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The robust reliable H∞ control problem for a class of nonlinear stochastic Markovian jump
systems (NSMJSs) is investigated. The system under consideration includes Itô-type stochastic
disturbance, Markovian jumps, as well as sector-bounded nonlinearities and norm-bounded
stochastic nonlinearities. Our aim is to design a controller such that, for possible actuator
failures, the closed-loop stochastic Markovian jump system is exponential mean-square stable with
convergence rate α and disturbance attenuation γ . Based on the Lyapunov stability theory and Itô
differential rule, together with LMIs techniques, a sufficient condition for stochastic systems is first
established in Lemma 3. Then, using the lemma, the sufficient conditions of the solvability of the
robust reliableH∞ controller for linear SMJSs and NSMJSs are given. Finally, a numerical example
is exploited to show the usefulness of the derived results.

1. Introduction

In the past few decades, Markovian jump systems (MJSs) have been considerably studied
since this kind of hybrid systems consists of a number of subsystems and a switch signal,
which includes applications in safety-critical and high-integrity systems (e.g., aircraft,
chemical plants, nuclear power station, robotic manipulator systems, large-scale flexible
structures for space stations such as antenna, and solar arrays) typically systems, which may
experience abrupt changes in their structure, see, for example, [1] and the references therein.
And now, some results of stability and stabilization for Itô type stochastic Markovian jump
systems are also available in many papers, see, for example, [2–4] and the references therein.

The analysis and synthesis problems of Markovian jump systems (MJSs) or stochastic
Markovian jump systems (SMJSs) have attracted plenty of attention from many researchers.
Many important and remarkable achievements reasonable have obtained. If the control
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systems possess integrity against actuator and sensor failures, we called reliable control
systems or fault-tolerant control systems [5]. Recently, the robust reliable control and
filtering problems for time-delay systems or Markovian jump systems (MJSs) have attracted
considerable attention, and several approaches have been developed, see, for example, [6–
11] and the references therein. Via linear matrix inequalities (LMIs), the authors designed
the robust reliable H∞ controller for uncertain nonlinear systems [6]. In [7], for admissible
uncertainties as well as actuator failures occurring among a prespecified subset of actuators,
Zhang et al. studied the reliable dissipative control of Markovian jump impulsive systems.
The reliable H∞ control problem for discrete-time piecewise linear systems with infinite
distributed delays have been investigated in [8]. Recently, the study of stochastic H∞
filtering for the systems governed by stochastic Itô-type equations has attracted a great
deal of attention, and Zhang and Chen [9] firstly solved the nonlinear stochastic delay-
free H∞ filtering problem by means of a stochastic bounded real lemma derived in [10].
The reliable H∞ filtering problems for discrete time-delay systems with randomly occurred
nonlinearities [11] and discrete time-delay Markovian jump systems with partly unknown
transition probabilities [12] also has been studied, respectively. The reliable control problem
for a class of Markovian jump systems with interval time-varying delays and stochastic
failure is studied in [13]. In recent years, the research begins to focusing on robust reliable
control problems for stochastic systems or stochastic switched nonlinear systems, see, for
example, [14–16] and the references therein.

However, all the aforementioned results are mainly focusing on the reliable control
and filtering problems of discrete-time-delay systems and Markovian jump systems. Up
to now, to the best of the authors’ knowledge, the robust reliable H∞ control problem for
nonlinear stochastic Markovian jump systems (NSMJSs) has not been fully investigated,
which is an open problem and gives the motivation of our present investigation. In this paper,
our aim is to design a robust reliable H∞ controller for NSMJSs, such that the NSMJSs are
globally mean exponential stable with convergence rate α and disturbance attenuation γ .

1.1. Notations

Throughout this paper, for symmetric matrices X and Y , the notation X ≥ Y (resp., X > Y )
means that the Matrix X-Y is positive semidefinite (respectively, positive definite). I is an
identity matrix with appropriate dimensions; the subscript “T” represents the Transposition.
E(·) denotes the expectation operator with respect to some probability measure P . L2[0,∞)
is the space of square integrable vector functions over [0,∞); let (Ω,F, P) be a complete
probability space which is relative to an increasing family (Ft)t>0 of σ algebras (Ft)t>0 ⊂ F,
where Ω is the samples space, F is σ algebra of subsets of the sample space, and P is the
probability measure on F.‖ · ‖E2

= ‖E(·)‖2, while ‖ · ‖2 stands for the usual L2[0,∞) norm, Rn

and Rn×m denote the n dimensional Euclidean space and the set of all n × m real matrices,
respectively. In this paper, we provide all spaces K

k, k ≥ 1 with the usual inner product
〈·, ·〉 and its corresponding 2-norm‖ · ‖. Let L2(Ω,Kk) denote the space of square-integrable
K

k-valued functions on the probability space (Ω,F, P). For any 0 < T < ∞, we write
[0, T] for the closure of the open interval (0, T) in R and denote by Ln

2([0, T];L
2(Ω,Kk)) the

space of the nonanticipative stochastic processes y(·) = (y(·))t∈[0,T] with respect to (Ft)t∈[0,T]
satisfying ‖y(·)‖2Ln

2
= E(
∫T
0 ‖y(t)‖2dt) = ∫T0 E(‖y(t)‖2)dt < ∞. V (x(t), t, r(t) = i) = V (x(t), t, i),

A(r(t) = i) = Ai B(r(t) = i) = Bi, A0(r(t) = i) = A0i, B0(r(t) = i) = B0i, C(r(t) = i) =
Ci, D(r(t) = i) = Di.
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2. Problem Formulation and Failure Model

In this paper, wemainly consider the following nonlinear stochastic Markovian jump systems
(NSMJSs)with actuator failures:

dx(t) =
[
A(r(t))x(t) + B(r(t))uf(t, r(t)) + E(r(t))v(t) + f(r(t), x(t))

]
dt

+
[
C(r(t))x(t) +D(r(t))uf(t, r(t)) +H(r(t))v(t) + g(r(t), x(t))

]
dw(t),

z(t) = J(r(t))x(t),

x(t0) = x0,

(2.1)

where x(t) ∈ Rn is the system state, uf(t) ∈ Rl is the control input of actuator fault,
v(t) ∈ Rq is the exogenous disturbance input of the systems which belong to L2[0,∞),
z(t) ∈ Rr is the system control output, w(t) is a zero mean real scalar Weiner processes on
a probability space (Ω,F, P) relative to an increase family (Ft)t>0 of σ algebras (Ft)t>0 ⊂ F.
Ai, Bi, Ei, Ci,Di, Fi,Hi, Ji are the known real constant matrices with appropriate dimensions.
Morever, we assume that

E(dw(t)) = 0, E
(
(dw(t))2

)
= dt. (2.2)

Let r(t), t ≥ 0, be a right-continuous Markovian chain on the probability space taking
values in a finite state space S = 1, 2, . . . ,N with generator Γ = (λij)N×N given by

P
{
r(t + Δ) = j | r(t) = i

}
=

⎧
⎨

⎩

λijΔ + o(Δ) if i /= j,

1 + λiiΔ + o(Δ) if i = j,
(2.3)

where Δ > 0. Here λij ≥ 0 is the transition rate from manner i to manner j, if i /= j while
λii = −∑j /= i λij . We assume that the Markovian chain r(·) is independent of the Wienner
processw(·). It is well known that almost every sample path of r(t) is a right-continuous step
function with a finite number of simple jump in any finite subinterval of R+(:= [0,+∞)).

f(·, ·) : S × Rn → Rn is a unknown nonlinear function which describes the system
nonlinearity satisfying the following sector-bounded conditions:

(
fi(x(t)) − T1ix

)T(
fi(x(t)) − T2ix

) ≤ 0, i ∈ S, (2.4)

g(·, ·) : S × Rn → Rn also is a unknown nonlinear function which describes the stochastic
nonlinearity satisfying the following:

gT
i (x(t))gi(x(t)) ≤ xTGT

i Gix, i ∈ S, (2.5)

where T1i, T2i, Gi are known real constant matrices with approximate dimensions.
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Remark 2.1. The nonlinearities fi(x(t)) are bounded by sectors, which belong to [L1i, L2i],
and are very general that include the usual Lipschitz conditions as a special case which is
considerable investigated and includes several other classes well studied nonlinear systems
[17–19]. The nonlinearities gi(x(t)) satisfy the norm-bounded conditions.

When the actuator experiences failure, we use uf(t, r(t)) to describe the control signal
form actuators. Consider the following actuator failure model with failure parameter Fi:

u
f

i (t) = Fiui(t), (2.6)

where Fi is the actuator fault matrix with

Fi = diag
(
fi1, fi2, . . . , fim

)
, 0 ≤ f

ij
≤ fij ≤ fij , f ij ≥ 1, j = 1, 2, . . . , m. (2.7)

In which the variables fij quantify the failures of the actuators. fij = 0 means that jth
actuator completely fails, and fij = 1 means that the jth actuator is normal.

Define the following:

F0i = diag
(
f0i1, f0i2, . . . , f0im

)
=

Fi + Fi

2
, f0ij =

f
ij
+ fij

2
, (2.8)

F̃0i = diag
(
f̃0i1, f̃0i2, . . . , f̃0im

)
=

Fi − Fi

2
, f0ij =

fij − f
ij

2
, (2.9)

and hence, the matrix Fi can be rewritten as

Fi = F0i + Δi = F0i + diag
(
ϕi1, ϕi2, . . . , ϕim

)
,
∣∣ϕij

∣∣ ≤ f̃ij , j = 1, 2, . . . , m. (2.10)

In this paper, our aim is to design the controller ui(t) = Kix(t), i ∈ S, such that the
closed-loop systems satisfy the following conditions:

(i) without the exogenous disturbance input (i.e., v(t) = 0), the closed-loop control
systems (2.1) are globally exponentially stable with convergence rate α > 0;

(ii) with zero initial condition (i.e., x(t0) = 0) and nonzero exogenous disturbance input
(i.e., v(t)/= 0), the following inequality holds:

‖z‖E2
< γ‖v‖2

(

i.e.,
∫T

0
zT (t)z(t)dt ≤ γ2

∫T

0
vT (t)v(t)dt

)

. (2.11)

If the above two conditions hold, we also called the systems that are exponential mean-
square stable with convergence rate α and disturbance attenuation γ .
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3. Main Results

Lemma 3.1 (Schur complement lemma [20]). For a given matrix S =
(

S1 S3
∗ S2

)
with ST

1 =

S1, S
T
2 = S2, the following conditions are equivalent:

(1) S < 0,

(2) S2 < 0, S1 − S3S
−1
2 ST

3 < 0,

(3) S1 < 0, S2 − S3S
−1
1 ST

3 < 0.

Lemma 3.2 (see [21]). Let x ∈ R
n and y ∈ R

n. Then, for any positive scalar ε, we have

xTy + yTx ≤ εxTx + ε−1yTy. (3.1)

3.1. Robust Reliable H∞ for LSMJSs

To obtain our main results, we first consider the following linear stochastic Markovian jump
systems (LSMJSs) without control input:

dx(t) = [Aix(t) + Eiv(t)]dt + [Cix(t) +Hiv(t)]dw(t),

z(t) = Jix(t),

x(t0) = x0.

(3.2)

Lemma 3.3. Suppose that P(t, r(t)) > 0 is continuously differentiable, then the systems (3.2) are
exponential mean-square stable with convergence rate α and disturbance attenuation γ if and only if
the following matrix functional inequalities hold:

Ξi(t) =

⎛

⎜⎜
⎝

Mi(t) + JTi Ji PiEi CT
i

∗ −γ2I HT
i

∗ ∗ −P−1
i (t)

⎞

⎟⎟
⎠ < 0, i ∈ S, (3.3)

whereMi(t) = AT
i Pi(t) + Pi(t)Ai + Ṗ(t) +

∑
j∈S λijPj(t).

Proof. At first, let v(t) = 0, and defining the following Lyapunov function:

V (x(t), t, i) = V (x(t), t, r(t) = i) = xT (t)P(t, r(t) = i)x(t) = xT (t)Pi(t)x(t). (3.4)

By Itô formula, we get the following:

LV (x(t), t, i) = xT (t)
(
Mi(t) + CT

i Pi(t)Ci

)
x(t), (3.5)

the matrix function inequalities (3.3) imply that LV (x(t), t, i) < 0, and let ai = λmax(−Ξi(t)),
a = maxi∈S(ai), where λmax(·)means the maximum eigenvalue of matrix (·), and we have

LV (x(t), t, i) ≤ −axT (t)x(t). (3.6)
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Hence

d
[
eαtV (x(t), t, i)

]
= αeαtV (x(t), t, i) + eαtdV (x(t), t, i)

≤ (bα − a)eαt‖x(t)‖2 + eαt2xT (t)Pi(t)Cix(t)dw(t),
(3.7)

where bi = supt≥t0{λmax(Pi(t))}, and b = maxi∈S(bi). Integrating the both sides of above
inequality from t0 to Tand taking expectation, we obtain that

EeαT[V (x(T), T, i) − V (x0, t0, i)] ≤ (bα − a)E
∫T

t0

eαs‖x(s)‖2ds. (3.8)

Set α = a/b, and the following inequality is obtained:

eαTmin
i∈S

λmin(Pi(T))E‖x(T)‖2 ≤ E
[
eαTV (x(T), T, i)

]
≤ EV (x0, t0, i), (3.9)

which implies that

E‖x(T)‖2 ≤ EV (x0, t0, i)
1

mini∈Sλmin(Pi(T))
e−αT . (3.10)

That is to say that the stochastic systems are globally exponentially stable with
convergence rate α > 0.

Then, considering the stochastic H∞ performance level for the resulting systems (3.2)
with nonzero exogenous disturbance input (v(t)/= 0), for any t > 0, we define that

J(t) = E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s)

]
ds

}

. (3.11)

By general Itô formula, we get he following:

J(t) = E

{∫ t

t0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}

− E(V (x(t), t, i))

≤ E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}

≤ E

{∫ t

0
ηT (s)Ωi(s)η(s)ds

}

,

(3.12)

where ηT (t) = (xT (t)vT (t)), Ωi(t) =
(

Mi(t)+JTi Ji Pi(t)Ei

ET
i Pi(t) −γ2I

)
+
(

CT
i

HT
i

)
Pi(t)
(

CT
i

HT
i

)T
From (3.3) we know

that Ω(t) < 0, which implies that

J(t) < 0. (3.13)

Therefore, the inequality ‖z‖E2
< γ‖v‖2 holds. The proof is completed.



Mathematical Problems in Engineering 7

In the following time, we consider the following linear stochastic Markovian jump
systems (LSMJSs) under the state feedback controller:

dx(t) = [(Ai + BiFiKi)x(t) + Eiv(t)]dt + [(Ci +DiFiKi)x(t) +Hiv(t)]dw(t),

z(t) = Jix(t),

x(t0) = x0.

(3.14)

Theorem 3.4. If there exist the positive matrices Xi > 0, and the constant matrices Yi with
approximate dimensions, such that the following LMIs hold

Θi =

⎛

⎜⎜⎜⎜⎜
⎝

Θi1 Ei Θi2 Θi3

∗ −γ2I HT
i 0

∗ ∗ −Xi 0

∗ ∗ ∗ Θi4

⎞

⎟⎟⎟⎟⎟
⎠

< 0, i ∈ S, (3.15)

where Θi1 = XiA
T
i +AiXi + BiFiYi + YT

i F
T
i B

T
i + λiiXi, Θi2 = XiC

T
i + YT

i F
T
i D

T
i ,

Θi3 =
(√

λi1Xi · · · √λi,i−1Xi

√
λi,i+1Xi · · ·

√
λiNXi XiJ

T
i

)
,

Θi4 = diag(−X1, . . . ,−Xi−1,−Xi+1, . . . ,−XN,−I),
(3.16)

then the LSMJSs (3.14) are exponential mean-square stable with convergence rate α and disturbance
attenuation γ . In this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.17)

Proof. Defining the following Lyapunov function:

V (x(t), t, i) = V (x(t), t, r(t) = i) = xT (t)Pix(t). (3.18)

By Lemma 3.3, and similar to the proof of Lemma 3.3, we can get the following:

LV (x(t), t, i) ≤ ηT (t)Ξiη(t), (3.19)

where Ξi =

(
Mi PiEi CT

i +K
T
i F

T
i D

T
i

∗ −γ2I HT
i

∗ ∗ −P−1
i

)

Mi = (Ai + BiFiKi)
TPi + Pi(Ai + BiFiKi) +

∑
j∈S λijPj .
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Using Schur complement lemma together with contragredient transformation, we
know that LMIs (3.15) imply that Ξi < 0. So we have

J(t) = E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s)

]
ds

}

= E

{∫ t

t0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}

− E(V (x(t), t, i))

≤ E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}

< 0.

. (3.20)

Therefore, the inequality ‖z‖E2
< γ‖v‖2 holds. The proof is completed.

Theorem 3.5. If there exist the positive matrices Xi > 0, the positive diagonal matrices Ri > 0, and
the constant matrices Yi with approximate dimensions, such that the following LMIs hold:

Θ̃i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Θ̃i1 Ei Θ̃i2 Θi3 BiRi YT
i

∗ −γ2I HT
i 0 0 0

∗ ∗ −Xi 0 DiRi 0

∗ ∗ ∗ Θi4 0 0

∗ ∗ ∗ ∗ −Ri 0

∗ ∗ ∗ ∗ ∗ −RiF̃
−2
i0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, i ∈ S, (3.21)

where Θ̃i1 = XiA
T
i +AiXi + BiFi0Yi + YT

i F
T
i0B

T
i + λiiXi, Θ̃i2 = XiC

T
i + YT

i F
T
i0D

T
i , Then the LSMJSs

(3.14) are exponential mean-square stable with convergence rate α and disturbance attenuation γ . In
this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.22)

Proof. Noticing (2.10), we can see that Θi in (3.15) can be rewritten as

Θi = Θi0 +
[
BT
i 0 DT

i 0
]T
Δi

[
Yi 0 0 0

]
+
[
Yi 0 0 0

]T
Δi

[
BT
i 0 DT

i 0
]
, (3.23)

where Θi0 =

⎛

⎝
Θ̃i1 Ei Θ̃i2 Θi3

∗ −γ2I HT
i 0

∗ ∗ −Xi 0
∗ ∗ ∗ Θi4

⎞

⎠.

By Lemma 3.2, we have

Θi ≤ Θi0 +
[
BT
i 0 DT

i 0
]T
Ri

[
BT
i 0 DT

i 0
]
+
[
Yi 0 0 0

]T
R−1

i F2
0i

[
Yi 0 0 0

]
, (3.24)
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by Schur complement, we know that Θ̃i < 0 imply that Θi < 0. Therefore, we can know from
Theorem 3.4 that the LSMJSs (3.14) are stabilizable with convergence rate α and disturbance
attenuation γ . This completes the proof.

3.2. Robust Reliable H∞ for NSMJSs

In this section, we consider the following nonlinear stochastic Markovian jump systems
(NSMJSs) under the state feedback controller:

dx(t) =
[
(Ai + BiFiKi)x(t) + Eiv(t) + fi(x(t))

]
dt

+
[
(Ci +DiFiKi)x(t) +Hiv(t) + gi(x(t))

]
dw(t),

z(t) = Hix(t),

x(t0) = x0.

(3.25)

Theorem 3.6. If there exist the positive matrices Xi > 0, and the constant matrices Yi with
approximate dimensions, for the positive constant εi and the given scalar λi, such that the following
LMIs hold:

Θi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Θi1 Ei I − λiXiT̂i2 ΘT
i2 ΘT

i2 Θi3

∗ −γ2I 0 HT
i HT

i 0

∗ ∗ −λiI 0 0 0

∗ ∗ ∗ −Xi 0 0

∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ Θi4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, i ∈ S, (3.26)

where Θi3 = (εiGi λiXiT̂i1 Θi3), Θi4 = diag(−εiI,−λiT̂i1,Θi4), T̂i1 = (TT
i1Ti2 + TT

i2Ti1)/2, T̂i2 =
−(TT

i1 + TT
i2)/2, then the NSMJSs (3.25) are exponential mean-square stable with convergence rate

α and disturbance attenuation γ . In this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.27)

Proof. Defining the following Lyapunov function:

V (x(t), t, i) = V (x(t), t, r(t) = i) = xT (t)Pix(t), (3.28)
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by Itô formula, we get the following:

LV (x(t), t, i) = 2xT (t)Pi

[
(Ai + BiFiKi)x(t) + Eiv(t) + fi(x(t))

]
+
∑

j∈S
λijx

T (t)Pjx(t)

+
[
(Ci +DBiFiKi)x(t) +Hiv(t) + gi(x(t))

]T

× Pi

[
(Ci +DBiFiKi)x(t) +Hiv(t) + gi(x(t))

]

≤ σT (t)Σiσ(t) + xT (t)GT
i PiGix(t) + 2[(Ci +DBiFiKi)x(t) +Hiv(t)]TPigi(x(t)),

(3.29)

where σT (t) = [xT (t), vT (t), fT
i (x(t))], Σi =

(
Mi PiEi Pi

ET
i Pi 0 0
PT
i 0 0

)

+
[
CT

i +K
T
i F

T
i D

T
i

HT
i
0

]
Pi

[
CT

i +K
T
i F

T
i D

T
i

HT
i
0

]T
.

By Lemma 3.2, it follows that

2[(Ci +DBiFiKi)x(t) +Hiv(t)]TPigi(x(t))

≤ σT (t)

⎡

⎢⎢⎢
⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤

⎥⎥⎥
⎦
ε−1i I

⎡

⎢⎢⎢
⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤

⎥⎥⎥
⎦

T

σ(t) + xT (t)(εiPiGi)Tε−1i I(εiPiGi)x(t),

(3.30)

from (2.4) (fi(x(t)) − T1ix)
T (fi(x(t)) − T2ix) ≤ 0, i ∈ Swhich are equivalent to

⎡

⎣
x(t)

f(x(t))

⎤

⎦

T⎡

⎣
T̂i1 T̂i2

TT
i2 I

⎤

⎦

⎡

⎣
x(t)

f(x(t))

⎤

⎦ ≤ 0, i ∈ S. (3.31)

Considering the stochasticH∞ performance level for the resulting systems (3.25)with
nonzero exogenous disturbance input (v(t)/= 0), for any t > 0, we define that

J(t) = E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s)

]
ds

}

. (3.32)
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By general Itô formula, for a given positive scalar λ, we get the following:

J(t)

= E

{∫ t

t0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}

− E(V (x(t), t, i))

≤E
{∫ t

0

[
zT (s)z(s)−γ2vT (s)v(s)+LV (x(s), s, i)−λi

(
fi(x(t))−T1ix(t)

)T(
fi(x(t))−T2ix(t)

)]
ds

}

≤ E

{∫ t

0
σT (s)Ωiσ(s)ds

}

,

(3.33)

where

Ωi = Σi +

⎛

⎜⎜
⎝

(εiPiGi)Tε−1i I(εiPiGi) + JTi Ji 0 0

0 −γ2I 0

0 0 0

⎞

⎟⎟
⎠

+

⎡

⎢⎢
⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤

⎥⎥
⎦ε

−1
i I

⎡

⎢⎢
⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤

⎥⎥
⎦

T

+

⎛

⎜⎜
⎝

−λT̂i1 0 −λT̂i2
0 0 0

−λT̂T
i2 0 −λI

⎞

⎟⎟
⎠.

(3.34)

By Schur complement lemma, we see that Ωi < 0 is equivalent to the following matrix
inequalities:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Mi − λiT̂i1 Ei Pi − λiT̂i2 X−1
i ΘT

i2 X−1
i ΘT

i2 εiPiGi JTi

∗ −γ2I 0 HT
i HT

i 0 0

∗ ∗ −λiI 0 0 0 0

∗ ∗ ∗ −P−1
i 0 0 0

∗ ∗ ∗ ∗ −εiI 0 0

∗ ∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, i ∈ S, (3.35)

which is implied in LIMs (3.26). Hence J(t) < 0.
Therefore, the inequality ‖z‖E2

< γ‖v‖2 holds. The proof is completed.

Similar to the proof of Theorem 3.5, we can get the following theorem without proof
immediately.
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Figure 1: The Markovian chain r(t).

Theorem 3.7. If there exist the positive matrices Xi > 0, and the constant matrices Yi with
approximate dimensions, for the positive constant εi and the given scalar λi, such that the following
LMIs hold

Θ̂i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Θ̃i1 Ei I − λiXiT̂i2 Θ̃T
i2 Θ̃T

i2 BiRi YT
i Θi3

∗ −γ2I 0 HT
i HT

i 0 0 0

∗ ∗ −λiI 0 0 0 0 0

∗ ∗ ∗ −Xi 0 DiRi 0 0

∗ ∗ ∗ ∗ −εiI 0 0 0

∗ ∗ ∗ ∗ ∗ −Ri 0 0

∗ ∗ ∗ ∗ ∗ ∗ −RiF̃
−2
i0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Θi4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, i ∈ S. (3.36)

then the NSMJSs (3.27) are exponential mean-square stable with convergence rate α and disturbance
attenuation γ . In this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.37)

4. Numerical Example with Simulation

In this section, we will give an example to show the usefulness of the derived results and the
effectiveness of the proposed methods (Figure 1).
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Figure 2: The state curve of uncontrolled LSMJSs (3.14).

Consider linear SMJSs (3.14) with S = {1, 2}, and the system parameters are given as
follows:

A1 =

⎛

⎜⎜
⎝

0.3 0.3 0.5

−0.2 0 −0.3
0.1 0 0.3

⎞

⎟⎟
⎠, A2 =

⎛

⎜⎜
⎝

0.5 0.2 0.2

−0.2 0 −0.4
0.2 0 0.2

⎞

⎟⎟
⎠,

C1 =

⎛

⎜⎜
⎝

0.5 0.2 0.1

0 0.2 −0.1
0.3 −0.1 −0.3

⎞

⎟⎟
⎠, C2 =

⎛

⎜⎜
⎝

0.2 0.1 0.3

0.1 −0.3 0.5

0 0.1 −0.5

⎞

⎟⎟
⎠,

B1 = diag(0.5, 0.4, 0.5), B2 = diag(0.5, 0.4, 0.5),

E1 = E2 = (0.3, 0.1, 0.5)T , H2 = H1 = (0.2, 0.1, 0.3)T ,

D2 = D1 = diag(0.2, 0.3, 0.4), J1 = (0.3, 0.2, 0.6),

J2 = (0.1,−0.1, 0.4), γ = 0.9.

(4.1)

The actuator failure parameters are as follows:

0.2 ≤ fi1 ≤ 0.4, 0.1 ≤ fi2 ≤ 0.7, 0.1 ≤ fi3 ≤ 0.9, i ∈ S = {1, 2}. (4.2)

From (2.8) and (2.9), we have

F10 = F20 = diag(0.3, 0.4, 0.5), F̃10 = F̃20 = diag(0.1, 0.3, 0.4). (4.3)
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Figure 3: The state curve of closed-loop LSMJSs (3.14).
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Figure 4: The curve of |z(t)|2 − γ2|v(t)| for controlled LSMJSs (3.14).

From Figure 2, we can see that the uncontrolled LSMJSs are not stable, according to
Theorem 3.5. By using the LMI toolbox, the controller parameters can be calculated as follows:

K1 =

⎛

⎜⎜
⎝

−56.2264 −6.3843 −67.8069
−1.1129 −8.9588 −3.6802
−0.9754 0.1795 −3.2600

⎞

⎟⎟
⎠, K2 =

⎛

⎜⎜
⎝

−41.7846 6.0578 −200.8802
−1.1365 −7.5245 −11.0209
0.1171 −0.4055 −0.7561

⎞

⎟⎟
⎠. (4.4)

Figures 3 and 4 give the simulation results of the response for the closed-loop
LSMJSs, which confirm that the closed-loop LSMJSs are exponential mean-square stable with
convergence rate α and disturbance attenuation γ .
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5. Conclusions

In this paper, we have studied the robust reliableH∞ control problems for a class of NSMJSs.
The system under study contains Itô-type stochastic disturbance, Markovian jumps, sector-
bounded nonlinearities, and norm-bounded stochastic nonlinearities. Based on the Lyapunov
stability theory and Itô differential rule, sufficient condition which ensures exponential mean-
square stable with convergence rate α and disturbance attenuation γ for SMJSs has been
established in Lemma 3.3. By the lemma, together with the LMIs techniques, the sufficient
conditions for the designation of the robust reliable H∞ controller of linear SMJSs and
NSMJSs have been obtained in terms of LMIs. Finally, a numerical example has been given to
show the usefulness of the derived results and the effectiveness of the proposedmethods. It is
possible to extend our main results to the NSMJSs with time delay by using delay-dependent
techniques, which is one of the future research topics.
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