignment. Note: the Results size: X information is referring to the number
of matches present in the final alignment; and the Results size w/o Nulls: X information
is just referring to the number of pair of instances matched, present in the final alignment,
without counting the instances matched to NULL.



Chapter 3. Implementation 38

The image below, displays the sample of the final alignment produced. It is exhibited
a pair of instances matched, and an instance matched to NULL, and their respective con-
fidence score. The final alignment also gives the URI of the instance sets involved in the
instance matching process. This information can be located at the beginning or at the end
of the final alignment.

<Alignment>
<map>

<Cell>
<entity2 rdf:resource="http://oaei.ontologymatching.org/2012/
IIMBDATA/en/item3528632717660394758"/>
<entity1 rdf:resource="http://oaei.ontologymatching.org/2012/
IIMBDATA/en/fiji"/>
<measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">
1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>

<Cell>
<entity2 rdf:resource="http://oaei.ontologymatching.org/2012/
IIMBDATA/en/item4269973570709932774"/>
<entity1 rdf:resource="http://NULL/15367030870144571"/>
<measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">
0.6666666</measure>
<relation>=</relation>

</Cell>
</map>
</Alignment>

<Input>
<InstanceSet2>http://lasige.di.fc.ul.pt/webtools/instancematcher/
ont/sandbox/001/sandbox.owl</InstanceSet2>
<InstanceSet1>http://lasige.di.fc.ul.pt/webtools/instancematcher/
ont/sandbox/sandbox.owl</InstanceSet1>

</Input>

Exceptions

Here, it is presented some of the error messages displayed in the web tool, when some
exceptions occur.

Figure 3.14: Missing compulsory input. This error message is displayed in the input page,
if any of the mandatory input are left empty.
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Figure 3.15: Input length violation. This error message is displayed in the input page, if
any of the input length constraints are not respected.

Figure 3.16: Instance matching execution error. This error message is displayed in the
output page, if some error occurs during the instance matching process.

Figure 3.17: Alignment assessment error. This error message is displayed in the output
page, if some error occurs during the alignment assessment process.
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Figure 3.18: Instance sets too big error. This error message is displayed in the output
page, if the instance sets introduced have to much instances for the web tool to handle.

Software
The Instance Matcher Web tool is hosted in the Server Chronos5, that belongs to LaSIGE,
with Linux as operating system, and Apache as web server.

The tool’s web pages were written in HTML/CSS. The PHP language was used to
collect the user input and to generate dynamic web page contents. PHP and HTML were
also used to implement security measures in the Web tool.

The modules described in the above sections, were written in Java programming lan-
guage using the Eclipse platform, and they were then incorporated in the Web tool through
a .JAR (archive file format). Here, the PHP code was used to pass the user input as argu-
ments to the .JAR, and to retrieve and to process its output.

5http://xldb.fc.ul.pt/wiki/XLDB Servers Internal Pages
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Results

This chapter presents the results obtained by the system presented in the previous Chap-
ter, in the following matching problems: OAEI 2012; POWER-DBpediaPT; POWER-
Verbetes; and POWER-POWER alignments. All the alignments and metrics produced are
available through this link: http://lasige.di.fc.ul.pt/webtools/instancematcher/
dissertation_work.zip

4.1 OAEI 2012

This section describes the results of the OAEI 2012. The results are related with two
tasks of the OAEI 2012 instance matching track1: the Sandbox task, which is composed
by eleven instance sets; and the IIMB task, which is composed by eighty instance sets. To
produce the results (many-to-many alignments), it was used the stratified 10-fold cross-
validation machine learning technique. Thus, it was necessary to choose a classifier, in
order to create a model capable of predicting if a given pair of instances match or not.
The Weka software (Hall et al., 2009) provides several classifiers and, it was chosen some
of them in order to test which would produce the best results, and also to choose which
one would be used in the Web tool. The classifiers tested, encompassed some groups
of classifiers, for the test to be as broad as possible: Trees - J48, RandomForest and
RandomTree; Meta - RotationForest; Bayes - NaiveBayes; Functions - SMO; Neural
Networks - MLP (Multilayer Perceptron). It was also used the FirstLastNamePlusJaccard
matcher as baseline.

The quality of the results, presented below, are expressed in Precision, F-measure
and Recall metrics. Because, the Sandbox and IIMB tasks have many instance sets the
results were averaged, and in the case of the IIMB task, the eighty instance sets were
split into four parts (001-020; 021-040; 041-060; 061-080). In the graphics, each dot of
the baseline and of the classifiers tested corresponds to each part, but not necessarily in
the order presented in the tables. All this strategy of presenting the results, graphics and
tables, was based on the paper (Aguirre et al., 2012).

1http://oaei.ontologymatching.org/2012/
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Figure 4.1: Precision/recall results of the Sandbox task

Test 001-011
P F R

FirstLastNamePlusJaccard .96 .65 .49
RandomForest .96 .93 .90
J48 .96 .94 .92
NaiveBayes .44 .60 .96
RotationForest .96 .94 .92
RandomTree .94 .92 .90
SMO .97 .94 .92
MLP .97 .94 .91

Table 4.1: Results of the Sandbox task
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Figure 4.2: Precision/recall results of the IIMB task

Test 001-020 021-040 041-060 061-080
P F R P F R P F R P F R

FirstLastNamePlusJaccard .95 .74 .60 .97 .41 .26 .75 .83 .94 .79 .25 .15
RandomForest .94 .94 .93 .96 .96 .95 .81 .81 .80 .78 .77 .75
J48 .95 .95 .94 .95 .97 .98 .82 .82 .80 .79 .77 .75
NaiveBayes .35 .51 .97 .38 .55 .99 .48 .63 .90 .29 .44 .89
RotationForest .95 .95 .94 .95 .97 .99 .83 .82 .80 .79 .75 .71
RandomTree .92 .91 .90 .95 .95 .95 .80 .80 .80 .76 .74 .72
SMO .94 .94 .93 .96 .98 .99 .75 .76 .76 .74 .71 .69
MLP .95 .93 .91 .96 .96 .96 .77 .79 .80 .77 .74 .72

Table 4.2: Results of the IIMB task

4.1.1 Attributes selection
The results presented below, concern the attributes selection of the set of attributes cho-
sen for the stratified 10-fold cross-validation technique, used in the OAEI 2012 match-
ing problem. The attributes selection aimed at choosing the most relevant attributes for
the production of the results. In each one of the 10 iterations performed in the strat-
ified 10-fold cross-validation technique, it was applied together in the training set the
CfsSubsetEval2 and the GreedyStepwise3 algorithms, provided by Weka, to se-
lect the attributes that would be used to train the classifier, and therefore to create the

2http://weka.sourceforge.net/doc.dev/weka/attributeSelection/CfsSubsetEval.html
3http://weka.sourceforge.net/doc.dev/weka/attributeSelection/GreedyStepwise.html
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model capable of making the instance matching predictions. Note: to avoid the tampering
of the dataset, the Attributes Selection technique is applied in a copy of the training set.
This precaution is necessary because, in the stratified 10-fold cross-validation technique,
the dataset is used 10 times corresponding to the 10 iterations.

In the graphics and tables below, is presented the number of times that each attribute
was selected and the results produced by them.

Figure 4.3: Precision/recall results of the Sandbox task - Attributes selection

Test 001-011
P F R

FirstLastNamePlusJaccard .96 .65 .49
RandomForest .93 .93 .92
J48 .93 .93 .93
NaiveBayes .50 .66 .95
RotationForest .94 .93 .92
RandomTree .93 .93 .92
SMO .92 .93 .93
MLP .94 .93 .92

Table 4.3: Results of the Sandbox task - Attributes selection
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Figure 4.4: Times Selected/Attributes’ References of the Sandbox task - Attributes selec-
tion

Attributes’ References Attributes’ Names Times Selected
A idfSim1 4
B topIdfSim2 0
C idfSim3 15
D topIdfSim4 7
E cosSim5 50
F idfSim6 50
G topIdfSim7 70
H editSim8 10
I countSim9 18
J countSim10 70
K countSim11 81
L name1Len 0
M name2Len 0
N firstSame 0
O firstSameEC 34
P lastSame 20
Q lastSameEC 17
R twoLastSame 1
S twoLastSameEC 0
T firstLastSame 0
U firstLastSameEC 42
V JCValue 71

Table 4.4: Table showing the times each attribute was selected, and their respective refer-
ences. Sandbox task - Attributes selection
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Figure 4.5: Precision/recall results of the IIMB task - Attributes selection

Test 001-020 021-040 041-060 061-080
P F R P F R P F R P F R

FirstLastNamePlusJaccard .95 .74 .60 .97 .41 .26 .75 .83 .94 .79 .25 .15
RandomForest .91 .90 .89 .95 .96 .97 .75 .76 .77 .74 .73 .71
J48 .95 .93 .91 .95 .97 .99 .81 .80 .79 .78 .73 .69
NaiveBayes .49 .65 .96 .49 .66 .99 .43 .58 .89 .35 .50 .89
RotationForest .95 .93 .91 .95 .97 .99 .83 .80 .77 .77 .70 .64
RandomTree .90 .90 .89 .95 .96 .97 .75 .78 .81 .73 .72 .70
SMO .93 .93 .92 .95 .97 .98 .73 .72 .70 .69 .66 .63
MLP .99 .95 .91 .96 .97 .98 .75 .77 .80 .81 .76 .72

Table 4.5: Results of the IIMB task - Attributes selection
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Figure 4.6: Times Selected/Attributes’ References of the IIMB 001-020 - Attributes se-
lection

Attributes’ References Attributes’ Names Times Selected
A idfSim1 2
B topIdfSim2 0
C idfSim3 10
D topIdfSim4 75
E cosSim5 81
F idfSim6 115
G topIdfSim7 38
H editSim8 0
I countSim9 70
J countSim10 90
K countSim11 134
L name1Len 0
M name2Len 0
N firstSame 0
O firstSameEC 41
P lastSame 98
Q lastSameEC 93
R twoLastSame 74
S twoLastSameEC 0
T firstLastSame 37
U firstLastSameEC 130
V JCValue 76

Table 4.6: Table showing the times each attribute was selected, and their respective refer-
ences. IIMB 001-020 - Attributes selection
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Figure 4.7: Times Selected/Attributes’ References of the IIMB 021-040 - Attributes se-
lection

Attributes’ References Attributes’ Names Times Selected
A idfSim1 0
B topIdfSim2 0
C idfSim3 83
D topIdfSim4 100
E cosSim5 59
F idfSim6 190
G topIdfSim7 99
H editSim8 0
I countSim9 5
J countSim10 159
K countSim11 157
L name1Len 0
M name2Len 0
N firstSame 0
O firstSameEC 33
P lastSame 8
Q lastSameEC 70
R twoLastSame 3
S twoLastSameEC 1
T firstLastSame 7
U firstLastSameEC 43
V JCValue 133

Table 4.7: Table showing the times each attribute was selected, and their respective refer-
ences. IIMB 021-040 - Attributes selection
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Figure 4.8: Times Selected/Attributes’ References of the IIMB 041-060 - Attributes se-
lection

Attributes’ References Attributes’ Names Times Selected
A idfSim1 0
B topIdfSim2 0
C idfSim3 166
D topIdfSim4 15
E cosSim5 13
F idfSim6 60
G topIdfSim7 13
H editSim8 10
I countSim9 0
J countSim10 163
K countSim11 137
L name1Len 0
M name2Len 0
N firstSame 2
O firstSameEC 17
P lastSame 2
Q lastSameEC 17
R twoLastSame 3
S twoLastSameEC 0
T firstLastSame 23
U firstLastSameEC 8
V JCValue 160

Table 4.8: Table showing the times each attribute was selected, and their respective refer-
ences. IIMB 041-060 - Attributes selection
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Figure 4.9: Times Selected/Attributes’ References of the IIMB 061-080 - Attributes se-
lection

Attributes’ References Attributes’ Names Times Selected
A idfSim1 0
B topIdfSim2 0
C idfSim3 40
D topIdfSim4 76
E cosSim5 11
F idfSim6 131
G topIdfSim7 70
H editSim8 5
I countSim9 74
J countSim10 51
K countSim11 65
L name1Len 0
M name2Len 0
N firstSame 8
O firstSameEC 63
P lastSame 11
Q lastSameEC 83
R twoLastSame 28
S twoLastSameEC 14
T firstLastSame 2
U firstLastSameEC 51
V JCValue 56

Table 4.9: Table showing the times each attribute was selected, and their respective refer-
ences. IIMB 061-080 - Attributes selection
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Discussion

In this section it is discussed why, in the Attributes Selection task, some attributes were
selected more times than others, based on the analysis made on some datasets that were
produced in this task.

In the attributes based on the paper (Rong et al., 2012), the most selected attributes
were: double idfSim3; double topIdfSim4; double cosSim5; double idfSim6; double top-
IdfSim7; double countSim10; double countSim11. In my opinion, because their double
values were, most of the times, greater than 0.0. The attributes that were selected few
times: double idfSim1; double editSim8; double countSim9. In my opinion, because their
double values were few times greater than 0.0. The attributes that were never selected:
double topIdfSim2. In my opinion, because its double value was almost always 0.0.

Concerning the attributes proposed by the REACTION group. The most selected at-
tributes were: double firstSameEC; double lastSameEC; double firstLastSameEC; double
JCvalue. And the attributes that were selected few times: boolean firstSame; boolean
lastSame; boolean firstLastSame; boolean twoLastSame; double twoLastSameEC. These
two groups reveal a pattern where the attributes selection algorithms seemed to have pre-
ferred the double type attributes rather than the boolean type ones because, in my opinion,
the double type provides more detailed information (it provides real number values). The
attributes that were never selected: int name1Len; int name2Len. In my opinion, because
the integer values do not provide so much detailed information comparing with the double
values.

The int name1Len and the int name2Len attributes were never used, and this situa-
tion set the decision to not use them in the set of attributes, that was chosen to create the
instance matching predictive model, that is used by the Machine Learning matcher.

4.1.2 Uniform Distribution

The usage of the stratified 10-fold cross-validation technique implies the creation of a
dataset where training and test sets can be extracted from. In this work, the datasets are
built from the instance sets that are to be (re) aligned. Furthermore, to assign to each entry
of the dataset the categories of yes (match) or no (do not match), it is used the reference
alignment between those instance sets. More precisely, let us consider the following
example: on creating the entry related with the instance A1 of the instance set 1 with
the instance B1 of the instance set 2, if this pair of instances is present in the reference
alignment, it is assigned the yes category to the entry. This creates a situation, in the
dataset, where there are many entries with the no category and few entries with the yes
category. For example: on aligning the IIMB reference instance set, which contains 363
instances, with the IIMB 035 instance set, which contains 367 instances, is built a dataset
of 133221 (363*367) entries, but only 365 of them (the number of pairs of instances
present in the reference alignment) belong to the yes category.

To find out if this situation harms the quality of the predictive model, it was performed
tests in the Sandbox task, where in the training set the yes and no categories are uniformly
distributed, i.e., both of the categories have the same (or nearly the same) number of
entries. The Weka software provides a set of mechanisms to do it, but only two of them
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were used: Resample4 - in which the category with the higher frequency is decreased,
and the category with the lower frequency is increased (new entries are created from the
existing ones), until they “meet in the middle” or nearly; and SpreadSubsample5 - in
which the category with the higher frequency is decreased until it reaches the frequency
of the lower frequency category. Note: to avoid the tampering of the dataset and bias
situations, i.e., having the same entry in the training and test sets at the same time, the
Uniform Distribution technique is applied in a copy of the training set. This precaution is
necessary because, in the stratified 10-fold cross-validation technique, the dataset is used
10 times corresponding to the 10 iterations.

Figure 4.10: Precision/recall results of the Sandbox task - Resample Uniform Distribution

Test 001-011
P F R

FirstLastNamePlusJaccard .96 .65 .49
RandomForest .69 .80 .94
J48 .64 .77 .95
NaiveBayes .42 .58 .96
RotationForest .72 .82 .95
RandomTree .68 .79 .94
SMO .54 .70 .98
MLP .59 .73 .97

Table 4.10: Results of the Sandbox task - Resample Uniform Distribution

4http://weka.sourceforge.net/doc.dev/weka/filters/supervised/instance/Resample.html
5http://weka.sourceforge.net/doc.dev/weka/filters/supervised/instance/SpreadSubsample.html
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Figure 4.11: Precision/recall results of the Sandbox task - SpreadSubsample Uniform
Distribution

Test 001-011
P F R

FirstLastNamePlusJaccard .96 .65 .49
RandomForest .43 .60 .99
J48 .38 .55 .99
NaiveBayes .41 .58 .96
RotationForest .41 .58 .99
RandomTree .29 .45 .98
SMO .63 .76 .96
MLP .47 .64 .98

Table 4.11: Results of the Sandbox task - SpreadSubsample Uniform Distribution

The results presented above show that, although the Recall metric have increased,
the Precision metric have highly decreased, comparing with the Sandbox results of the
previous sections. This test, set the decision to not use the Uniform Distribution technique
in the other matching problems presented next and also, to not use it in the predictive
model incorporated in the Web tool.
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Discussion

The results presented in this OAEI 2012 section, showed that the Rotation Forest classifier
was one of the top classifiers, based on the F-measure metric. Therefore, it was chosen
to create the predictive model that is incorporated in the Web tool, through the Machine
Learning matcher.

4.2 POWER-DBpediaPT Alignment
This section presents the POWER-DBpediaPT alignment results. This matching problem
aimed at producing an one-to-one alignment with 90% of Unilateral Accuracy at least,
in the POWER side, although DBpediaPT Unilateral Accuracy was also calculated. Fur-
thermore, it was also used to set which one-to-one matcher was to be used in the Web
tool. There were considered three algorithms, that were already explained in the previous
Chapter: (A) labels-sum+alphabetic-order; (B) confidence-score+attribute-sum; Hungar-
ian Algorithm (Kuhn, 1955). The matchers used were the FirstLastNamePlusJaccard, and
the Stratified 10-Fold Cross-validation machine learning technique, using as classifier the
Random Forest.

As said before, the POWER instance set contains duplicate instances, i.e., two or
more instances representing the same entity. To put all the one-to-one matchers in the
same conditions, these duplicates were eliminated from the POWER-DBpediaPT refer-
ence alignment, and from the POWER instance set. Although, in this last case the elimi-
nation was performed by filtering out the duplicate instances from the instance matching
process. The criteria to choose which one of the duplicates should be not considered was
randomly set by me. For example, the entity X is represented twice in the POWER in-
stance set, through the instances A1 and A2, that match to the instance B1 in DBpediaPT.
So, I randomly choose the instance A2, to be filtered out from the POWER instance set,
and to not be present in the reference alignment. Instead, in the reference alignment is
present the pair (A1, B1).

The instances in POWER “eliminated” were only the ones that had a matching in the
DBpediaPT. The duplicate instances that had no matching in the DBpediaPT (instances
matching to NULL), were kept.

One-to-one Matcher FirstLastNamePlusJaccard Stratified 10-Fold Cross-validation
(A) 97.29% - 87.25% 99.11% - 95.97%
(B) 97.25% - 86.91% 99.18% - 96.14%

Hungarian 94.54% - 80.54% 99.04% - 95.81%

Table 4.12: POWER-DBpediaPT Alignment Results. This table shows the one-to-one
and the instance matchers used in this matching problem. The results are exposed as:
POWER Unilateral Accuracy - DBpediaPT Unilateral Accuracy.

According to the results presented in the Table 4.12, the (A) one-to-one matcher pro-
duced the best results, and therefore, it was chosen to be used in the Web tool. In the
FirstLastNamePlusJaccard: (A) >(B) = (0,04+0,34) 0,38; and in the Stratified 10-Fold
Cross-validation: (A) <(B) = (0,07+0,17) 0,24. Conclusion: (A)0,38 >(B)0,24.
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4.3 POWER-Verbetes Alignment

This section presents the POWER-Verbetes alignment results. For this matching problem
there was no reference alignment, and this situation required that the one-to-one alignment
produced was partly assessed by the REACTION group6, which is the final user of the
alignment, and the other part by me, the author of the alignment. The matcher used was
the Machine Learning, using as classifier the Rotation Forest.

Figure 4.12: POWER-Verbetes Alignment sample

In the alignment, the REACTION group looked for the most well-known Portuguese
politicians and attested that they were all correctly matched. But this feedback was not
enough, because it comprehended few Portuguese politicians (7 in total). That is why I
looked for more. I took 32 pairs of instances for which was identified a match, and just
3 of them were wrong. And I also took 20 instances matching to NULL, and they were
all correct. I assume that, the alignment, by the number of matches assessed, has high
likelihood of being mostly correct.

6http://dmir.inesc-id.pt/project/Reaction
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4.4 POWER-POWER Alignment
As said before, the POWER instance set has duplicate instances. To help the REACTION
group to find these instances, a many-to-many alignment between the POWER itself was
produced, and provided to the group. The purpose was to allow to an instance to be
matched by multiple instances (including itself), in order to find the duplicates. The
matcher used was the Machine Learning, using as classifier the Rotation Forest.

Figure 4.13: POWER-POWER Alignment sample. The Figure shows an instance aligned
with itself, and also with another instance.
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Conclusion

In this chapter is discussed the results achieved in this work, within the scope of the
objectives presented in Section 1.2.

Development of instance matching algorithms In this objective, it was implemented
three instance matching algorithms: FirstLastNamePlusJaccard matcher; Machine
Learning matcher; and the Stratified 10-fold Cross-validation matcher. Moreover, it
was also implemented algorithms that make part of the instance matching process,
such as: the pre-processing module, where it is extracted the literal information
belonging to each instance; the pre-processing sub-modules, where it is applied
a cleaning process in the literal information; and also the implementation of the
Hungarian Algorithm, and the creation and implementation of the algorithms (A)
labels-sum+alphabetic-order and (B) confidence-score+attribute-sum;

Real world instance alignments
POWER-DBpediaPT instance alignments This instance matching problem was
difficult to fulfil due to the duplicate instances of POWER. But the experiments
made in it, set the decision to choose the (A) labels-sum+alphabetic-order one-to-
one matcher to be used in the Web tool. Using this one-to-one matcher, in the First-
LastNamePlusJaccard matcher, the POWER Unilateral Accuracy achieved 97.29%,
and the DBpediaPT Unilateral Accuracy achieved 87.25%; and in the Stratified 10-
Fold Cross-validation, the POWER Unilateral Accuracy achieved 99.11%, and the
DBpediaPT Unilateral Accuracy achieved 95.97%. The reference alignment (one-
to-one) used in this matching problem was built by me, which I provided to the
REACTION group;

POWER-Verbetes instance alignments The one-to-one alignment produced by
the Machine Learning matcher was provided to the REACTION group, and because
there was no reference alignment, the alignment produced was partly assessed by
the REACTION group, which is the final user of the alignment, and the other part
by me, the author of the alignment. The assessment was positive from both parts;

POWER-POWER instance alignments The many-to-many alignment produced
by the Machine Learning matcher was provided to the REACTION group, to make
easier for them to identify the duplicate instances.

57
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OAEI 2012 Although this matching problem was not an objective, I am very pleased
about this task, because its tests were reference to make decisions about other sub-
jects in this work. Namely: the choice of the Rotation Forest classifier, based on
the results of the F-measure metric, to create the predictive model that is incorpo-
rated in the Web tool, through the Machine Learning matcher; the choice to not
use the name1Len and name2Len attributes in the creation of the already mentioned
predictive model; and the choice to not use the Uniform Distribution technique in
the same model, and in the other instance matching problems. About the results
presented in this instance matching problem, it is possible to say that the F-measure
was higher, in most cases, in the Stratified 10-fold Cross-Validation matcher then
in the FirstLastNamePlusJaccard matcher, that was used as baseline.

Evaluation Metrics To evaluate the alignments produced, it was implemented the Pre-
cision, Recall, F-measure and Accuracy metrics. Moreover, it was also created and
implemented the Unilateral Accuracy metric that concerns not only the instances for
which it was identified a match, but also the instances for each no match was iden-
tified, i.e., the instances matching to NULL. In this last case, it was implemented
an algorithm to assign a confidence score for this type of match, which includes
the instances that were completely excluded in the one-to-one matcher process, and
therefore, match to NULL. The Unilateral Accuracy is calculated for each instance
set.

Instance matcher Web tool development The Web tool incorporates the modules de-
veloped and the decisions made within the scope of the others objectives and tasks.
From the “Development of instance matching algorithms” objective incorporates
the FirstLastNamePlusJaccard and the Machine Learning matchers. And also, the
pre-processing module and sub-modules. From the OAEI 2012, the way the pre-
dictive model, used by the Machine Learning matcher, was created: using the Rota-
tion Forest classifier; without using name1Len and name2Len attributes as criteria;
and without applying the Uniform Distribution technique. And from the POWER-
DBpediaPT alignment, the (A) labels-sum+alphabetic-order one-to-one matcher.
Moreover, the POWER and DBpediaPT instance sets provided the training set, that
was used to build the predictive model. The Web tool also implements all the eval-
uation metrics developed, and allows the user to select the minimum confidence
score of the matches to be included in the alignment produced to the output, through
the Threshold option. Furthermore, it has options related with the OAEI 2012 and
POWER.
In terms of usage, the Web tool has already default values for the users to try it
in a single click of a button, but if they change any of them, the new values are
preserved for the next usage. To allow the user to submit several instance matching
operations, without waiting for each operation to finish, in each submission a link to
the output page is displayed. It also supports several instance sets extensions: .RDF;
.OWL; .NT; and .TTL. To avoid network time-outs, if the instance matching process
takes too long, the results appear in the output page by refreshing it, although the
page auto-refreshes every 20 seconds. In terms of feedback, this Web tool displays
various messages in both successful and exception scenarios, where it is included
security related messages. Concerning the security area, the purpose was to limit
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the user input, in terms of number of characters, and to avoid the execution of shell
or other (malicious) commands.

5.1 Future Work
Future work would include:

• OAEI 2014 participation. Using the experience acquired in the OAEI 2012;

• In the Web tool, the inclusion of an option where the user could choose one of the
three one-to-one matchers developed by me;

• The increment of the capacity of the Web tool to support larger instance sets;

• The development of instance matching algorithms using structural approaches, as
well. These techniques can be used to find correspondences between instances, by
assessing their properties similarities (internal structure), and their relations simi-
larities (relational structure), by comparing their relations with other instances;

• Writing a paper about the Instance Matcher Web tool.
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