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ABSTRACT 

 

Mate choice is an evolutionary process with a profound impact in species 

morphology, behavioural displays and overall success. We are interested in 

understanding the proximate mechanisms underlying the assortative mate choice 

exhibited by Mus musculus musculus females when given a choice between a 

male of their own subspecies and a male from the closely related subspecies, 

Mus musculus domesticus. Previous results from our laboratory suggest that this 

assortative preference is modulated by early life experience. Because mice rely 

primarily on olfactory cues for communication, our hypothesis is that M. m. 

musculus females are using an olfactory imprinting process in early life to 

establish their mating preferences. To understand which cues are important for 

this learning, we manipulated different elements of the mice’s social context 

within the first weeks of life, such as the presence of the father. We also used 

classical conditioning with artificial odours to alter the olfactory experience of M. 

m. musculus females during post-natal development. We found the father’s 

presence during M. m. musculus female’s upbringing to be irrelevant in the 

establishment of the female’s assortative preferences. Moreover, the early 

olfactory experience also seems to have no influence in the establishment of 

these preferences. 

Key words: mate choice; assortative mating; olfaction; imprinting 
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RESUMO 

 

Darwin baseou a sua teoria da evolução em duas formas de selecção. A primeira, 

selecção natural, refere-se à sobrevivência das espécies melhor adaptadas 

(Darwin, 1859). A segunda refere-se à luta para encontrar parceiros sexuais, 

sendo conhecida como selecção sexual (Darwin, 1871). Esta pode ser 

intrasexual, onde indivíduos de um sexo (normalmente os machos) lutam para 

ter acesso a parceiros sexuais, ou intersexual, onde as preferências de 

acasalamento das fêmeas, combinadas com competição entre os machos para 

atrair as fêmeas, determinam o sucesso de cada indivíduo. 

Zonas híbridas são locais ideias para estudar selecção sexual e o seu papel na 

manutenção da identidade das espécies. Acasalamento selectivo, um tipo 

particular de selecção sexual onde os indivíduos preferem acasalar com 

parceiros que são fenotipicamente semelhantes, é um tipo comum de barreira 

pré-zigótica em zonas híbridas (Majerus, 1986; Shurtliff, 2011). Em mamíferos, 

uma das primeiras zonas híbridas a estudada foi a do murganho (Mus musculus), 

ocupada por duas subespécies, Mus musculus musculus e Mus musculus 

domesticus. Estas duas subespécies têm origem numa população ancestral do 

continente Indiano (Boursot, 1993) que divergiu em alopatria acompanhando a 

migração do homem, o desenvolvimento agrícola e a abertura de novos nichos 

ecológicos (Auffray, 1990). A subespécie musculus colonizou a Europa Oriental 

e o Norte Asiático, enquanto a subespécie domesticus ocupou a baía do 

Mediterrâneo e a Europa Ocidental, o que levou a um contacto secundário e à 

formação de uma zona híbrida que vai desde a Dinamarca até à Bulgária 

(Boursot, 1993). 

Pensa-se que várias barreiras pré e pós-zigóticas contribuem para o baixo fluxo 

genético entre estas duas subespécies, uma delas sendo a forte selecção contra 

híbridos, evidenciada pela esterilidade (Forejt, 1996), aumento da carga 

parasítica (Moulia, 1991, 1993) e reduzida introgressão nos genes localizados 

nos cromossomas sexuais, dos híbridos. Para além da selecção contra os 

híbridos, as fêmeas da subespécie musculus exibem uma forte preferência 

sexual por machos da sua própria subespécie (Baudoin, 1998). Tal como em 

vários roedores, existem evidências de que as fêmeas musculus utilizam 

informação da urina e saliva dos machos para discriminar entre diferentes 

subespécies (Laukaitis, 1997; Ganem, 2001) e assim escolher um parceiro 

sexual. Esta preferência sexual parece ter evoluído no seio da zona híbrida e 

não durante a divergência em alopatria das duas subespécies, uma vez que a 

preferência sexual das fêmeas musculus é significativamente mais forte na zona 

de contacto entre as duas subespécies, do que em populações alopátricas 

(Smadja & Ganem, 2005). 
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No nosso laboratório, estamos interessados em perceber os mecanismos 

subjacentes às preferências sexuais das fêmeas musculus, especificamente, 

como é que a informação de múltiplos machos é processada para além da 

periferia, e também como é que experiência prévia e o estado interno das fêmeas 

influencia a sua decisão. Para responder a estas questões, nós estabelecemos 

um paradigma comportamental que simula a escolha natural das fêmeas na 

natureza entre os machos musculus e domesticus (Lima, 2013). Com este 

paradigma mostrámos que somos capazes de reproduzir, em condições 

controladas de laboratório, a preferência clássica exibida pelas fêmeas musculus 

por machos da sua própria subespécie. Esta preferência é evidenciada tanto em 

situações de contacto total, em que é permitido às fêmeas escolher com que 

machos preferem acasalar, como em situações de contacto limitado, onde 

apenas contacto entre os focinhos do macho e da fêmea é permitido.  

Outro conjunto de experiências no nosso laboratório mostrou que as 

preferências sexuais das fêmeas musculus são altamente dependentes do 

ambiente em que estas fêmeas são criadas, uma vez que fêmeas criadas numa 

família da subespécie domesticus perdem a sua preferência natural por machos 

musculus (Lima, não publicado). O sistema olfactivo, a principal forma de 

comunicação em roedores, sobretudo em recém-nascidos, é provavelmente 

muito importante neste processo. Com base nestes resultados desenvolvemos 

uma hipótese de que as fêmeas estariam a aprender através dos cheiros 

presentes no ambiente pós-natal quais os machos com que deve acasalar em 

idade adulta. Para isso, manipulámos vários elementos do contexto social das 

fêmeas durante as suas primeiras semanas de vida, como por exemplo a 

presença do pai. Empregámos também técnicas de condicionamento olfativo, 

utilizando odores artificias para alterar a experiência olfactiva das fêmeas 

musculus durante as suas primeiras semanas de vida. 

Vários elementos do ambiente pós-natal podem fornecer informação às fêmeas 

sobre com que machos acasalar em idade adulta. Resultados deste projecto 

mostram que a presença do pai no ambiente pós-natal não é necessária para 

que as fêmeas aprendam com que machos devem acasalar. Tanto fêmeas 

criadas com ou sem pai mostram uma forte preferência por machos da 

subespécie musculus. Estes resultados podem ser explicados se o pai não tiver 

qualquer papel na aprendizagem das preferências sexuais das fêmeas. Por outro 

lado, sendo esta preferência um elemento crucial para a manutenção do 

isolamento entre as duas subespécies, é possível que a aprendizagem seja de 

tal forma robusta que mesmo que as fêmeas utilizem informação proveniente do 

pai, consigam na sua ausência utilizar outras fontes de informação, como a mãe 

ou os irmãos.  

Para investigar os efeitos da experiência olfactiva das fêmeas musculus na 

aprendizagem das suas preferências sexuais, utilizámos odores artificiais e 

condicionamento clássico para manipular a experiência pós-natal das fêmeas. 
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Começámos por utilizar citronela, um odor a limão, para alterar o cheiro do ninho 

durante o desenvolvimento das fêmeas. A nossa previsão era que as fêmeas 

expostas a citronela mostrassem uma preferência por este odor em idade adulta. 

No entanto, não encontrámos diferenças significativas no comportamento das 

fêmeas condicionadas e não-condicionadas com citronela. Na realidade, os 

primeiros conjuntos de experiências sugeriram que este odor poderia ser 

aversivo para as fêmeas, algo que viemos mais tarde a confirmar. 

Uma vez que as experiências com citronela não nos permitiram testar a nossa 

hipótese acerca da importância das experiência olfactivas no desenvolvimento 

das preferências sexuais de fêmeas musculus, decidimos alterar a sua 

experiência olfactiva alterando o cheiro, não do ninho, mas da mãe. Para isso 

utilizámos outro par de odores, alho e baunilha, que foram pintados dia sim, dia 

não nos mamilos e área genital das mães. Começámos por testar o 

comportamento de fêmeas musculus, não condicionadas, em relação a estes 

dois odores, sem qualquer macho. Descobrimos que as fêmeas musculus têm 

uma aversão ao odor de alho e exibem uma resposta de neutralidade, ou ligeira 

atracção, para a baunilha. Em fêmeas criadas por mães que cheiravam a 

baunilha, não encontrámos um efeito significativo da nossa manipulação, uma 

vez que tanto fêmeas criadas com mães não manipuladas como fêmeas criadas 

com mães pintadas com baunilha, não mostram uma maior atracção por machos 

perfumados com baunilha. Estes resultados mostram que o nosso protocolo de 

condicionamento foi ineficaz em alterar as preferências sexuais das fêmeas. 

Em conclusão, este estudo trouxe mais informação sobre o papel de experiência 

prévia na escolha de um parceiro sexual. Testámos diferentes protocolos de 

condicionamento olfactivo e avaliámos a importância do pai no desenvolvimento 

das preferências sexuais de fêmeas musculus. Os resultados aqui apresentados 

levantam também importantes questões que será importante responder no 

futuro. Isto permitir-nos-á aprender mais acerca dos mecanismos neuronais por 

detrás das preferências das fêmeas musculus.  

 

Palavras-chave: Selecção sexual; zona híbrida; acasalamento selectivo; 

olfacção 
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INTRODUCTION 

 

Darwin based is theory of evolution on two different types of selection. The first, 

natural selection, described the struggle for existence and survival of the fittest 

(Darwin, 1859). The second referred to the struggle to secure mating partners, 

which became known as sexual selection (Darwin, 1871). The latter can either 

be intrasexual, where individuals of one sex (usually the males) compete for 

access to breeding partners, or intersexual, where female’s mating preferences 

combined with competition between males to attract females, determines each 

male’s success. 

Contact zones between closely related or sibling species are ideal settings to 

study sexual selection and its role in maintaining species identity. Assortative 

mating, a particular type of sexual selection where individuals prefer to mate with 

partners that are phenotypically similar to them, is one of the commonly observed 

pre-zygotic barriers at such contact zones (Majerus, 1986; Shurtliff, 2011).In the 

threespine sticklebacks (Gasterosteus aculeatus), marine populations 

continuously give rise to numerous independent freshwater populations. 

Although these populations are sympatric (share the same habitat), they exhibit 

pre-mating isolation and low levels of introgression (Hagen, 1967). This is partly 

due to the fact that the anadromous fish (fish born in fresh water, that spend most 

of their life in the sea and return to fresh water to spawn) have larger body sizes 

when compared to the freshwater sticklebacks, and the probability of mating 

between the two populations is negatively correlated with the difference in body 

size (McKinnon, 2004). In this system, size-based assortative mating trough 

mating preferences for individuals with similar body size seems to be an important 

mechanism in keeping both populations isolated, although other traits can also 

be involved (McPhail, 1984; Braithwaite 2006). 

In mammals, one of the first contact zones to be subjected to rigorous studies 

was that of the European house mouse (Mus musculus) subspecies, Mus 

musculus musculus and Mus musculus domesticus. These two subspecies 

originated from an ancestral population in the Northern Indian subcontinent 

(Boursot, 1993) and diverged in allopatry following human migration, agricultural 

development and the opening of new ecological niches (Auffray, 1990). The 

musculus subspecies colonized Eastern Europe and Northern Asia whilst the 

domesticus occupied the Mediterranean basin and Western Europe, which led to 

a secondary contact in Central Europe and the formation of a narrow (30 to 40 

km) hybrid zone that currently spans for Denmark to Bulgaria (Boursot, 1993). 

Several pre and post-zygotic mechanisms are thought to contribute to the low 

gene flow across these two subspecies, one of them being a strong selection 

against hybrids, evidenced by hybrid sterility (Forejt, 1996), increased parasitic 

load (Moulia, 1991; Moulia, 1993) and reduced introgression of genes located in 
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sex chromosomes (Dod, 1993). Aside from hybrid counterselection, musculus 

females exhibit a strong assortative mate preference for males of their own 

subspecies (Baudoin 1998); (Ganem 2005). Like most rodents, there is evidence 

that musculus females are using chemical cues in the male’s urine and saliva to 

discriminate between different subspecies (Laukaitis 2007);(Ganem 2001) and 

choose a male sexual partner. This assortative preference appears to have 

evolved in the hybrid contact zone itself and not during the allopatric divergence, 

since musculus females preference is significantly stronger in populations within 

the contact zone compared to allopatric populations (Ganem 2005). 

In our laboratory we are interested in understanding the mechanisms underlying 

the assortative mate preference of musculus females, particularly how multiple 

male signals are evaluated beyond peripheral processing and how the female’s 

prior experience and internal state can influence mating decisions. To address 

these issues, we established a behavioural paradigm that mimics the natural 

musculus versus domesticus choice of males that musculus females have to 

perform in the wild (Lima 2013). We have shown that we are able to replicate, in 

laboratory controlled conditions, the classical homosubspecific mate preference 

of musculus females. Moreover, musculus females display this assortative 

preference both in limited contact situations, where only nose to nose contact 

between male and female is allowed, as well as in full mating situations. 

Choosiness is expected to evolve in contact zones (Saether 1999). Here, a high 

capacity of discrimination and strong preferences for traits that distinguish 

between species are essential to avoid hybridization. How this choosiness 

evolves, both at a proximal and behavioural level, is quite a more difficult question 

to answer. Usually, and although somewhat meaningless, behaviours tend be 

classified as either innate or learned. For musculus females the same type of 

question can be made: Are the musculus female’s learning from their lifetime 

experience which males they should mate with, or are they genetically hardwired 

to choose males of their own subspecies? 

In a recent set of experiments, our lab has shown that musculus female’s 

assortative preference can be altered by the social experience during their 

upbringing. We have shown that if musculus newborn females are fostered to a 

domesticus family, their preference for musculus males is disrupted (Zinck and 

Lima, unpublished). Instead, these females show no preference for either 

musculus or domesticus males. These results suggest that learning likely plays 

an important role in determining the mating preferences of musculus females. 

However, this does not necessarily rule out the involvement of a genetically 

determined component in the establishment of these preferences. 

In many species mating preferences are learned throughout life, and when this 

learning takes place during an early stage of development, it is referred to as 

sexual imprinting (Immelmann 1972). This requires an irreversible learning from 

social interaction with a population of individuals, usually the parents or siblings, 
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known as the “imprinting set” (Servedio 2008), during a specific window of time 

called the critical period (Sullivan 2004). This allows animals to learn their species 

phenotype and recognize conspecific mates. Early work on sexual imprinting 

focused almost exclusively in studying song learning in precocial birds (Tamura, 

1964), although recent studies have been made in other groups of vertebrates, 

such as fish (Kozak, 2011), amphibians (Ogurtsov, 2004) and, to a lesser extent, 

mammals (Kendrick, 1998). Amongst the first studies were the ones made by 

Immelmann (1969), who showed that male zebra finches (Taeniopygia guttata) 

prefer to court females of the species in which they were fostered, instead of their 

own species.  An even more extreme case was described using eggs of great tits 

(Parus major) that were fostered in nests of blue tits (Cyanistes caeruleus). In this 

case, not only the adopted great tits preferred to mate with blue tits, but they also 

copied their song, developed a similar alarm call and copied their foraging niches 

(Slagsvold, 2007). This shows how the relationship between infants and tutors 

during early life can influence not only mating preferences, but several other 

aspects of adult social behaviour (Immelmann, 1975). 

Overall, imprinting has been shown to play an important role in different 

evolutionary processes, such as speciation (Grant, 1997), interspecific brood 

parasitism (Payne, 2000) and sexual selection (Andersson, 1994). Song learning 

in two species of Darwin’s finches (Geospiza fortis and Geospiza scandens) is 

one of the best examples of how learning can act as a powerful pre-mating 

barrier. Experiments in the field demonstrated that when a different species of 

finch (Geospiza magnirostris), which sang in the same frequency as G. fortis and 

G. scandens, invaded their habitat the temporal features of the song of these two 

species started diverging.  These differences arose as a bias during the song 

imprinting process, since both G. fortis and G. scandens sons started singing 

faster songs compared to their fathers (Grant, 2010). This peak shift mechanism 

could have important implications in several other speciation events, especially 

those involving reproductive character displacement. For instance, in sympatric 

species sexual imprinting can help discriminate between very similar phenotypes 

and lead to a skewed generalization that prefers stimuli even more divergent that 

the one being imprinted on. Likewise, if the imprinted phenotype is similar to the 

phenotype of the own individual this leads to individuals preferring phenotypically 

similar mates. This is one of the ways through which sexual imprinting can lead 

to assortative mating and conspecific mating preferences (Verzijden, 2012), 

which could be an important mechanism behind the evolution of the assortative 

preference shown by musculus females. 

In rodents olfaction is a critical sensory modality for survival, allowing individuals 

to gather information about resources, avoid predators, establish social 

hierarchies and find mating partners (Colwell, 2001; Brennan, 2004; Hurst, 2009). 

Mice are no exception and the ability to distinguish the molecular cues of other 

individuals plays a crucial role in their social interaction. Here, odours convey 
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information about themselves but also allow the recognition of conspecifics and 

the assessment of potential mates (Ganem, 2001). 

The olfactory system of mice is composed of two different subsystems, the main 

and accessory olfactory systems (MOS and AOS, respectively), which are 

extremely intermingled and differ both in anatomy, function and central 

projections (Hurst, 2008). A fundamental feature of rodent’s olfactory system is 

its diversity. In mammals, approximately one thousand odour receptor (OR) 

genes are solely dedicated to olfaction (Zufall, 2012). This is an even more 

impressive feature if we take into account that each olfactory sensory neuron 

(OSN) only expresses one type of odour receptor. Besides odour detection, this 

allows for an incredible power of olfactory discrimination and recognition. 

Interestingly, mice are even able to distinguish between enantiomeric odours, 

pairs of odorous with identical chemical and physical properties with exception to 

their optical activity (Shepherd, 2007). 

Three classes of non-volatile proteins and small peptides secreted by male mice 

are thought to be essential for the female’s assessment of different males as 

potential mates. Major urinary proteins (MUPs) seem to be especially important 

for the discrimination of individual scent marks, since the MUP signature profile 

of each male in the wild is different (Held, 1985). Although major 

histocompatibility complex (MHC) peptides also exhibit a high degree of 

polymorphism, females don’t seem to rely on them to distinguish between males 

(Singer, 1997). Instead, the MHC appears to be more relevant for the recognition 

of related individuals. By comparing the male’s MHC haplotype to their own, 

females are able to avoid mating with kin individuals, therefore promoting 

heterozigosity at MHC loci and increasing resistance to pathogens in the offspring 

(Penn, 2002). The expression profile of exocrine-gland secreting peptides (ESPs) 

in male’s tears also appears to convey individual variability, although the role of 

these proteins in the social and sexual behaviour of mice is not very clear yet 

(Touhara, 2005). Overall, these three gene families all seem to participate in the 

female’s olfactory assessment of a male’s identify and evaluation of his 

attractiveness as a potential mating partner. 

Several studies show that olfactory preferences in rodents could be highly 

influenced by early life odour experience (Keverne, 1990; Sullivan, 2005). Indeed, 

odours present in the environment during mice post-natal development seem to 

be preferred over unfamiliar odours in adulthood (Blass, 1986; Sullivan, 1994). 

Learning the odours present in the rearing environment and remembering them 

as an adult could be an important mechanism for female’s to ensure mating 

happens with conspecifics. Cross-fostering experiments where adopted mice 

show an attraction towards the odours of the foster species, indicate that species-

specific odour cues are learned during early life (Boyse, 1988; Penn, 2002). The 

adoption of mice in rat families, which results in a preference for rats in adopted 

mice adulthood, while rats are natural mice predators, is one of the most amazing 
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examples of this phenomenon (Denenberg,1964). However, this type of 

experiments is also pervious to several confounding variables that could 

influence mice’s olfactory preferences, such as parental care, sibling sociality and 

other ecological factors. 

Another common approach involves conditioning mice with exposure to artificial 

odours during early life (Bouslama, 2005). These odours are usually added to 

either the nesting environment or directly to one of the parents, thus ensuring a 

more direct manipulation of the pup’s olfactory experience and also eliminating 

some of the caveats associated with the cross-fostering experiments. Overall, 

early life exposure to a neutral artificial odour seems to increase the value of that 

odour in adulthood to the point where conditioned mice show an attraction to 

individuals scented with that odour (Mainardi, 1965). In one experiment, Blass 

(1986) reared male rats with damns whose nipples and vagina were painted with 

a lemon scent. He showed that in adulthood the conditioned males ejaculated 

faster when paired with lemon-scented females than with females non-scented 

ones. These studies demonstrate how initially neutral and biologically non-

relevant stimuli can influence adult sexual behaviour. Moreover, they suggest that 

several biologically relevant odours are initially neutral and gain importance 

during social interaction in pre and post-natal development (Stowers, 2012).  

In our opinion, there seems to be a clear role of early life experience in 

determining female mice mating behaviour and olfaction likely plays a key part in 

this process. Therefore, we hypothesize that an olfactory sexual imprinting 

mechanism could help explain the assortative mating preference of musculus 

females in the Mus musculus contact zone. Since olfaction is a major 

communication highway in mice, we reason that musculus females might be 

learning from the odour of the parents, possibly the father, which males to mate 

with later in life. To test this hypothesis we performed several experiments where 

we manipulated the early experience of the females, either by manipulation of the 

nest composition (removing the father) or the nest odour (conditioning with 

artificial odours), and tested the effect of these manipulations on the assortative 

mate choice of musculus females later in life. Understanding how early olfactory 

experience influences adult mating behaviour will be the first step in the future 

goal of trying to unravel the neuronal circuitry underlying this early learning 

mechanism. 
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MATERIALS & METHODS 

 

1) Animals 

As representatives of the Mus musculus musculus subspecies we used the 

PWD/PhJ and PWK/PhJ strains, ordered from The Jackson Laboratory and 

derived originally from animals trapped in Czech Republic in 1972 and later 

inbred trough sister-brother crossing in the laboratory (Forejt, 2000). As 

representative of the Mus musculus domesticus subspecies we used the 

classical laboratory strain C57BL/6J, also ordered from The Jackson Laboratory. 

All animals were weaned at 21 days of age and housed in same-sex groups of 

two to six animals in standard cages (1284L, Techniplast, 365 x 207 x 140 mm). 

Food and water were provided ad libitum. Animals were maintained in a 12:12 

light/dark cycle with light onset at 0800 and all behavioural testing was performed 

at least 2 hours after light onset. Cage changing was performed once per week 

for domesticus animals and once every other week for musculus. To enhance 

female receptivity and ensure proper olfactory development, all musculus 

females were exposed to male soiled bedding or 10 µL of male urine in alternating 

weeks. Both the soiled bedding and the urine were a mixture of equal volume 

from PWK/PhJ, PWD/PhJ and C57BL/6J males. Animals were sacrificed by CO2 

asphyxiation followed by cervical displacement at the end of each set of 

experiments. 

2) Early life manipulation 1: Removing the musculus father from the 

rearing environment 

Previous results from our laboratory have shown that PWD/PhJ newborn females 

fostered in a BALB/c family, another domesticus laboratory strain, don’t show the 

natural homosubspecific preference towards musculus males. These results 

suggest that musculus females are using an early life imprinting mechanism to 

learn which males to mate with in adulthood. In this process, visual, auditory and 

olfactory cues are learned from the imprinting set, which is usually made up of 

the parents and/or siblings. For musculus females, the father is the only adult 

male that they encounter during their entire upbringing, which makes him a good 

candidate to be mediating this learning process. Furthermore, other studies have 

shown that domesticus females reared only by their mother show different male 

preferences than those reared by both sets of parents (Mainardi, 1964). Thus, we 

believe the presence of the father during early life to be an essential element in 

the establishment of the assortative preferences of musculus females.  

Therefore, we decided to raise PWD/PhJ litters only by their mothers and, as 

adults, evaluate their mating preferences compared to normally reared females. 

The PWD/PhJ father was removed from the breeding at least 5 days before the 

mothers gave birth, meaning that the musculus newborn females never came into 

contact with an adult musculus male before behavioural testing. 
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3) Early life manipulation 2: Olfactory conditioning with citronellal 

In rodents, olfaction mediates both learned and innate behaviours, from food 

scavenging, to predator avoidance and searching for sexual partners. Our 

hypothesis is that musculus females learn the odours present in the early life 

environment, assign positive value to these cues and remember them in 

adulthood, when choosing a male sexual partner. To address this hypothesis, we 

used a classical conditioning protocol to increase the value of neutral, artificial 

odours in female adulthood by exposing them to these cues during early life. 

Artificial odours have already been used successfully to do classical conditioning 

in newborn mice (Bouslama, 2005) and many studies in mammals have already 

used pup exposure to odors to study subsequent odor or social preferences 

(Blass, 1986; Shah, 2002; Mateo, 2009). Using artificial odours to condition 

musculus females allowed us to, not only to reduce the immense variability of 

olfactory stimuli in the female’s rearing environment to a single, very salient, 

odour, but also to use this odour to manipulate male value in adulthood.  

We used citronellal (Sigma-Aldrich, 27470, St. Louis, MO), a lemon-scent, which 

had been previously described to be innately neutral for Mus musculus neonatal 

mice (Armstrong, 2006). Therefore, neonatal PWD/PhJ musculus litters were 

exposed to citronellal between birth and weaning. The citronellal stock solution 

was diluted in mineral oil (Sigma-Aldrich, M31516, St. Louis, MO) to a 

volume/volume dilution of 166 µl/ml. 100 µl of the diluted solution were gently 

pipetted everyday around the litter nest, from postnatal day (PN) 0 until PN21 or 

from PN0 to PN10. After weaning, the females were housed together and never 

came into contact with citronellal again. Behavioural testing was performed when 

these females reached adulthood (3 to 4 months old). The stimulus males were 

painted using a brush soaked in the citronellal solution, once before every test 

session. 

4) Early life manipulation 3: Olfactory conditioning by alteration of dams 

scent 

Neonatal rodent’s ability to quickly locate and attach to the mother’s nipple is 

fundamental for its survival, and this behaviour is heavily dependent on olfaction 

(Hongo, 2000). Moreover, the initial experience with milk has been shown to 

reinforce components of early suckling behaviour (Cheslock, 2004). This strongly 

suggests that the olfactory stimuli associated to the mother’s nipple is of the most 

important signals mice need to learn and recognize, which gives us an excellent 

opportunity to manipulate neonatal mice olfactory experience.  Other studies in 

rodents have shown that alteration of the mother’s nipple and genital odours lead 

to an increased preference towards these odours in litters reared with by such 

mothers (Blass, 1986; Mainardi, 1965). Therefore, we decided to manipulate 

newborn musculus female’s early olfactory experience by altering the odours 

associated to the mother.  



13 
 

PWD/PhJ litters were raised by dams whose nipple and vagina were altered with 

garlic or vanilla odorants. This particular pair of odours was chosen because a 

recent study found garlic and vanilla odours to be neutral for neonatal mice 

(Stowers, 2012). Garlic solutions were prepared by diluting a garlic oil solution 

(Sigma-Aldrich, W250309, St. Louis, MO) to a 2.13% concentration, using water 

and 0.14% Emplex (Caravan Ingredients, Lenexa, KS), an emulsifying agent 

used to help blend the garlic oil in water. Vanilla solutions were prepared by 

diluting 1.52g of vanillin (Sigma-Aldrich, V1104, St. Louis, MO) in 100 ml of water 

and heating the mixture until the vanilla was completely dissolved. Controls 

consisted of PWD/PhJ litters raised by damns whose nipple and vagina were 

painted with water. 

The vagina and nipples of the dams were painted only every other day, using 

cotton tips, to reduce the stress levels of both mothers and pups. To make sure 

that the mothers were already scented during the first suckling event of the 

newborn mice, they were painted at least 1 day before giving birth. After PN21, 

the female pups were weaned, never came into contact with neither garlic nor 

vanilla again and, when they reached adulthood, were tested for male preference. 

Stimulus males were painted with either the garlic or vanilla diluted solutions once 

before every trial using cotton tips.  

 

5) Behavioural testing 

To investigate the musculus female’s mate preference we used a limited-contact 

paradigm (Social Preference Test, SPT) previously developed and validated in 

our laboratory (Lima, 2013). The behavioural apparatus is made up of three 

transparent acrylic boxes (200 x 150 x 150 mm), where a central box is connected 

to two side boxes by acrylic tubing with 30 mm diameter and 50 mm long. In each 

side box there’s a 1 mm. thick polyvinyl chloride (PVC) partition with four holes of 

8 mm. in diameter at its centre, 20 to 40 mm from the floor, which allows nose to 

nose contact between the male and the female. Before each trial the floor of the 

three boxes was covered with clean bedding, and one disposable hut plus two 

food pellets were placed inside the central box, to reinforce the neutral state of 

this box. After each trial the entire apparatus was washed with Virkon® and air-

dried. 

In each set of experiments, the musculus females were habituated to the 

behavioural apparatus for 20 minutes during 3 days. In the habituation trials the 

females were placed inside the central box and allowed to explore the entire 

apparatus, without males, for 15 minutes. When those 15 minutes were over, and 

the females returned to the central box, the connections to the side boxes were 

closed, forcing the females to stay another 5 minutes inside the central box, 

before being taken back to their home cage. Only females that visited both sides 

of the apparatus during each of the 3 days of habituation, and showed no bias 

towards any of them, were analysed. After the 3 days of habituation, each female 

was tested twice, once 24 hours after the last day of habituation, and a second 
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time 48 hours after the first test day. On the test days, the experimental protocol 

was the same, however during the 5 minutes in which the females were forced to 

stay inside the central box, two males were randomly assigned to the side boxes. 

When the 5 minute period was over, the connections of the central box to the side 

boxes were re-opened and the females allowed to explore the entire apparatus 

for another 15 minutes. When the test was over, and before returning the females 

to their home cage, vaginal smears were performed to determine the estrous 

state of the females. A cytological staining protocol was then used to reveal the 

cellular composition of the vaginal smears. Non-receptive females, in diestrous, 

were identified by smears containing leucocytes, while females in pro-

estrous/estrous or estrous were characterized by smears with a mixture of 

nucleated epithelial and anucleated cornified cells or only cornified cells, 

respectively. In all the behavioural experiments, the choosing female was always 

a PWD/PhJ musculus with 3 to 4 months of age. The stimulus males were always 

PWK/PhJ musculus and C57BL/6J domesticus with at least 2 months and no 

more than 1 month age difference between them. We used PWD/PhJ musculus 

females as choosers because PWK/PhJ adult females show higher levels of 

stress when handled, as well as other behavioural impairments. Additionally, the 

musculus stimulus males were always from strain PWK/PhJ to avoid 

inbreeding/familiarity confounding effects.  

The stimulus males for each set of experiments were isolated in stand-alone 

cages (1145T, Techniplast, 369 x 156 x 132 mm) 2 weeks prior to the females’ 

behavioural testing to control for social ranking effects. During these 2 weeks, 

they were paired twice with ovariectomized C57BL/6J females for a maximum of 

one hour to ensure that they were properly engaged and sexually motivated to 

interact with the females during the behavioural trials. Only the males that showed 

consistent sexual motivation, during both training sessions were used as stimulus 

males. Each pair of males was used a maximum of 2 times in each day of 

behavioural testing.  

 

6) Behavioural analysis 

Mice behaviour was recorded using Sony cameras (HDR-HC7E) connected to a 

computer running Virtual Dub software to acquire frame by frame images (30 fps). 

All habituation and test trials for each female were recorded. Analysis of the 

behaviour was performed semi-automatically, using BONSAI software (Gonçalo 

and Adam, not published) and by defining Regions of Interest (ROI’s) in the 

female’s side of the male boxes. Female behaviour parameters analysed include: 

1) time spent in each male box; 2) number entries in each male box and 3) 

number of re-entries in each male box (situations where the female re-entered 

the male box where she previously was). The preference score for each female 

was calculated as: (time spent with musculus) / ((time spent with musculus) + 

(time spent with domesticus)). BONSAI output files were analysed in MATLAB 

R2010b (version 7.11.1) to produce different types of graphs. 
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7) Statistical analysis 

To investigate the influence of the male genotype and estrous state in the time 

spent and the number of visits to each male (musculus or domesticus) we used 

two-way ANOVA tests. Females in pro-estrous/estrous or estrous phase were 

treated as being receptive, and females in diestrous as being non-receptive. Data 

normality was tested beforehand, using Shapiro-Wilk tests. Otherwise, we used 

Non-parametric tests, which rely on no particular assumption. For paired samples 

we used Wilcoxon signed-rank tests. For independent samples we used Mann-

Whitney tests and also Kruskall-Wallis for multiple pairwise comparisons, using 

a Bonferroni correction of p-value. P-value was calculated using an exact method 

and significance was accepted at P < 0.05. Data is always expressed as mean ± 

standard error (X ± SE). Statistical analyses was performed using Addinsoft 

XLSTAT-Pro software. 
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Results 

 

Musculus females show an assortative preference for musculus males 

We started by testing musculus female’s preference between a musculus and a 

domesticus male using a social preference test (SPT) which only allows limited 

contact between males and females (only nose-nose contact) (Fig 1A) in order to 

reproduce data from our laboratory. Females were successfully habituated to the 

SPT box as they exhibited a decreased latency to enter either one of the side 

boxes along the habituation sessions (Fig 1B) suggesting a significant reduction 

of their stress level and increased willingness to explore the entire setup. As 

expected, in the first day of test, females tended to spend more time with 

musculus males than with the domesticus males (Fig 2A). Although not 

significant, the average time spent by females with each male suggests a 

preference for the musculus male. In the second test, all the females showed a 

preference for the musculus male (preference score above 0.5, Fig 2C) resulting 

in a significant and increased overall assortative preference (Fig 2A, C). 

We also looked at the number of visits to each male box. In the first test, females 

tended to visit the musculus box more often, although there is no significant 

difference (Fig 2B). In the second test, the number of visits to the musculus male 

box is significantly higher than for the domesticus box, confirming the strong 

assortative preference of musculus females (Fig 2B).  

Finally, we investigated if female’s preference was dependent of their estrous 

state. There was only a main effect of male genotype in the second test, but no 

effect of the estrous state, in the total time spent with each male (Supplementary 

Fig. 1). 

Overall, these results are in agreement with what had been previously shown in 

the laboratory, that musculus females exhibit an assortative preference for 

musculus over domesticus males, and that the estrous state of the female does 

not influence her choice in limited contact situations, where mating is not allowed. 

Interestingly, we also observed that the female’s preference for musculus males 

increases from the first to the second test (Fig 2A and Fig 2B). 
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Figure 1. A) Schematic representation of the behavioural box used for Social Preference Test (SPT); B) 
Average latency of the first entry in seconds to one of the side boxes during the 15 minute habituations 
(Kruskall Wallis test, K = 18.8, N = 7, with a Bonferroni corrected significance level); ***means P < 0.001. 

Figure 2. A) Time spent in seconds by musculus females with each male in the first (X ± SE musculus = 
240.35 ± 25.07, N=7; X ± SE domesticus = 183.41 ± 26.67, N=7; Wilcoxon signed-rank test, V = 22, P = 
0.219) and second test (X ± SE musculus = 404.76 ± 37.38, N=7; X ± SE domesticus = 224.58 ± 21.87, 
N=7; Wilcoxon signed-rank test, V = 28, P = 0.016). B) Visit number to each male by musculus female’s 
in the first (X ± SE musculus = 14.14 ± 1.42, N=7; X ± SE domesticus = 12.57 ± 2.50, N=7; Wilcoxon 
signed-rank test, V=18, P = 0.498) and second test (X ± SE musculus = 15.71 ± 2.47, N=7; X ± SE 
domesticus = 12.29 ± 1.87, N=7; Wilcoxon signed-rank test, V= 27, P = 0.027). C) Musculus female’s 
preference score for musculus males in the first and second test (X ± SE P.S. in the first test = 0.57 ± 
0.05, N=7; X ± SE P.S. in the second test = 0.64 ± 0.03, N=7; Wilcoxon signed-rank test, V = 8, P = 
0.375); * means P < 0.05; Black dots are individual data and red dot is the mean ± SE. 
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Early experience manipulation 1: Absence of the father during musculus 

female’s upbringing has no effect on their assortative mate preference  

To investigate if musculus females use a sexual imprinting mechanism based on 

the father to establish their adult mating preferences, we raised newborn females 

without a father from birth until weaning. We found that musculus females raised 

without their father showed a similar preference to those of normally reared 

females during both tests, in all measures analysed (time spent and visit number, 

Fig. 3 A - D). Although no significant statistical differences were found in the time 

spent and number of visits (except visit number in the test 1) for females reared 

without a father, the graphs show a clear trend for preference of musculus males. 

These results show that, although the social context of the nest was altered (by 

removal of the father), the characteristic assortative mate preference of musculus 

females, and the increase in preference with re-testing, were maintained.  
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Figure 3. A) Time spent in seconds by musculus females with each male in the first test (“W/ FATHER”: 
X ± SE musculus = 355.78 ± 31.11, N=10; X ± SE domesticus = 221.91 ± 24.12, N=10; Wilcoxon signed-
rank test, V = 48, P = 0.037; “NO FATHER”: X ± SE musculus = 291.36 ± 40.43, N=6; X ± SE domesticus 
= 181.80 ± 28.95, N=6; Wilcoxon signed-rank test, V = 19, P = 0.094). B) Time spent in seconds by 
musculus females with each male in the second test (“W/ FATHER”: X ± SE musculus = 461.41 ± 34.68, 
N=10; X ± SE domesticus = 230.55 ± 25.63, N=10; Wilcoxon signed-rank test, V = 54, P = 0.004; “NO 
FATHER”: X ± SE musculus = 433.97 ± 42.75, N=6; X ± SE domesticus = 212.62 ± 31.02, N=6; Wilcoxon 
signed-rank test, V = 20, P = 0.063). C) Visit number to each male by musculus female’s in the first test 
(“W/ FATHER”: X ± SE musculus = 19.10 ± 2.78, N=10; X ± SE domesticus = 10.90 ± 1.16, N=10; 
Wilcoxon signed-rank test, V = 47, P = 0.047; “NO FATHER”: X ± SE musculus = 20.33 ± 1.91, N=6; X ± 
SE domesticus = 12.5 ± 2.17, N=6; Wilcoxon signed-rank test, V = 21, P = 0.027). D) Visit number to 
each male by musculus female’s in the second test (“W/ FATHER”: X ± SE musculus = 18.10 ± 1.76, 
N=10; X ± SE domesticus = 13.30 ± 2.14, N=10; Wilcoxon signed-rank test, V = 47, P = 0.053; “NO 
FATHER”: X ± SE musculus = 25.50 ± 3.68, N=6; X ± SE domesticus = 13.67 ± 2.38, N=6; Wilcoxon 
signed-rank test, V = 2, P = 0.063). E) Musculus female’s reared with a father preference score for 
musculus males in the first and second test (X ± SE P.S. in the first test = 0.61 ± 0.04, N=10; X ± SE P.S. 
in the second test = 0.66 ± 0.04, N=10; Wilcoxon signed-rank test, V = 18, P = 0.375). F) Musculus 
female’s reared without a father preference score for musculus males in the first and second test (X ± SE 
P.S. in the first test = 0.61 ± 0.04, N=6; X ± SE P.S. in the second test = 0.67 ± 0.04, N=6; Wilcoxon 
signed-rank test, V = 6, P = 0.438).* means P < 0.05, ** means P < 0.01 Black dots are individual data 
and red dot is the mean ± SE.  
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Early experience manipulation 2: Environmental exposure to citronellal 

during early life doesn’t influence mate choice in musculus females 

As early life exposure to an artificial odour is supposed to increase its value in 

adulthood we conditioned newborn musculus females to citronellal during their 

first weeks of life and tested their preference between a musculus and a 

citronellal-scented domesticus male. Our hypothesis is that the citronellal scent 

would increase domesticus male value for females conditioned to this odour, and 

revert their natural preference for musculus males. 

We found that, citronellal conditioned and non-conditioned musculus females, 

showed a similar behaviour regarding the time spent and the number of visits to 

each male, during both test (Fig. 4A - D). In test one as well as in test two, both 

groups of females exhibited a preference score for musculus males much higher 

than 0.5, which indicated a robust preference for the musculus males over the 

citronellal-scented domesticus (Fig. 4E, F). Moreover females exposed to 

citronellal from PN0 to PN10 (N = 14) and from PN0 to PN21 (N = 5) showed 

similar levels of preference (black dots and grey dots respectively, Fig. 4F). 

Control experiments to further investigate the behaviour of both conditioned and 

non-conditioned females towards citronellal were performed in social and non-

social contexts. We found that when females were given the choice between two 

musculus males, one of them being scented with citronellal, both conditioned and 

non-conditioned females spent significantly more time near the male without 

odour. Similarly, when the odour was presented on a paper filter, and males 

absent of the boxes, conditioned females spent more time in the box without 

odour (Supplementary Fig. 2). 

Altogether these results suggest that citronellal is an aversive odour for adult 

musculus females, and/or that mice may avoid odorant places. 
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Figure 4. A) Time spent in seconds by musculus females with each male in the first test (“NC”, Non-
Conditioned: X ± SE musculus = 391.88 ± 34.14, N=16; X ± SE domesticus = 108.57 ± 21.84, N=16; 
Wilcoxon signed-rank test, V = 132, P < 0.001; “C”, Conditioned: X ± SE musculus = 422.39 ± 33.74, 
N=19; X ± SE domesticus = 112.78 ± 28.53, N=19; Wilcoxon signed-rank test, V = 185, P < 0.001). B) 
Time spent in seconds by musculus females with each male in the second test (“NC”, Non-Conditioned: 
X ± SE musculus = 466.67 ± 32.21, N=16; X ± SE domesticus = 158.28 ± 30.08, N=16; Wilcoxon signed-
rank test, V = 135, P < 0.001; “C”, Conditioned: X ± SE musculus = 449.80 ± 29.87, N=19; X ± SE 
domesticus = 221.62 ± 38.89, N=19; Wilcoxon signed-rank test, V = 168, P = 0.002). C) Visit number to 
each male by musculus female’s in the first test (“NC”, Non-Conditioned: X ± SE musculus = 20 ± 2.60, 
N=16; X ± SE domesticus = 4.81 ± 1.07, N=16; Wilcoxon signed-rank test, V = 120, P = 0.001; “C”, 
Conditioned: X ± SE musculus = 16.84 ± 1.67, N=19; X ± SE domesticus = 5 ± 1.27, N=19; Wilcoxon 
signed-rank test, V = 179, P = 0.001). D) Visit number to each male by musculus female’s in the second 
test (“NC”, Non-Conditioned: X ± SE musculus = 14.5 ± 1.02, N=16; X ± SE domesticus = 7.75 ± 1.21, 
N=16; Wilcoxon signed-rank test, V = 122, P = 0.006; “C”, Conditioned: X ± SE musculus = 16.32 ± 1.32, 
N=19; X ± SE domesticus = 8.63 ± 1.54, N=19; Wilcoxon signed-rank test, V = 149, P = 0.006). E) Non-
conditioned musculus female’s preference score for musculus males in the first and second test (X ± SE 
P.S. in the first test = 0.77 ± 0.04, N=16; X ± SE P.S. in the second test = 0.75 ± 0.04, N=16; Wilcoxon 
signed-rank test, V = 72, P = 0.860). F) Citronellal conditioned musculus female’s preference score for 
musculus males in the first and second test (X ± SE P.S. in the first test = 0.80 ± 0.05, N=19; X ± SE P.S. 
in the second test = 0.68 ± 0.05, N=19; Wilcoxon signed-rank test, V = 135, P = 0.031); ** means P < 
0.01, *** means P ≤ 0.001; Black dots are individual data and red dot is the mean ± SE; grey dots are 
females conditioned from PN0 to PN21.  
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Early experience manipulation 3: Manipulation of dam scent does not 

impact the social preference of musculus females  

To determine if garlic and vanilla odours could be used in the next set of 

experiments we started by testing the response of musculus female’s (non-

conditioned) to each of these odours, in non-social context.  Females were 

presented with two paper filters with either garlic vs. water or vanilla vs. water. 

Our results showed that musculus females had a neutral, or slightly appetitive, 

response towards vanilla (Fig. 5A) and tended to avoid the garlic odour (Fig. 5B). 

 

 

 

 

 

 

 

 

 

 

We then tested the preference of musculus females raised by vanilla-scented 

dams when they were given a choice between a musculus male painted with 

vanilla and a musculus male painted with water. We found no significant 

differences in the behaviour of conditioned and non-conditioned females (time 

spent and visit number during both tests (Fig. 6A - D).  

A significant difference in the preference score of females was found in the first 

test, during which conditioned females spent more time with the males without 

vanilla (X ± SE P.S. for water of non-conditioned females = 0.44 ± 0.05, N=5; X 

± SE P.S. for water of conditioned females = 0.83 ± 0.12, N=3; Mann-Whitney 

test, U=0, P = 0.04) (Fig. 6E). This difference was likely due to the low number of 

conditioned females tested, since in the second test, usually more reliable, all 

females spent a similar amount of time with each male (Fig. 6B) and had similar 

preference scores (X ± SE P.S. for water of non-conditioned females = 0.51 ± 

0.05, N=5; X ± SE P.S. for water of conditioned females = 0.57 ± 0.07, N=3; 

Mann-Whitney test, U=4, P = 0.40) (Fig. 6E). These results suggest that the 

particular type of manipulation of musculus female’s early life olfactory 

experience that we performed does not influence adult social preference. 
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Figure 5 A) Time spent in seconds by musculus females near a vanilla or water paper filter (X ± 
SE water = 162.04 ± 38.13, N=4; X ± SE vanilla = 239.10 ± 16.60, N=4; Wilcoxon signed-rank 
test, V = 1, P = 0.250). B) Time spent in seconds by musculus females near a garlic or water 
paper filter (X ± SE water = 320.48 ± 15.58, N=4; X ± SE garlic= 129.96 ± 31.45, N=4; Wilcoxon 
signed-rank test, V = 10, P = 0.125). 
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Figure 6 A) Time spent in seconds by musculus females with each male in the first test (“NC”, 
Non-Conditioned: X ± SE musculus = 176.80 ± 55.85, N=5; X ± SE musculus w/ vanilla = 221.28 
± 55.63, N=5; Wilcoxon signed-rank test, V = 2, P = 0.273; “C”, Conditioned: X ± SE musculus = 
562.86 ± 170.30, N=3; X ± SE musculus w/ vanilla = 97.95 ± 69.12, N=3; Wilcoxon signed-rank 
test, V = 6, P = 0.250). B) Time spent in seconds by musculus females with each male in the 
second test (“NC”, Non-Conditioned: X ± SE musculus = 316.32 ± 122.19, N=5; X ± SE musculus 
w/ vanilla = 313.93 ± 187.25, N=5; Wilcoxon signed-rank test, V = 9, P = 0.813; “C”, Conditioned: 
X ± SE musculus = 415.42 ± 55.54, N=3; X ± SE musculus w/ vanilla = 310.51 ± 60.25, N=3; 
Wilcoxon signed-rank test, V = 5, P = 0.500). C) Visit number to each male by musculus female’s 
in the first test (“NC”, Non-Conditioned: X ± SE musculus = 12 ± 5.50, N=5; X ± SE musculus w/ 
vanilla = 12 ± 4.20, N=5; Wilcoxon signed-rank test, V = 5, P = 1; “C”, Conditioned: X ± SE 
musculus = 14.33 ± 7.26, N=3; X ± SE musculus w/ vanilla = 6 ± 4.16, N=3; Wilcoxon signed-
rank test, V = 6, P = 0.102). D) Visit number to each male by musculus female’s in the second 
test (“NC”, Non-Conditioned: X ± SE musculus = 20.8 ± 3.15, N=5; X ± SE musculus w/ vanilla = 
20.8 ± 2.63, N=5; Wilcoxon signed-rank test, V = 8, P = 1; “C”, Conditioned: X ± SE musculus = 
16.33 ± 3.33, N=3; X ± SE musculus w/ vanilla = 14 ± 4, N=3; Wilcoxon signed-rank test, V = 5, 
P = 0.414). E) Musculus female’s preference score for vanilla-painted musculus males in the first 
and second test (Mann-Whitney test, U = 33, N = 8, P = 0.959); Black and grey dots are individual 
data and red dot the mean ± SE 
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Since we found garlic to be an aversive stimulus to musculus females, we 

decided to measure both the strength of this aversion, but also how robust was 

the preference for musculus males. Therefore, we gave vanilla-conditioned 

females a choice between a musculus male scented with garlic and a domesticus 

male scented with vanilla. Conditioned and non-conditioned females showed a 

similar behaviour during both tests (time spent and visit number, Supplementary 

Fig. 3) and interestingly, a strong avoidance towards the, usually preferred, 

musculus male when painted with garlic, in the first (X ± SE P.S. for musculus of 

non-conditioned females in test 1 = 0.21 ± 0.14, N = 7; X ± SE P.S. for musculus 

of conditioned females in test 1 = 0.21 ± 0.07, N = 8; Mann-Whitney test, U = 

20.5, P = 0.416), and second test ( X ± SE P.S. for musculus of non-conditioned 

females in test 2 = 0.41 ± 0.11, N = 7; X ± SE P.S. for musculus of conditioned 

females in test 2 = 0.27 ± 0.04, N = 8; Mann-Whitney test, U = 35, P = 0.463) (Fig 

7A). 

Although we knew garlic to be an intrinsically aversive odorant for musculus 

females, we also decided to test if females who were raised by mothers painted 

with this odour showed a different behaviour towards garlic in adulthood. Hence, 

we tested conditioned and non-conditioned females when they were given a 

choice between a musculus male painted with vanilla and a domesticus male 

painted with garlic. Analysis of the female’s behaviour showed that both females 

behaved in a similar way during both tests (time spent and visit number, 

Supplementary Fig. 4) and consistently avoided the garlic-scented domesticus 

male, independently of their early life olfactory experience (Fig. 7B). A summary 

of the results of these experiments is presented in Supplementary Table 1. 
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Figure 7 A) Musculus female’s preference score for garlic-painted musculus males in the first and 
second test (Mann-Whitney test, U = 67, N = 15, P = 0.061). B) Musculus female’s preference 
score for vanilla-painted musculus males in the first and second test (Mann-Whitney test, U = 38, 
N = 8, P = 0.555). Black and grey dots are individual data and red dot the mean ± SE 
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DISCUSSION 

 

In this project we set out to unravel the mechanisms underlying mate choice in 

female mice. Using wild-derived inbred strains we confirmed the homosubspecific 

assortative preference of musculus females, which is thought to play a major role 

in keeping musculus and domesticus subspecies apart in the European contact 

zone. In the assay we use in our laboratory, this preference can be seen not only 

at the level of the total time spent with each male, but also trough the number of 

visits to both males, with a greater effect during the second test. We also 

confirmed that the estrous state of the females does not influence their social 

preferences when tested in limited contact condition, using a social preference 

test (SPT).  

Previous results from our lab suggest that this assortative mate preference is 

heavily dependent on the social environment in which the females are raised, 

since musculus females fostered in a domesticus family lose their natural 

preference for musculus males (Zinck and Lima, unpublished). Olfaction, the 

main communication channel in rodents, is likely to play an important part in this 

process. We developed a hypothesis based on an olfactory learning process and 

sexual imprinting as a driving force in establishing musculus females mating 

preferences. 

Several elements in the early life environment can potentially provide information 

and allow musculus females to choose a male partner in adulthood. We found 

the presence of the father during post-natal development to be a non-essential 

feature for the display of a strong assortative preference for musculus when 

compared to domesticus males. Females raised with and without a father showed 

a similar preference towards musculus males. These results suggest that if 

musculus females use a sexual imprinting mechanism in early life, the father is 

probably not a crucial element of the imprinting set. However, being this 

assortative preference such an important feature for the musculus subspecies, 

one can make the argument that the system through which these preferences are 

set could be robust enough that even if the father’s presence is relevant, his 

removal can otherwise be compensated using other cues from the environment, 

like the mother or the siblings.  

Alternatively, musculus females learning might depend on cues associated to the 

father, but not to his presence per se. Like previously mentioned, adult male mice 

urine convey important information about species identity (Ganem, 2001), 

meaning that the father’s urine could be an important source of information for 

the females to search what to look for in adulthood. Since we wanted to reduce 

the stress levels of the dam and pups as much as possible, the breedings where 

the father was removed had its cage changed only a couple of weeks after the 

litter was born. This means that there was an opportunity for the newborn females 
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to be in contact with their father’s urinary cues during part of their post-natal 

development.  

Although less plausible, several studies have also shown that pre-natal olfactory 

cues can influence rodent post-natal behaviour (Smootherman, 1982), meaning 

that the presence of the father during most of pre-natal development might be 

sufficient for musculus females sexual imprinting. However, it is important to point 

out that the influence of olfactory cues in pre-natal development was always 

analysed by manipulating the scent of the amniotic fluid and, to our knowledge, 

no studies have shown the influence of external olfactory stimuli during pre-natal 

development, in post-natal behaviour.  

To investigate the effects of early olfactory experience in the mating preferences 

of musculus females, we used artificial odours and classical conditioning to 

manipulate female’s early life experience. We started by using citronellal, a lemon 

odour, to alter the scent of the home environment during the post-natal 

development of musculus females. Our prediction was that females exposed to 

citronellal would show in their adulthood a preference for this odour, and that it 

would increase the attractiveness of any male bearing this odour. However, we 

found no differences in the behaviour of conditioned and control females, as both 

groups spent significantly more time with the musculus male  when compared 

with the time spent with the, citronellal-perfumed, domesticus male. Moreover, 

when the choice given was between two musculus males, both sets of female’s 

still showed a strong preference for the non-perfumed male.  

Since the female’s preference for males of her own subspecies is a considerably 

robust behaviour, we hypothesized that even if the citronellal exposure had 

increased the value of this scent in adult conditioned females, its association to 

a domesticus male may not be sufficient to alter the value of this naturally less 

preferred male. Hence, we decided to test female’s preference with two musculus 

males, only one of those males would be scented with citronellal. Results showed 

that all musculus females, both conditioned and non-conditioned, show a 

preference towards the musculus males without citronellal. This suggested that 

instead of making a male-based decision, the females were simply avoiding the 

citronellal, independently of which it was associated with.  

To address this question, we decided to analyse the female’s behaviour when 

they were given a choice between two pieces of paper filter, one of them being 

scented with citronellal. Similarly to what we had previously observed in the 

experiments where males were painted with citronellal, all females robustly 

avoided the box that contained the paper filter with the odour. These results 

strongly suggest that citronellal is an aversive odour for adult musculus females. 

Several studies have used lemon odours to condition mice and none of them has 

ever described aversive responses in adult animals. This is the reason why we 

did not started our study by testing the response of both adult and newborn 
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females towards citronellal. Since other studies have already used pup exposure 

to artificial odours to study adult social behaviour, we reason that our conditioning 

protocol might still be useful to study musculus females assortative mate choice. 

Since the experiments with citronellal did not allow us to test our hypothesis of an 

olfactory imprinting process in musculus females, we decided to manipulate the 

new-borns olfactory experience by altering the dam scent. We used vanilla and 

garlic odorants to paint the mothers during the entire weaning period (PN0 – 

PN21) and then tested the attractiveness of the females towards these odours in 

adulthood. Although we based our choice of odorants in a previous study where 

Mus musculus mice showed a more or less neutral response towards both these 

odorants (Stowers, 2012), we decided to test the response of adult musculus 

females to these scents in a non-social context. We found that adult, non-

conditioned, musculus females showed a neutral (or slightly appetitive) response 

to vanilla, and a strong aversion towards garlic.  

We then decided to condition musculus females by raising them with mothers 

painted with vanilla. We found this conditioning to be ineffective since conditioned 

females showed no increased attraction towards the vanilla-scented males. 

Furthermore, musculus females raised by garlic-scented mothers still showed a 

strong aversion towards males painted with this odour in adulthood. Overall, 

these results suggest that olfactory conditioning musculus females with garlic and 

vanilla odours does not influence adult behaviour towards these odours. 

However, we cannot disentangle if this happens because our protocol is 

insufficient to condition musculus females, due to the fact that the vanilla odour 

isn’t salient enough for example, or if the conditioning did not work because 

exposure to non-relevant odours during early life has no impact in musculus 

females adult social preferences. Another possibility is that the conditioning 

procedure was efficient, but the concentration of vanilla used to test female 

preference was not. Further experiments, either using more salient (qualitatively 

and quantitatively) odours, or by finding other ways of manipulating female’s post-

natal olfactory experience will be needed to address this issues. 

Insofar, we have seen that whenever musculus females are given a choice 

between a musculus and a domesticus male, they exhibit a strong preference for 

the musculus one. This means that, in normal circumstances, musculus female’s 

value musculus males more than domesticus ones. However, this preference is 

not absolute. We have shown that, in both garlic conditioned and non-conditioned 

females, when given a choice between a garlic-scented musculus and a vanilla-

scented domesticus male, their preference for musculus males disappears. 

Instead, the majority of females show a strong avoidance towards the usually-

preferred musculus male. These results highlight, not only the female’s strong 

aversion to garlic, but also that the assortative preference of musculus females 

is a flexible behaviour. In fact, this is in agreement with previous results in the 

laboratory, showing that when no-choice is allowed, and only one male is 
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available at a time, female’s equally interact and mate with both subspecies 

(Lima, 2013). Hence, not only the musculus female’s assortative preference 

arises from the comparison between both subspecies, but it can also be 

modulated by several factors, such as past experience, internal state and 

environmental olfactory stimuli as shown by our results. These results are in line 

with several recent reports that put forward the idea that female mate, rather than 

purely relying on, innate preferences, must be seen under the light of other 

cognitive processes involving learning and memory. 

Overall, this study provided some insight into the role of early life experience in 

mate choice. We tested different olfactory conditioning protocols and evaluated 

the importance of the father in the development of musculus female’s assortative 

preferences. The results here presented raise several interesting questions to be 

addressed in future experiments. For instance, the increase in preference from 

the first to the second test is one of the most interesting dynamics of musculus 

female’s preferences. To us, this increase in the time spent with the musculus 

male might reflect a change, from the first to the second test, in the way females 

value males from both subspecies. Furthermore, we know that female mice need 

to contact the non-volatile cues in male mice urine before showing an attraction 

towards these cues. Darcin, an innately attractive Major Urinary Protein (MUP) in 

male mice urine (Hurst, 2010) could be involved in modulating these preferences. 

Maybe newborn musculus females use the father’s urine to learn the olfactory 

profile of a musculus male and then use this memory in adulthood to choose an 

appropriate male. Interestingly, in the cross-fostering experiments previously 

carried out in our lab, the musculus females were raised with a domesticus strain 

where the males only express trace amounts of Darcin, which gives support to 

this hypothesis and could help explain why they did not show the typical 

assortative preference for musculus males. Addressing these questions will 

allows to learn more about the underlying mechanisms regulating musculus 

females mate preferences. 
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Sup. Fig. 1 A) Time spent in seconds by musculus females with each 
male in test one (X ± SE musculus = 240.35 ± 25.07, N=7; X ± SE 
domesticus = 183.41 ± 26.67, N=7). B) (X ± SE musculus = 404.76 ± 
37.38, N=7; X ± SE domesticus = 224.58 ± 21.87, N=7); Black dots are 
individual data of diestrous females, white dots individual data of estrous 
females and red dot is the mean ± SE 
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Sup. Fig. 2 A) Time spent in seconds by musculus females with both males in the first test (Non-
Conditioned: X ± SE musculus = 315.07 ± 8.15, N=2; X ± SE musculus w/ citronellal = 101.90 ± 
51.93, N=2; Conditioned: X ± SE musculus = 532.68 ± 35.02, N=6; X ± SE musculus w/ citronellal 
= 44.27 ± 12.16, N=6; Wilcoxon signed-rank test, V = 21, P = 0.031). B) Time spent in seconds 
by musculus females with both males in the second test (Non-Conditioned: X ± SE musculus = 
505.04 ± 56.32, N=2; X ± SE musculus w/ citronellal = 160.21 ± 74.57, N=2; Conditioned: X ± SE 
musculus = 335.28 ± 97.71, N=6; X ± SE musculus w/ citronellal = 92.97 ± 28.22, N=6; Wilcoxon 
signed-rank test, V = 21, P = 0.031). C) Visit number to each male by musculus female’s in the 
first test (Non-Conditioned: X ± SE musculus = 15.5 ± 3.12, N=2; X ± SE musculus w/ citronellal 
= 12.5 ± 6.01, N=2; Conditioned: X ± SE musculus = 13.17 ± 1.96, N=6; X ± SE musculus w/ 
citronellal = 1.67 ± 0.30, N=6; Wilcoxon signed-rank test, V = 21, P = 0.026). D) Visit number to 
each male by musculus female’s in the second test (Non-Conditioned: X ± SE musculus = 22.5 ± 
3.18, N=2; X ± SE musculus w/ citronellal = 9 ± 0, N=2; Conditioned: X ± SE musculus = 19 ± 
4.66, N=6; X ± SE musculus w/ citronellal = 5.33 ± 0.83, N=6, Wilcoxon signed-rank test, V = 15, 
P = 0.043). E) Time spent in seconds by musculus females near paper filter (X ± SE blank = 
372.12 ± 8.28, N=4; X ± SE citronellal = 143.31 ± 34.49, N=4; Wilcoxon signed-rank test, V = 10, 
P = 0.125). * means P < 0.05 
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Sup. Fig. 3 A) Time spent in seconds by musculus females with both males in the first test (Non-
Conditioned: X ± SE musculus w/ garlic = 52.63 ± 23.62, N=7; X ± SE domesticus w/ vanilla = 
369.52 ± 69.72, N=7; Wilcoxon signed-rank test, V = 1, P = 0.031; Conditioned: X ± SE musculus 
w/ garlic = 96.91 ± 30.27, N= 8; X ± SE domesticus w/ vanilla = 392.85 ± 42.07, N=8; Wilcoxon 
signed-rank test, V = 1, P = 0.016). B) Time spent in seconds by musculus females with both 
males in the second test (Non-Conditioned: X ± SE musculus w/ garlic = 218.24 ± 66.13, N=7; X 
± SE domesticus w/ vanilla = 327.55 ± 70.32, N=7; Wilcoxon signed-rank test, V = 9, P = 0.05; 
Conditioned: X ± SE musculus w/ garlic = 164.84 ± 27.80, N= 8; X ± SE domesticus w/ vanilla = 
423.29 ± 27.67, N=8; Wilcoxon signed-rank test, V = 0, P = 0.05). C) Visit number to each male 
by musculus female’s in the first test (Non-Conditioned: X ± SE musculus w/ garlic = 3.43 ± 1.62, 
N=7; X ± SE domesticus w/ vanilla = 13.58 ± 3.73, N=7; Wilcoxon signed-rank test, V = 3, P = 
0.078; Conditioned: X ± SE musculus w/ garlic = 6.63 ± 1.73, N= 8; X ± SE domesticus w/ vanilla 
= 16.63 ± 2.04, N=8; Wilcoxon signed-rank test, V = 0, P = 0.012). D) Visit number to each male 
by musculus female’s in the second test (Non-Conditioned: X ± SE musculus w/ garlic = 11.29 ± 
2.96, N=7; X ± SE domesticus w/ vanilla = 15.57 ± 1.70, N=7; Wilcoxon signed-rank test, V = 7.5, 
P =0.271; Conditioned: X ± SE musculus w/ garlic = 6.75 ± 1.24, N= 8; X ± SE domesticus w/ 
vanilla = 14.88 ± 1.04, N=8; Wilcoxon signed-rank test, V = 0, P = 0.018). * means P < 0.05 

NC C NC C 

NC C NC C 

* * 
* 

* 

* 
* 



SUPPLEMENTARY DATA 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

0

300

600

T
im

e
 w

it
h
 m

a
le

 (
s
)

Musculus

Domesticus

0

300

600

T
im

e
 w

it
h
 m

a
le

 (
s
)

Musculus

Domesticus

0

15

30

N
u
m

b
e
r 

o
f 

v
is

it
s

Musculus

Domesticus

0

15

30

N
u
m

b
e
r 

o
f 

v
is

it
s

Musculus

Domesticus

A B 

C D 

NC C NC C 

NC C NC C 

Sup. Fig. 4 A) Time spent in seconds by musculus females with both males in the first test (Non-
Conditioned: X ± SE musculus w/ vanilla = 355.57 ± 194.41, N=2; X ± SE domesticus w/ garlic = 
88.70 ± 19.47, N=2; Conditioned: X ± SE musculus w/ vanilla = 457.09 ± 72.53, N= 6; X ± SE 
domesticus w/ garlic = 16.69 ± 9.66, N=6; Wilcoxon signed-rank test, V = 21, P = 0.031). B) Time 
spent in seconds by musculus females with both males in the second test (Non-Conditioned: X ± 
SE musculus w/ vanilla = 382.70 ± 177.72, N=2; X ± SE domesticus w/ garlic = 63.05 ± 63.04, 
N=2; Conditioned: X ± SE musculus w/ vanilla = 513.64 ± 70.14, N= 6; X ± SE domesticus w/ 
garlic = 104.38 ± 47.58, N=6; Wilcoxon signed-rank test, V = 20, P = 0.063). C) Visit number to 
each male by musculus female’s in the first test (Non-Conditioned: X ± SE musculus w/ vanilla = 
13.5 ± 0.5, N=2; X ± SE domesticus w/ garlic = 2.5 ± 0.5, N=2; Conditioned: X ± SE musculus w/ 
vanilla = 17.67 ± 3.32, N= 6; X ± SE domesticus w/ garlic = 2 ± 1, N=6; Wilcoxon signed-rank test, 
V = 21, P = 0.031). D) Visit number to each male by musculus female’s in the first test (Non-
Conditioned: X ± SE musculus w/ vanilla = 21 ± 2, N=2; X ± SE domesticus w/ garlic = 8.5 ± 8.5, 
N=2; Conditioned: X ± SE musculus w/ vanilla = 20.33 ± 3, N= 6; X ± SE domesticus w/ garlic = 
5.83 ± 3.03, N=6; Wilcoxon signed-rank test, V = 15, P = 0.043). * means P < 0.05 
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Sup. Table 1. Summary of results from “Early experience manipulation 3: Manipulation of dam 
scent does not impact the social preference of musculus females”. 

Dam scent manipulation Test Preference 

None garlic vs. water water 

None vanilla vs. water none 

Vanilla Mus ♂ + vanilla vs. Mus ♂ + water none 

Vanilla Mus ♂ + garlic vs. Dom ♂ + vanilla Dom ♂ + vanilla 

Garlic Mus ♂ + vanilla vs. Dom ♂ + garlic Mus ♂ + vanilla 


