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Nota prévia 

Na preparação da presente dissertação e, nos termos do nº 1 do Artigo 45 do regulamento de Estudos 

Pós-Graduados da Universidade de Lisboa, publicado em Diário da República nº 65, II Série de 30 de 

Março de 2012, apenas foram considerados integralmente artigos científicos originais publicados (2), 

em provas (1) ou submetidos a publicação (1) em revistas internacionais indexadas. A autora declara 

ainda que teve participação total na elaboração e execução dos trabalhos práticos, análise e 

interpretação de resultados, preparação e discussão dos manuscritos com primeira autoria. No caso 

de trabalhos de colaboração, como o Chromosome studies of European cyprinid fishes: interspecific 

homology of leuciscine cytotaxonomic marker – the largest subtelocentric chromosome pair as 

revealed by cross-species painting (Apêndice III) e o Synaptonemal complexes in the hybridogenetic 

Squalius alburnoides fish complex: new insights on the gametogenesis of allopolyploids (Apêndice IV), 

a autora executou parte do trabalho prático e participou na análise, interpretação e discussão de 

resultados, assim como na preparação dos manuscritos. Importante ainda de mencionar que a 

genotipagem dos indivíduos analisados ao longo deste trabalho foi levada a cabo pelo membro da 

equipa e co-autora de um dos trabalhos (Capítulo 3.1) Maria Ana Aboim. 

Preliminary note 

In the preparation of the present dissertation solely original scientific papers published (2), in press 

(uncorrected proofs) (1) or submitted (1) for publication in international indexed journals were 

considered. Moreover, the author declares full participation in the conception and execution of the 

experimental work, analysis and interpretation of the results, preparation and discussion of the 

manuscripts as first author. In case of collaborative works such as Appendix III and Appendix IV, the 

author of this dissertation executed part of the practical work, analysis and discussion of the results, 

as well as in the preparation of the manuscripts. Also important to mention, the genotyping performed 

throughout this work was performed by the team member and co-author of one publication (Chapter 

3.1) Maria Ana Aboim. 
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Resumo 

O processo de hibridação inter-específica é actualmente considerado também entre os animais como 

um promotor de biodiversidade, evolução e especiação, ao mesmo tempo que desafia a maioria dos 

conceitos de espécie mais reconhecidos. A hibridação é prevalente entre os peixes, particularmente 

os representantes da família Cyprinidae, que, assim, constituem bons modelos de estudo para (1) 

aceder aos padrões gerais de variabilidade genómica, (2) identificar a base genética e os processos 

evolutivos por detrás de adaptação e especiação naturais, (3) trabalhar a vários níveis, desde o 

genómico e citogenómico a vastas áreas geográficas e gradientes múltiplos de selecção. Tendo em 

conta que os híbridos são geralmente caracterizados por apresentarem sinais de instabilidade e de 

reestruturação genómica, o presente estudo pretendeu investigar estas questões com base na análise 

de híbridos homoploides entre Achondrostoma oligolepis e ou Pseudochondrostoma duriense ou a sus 

espécie-irmã P. polylepis, essencialmente através de técnicas de citogenética molecular, integradas 

com dados de morfologia e genética já descritos para as espécies parentais. O conjunto de sondas 

moleculares seleccionado incluiu DNAs ribossomais (rDNA), DNA genómico total, fracção de DNA 

altamente a moderadamente repetitivo (C0t-1 DNA), retroelemento Rex3, e repetições teloméricas 

(TTAGGG)n, as quais foram utilizadas em metodologias de hibridação in situ fluorescente (FISH), 

hibridação in situ genómica (GISH) e hibridação genómica comparativa (CGH). 

Inicialmente, nove espécies Ibéricas de Chondrostoma s.l., nomeadamente Achondrostoma arcasii, A. 

occidentale, A. oligolepis, Iberochondrostoma almacai, I. lemmingii, I. lusitanicum, 

Pseudochondrostoma duriense, P. polylepis e P. willkommii, foram caracterizadas para a distribuição 

das duas famílias de rDNA evidenciando uma variabilidade em número e localização de clusters 

superior ao que seria expectável tendo em conta a reconhecida uniformidade macroestrutural dos 

seus cariótipos e da subfamília (Leuciscinae) a que pertencem (Capítulo 2). Estes resultados 

apontavam já para um nível de diferenciação cariotípica, praticamente indetectável com técnicas de 

citogenética convencional e/ou de menor resolução. Numa destas espécies, melhor estudada em 

termos de genética populacional (i.e. I. lemmingii), foi possível traçar a história evolutiva dos genes de 

rDNA no seio do género a que pertence (Iberochondrostoma). Na fase seguinte deste estudo, e tendo 

já sido definidos marcadores específicos para cada uma das espécies parentais, procedeu-se à análise 

dos já mencionados híbridos naturais, amostrados em várias zonas híbridas independentes: Rio Sousa 

na bacia do Rio Douro, rios Caima e Serra na bacia do Rio Vouga, e rios Mortágua, Alva e Ceira na bacia 

do Mondego) (Capítulo 3). Neste capítulo foi evidenciada a importância da utilização de abordagens 
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múltiplas no estudo de híbridos e de zonas híbridas naturais, especialmente em casos de 

retrocruzamento extensivo e recorrente, onde os híbridos rapidamente se confundem numa 

observação superficial com as espécies parentais. Esta abordagem integrativa permitiu identificar 

padrões genéticos não-puros em todos os peixes seleccionados como possíveis híbridos. Os resultados 

foram, regra geral, idênticos em ambos os sistemas híbridos estudados (i.e. A. oligolepis x P. duriense 

e A. oligolepis x P. polylepis), tendo sido possível comprovar a existência de processos de 

retrocruzamento preferencial com A. oligolepis. Assim, A. oligolepis pôde ser considerada a espécie 

parental com uma maior contribuição genética para a constituição dos genomas híbridos analisados, 

surgindo como uma espécie mais permissiva à introgressão do que as outras duas. Adicionalmente, a 

espécie A. oligolepis não só aparentou um maior envolvimento como também se revelou mais afectada 

pelos recorrentes eventos de hibridação, uma vez que só foram encontradas translocações 

cromossómicas óbvias em híbridos de tipo-A. oligolepis. Não obstante, os híbridos apresentaram um 

extenso polimorfismo de rDNA, aparentemente ausente nas espécies parentais, mas dentro das 

possíveis combinações entre as contribuições parentais, com excepção de alguns fenótipos 

transgressivos inexplicáveis à luz de uma recombinação normal dos genomas parentais. Estes 

resultados dão provas de uma evolução e reestruturação genómica rápida nos híbridos, 

provavelmente responsável pela disponibilização de combinações genéticas distintas que permitirão 

uma melhor adaptação face a novas adversidades ambientais ou genómicas. Um dos mecanismos que 

poderia explicar esta rápida reorganização do genoma nos híbridos seria a re-activação de elementos 

transponíveis. Para testar esta hipótese, procedeu-se ao mapeamento de um dos elementos 

transponíveis mais comum entre os teleósteos: Rex3 (Capítulo 3.2). Para identificar a existência de um 

eventual processo de reactivação de Rex3 nos híbridos, foi previamente analisada a distribuição deste 

elemento no genoma das espécies parentais, como ponto de comparação pré- e pós-hibridação. Assim, 

o mapeamento físico do Rex3 foi efectuado pela primeira vez em espécies de ciprinídeos, tendo sido 

incluídas as espécies Ibéricas Anaecypris hispanica, Iberochondrostoma lemmingii, I. lusitanicum, 

Pseudochondrostoma duriense, P. polylepis e híbridos de P. polylepis x A. oligolepis. Em paralelo foram 

também mapeadas outras sequências repetitivas para as quais se pretendia determinar a possibilidade 

de associação com este retroelemento. O mapeamento do Rex3 mostrou um padrão de acumulação 

preferencialmente centromérico-telomérico, correlacionando-se com regiões de heterocromatina 

constitutiva mas não com nenhum dos rDNAs. O padrão observado foi genericamente idêntico e 

comparável em todas as espécies testadas, sugerindo uma presença muito antiga e anterior ao 

respectivo processo de diferenciação. Nos híbridos, o padrão de distribuição de Rex3 foi 

essencialmente do mesmo tipo, embora presente em mais pares de cromossomas e claramente 
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associado a clusters de rDNA, em particular clusters de 45S rDNA translocados (ver Capítulo 3.1). Estes 

resultados parecem evidenciar uma re-activação de mecanismos de transposição nos híbridos, 

surgindo portanto como uma das muitas consequências dos processos de hibridação inter-específica. 

A presente dissertação encontra-se estruturada em seis Capítulos e quatro Apêndices que, à excepção 

da Introdução (Capítulo 1), Discussão (Capítulo 5) e Considerações Finais incluindo novas perspectivas 

de estudo (Capítulo 6), resultam da compilação de publicações científicas em revistas internacionais 

indexadas (Capítulos 2 a 4). Em Apêndice foram compilados todos os dados de morfologia resultantes 

desta investigação (Apêndice I) e três publicações da co-autoria da autora desta dissertação 

(Apêndices II a IV) que, não sendo parte essencial deste trabalho, foram consideradas de interesse 

como complemento a alguns dos aspectos discutidos no Capítulo 5. No Capítulo 1 são abrangidos os 

temas chave fundamentais para a integração dos capítulos seguintes. No Capítulo 2 faz-se a 

caracterização das espécies parentais envolvidas nos dois sistemas híbridos abordados neste trabalho, 

Achondrostoma oligolepis, Pseudochondrostoma duriense e P. polylepis, dentre outras seis espécies 

Ibéricas que ocorrem em território nacional (nomeadamente, A. arcasii, A. occidentale, 

Iberochondrostoma almacai, I. lemmingii, I. lusitanicum e P. willkommii). O Capítulo 3 trata da 

caracterização dos mencionados híbridos homoploides, tendo como base de comparação as espécies 

parentais previamente caracterizadas. Pela primeira vez, estes híbridos foram abordados de um modo 

multidisciplinar, combinando marcadores morfológicos, genéticos e citogenómicos. No Capítulo 4 faz-

se uma síntese dos avanços na citogenética de peixes, com particular ênfase para os leuciscíneos da 

Península Ibérica e para os híbridos homoploides. Esta investigação providenciou novos dados 

relativamente a zonas híbridas independentes, ajudando a ilustrar: (1) que os cariótipos das espécies-

alvo não são tão conservados como se pensavam com base em estudos anteriores de nível 

macroestrutural; (2) a sua diferenciação ao nível da subfamília; (3) a interacção de genomas 

divergentes nas várias composições híbridas analisadas; e (4) a sua dinâmica e rápida reorganização 

após eventos recorrentes de hibridação. Contudo, várias questões permanecem ainda sem resposta, 

nomeadamente, acerca da fitness das várias composições híbridas em diferentes ambientes, do 

comportamento meiótico dos heterocariótipos híbridos, dos modos de hereditariedade e de 

compensação de dosagem de loci parentais divergentes. Em conclusão, os sistemas de peixes híbridos 

endémicos da Península Ibérica – homoploides e poliploides – podem ser considerados bons modelos 

para estudos de composição, plasticidade e dinâmica genómica, assim como de processos de 

relevância evolutiva como a hibridação, a adaptação ou a especiação, entre muitos outros. 

PALAVRAS-CHAVE: Chondrostoma s.l., ciprinídeos Ibéricos, citogenética de peixes, citogenómica, 
evolução do genoma, hibridação natural  
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Abstract 

Hybridization is currently a well-recognized process amongst animals responsible for biodiversity, 

evolution and speciation processes while defying most species concepts. Hybridization is prevalent 

among fishes, particularly cyprinids, which therefore constitute good models of study (1) to access 

general patterns of genomic variation, (2) to identify the genetic basis and the evolutionary processes 

behind adaptation and speciation in the wild, (3) working at different levels, from genome-wide to 

large geographic ranges and multiple gradients of selection. Considering that hybrids are usually 

characterized by genome instability and restructuring, the aim of this dissertation was to understand 

some processes of genome dynamics while also characterizing natural homoploid hybrids between 

Achondrostoma oligolepis and either Pseudochondrostoma duriense or its sister-species P. polylepis, 

mainly by means of cytogenomics integrated with morphologic and genetic data sets. Molecular 

probes included ribosomal DNAs, whole genomic DNAs, highly-moderately repetitive DNA fraction 

(C0t-1 DNA), retroelement Rex3, and telomeric (TTAGGG)n repeats, used to characterize nine Iberian 

species of Chondrostoma s.l. and the aforementioned hybrids using FISH, CGH and GISH procedures. 

This investigation provided new data on independent hybrid zones helping to better understand these 

not-so-highly conservative karyotypes as previously considered, their differentiation within the 

subfamily Leuciscinae, the interacting genomes in the hybrid compositions, and their post-

hybridization dynamics and rapid reorganization. But many questions, including new ones, remain 

unanswered, namely, hybrids’ fitness in different environments, meiotic behaviour of hybrid 

heterokaryotypes, modes of inheritance and dosage compensation of diverging loci from each parent; 

as well as continuing to refine karyotype differentiation against a virtually constant macrostructure in 

highly flexible genomes. In summary, the hybrid fish systems that occur in the Iberian Peninsula – 

homoploid or polyploid – are promising regarding unresolved questions related to genome 

composition, plasticity and dynamics, and to evolutionary relevant processes like hybridization, 

introgression, adaptation or speciation, amongst many other biologically relevant subjects. 

KEY-WORDS: Chondrostoma s.l., fish cytogenetics, genome evolution, Iberian cyprinids, cytogenomics, 

natural hybridization 
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QTL quantitative trait loci 

SDS sodium dodecyl sulfate 

SSC standard saline citrate 

TE transposable element 

WCP Whole chromosome painting probe 

ZOO-FISH cross-species chromosome/genome fluorescent in situ hybridization 
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1. Introduction 

HYBRIDIZATION1 is currently a renowned process amongst animals and has already proven a noteworthy 

role in biodiversity, evolution and SPECIATION processes. The study of natural HYBRIDIZATION allied to 

innovative tools of EVOLUTIONARY ECOLOGICAL GENOMICS provides (1) access to general patterns of 

genomic variation, (2) the possibility of identifying the genetic basis and the evolutionary processes 

behind ADAPTATION and SPECIATION in the wild, while (3) working at different levels (genome-wide, large 

geographic range, multiple gradients of SELECTION) (Orsini et al. 2013). 

HYBRIDIZATION is prevalent amongst fishes, particularly cyprinids. HYBRIDS – HOMOPLOID and POLYPLOID – 

were found to be generally characterized by genome instability, and HYBRIDIZATION alone is suspected 

to induce more substantial genomic rearrangements than POLYPLOIDY (e.g. Fontdevila 2005; Hegarty et 

al. 2006; Abbott et al. 2013). Some Iberian Leuciscinae are known to recurrently hybridize in nature 

(e.g. Collares-Pereira & Coelho 1983; Elvira 1990; Alves et al. 1997; Gante et al. 2004; Kalous et al. 

2008; Aboim et al. 2010) producing fertile HOMOPLOID HYBRIDS, therefore constituting good models of 

study in this subject, in which this dissertation is mainly focused. 

The present dissertation was targeted to the characterization of natural HOMOPLOID HYBRIDS within two 

systems involving the cyprinids Achondrostoma oligolepis (Robalo, Doadrio, Almada & Kottelat 2005) 

and either one of the sister-species Pseudochondrostoma duriense (Coelho 1985) or P. polylepis 

(Steindachner 1865). Based mainly on cytogenomic tools alongside with genetic and morphological 

data, this investigation addressed independent HYBRID ZONES involving these pairs of SPECIES. Altogether, 

these analyses aimed to contribute to better understand the interacting genomes and hopefully shed 

some light into the dynamics of such successful, persistent and apparently extensive process of 

INTROGRESSIVE HYBRIDIZATION. 

1.1. Introgressive Hybridization 

SPECIES are the fundamental unit of virtually all subfields of biology, particularly systematics and 

evolutionary biology. Being essentially responsible for the study of the different kinds of organisms 

(biodiversity) and their relationships (PHYLOGENETICS), these disciplines rely utmost on the basic 

category of biological classification (SPECIES). The problem of SPECIES CONCEPTS in ichthyology have been 

                                                      
1 more information on words written in SMALL CAPITALS throughout the text may be found in the Glossary 
section. 
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extensively debated in recent times (Lecointre 1994; Kotelatt 1997; Nelson & Hart 1999; Ruffing et al. 

2002; Mooi & Gill 2010), all competing for acceptance. SPECIES are no longer seen as discrete units of 

biodiversity but as reservoirs in permanent GENE FLOW in a continuous hierarchy of biodiversity (Mallet 

2005); it is more useful to think of SPECIES as gene complexes. The modern general SPECIES CONCEPT 

emphasizes SPECIES as separately evolving METAPOPULATION LINEAGES; interconnected populations 

forming an extended reproductive community and an unevenly distributed but unitary gene pool or 

field for gene RECOMBINATION (reviewed in Queiroz 2005). Telling apart one SPECIES from another should 

no longer be the critical focus of biological investigation, but rather the existence of barriers to 

RECOMBINATION and the factors affecting them, that control the accumulation of differences between 

populations and ultimately contribute to biodiversity (Ortíz-Barrientos et al. 2002). 

INTROGRESSIVE HYBRIDIZATION is the exchange of genetic material between independent evolutionary 

lineages resulting in bisexual hybrid populations, as opposed to a more classic view of HYBRIDIZATION 

yielding exclusively unviable or infertile offspring (see Seehausen 2004). While botanists have long 

recognized the importance of ‘genome invasion’ (i.e. INTROGRESSION) in evolution as a diversity-

generating mechanism, zoologists have traditionally considered it as unnatural and unusual, an 

exception to the rule (e.g. Dowling & Secor 1997; Epifanio & Nielsen 2001; Seehausen 2004; Mallet 

2005; Soltis 2013). Nowadays, not only is it considered a commonplace phenomenon, but also 

assumed to play an important role in ADAPTATION, DIVERGENCE, evolution and SPECIATION (e.g. Dowling & 

Secor 1997; Shapiro 1999; Epifanio & Nielsen 2001; Kidwell 2002; Fontdevila 2005; Abbott et al. 2013; 

Soltis 2013). In fact, SPECIATION and ADAPTATION in a POPULATION GENETICS sense has a clear link to 

RECOMBINATION (Figure 1.1) (Ortíz-Barrientos et al. 2002). HYBRIDIZATION may occur in many different 

contexts, may be common and widespread, spatially or temporally localized or globally rare, and result 

in distinct outcomes (Abbott et al. 2013; Soltis 2013): (1) delay or reverse differentiation through 

homogenization (loss of biodiversity), sometimes even promoting invasiveness at the cost of the native 

SPECIES (e.g. Costedoat et al. 2005, 2007); (2) promote niche differentiation through increased genetic 

variation (ADAPTIVE DIVERGENCE of existing populations) while reinforcing barriers to GENE FLOW 

(REINFORCEMENT; increase in biodiversity) (e.g. Rieseberg 2001; Ortíz-Barrientos et al. 2002); (3) 

accelerate SPECIATION (increase in biodiversity) by either transferring ADAPTIVE traits via INTROGRESSION 

with the establishment of recombinant forms (HOMOPLOID HYBRID SPECIATION; e.g. Gerber et al. 2001; 

Mavárez & Linares 2008), or via ALLOPOLYPLOIDIZATION (instantaneous SPECIATION or nearly so; recently 

reviewed in Mable et al. 2011 and Collares-Pereira et al. 2013). The extent and the form of genetic 

novelty will vary with the spacio-temporal context and most certainly delineate the magnitude of the 

HYBRIDIZATION process. 
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HYBRIDIZATION in general, as well as INTROGRESSION in 

particular, challenges the classic SPECIES CONCEPT as they 

break apart the required isolating mechanisms. For 

that, HYBRIDS have been stigmatized with concepts of 

low FITNESS or no evolutionary value at all. HYBRIDS may 

exhibit distinct FITNESS levels, either lower, equivalent 

or higher than in parental taxa (Arnold & Hodges 

1995). In fact, overall HYBRIDS’ FITNESS 

is not more inferior to their parents; in some cases, 

HYBRID FITNESS is higher in some environments where 

they can outcompete the parental SPECIES; occupation 

of new habitats by HYBRID genotypes is a common 

observation both in plants and animals (Fontdevila 

2005). By these means, new genotypes with the ability 

to establish new evolutionary lineages are thus 

generated (e.g. Arnold & Hodges 1995; Dowling & 

Secor 1997; Gerber et al. 2001; Seehausen 2004; 

Mallet 2005; Abbott et al. 2013). Notwithstanding, 

HYBRIDIZATION complicates the delineation and 

identification of distinct evolutionary units in 

conservation genetics and, for example, conventions 

like the Endangered SPECIES Act (ESA) do not protect 

HYBRIDS between recognized endangered SPECIES 

(Allendorf et al. 2001; DeSalle & Amato 2004). 

The resulting admixed populations may be sexual or asexual, HOMOPLOID or POLYPLOID (Abbott et al. 

2013). HOMOPLOID HYBRID SPECIATION has been demonstrated but considered to be rare (e.g. Mallet 2007; 

Mavárez & Linares 2008), even though levels of INTROGRESSION have been underestimated in the past 

(e.g. Dowling & Secor 1997; Mallet 2005). More commonly, genetic exchanges between hybridizing 

taxa are not reciprocal resulting in the directional incorporation of genes of one SPECIES into the 

genome of another SPECIES (i.e., INTROGRESSIVE HYBRIDIZATION) (Scribner et al. 2001). The present 

availability of genome-wide data for a large number of SPECIES (including non-model ones) offers 

improved means for the identification of HYBRIDS and the opportunity for a thoughtful consideration 

on the genetic and evolutionary consequences of HYBRIDIZATION. 

 

Figure 1.1 HYBRIDIZATION without RECOMBINATION. 
Assuming that F1 HYBRIDS are not infertile, 
without RECOMBINATION no genetic novelty 
would ever arise from HYBRIDIZATION. Only 
parental types or identical F1 

HETEROKARYOTYPES would be produced in a 

second generation HYBRIDIZATION or 

BACKCROSSING. Adapted from Ortíz-Barrientos 

et al. 2002. 
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HYBRIDIZATION can result in different evolutionary outcomes, as previously stated. Understanding the 

genetic mechanisms underlying the different alternatives will allow understanding the impact of 

HYBRIDIZATION on ADAPTATION and SPECIATION processes, central questions in evolutionary biology. 

SPECIATION is the process by which RECOMBINATION between genomes of subpopulations is minimized 

over time either due to geographic barriers (strict ALLOPATRY), accumulation of genomic 

incompatibilities (through chromosomal rearrangements), or ADAPTIVE DIVERGENCE so that two gene 

pools can come into contact and yet maintain their distinctiveness (Ortíz-Barrientos et al. 2002). The 

rate of genome stabilization in HOMOPLOID HYBRID SPECIES is believed to be extremely rapid; few 

generations of RECOMBINATION between genes or chromosomal regions promoting isolation may be 

sufficient for the origin and success of a lineage with high FITNESS and REPRODUCTIVE ISOLATION. But 

genome stabilization is not a synonym of HYBRID SPECIATION. While segregating factors that contribute 

to initial ecological or intrinsic genetic isolation may become quickly stabilized, the remainder of the 

genome likely requires a longer time to become stable with RECOMBINATION and DRIFT dictating the 

contributions of each parental genome (Buerkle & Rieseberg 2008). 

HYBRIDIZATION has been known at least since Linnaeus (Mallet 2005) and, thanks to the advances in 

genome-wide molecular methods, natural cases of INTROGRESSIVE HYBRIDIZATION among animal SPECIES 

have been increasingly reported (e.g. Dowling & Secor 1997; Seehausen 2004; Mallet 2005, 2007; 

Abbott et al. 2013). Progressively accepted as a biological process not restricted to plants, HYBRIDIZATION 

events are more often spotted among freshwater fishes than in any other group of vertebrates 

(Scribner et al. 2001). Interspecific HYBRIDIZATION occurs widely across a taxonomically diverse array of 

fish SPECIES for which human influences (aquacultures, SPECIES’ introductions, and loss or alteration of 

habitats) have frequently been implicated as contributing factors (Dowling & Secor 1997; Allendorff 

2001; Scribner et al. 2001; Costedoat et al. 2007). Family Cyprinidae, as the most speciose fish family, 

accounts for many HYBRID taxa, equally powered by anthropogenic or natural factors (Dowling & Secor 

1997; Scribner et al. 2001). Some of the most scrutinized examples of HOMOPLOID HYBRIDIZATION within 

Cyprinidae are explored ahead in Section 1.2.2. 

Whether the prevailing mechanisms behind HYBRIDS’ success are ‘genetic incompatibilities’ or 

‘evolutionary novelties’ both assume the appearance of potentially FITNESS-related phenotypic traits in 

HYBRIDS lying outside the parental distributions (Seehausen 2004; Reusch & Wood 2007; Abbott et al. 

2013). Such TRANSGRESSIVE HYBRIDIZATION may speed up adaptive evolution. Novel HYBRID phenotypes 

may include genome restructuring, duplications/deletions, alterations in timing and levels of gene 

expression, epigenetic effects and TRANSPOSON activation (reviewed in Abbott et al. 2013). HYBRIDIZATION 

creates such variation instantaneously and simultaneously in several functional traits (Seehausen 
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2004). The immediate causes of extensive phenotypic novelty in HYBRIDS lie in differences between the 

contributing genomes that, when combined, have novel effects (Abbott et al. 2013). Heritable genetic 

variation mediates the rate and the direction of a population’s response to SELECTION, crucial for natural 

populations to adapt to new environmental regimes (Orsini et al. 2013). The extent of novel expression 

patterns in the first few generations following HYBRIDIZATION often exceed what can be expected from 

simple reshuffling of pairwise epistatic interactions (see Seehausen 2004). In particular, regulatory 

genes are fast-evolving and evolve in a compensatory fashion within complex networks, increasing the 

probability of epistatic effects after HYBRIDIZATION (Abbott et al. 2013). Thus DIVERGENCE may occur 

quickly after isolation. 

Genomic structural variation between SPECIES (chromosomal organization, gene duplication or loss and 

TRANSPOSABLE ELEMENT distribution) may induce further restructuring upon HYBRIDIZATION with possible 

phenotypic consequences directly affecting RECOMBINATION rates and reproductive compatibility with 

parental SPECIES (Rieseberg, 2001; Abbott et al. 2013). Nonetheless, the emergence of genetic novelties 

and variation is likely to be an ongoing process, with different phenotypes being exposed to NATURAL 

SELECTION over successive generations. Structural changes are expected to contribute primarily to 

barriers to GENE FLOW, while functional changes can have a wide array of effects, important in 

generating FITNESS-enhancing evolutionary novelty (Abbott et al. 2013). HYBRID ZONES provide excellent 

settings to study microevolutionary processes while cyprinid fish offer a good opportunity to search 

for genomic signatures of HYBRIDIZATION. Given the ancestral position of fishes in the phylogeny of 

vertebrates, the investigation of fish genomes is able to provide useful information for understanding 

structure, function and evolution of genes and genomes in vertebrates (see e.g. Jaillon et al. 2004). 

1.2. Hybridization within Iberian 
Chondrostoma s.l. (Teleostei, Cyprinidae, Leuciscinae) 

Most of the fish fauna in Iberian Peninsula – and in the Mediterranean Basin in general – is 

characterized by a high number of endemic SPECIES belonging to Cyprinidae, the largest family of 

freshwater fishes and one of the largest vertebrate families (Nelson 2006). The genus Chondrostoma 

sensu lato (Agassiz 1835), currently comprising 35 SPECIES – hereafter often referred to as 

chondrostomines, is a good representative of the Leuciscinae subfamily in the Iberian Peninsula, where 

records of high levels of diversity (biological, morphological and molecular) were already described 

(e.g. Doadrio & Carmona 2004; Robalo et al. 2007; Leunda et al. 2009; Perea et al. 2010; Doadrio et al. 

2011). 
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As such a variable group, leuciscines’ taxonomy has obviously been reformulated several times (see 

e.g. Bogutskaya 1994). By integrating distinct data such as molecular (both mitochondrial and nuclear) 

and BIOGEOGRAPHIC data, Perea et al. (2010) presented a robust model for the current distribution of 

Circum-Mediterranean leuciscines. Similarly, Robalo et al. (2007) proposed a revised taxonomy for the 

genus Chondrostoma s.l. based on morphologic and molecular markers, recognizing five additional 

new genera: Achondrostoma, Iberochondrostoma, Pseudochondrostoma, Parachondrostoma and 

Protochondrostoma, four of which Iberian and the first three exclusively exist in Portugal. 

The diversification of Iberian leuciscines is highly related to the formation of the main Iberian river 

basins, though shaped by particular punctuated local events in some cases (i.e. incomplete river 

separation, recent river captures, and/or even more recent anthropogenic interventions) (e.g. Robalo 

et al. 2007; Perea et al. 2010; Aboim et al. 2013). Thus the main Iberian lineages sensu Robalo et al. 

(2007) are defined as follows, from more basal to more divergent: toxostoma with three SPECIES, 

lemmingii with four SPECIES, arcasii and polylepis both with three SPECIES each. Regarding their 

distribution throughout Portugal (Figure 1.2): (1) Iberochondrostoma genus comprises the lemmingii 

lineage and occurs in the large southern drainages of Tejo, Guadiana, and Guadalquivir, as well as in 

some small coastal Atlantic drainages (Gante et al. 2007; Robalo et al. 2007; Sousa et al. 2008; 

Monteiro et al. 2009; Lopes-Cunha et al. 2012). Iberochondrostoma lemmingii (ILE) is considered the 

central evolutionary unit of the genus with high levels of genetic diversity and ANCESTRAL POLYMORPHISMS 

retained in the larger populations (Lopes-Cunha et al. 2012) (Figure 1.2a); (2) the Achondrostoma 

genus comprising the arcasii lineage is found in the central-northern drainages of the Peninsula 

(Robalo et al. 2006, 2007). A. oligolepis (AOL) distribution is limited to river basins between Minho and 

Mondego basins, being restricted to Douro tributaries in Portugal, A. arcasii (AAR) distribution goes 

from Douro drainages in Portugal close to the border to being mostly spread across northern Spain, 

and A. occidentale (AOC) is a Portuguese endemic restricted to few small coastal Atlantic drainages 

(Figure 1.2b); (3) the widespread Pseudochondrostoma represents the polylepis lineage with SPECIES 

ALLOPATRICALLY distributed along the whole Portuguese territory (Aboim et al. 2009, 2013; Leunda et al. 

2009). From north to south, P. duriense (PDU) occurs in Galiza and north of Portugal with a southern 

limit in Vouga basin, P. polylepis (PPO) can be found throughout Tejo and Mondego basins, and P. 

willkommii (PWI) in Portugal is only found in Guadiana basin (Figure 1.2c). 

Iberian cyprinids, namely leuciscines, are particularly useful for studying HYBRIDIZATION events since 

they comprise several closely related SPECIES living in sympatry and several cases of extensive 

INTROGRESSIVE HYBRIDIZATION have been described or suspected to occur (e.g. Collares-Pereira & Coelho 

1983; Elvira 1990; Alves et al. 1997; Gante et al. 2004; Kalous et al. 2008; Aboim et al. 2010). 
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Interestingly, cases of natural HYBRIDIZATION have been reported between polylepis x arcasii or between 

toxostoma x arcasii lineages (sensu Robalo et al. 2007), but never between toxostoma x polylepis 

lineages when they occur in sympatry (Robalo et al. 2007; Doadrio et al. 2011). In particular, natural 

HYBRIDS between AOL and PDU were first referenced by Steindachner (1866) but only later 

characterized on biometrical grounds by Collares-Pereira & Coelho (1983). In fact, the confirmation of 

the parental SPECIES involved was formerly done by Gante et al. (2004) and later by Aboim et al. (2010), 

who also used combined analysis of several markers. 

Back in 1983, the frequencies of individuals with intermediate characters were found higher than 

expected for an occasional HYBRIDIZATION event, and the vast phenotypic variability towards the most 

abundant species pointed to the possibility of INTROGRESSION (Collares-Pereira & Coelho 1983). Later 

on, HYBRIDIZATION was found recurrent and extensively contributing for several independent HYBRID  

 

Figure 1.2 Distribution of Iberian Chondrostoma s.l. lineages occurring in Portugal: (a) Iberochondrostoma, (b) 
Achondrostoma, and (c) Pseudochondrostoma. 
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ZONES (HZs) (Aboim et al. 2010). Genome invasion was determined as heterogeneous and asymmetric 

(Aboim et al. 2010) with both morphological and molecular markers at gene and chromosomal level 

evidencing complex patterns of genome INTROGRESSION (Gante et al. 2004, Aboim et al. 2010; present 

dissertation). Additionally, the long suspected case of HYBRIDIZATION between AOLxPPO (e.g. Almaça 

1965) was only confirmed in the frame of the present dissertation. AOL, PDU and PPO are broadly 

SYMPATRIC across the AOL geographic distribution (Robalo et al. 2006; Aboim et al. 2009; Figure 1.3). 

Achondrostoma and Pseudochondrostoma SPECIES are morphologically (Collares-Pereira 1979; Coelho 

1985) (Figure 1.4; Table 1.1) and genetically well characterized, being definitely distinctive (e.g. 

Doadrio & Carmona 2004; Aboim et al. 2010). Therefore, HYBRID individuals are expected to exhibit 

intermediate MORPHOTYPES or an assortment of parental-specific traits (e.g. Collares-Pereira & Coelho 

1983). However, HYBRIDS of first generation (F1) – expected to be strictly intermediate – were never 

found in the surveyed HZs to date (e.g. Collares-Pereira & Coelho 1983; Gante et al. 2004; Aboim et al. 

  

Figure 1.3 Range distribution of hybridizing Iberian Chondrostoma s.l. Achondrostoma oligolepis, 
Pseudochondrostoma duriense and P. polylepis accounting for extensive sympatric areas between both 
genera       . 
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2010; present work) probably as a consequence of the strong assortative mating shown by closely 

related SPECIES living in sympatry (Mallet 2005). F1 HYBRIDS are often the most difficult to originate, but 

once established (i.e. viable and fertile) BACKCROSSING and endorsing GENE FLOW between parental 

SPECIES is then possible (Mallet 2005), as it seems to be the case (Aboim et al. 2010; present 

dissertation). 

1.2.1. Morphological Markers 

Historically, meristic and morphometric measurements were the primary tools of identifying naturally 

occurring HYBRIDS (reviewed in Scribner et al. 2001). With no doubt, HYBRIDS between brightly coloured 

SPECIES (e.g. birds, butterflies) are easier to identify – and more commonly recorded – than within 

uniform groups. HYBRIDS between morphologically similar SPECIES are largely cryptic and only experts 

are able to distinguish them, also contributing to the still existing underestimation of natural HYBRIDS 

(Mallet 2005). 

The morphological characters traditionally used to define Chondrostoma s.l. were considered feeble, 

having probably evolved several times in distinct lineages (Robalo et al. 2007; Corse et al. 2012). 

Morphological traits often used to identify taxa may represent ADAPTATIONS to specific environments 

even in the face of INTROGRESSION (e.g. Gerber et al. 2001). Nonetheless, and considering that Iberian 

 

Figure 1.4 Morphological representation of (a) Achondrostoma, (b) Pseudochondrostoma and (c) their 
intergeneric HYBRIDS. Main diagnostic characters rely on: (1) shape and position of the mouth; (a) arched and 
terminal in Achondrostoma, (b) straight and ventral in Pseudochondrostoma, (c) elliptic and subterminal in 
the HYBRID; and (2) on the presence/absence of a corneous lower lip; (a) absent in Achondrostoma, (b) but 
characteristic of Pseudochondrostoma, and (c) modestly present in the HYBRIDS. 
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sister-species are usually ALLOPATRICALLY distributed, representatives of Achondrostoma and 

Pseudochondrostoma genera exhibit clear morphological differences easily recognizable at first glance 

(Collares-Pereira 1979; Coelho 1985; Figure 1.4a-b; Table 1.1), as already mentioned. Amongst the 

diagnostic traits, the most effortless identifiable include the shape and position of the mouth, and the 

presence/absence of a corneous lower lip (Figure 1.4); with a little more work, scales count in the 

lateral line and gill-rakers count are also valuable tools (Table 1.1). Intermediate forms or an 

assortment of parent-specific characters have shown to differentiate HYBRID MORPHOTYPES (Collares-

Pereira & Coelho 1983; Figure 1.4c; Table 1.1) and contribute as a primary method of 

identification/classification. In this dissertation, depending on their general phenotype and main 

parental character contribution, HYBRIDS were classified and designated as AOL-like, PDU-like or PPO-

like. All data and information regarding the specimens addressed for their morphological 

characterization during the present investigation can be found in Appendix I. 

However, identifying HYBRIDS based on morphological characters alone may be challenging due to 

ANCESTRAL POLYMORPHISMS (Figure 1.5) or especially due to recurrent BACKCROSSING so that HYBRIDS 

become indistinguishable from their parental taxa (Mallet 2005), as it seems to be the case (Aboim et 

al. 2010; this dissertation). 

1.2.2. The Genetics of Introgression 

As previously referred, in such cyprinid group, a considerable fraction of these intergeneric HYBRIDS 

cannot be reliably identified based on morphology alone (Aboim et al. 2010). Genetic markers and 

POPULATION GENETICS theory provide valuable tools for studying fish biodiversity and HYBRIDIZATION 

(Scribner et al. 2001). In contrast to morphological traits, most molecular markers are assumed to be 

Table 1.1 Morphological set of diagnostic characters used to identify the specimens included in this study. 

 
mouth no. scales in 

lateral line 
no. gill 
rakers 

classification 
position shape corneous lip 

       

parental 
species 

terminal arched absent 30-45 12 Achondrostoma 

ventral straight present >60 21 Pseudochondrostoma 

       

hybrids sub-terminal elliptic inconspicuous 45-60 12-21 AOL-, PDU- or PPO-like 
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neutral allowing them to freely move among hybridizing taxa. Cyto-nuclear genealogical discordances 

(i.e. mitochondrial vs. nuclear genes) have been used in several studies to portray cases of 

INTROGRESSIVE HYBRIDIZATION (Avise 2001), even though this discordance may not always be obvious (see 

Seehausen 2004) (Figure 1.5). In particular, the quantification of associations between nuclear and 

cytoplasmic alleles can be used to: (1) formulate hypotheses regarding HYBRID formation in specific 

ecological settings, (2) determine the rate and direction of evolutionary change within each HYBRID ZONE 

(Avise 2001; Scribner et al. 2001), (3) deduce the frequency of HYBRIDIZATION and INTROGRESSION in 

nature, (4) define the behavioural and ecological factors controlling the genetic architecture of HYBRID 

populations, (5) identify the degree of consistency in genetic outcomes across multiple HYBRID ZONES, 

and (6) assess the contribution of environmental changes to the incidence of HYBRIDIZATION (Avise 

2001). In any case, caution is required to distinguish between INTROGRESSION and incomplete LINEAGE 

SORTING (Figure 1.5), stressing the importance of obtaining data from multiple independent genetic 

sources (e.g. Gerber et al. 2001; Scribner et al. 2001; Gante et al. 2004; Mallet 2005; Gromicho & 

Collares-Pereira 2007; Mavárez & Linares 2008; Lajbner et al. 2009; Aboim et al. 2010; Waap et al. 

2011; Twyford & Ennos 2012; Choleva et al. in press). 

The viability of an interspecific cross is negatively affected by the genetic distance between two SPECIES 

(Mallet 2005). On the other hand, the longer the time since SPECIES DIVERGENCE, the probable effect of 

incomplete lineage sorting decreases; the probability of encountering an ANCESTRAL POLYMORPHISM is 

negligible after a DIVERGENCE time of ~1 my (Shedlock et al. 2004). The parental SPECIES of the HYBRID 

systems considered in this study are thought to have diverged around 11 mya (Doadrio & Carmona 

2004; Aboim et al. 2010; Perea et al. 2010) for which incomplete lineage sorting can in principle be 

ruled out. However, more complex patterns may emerge and discordance between gene trees and 

SPECIES phylogeny might be found with higher probability (Shedlock et al. 2004). 

The North American Gila robusta complex comprises seven taxa endemic to distinct habitats (Dowling 

& DeMarais 1993; Gerber et al. 2001) of which only three live in sympatry at the moment, displaying 

simultaneously different patterns of HYBRIDIZATION and local ADAPTATION (Gerber et al. 2001). In 

ALLOPATRY: (1) Gila robusta and G. elegans were readily characterized by distinctive HAPLOTYPES, while 

(2) G. cypha revealed some traces of admixture with G. elegans. In sympatry: (1) all parental taxa 

evidenced G. cypha’s HAPLOTYPES regardless of the MORPHOTYPE exhibited, proving for extensive 

INTROGRESSION and total replacement of G. robusta’s mtDNA for G. cypha’s mtDNA; (2) G. seminuda had 

been inferred and further confirmed of ancient HYBRID origin between G. robusta x G. elegans; while 

(3) G. jordani seems to have resulted from HYBRIDIZATION between G. robusta x G. cypha instead. 
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The case of the North American Cyprinella lutrensis complex encompasses three SPECIES with 

overlapping ranges and signatures of past and ongoing HYBRIDIZATION events (Broughton et al. 2011). 

Analyses based on mtDNA and nuclear genes revealed: (1) multiple HZS between C. lutrensis x C. 

venusta where parental SPECIES co-occur with their HYBRIDS and HYBRIDIZATION seems reciprocal, 

widespread with possibly recurrent BACKCROSSING; (2) historical HYBRIDIZATION between C. lutrensis x C. 

lepida in a single population, with complete mtDNA replacement for C. lutrensis and no known HYBRID 

ZONES at the present time. 

 

Figure 1.5 Schematic representations of HEMIPLASY and incomplete LINEAGE SORTING. The distributions of a genic 
or chromosomal POLYMORPHISM (a) and a set of genealogical lineages (b) traversing successive SPECIATION nodes 
in an organismal phylogeny (broad grey branches) and becoming fixed by LINEAGE SORTING in descendant SPECIES 
in a pattern discordant with the SPECIES PHYLOGENY. SPECIES II and III have the homologous and derived character 
‘b’ so the gene tree indicate these SPECIES as the more closely related. However, in truth SPECIES I and II are 
sister taxa, despite the fact that SPECIES I alone retains the ancestral genetic condition ‘a’. Unfixed 
POLYMORPHISMS might be evident by PCR (c) and represent ongoing sorting of alleles towards the eventual loss 
or fixation in younger SPECIES. Fixed loci in older SPECIES might provide discordant patterns but accurately 
reflect gene genealogies in the absence of parallel evolution. Genetic discordance is most likely explained by 
the random fixation of alleles in different lineages that underwent rapid, successive SPECIATION in the distant 
past or, alternatively, by interspecific HYBRIDIZATION. Adapted from Shedlock et al. 2004 and Robinson et al. 
2008. 
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The French case-study of Chondrostoma nasus x C. toxostoma relates to a recent case of bidirectional 

INTROGRESSIVE HYBRIDIZATION powered by human activity, in which the genetic assimilation of the rarer 

SPECIES (native and endangered C. toxostoma) by the invasive C. nasus seems to be in place, seriously 

jeopardizing the endemic SPECIES (Costedoat et al. 2005). No continuum (or HYBRID gradient) could be 

found linking the distinct HYBRID ZONES, and morphological convergence seems to be occurring towards 

the native SPECIES even though most HYBRIDS present mtDNA of C. nasus (Costedoat et al. 2005; Corse 

et al. 2012). 

In the present investigation, a thorough genetic profiling of all individuals (parental and putative 

HYBRIDS) was included, based on molecular markers previously developed for the parental SPECIES – 

mtDNA cyt b gene, ten microsatellite loci (Aboim et al. 2010), and the single-copy RAG-1 nuclear gene 

(recombination activating gene 1) (Aboim et al. 2009) (see for example Chapter 3.1). Earlier analyses 

have demonstrated that independent HYBRID ZONES seem to behave differently regarding levels and 

direction of INTROGRESSION: (1) in Távora HYBRID ZONE (Douro basin) INTROGRESSION of mtDNA was 

asymmetric towards PDU (Aboim et al. 2010) in contrast with previous findings where no mtDNA 

INTROGRESSION was found (Gante et al. 2004) or morphological trait INTROGRESSION seemed to happen in 

the direction of AOL (Collares-Pereira & Coelho 1983); (2) in Caima HYBRID ZONE (Vouga basin) 

INTROGRESSION was found bidirectional but highly asymmetric towards AOL (Aboim et al. 2010). In this 

study, other HYBRID ZONES were further identified and also characterized by means of the same genetic 

markers in addition to the cytogenetic assessment (Chapter 3.1). 

1.3. Cytogenomics 

Above all, HYBRIDIZATION provides an extraordinary opportunity to study divergent genomes interacting 

in a completely novel context. Chromosomes, on the other hand, offer a chance for the macro-

examination of the genome and may therefore afford for stronger evidences of HYBRIDIZATION and 

reorganization. Despite some controversy, chromosome breaking points/regions seem rather non-

random and conservative (e.g. Mallet 2005; Longo et al. 2009; Brown et al. 2012; Robinson & Yang 

2012) allowing to establish a correlation between the genomic stress imposed by HYBRIDIZATION and the 

probable rearrangements found in the new genomic (HYBRID) compositions. 

Few studies have used karyology/chromosomes to identify HYBRIDS mainly due to the great effort of 

fish cytogenetics compared to other genetic approaches and also because congeneric SPECIES (most of 

the HYBRIDIZING fish SPECIES) often have the same standard KARYOTYPE (reviewed in Scribner et al. 2001), 

as it is the case (Pereira et al. 2009; Appendix II). In this study, by integrating for the first time 
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cytogenetic data with morphological and robust genetic profiling on AOLxPDU and AOLxPPO HYBRIDS 

(Chapter 3), we aimed to better understand the impact of the ongoing inter-generic HYBRIDIZATION 

process on the genomes of these SPECIES, especially considering the heterogeneous patterns of 

INTROGRESSION previously found on distinct HZs (Gante et al. 2004; Aboim et al. 2010) 

One of the major challenges in EVOLUTIONARY ECOLOGICAL GENOMICS is the management and 

comprehensive analysis of the huge data volumes generated. After identifying the signature of 

SELECTION underlying relevant phenotypes, the functional association to genotypes must be validated 

(e.g. Phillips et al. 2006) by methods not always available for non-model SPECIES, such as LINKAGE and 

CHROMOSOMAL MAPS (Orsini et al. 2013) PHYSICAL MAPS are indispensable tools that form the intermediate 

layer between local (gene) sequences, genetic maps, and whole genome sequences (Oeveren et al. 

2011). In contrast to GENETIC MAPS, CHROMOSOMAL MAPS can lead to the identification of the genomic 

mechanisms underlying adaptive phenotypes even in the absence of a genome sequence (Orsini et al. 

2013). Far from feared, cytogenetics was not placed aside in the genomics era, but yet greatly boosted 

by the thriving technical advances. Cytogenomics (or modern cytogenetics) became a multidisciplinary 

science relying now on a combined set of approaches of conventional (banding) and molecular tools 

(chromosome painting, gene mapping and sequencing) broadening the perspectives in the study of 

KARYOTYPES and chromosomes. 

Despite rarely used for that purpose, chromosomes are undoubtedly powerful characters for inferring 

PHYLOGENETIC relationships (with inherent limitations; Dobigny et al. 2004; Robinson & Yang 2012). 

KARYOTYPE structural variations were originally considered potential effective barriers to GENE FLOW 

between hybridizing taxa; either through FITNESS reduction in the HYBRIDS (e.g. meiotic impairments of 

the HETEROKARYOTYPES), by reducing the RECOMBINATION rates in rearranged areas of the genome 

(Rieseberg 2001; Dobigny et al. 2004; Kawakami et al. 2011), or alternatively by accelerating DIVERGENCE 

between populations through the spread of locally adapted alleles or protecting combinations of genes 

associated with REPRODUCTIVE ISOLATION (suppressed-RECOMBINATION; Kawakami et al. 2011). The 

perspective of suppressed-RECOMBINATION has significant implications for both SPECIATION models and 

for the outcome of contact between neo-SPECIES and parental SPECIES (Rieseberg 2001). However, the 

meiotic impact of the different chromosomal changes may vary and many researchers simply consider 

chromosomal rearrangements as incidental by-products of SPECIATION processes. 

Syntenic blocks involving entire chromosomes, chromosomal arms, or large chromosomal segments 

are sometimes shared across even distantly-related SPECIES (e.g. mammals; Graphodatsky et al. 2011; 

Ruiz-Herrera et al. 2012). They are considered and used as powerful PHYLOGENETIC markers, since 
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independent convergent evolution of the syntenic blocks seems highly unlikely. Nowadays, 

chromosomal rearrangements are known to reuse breakpoints usually rich in segmental duplications, 

repetitive elements, and fragile sites, and also involve an epigenetic component (e.g. Longo et al. 2009; 

Brown et al. 2012; Robinson & Yang 2012). On the other hand, HYBRIDIZATION is known to result in 

genomic, transcriptomic and epigenetic shocks; new HYBRID phenotypes may include genome 

restructuring, duplications/deletions, alterations in timing and levels of gene expression, epigenetic 

effects and TRANSPOSON activation, readily available after the HYBRIDIZATION event(s) (e.g. Seehausen 

2004; Fontdevila 2005; Hegarty et al. 2006; Czypionka et al. 2012; Abbott et al. 2013). Structural 

alterations result from primary or secondary chromosome rearrangements. Primary rearrangements 

(insertion, deletion or duplication, peri- or paracentric inversion, and intra- or interchromosomal 

reciprocal translocation) are the outcome of illegitimate RECOMBINATION between homologous 

sequences. Secondary rearrangements can occur in organisms with double heterozygosity for two 

primary rearrangements involving a single chromosome and thus originate gametes with a new 

KARYOTYPE (Schubert & Lysak 2011). From this point of view, chromosome rearrangements provide 

satisfactory explanation for KARYOTYPE EVOLUTION. In theory, genome modifications strongly affecting 

FITNESS can only become fixed through DRIFT in small, inbred populations (Rieseberg 2001; Kawakami 

et al. 2011). On the other hand, if rearrangements are neutral or weakly UNDERDOMINANT the conditions 

for their fixation are relaxed (Rieseberg 2001). 

In Chapter 4 of this dissertation, a short revision on fish cytogenetics is given, with special emphasis 

on Iberian Leuciscinae and the HOMOPLOID HYBRIDS under focus. The major advance may yet be 

considered the employment of molecular cytogenetic techniques to fish chromosomes, helping to 

overcome the limitations of conventional banding (e.g. Phillips & Reed 1996; Phillips 2001; Dobigny et 

al. 2004). Fluorescent in situ hybridization (FISH) is a powerful complementary tool to genome analysis, 

useful for correlating genetic maps with specific chromosomes, or for quickly generating such maps 

for SPECIES that do not have them and for which performing standard crossing experiments may be a 

problem (Phillips 2001). One of the primary reasons for the central role of FISH in developing PHYSICAL 

MAPS is the remarkable resolution it provides over all other approaches (~5 Mb in metaphase FISH to 

~5 kb by fiber-FISH, or even few-bp-long if highly repetitive; Raudsepp & Chowdhary 2008). On the 

other hand, FISH is particularly important for the study of the distribution of repeated sequences, 

which are frequently excluded from shotgun genome assemblies (Fischer et al. 2004; Oeveren et al. 

2011). 

Moreover, the demand for studies integrating cytogenetics with population genetics, morphological 

and systematic data is growing (Oliveira et al. 2009), not only to better understand the importance of 
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karyotypic changes in SPECIATION and evolution, but also as an additional tool to trace inter-specific 

HYBRIDIZATION processes. 

1.3.1. Repetitive DNAs as Probes 

Heterochromatin is characterized by a complex arrangement of various types of repetitive sequences 

often responsible for lineage-specific patterns (amount and distribution). The correlation between 

repetitive sequences and chromosomal rearrangements has been extensively documented, for which 

modifications in this genomic fraction might result in effective reproductive barriers. Investigations 

using repetitive sequences proved useful in revealing the evolutionary forces driving the huge diversity 

found in fishes and in improving our comprehension on genome structure and evolution (e.g. reviews 

of Cabral-de-Mello & Martins 2010 and Cioffi & Bertollo 2012). 

Repetitive DNAs are a major structural component of most eukaryotic genomes (Charlesworth et al. 

1994; Cioffi & Bertollo 2012) comprising tandem repeats (multigene families like rDNAs, micro- and 

minisatellites) and mobile (TRANSPOSABLE) ELEMENTS (TEs). The molecular organization and cytogenetic 

location of repetitive DNAs are amongst the most investigated sequences in fish genomes (e.g. Phillips 

& Reed 1996; Phillips 2001; Cabral-de-Mello & Martins 2010; Cioffi & Bertollo 2012). Some 

TRANSPOSABLE ELEMENTS (TEs) and tandem repeats belong also to the main forces driving gene and 

genome evolution (e.g. Kidwell 2002; Volff 2005) (discussed ahead in detail). In fishes, in particular, 

these studies have demonstrated the enormous potential that the investigation of repetitive DNAs 

offers toward extending our knowledge on KARYOTYPE differentiation or the evolution of sex 

chromosomes and B chromosomes, for example (reviewed in Cioffi & Bertollo 2012). Repetitive 

sequences isolated from various fish SPECIES have been localized to centromeres, telomeres, and sex 

chromosomes; some of them now used as SPECIES-specific, chromosome-specific or sex-specific probes 

(e.g. Phillips & Reed 1996; Cabral-de-Mello & Martins 2010). 

1.3.1.1. Highly & Moderately Repetitive DNAs – C0t-1 DNA 

The C0t-1 DNA is a fraction of genomic DNA enriched for highly and moderately repeated DNAs, 

obtained by the application of the principles of the re-association kinetics of DNA strands (Zwick et al. 

1997; Ferreira & Martins 2008). In general, the regions labelled by this genomic fraction correspond to 

the heterochromatic areas, such as centromeres and telomeres. Despite the disadvantage of this 

method being the isolation of a large number of unknown sequences, it is rather inexpensive and easy 

to use without the necessity for cloning or sequence analysis. Its use, although still restricted, has 
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shown promising in studies of comparative analysis and genomic organization of chromosomes also in 

fish SPECIES (e.g. Ferreira & Martins 2008; Fantinati et al. 2011). 

In the present investigation, the potential of C0t-1 DNA mapping was not fully explored. Yet it was 

isolated and used as HOMOSPECIFIC probe in PDU and PPO metaphases revealing strong hybridization 

signals to some centromeres, telomeres and very few interstitial bands, overall congruent with C-

banding results (see Chapter 3.2). 

1.3.1.2. Centromeric & Telomeric repeats 

The telomeric repeat sequence (TTAGGG)n is conserved in all vertebrates (Meyne et al. 1989) but 

centromeric and subtelomeric sequences are often SPECIES-specific and/or even chromosome specific 

(e.g. Jabbs & Perisco 1987). The study of telomeric repeats has been successfully employed in the 

analysis of chromosomal rearrangements underlying KARYOTYPE differentiation in a variety of organisms 

(Lin & Yan 2008). The occurrence of interstitial telomeric sites (ITS) has been critical for identifying 

chromosome rearrangements (e.g. Cioffi et al. 2010) even though some studies have shown that, 

instead of remnants of true telomeres, ITS might as well represent heterochromatic derivation 

(telomere-like sequences) or be part of satellite DNAs (e.g. Garrido-Ramos et al. 1998), and also 

originate from differential crossing-over or repair of double-strand breaks (Lin & Yan 2008). In any 

case, one of the most interesting aspects of ITS is its usefulness in detecting genetic instability, hotspots 

for chromosome breakage and amplification sites (Lin & Yan 2008), even if in many cases ITS may not 

be detected due to loss or drastic telomere reduction during the process (reviewed in Cioffi & Bertollo 

2012). Moreover, taking into consideration physical chromosomal constraints (Shubert & Lysak 2011), 

reciprocal translocations – that do not require the improbable interaction of telomeres with break-

ends – are more likely to be the most common type of chromosomal rearrangements in KARYOTYPE 

EVOLUTION; and therefore lacking the interstitial telomeric sites as signatures of recent rearrangements. 

Centromeric and telomeric probes have been applied to fish genomes to survey intraspecific 

chromosome rearrangements, such as the transposition of rDNAs (e.g. Phillips & Reed 1996; Caputo 

𝐶0𝑡 = 1 =  𝑚𝑜𝑙 𝐿⁄ × 𝑇𝑠  

DNA re-association kinetics. Calculating the time needed for a reannealing reaction. Initial concentration (C0) is 
calculated in moles of nucleotides (mol) per litre (L) and time is in seconds (Ts), assuming an average molecular 
weight for a deoxynucleotide monophosphate to be 339 g/mol (if %GC ~50%) (Zwick et al. 1997). 
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et al. 2009). Similarly, these probes can be used as genome markers for examining interspecific HYBRIDS 

and expected genome rearrangements. Centromeres contain several classes of repeated sequences 

some of them highly conservative even between distantly related SPECIES (functional role). By means 

of endonuclease digestion of the genomic DNA, centromeric sequences have been isolated and 

characterized in several fish SPECIES (e.g. Capriglione et al. 1994; Garrido-Ramos et al. 1998; Canapa et 

al. 2002; Viñas et al. 2003; Azevedo et al. 2005). Fish genomes inspected for telomeric repeats 

evidenced, as expected, positive hybridization to the telomeres of all chromosomes (e.g. Meyne et al. 

1989; Gornung et al. 1998; Fischer et al. 2000; Cross et al. 2006; Gromicho et al. 2006) and in some 

cases additional non-telomeric sites were also found (e.g. Phillips & Reed 1996; Sola & Gornung 2001, 

Rocco et al. 2001, and references therein; Sola et al. 2003; Caputo et al. 2009; Cioffi et al. 2010). 

1.3.1.3. Tandem Repeats 

Multigene families like the ribosomal DNAs (rDNAs) and the histone gene families represent a common 

structural element of eukaryotic genomes and are composed of hundreds to thousands of clustered 

gene copies. The majority of tandem repeats investigated in fish genomes were localized at the 

centromeres of most chromosomes (e.g. Sola & Gornung 2001). The two classes of ribosomal DNAs 

(Figure 1.6) have been extensively used as DNA probes in cytogenetic studies of fish SPECIES (e.g. Cabral-

de-Mello & Martins 2010). The multiple copies of rDNA found at the nucleolar organizing regions 

(NORs) can also be visualized in lower vertebrates by conventional cytogenetic techniques (staining 

with silver nitrate – AgNORs, and chromomycin A3) or by molecular cytogenetics (FISH with specific 

probes). Silver-staining only detects active copies of rDNA while chromomycin A3 (CMA3) and FISH 

detect rDNAs regardless of activity; and despite the great correlation between these banding results, 

incongruences have been reported (e.g. Gromicho et al. 2005). Such disparity might be related with 

the chemical affinity of CMA3 for GC-rich regions (other than NOR-related) and, on the other hand, 

with FISH being able to detect smaller clusters of rDNA and also pseudogene copies. 

Both rDNA classes can be highly POLYMORPHIC in terms of number and location of sites even among 

related SPECIES. These patterns are not readily informative regarding PHYLOGENETIC relationships and 

special attention should be paid to such interpretation of rDNA cytogenetic mapping (Dobigny et al. 

2004; Cabral-de-Mello & Martins 2010; but see also Britton-Davidian et al. 2012). Nonetheless, rDNA 

distribution patterns may provide valuable information on homologies between chromosomal 

segments, mainly between closely related SPECIES (e.g. Dobigny et al. 2004; Britton-Davidian et al. 

2012), and on depicting HYBRID lineages (e.g. Zhu et al. 2006; this dissertation). Despite the great 
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variation, a single pair of chromosomes bearing each representative of the two rDNA families is 

considered the PLESIOMORPHIC condition in teleosts (Sola et al. 2003). The most common organization 

of these gene families indicates a non-associative distribution, with most SPECIES having these 

sequences clustered on different chromosomes. Recent studies correlate the dynamism of the rDNA 

clusters with significant intragenomic processes, such as RETROTRANSPOSON activity as demonstrated in 

the fish species Erythrinus erythrinus (Cioffi et al. 2010) or Astyanax bockmanni (Silva et al. 2013). 

The distribution of these clustered genes were addressed in the characterization of the target SPECIES 

of the present research and their natural HYBRIDS (Chapters 2 and 3) demonstrating greater power of 

resolution when used in conjunction (double FISH). By these means we were able to: (1) distinguish 

between the pure parental SPECIES, each with its own pattern of distribution of both rDNAs; (2) portray 

cases of HYBRIDIZATION even when genetic and/or morphological data failed to detect them; (3) visualize 

and characterize circumstances of rapid genome instability and reshuffling in these HYBRIDS most likely 

driven by the HYBRIDIZATION events. 

1.3.1.4. Transposable Elements (TEs) 

TRANSPOSABLE ELEMENTS (TEs) are repetitive DNA sequences, comprising a group of segments with the 

capacity to move throughout the chromosomes or transpose between non-homologous sites within 

the genome (Figure 1.7). TEs remained disregarded for a long time since discovered and were viewed 

as ‘junk DNA’ or ‘selfish DNA’ (e.g. Charlesworth et al. 1994, Ferreira et al. 2011b; Hua-Van et al. 2011; 

 

Figure 1.6 Eukaryotic ribosomal genes. Gene segments composing the basic units of the tandem repetitive 
clusters of (a) 5S rDNA and (b) 45S rDNA families. NTS = non-transcribed spacer; IGS = intergenic spacer; ITS 
= internal transcribed spacers. 



CHAPTER 1 | INTRODUCTION 

 

22  

 

Cioffi & Bertollo 2012), the ultimate parasite: able to propagate itself through VERTICAL TRANSMISSION, 

intra-genomic TRANSPOSITION and occasionally HORIZONTAL TRANSFER. Since then, TEs have been found 

abundant in most genomes and, most interestingly, directly implicated in the structure, regulation, 

diversification and evolution of genomes (e.g. Kidwell 2002; Hua-Van et al. 2011; Cioffi & Bertollo 2012; 

Arkhipova & Rodriguez 2013; Figure 1.8). 

Even though TEs multiply independently within the genome, TE insertions are indirectly subject to 

NATURAL SELECTION. TE distribution in a genome is neither random nor uniform. Besides some rarer site-

specific elements, TEs tend to accumulate in neutral or advantageous (positively selected) areas where 

their potential deleterious impact is reduced: constitutive heterochromatin, telomeric and/or 

pericentromeric regions, and other low gene density areas. This non-random distribution may reflect 

true preferential insertion sites or negative SELECTION (against insertions in the euchromatic regions, 

ectopic TE-mediated RECOMBINATION, or transposition itself; Eickbush & Furano 2002). If an insertion is 

neutral, its persistence in the population relies on GENETIC DRIFT and demographic parameters (Hua-Van 

et al. 2011), being actually useful in studies of evolution and HYBRIDIZATION. In fact, HYBRIDIZATION is 

known to potentially induce TE activation triggering genome-wide reorganization (genetic and 

epigenetic) or strongly modifying RECOMBINATION patterns (Fontdevilla 2005; Abbott et al. 2013). 

HYBRIDS were earlier considered as triggers for bursts of transposition (Fontdevilla 2005). TE 

reactivation usually results from the RECOMBINATION between inactive copies (from each parental 

 

Figure 1.7 Methods of TRANSPOSITION. (a) Replicative transposition of RETROELEMENTS and (b) ‘cut and paste’ 
TRANSPOSITION of class II TRANSPOSABLE ELEMENTS. Adapted from Kidwell & Lisch 1998. 
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SPECIES) which has been reported and associated with the high RECOMBINATION rates in cases of 

POLYPLOIDY and HYBRIDIZATION between SYMPATRIC SPECIES (Sharma et al. 2008). In terms of chromosomal 

rearrangements TE activity may promote more or less dramatic changes (small-scale inversions, 

deletions, translocations or duplications). On the other hand, DIVERGENCE in TE complements can occur 

rapidly after HYBRIDIZATION with profound consequences including for GENE FLOW barriers. Extreme cases 

of massive TE mobilization and MUTATION bursts may result in low HYBRID FITNESS (Abbott et al. 2013). 

TE activation via HYBRIDIZATION may thus play a critical role during SPECIATION and given the prevalence 

of HYBRIDIZATION among fishes (Scribner et al. 2001), TE examination may disclose valuable information 

regarding the processes and the genomes. 

TEs abundance in eukaryotic genomes has an apparent correlation with genome size (e.g. from 2.7% 

in Takifugu rubripes to ≥45% in mammalian genomes; Kidwell 2002). RETROELEMENTS are often the main 

source of TE DNA in eukaryotes (e.g. Arkhipova & Rodriguez 2013) which does not preclude an 

extraordinary diversity of families (hundreds known to date). Compared to the vast biodiversity found 

among fish SPECIES (estimated number of 32,500 extant valid SPECIES; Nelson 2006), studies focused on 

the identification and characterization of TEs in the genomes of fishes are still scarce (Ferreira et al. 

2011b). Notwithstanding, all types of TEs can be found in the genomes of fishes (Volff 2005) either 

clustered or dispersed (e.g. Fischer et al. 2004; Valente et al. 2011). For a long time most of the studies 

with TEs were restricted to sequence descriptions and presence/absence reports (e.g. Volff et al. 1999, 

2000). With the progress in molecular and cytogenetic techniques the interest in PHYSICAL MAPPING 

these genetic elements has increased significantly. 

RETROELEMENTS are also amongst the best studied TEs in fishes, namely the Rex family (Rex1, Rex3 and 

Rex6). These elements, first described in the fish Xiphophorus, have been active during the evolution 

of several fish lineages being found widespread amongst teleosts (reviewed in Volff 2005). Regarding 

chromosome mapping, RETROTRANSPOSONS have been investigated in several fish lineages (Table 1.2) 

belonging to the orders Characiformes (Cioffi et al. 2010; Terencio et al. 2012; Silva et al. 2013), 

Cyprinodontiformes (Nanda et al. 2000), Perciformes (Bryden et al. 1998; Oliveira et al. 1999, 2003; 

Mandrioli et al. 2001; Harvey et al. 2003; Ozouf-Costaz et al. 2004; Mazzuchelli & Martins 2009; 

Teixeira et al. 2009; Gross et al. 2010; Fantinatti et al. 2011; Valente et al. 2011), Salmoniformes 

(Symonová et al. 2013), Siluriformes (Ferreira et al. 2011a; Matoso et al. 2011), and Tetraodontiformes 

(Mandrioli & Manicardi 2001; Dasilva et al. 2002; Bouneau et al. 2003; Fischer et al. 2004). In cyprinids 

however, RETROTRANSPOSON sequences have only been described in Cyprinus carpio, Danio rerio (Volff 

et al. 1999) and in Alburnus alburnus where they were found strongly associated with the giant B 
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chromosomes (Ziegler et al. 2003); but until this dissertation there has been no study targeting the 

PHYSICAL MAPPING of these genetic elements to cyprinid genomes (see Chapter 3.2). 

According to the compilation data (Table 1.2), Rex ELEMENTS reveal a clearly differentiated organization 

from SPECIES to SPECIES suggesting general rearrangements along their dispersion process. TE content 

and distribution can differ greatly within a same lineage including between closely related SPECIES (e.g. 

Cioffi et al. 2010; Ferreira et al. 2011b), constituting an important factor in the genomic singularity of 

SPECIES. TE insertion POLYMORPHISM is common enough to provide an efficient tool for PHYLOGENETIC and 

population studies, being far more representative of the genetic diversity than phenotypic 

POLYMORPHISM (reviewed in Hua-Van et al. 2011). Once a TE becomes fixed in a population it is fairly 

difficult to lose it; hence the importance of following the dynamics of a TE in the genome and/or SPECIES. 

Despite the countless evidences of the key role of TEs in evolution (e.g. Kidwell 2002; Hua-Van et al. 

2011; Cioffi & Bertollo 2012), the impact of TEs at the population level remains poorly explored. Also, 

data on TE distribution in teleosts may yet be scattered but results already evidenced their 

participation in the formation/differentiation of sex chromosomes and supernumerary (B) 

chromosomes, and in the evolution of fish genomes in general. 

 

Figure 1.8 Genomic consequences of TEs activity. TE sequences may contribute to gene regulatory regions or 
coding sequences. Small portions or almost entire elements can be exapted, which can result in new 
regulations, new genes (domestication), or gene disruption (pseudogenes). Adapted from Hua-van et al. 
2011. 
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Table 1.2 Compilation 
of studies and main 

results regarding 
the distribution of 

TRANSPOSABLE 

ELEMENTS (TEs) in 
the genomes of fish 

SPECIES.   
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1.3.2. Single Copy Genes 

By mapping single copy genes of specific LINKAGE GROUPS, the GENETIC MAP can be linked to the PHYSICAL 

MAP (i.e. chromosomes). Single copy genes have seldom been mapped in fish genomes (e.g. Nanda et 

al. 2000; Sola & Gornung 2001). Chromosome mapping of single copy genes usually requires clones 

from large-insert-libraries (cosmids, PACs, BACs, or YACs) frequently unavailable for non-model SPECIES. 

One way to solve this limitation is by cross-species comparative analyses – i.e. use clones from a model 

organism’s library in the investigation of a non-model organism – like it has been done for several 

mammalian orders (reviewed in Ruiz-Herrera et al. 2012); but teleost orders are not as closely related 

and may therefore disclose additional caveats. Another solution is to prepare a probe cocktail 

containing two or three genes known to share the same LINKAGE GROUP in model SPECIES (e.g. salmonids, 

poecilids, zebrafish). 

1.3.3. Whole Chromosomes as Probes (WCPs) 

Chromosome painting refers to the hybridization of fluorescently labelled chromosome-specific, 

composite probe pools (WCP) to cytological preparations by which the visualization of individual 

chromosomes in metaphase or interphase nuclei becomes possible (Ried et al. 1998). Chromosome 

painting is a common approach in comparative studies allowing for CROSS-SPECIES CHROMOSOME PAINTING 

on a genome-wide scale. WCPs can be used to trace ancestral chromosome (or chromosomal regions) 

homeologies (Figure 1.9), with the limitation that increasing evolutionary distance between SPECIES 

reduces resolution power (e.g. Robinson & Yang 2012). 

WCPs are usually obtained by microdissection or flow sorting (FACS) followed by DOP-PCR (degenerate 

oligonucleotide-primed PCR) or whole genome amplification (WGA). Both isolation techniques present 

additional difficulties regarding their application to fish chromosomes given that fish KARYOTYPES are 

rather uniform in terms of chromosome size and base content (e.g. Ráb & Collares-Pereira 1995; Sola 

& Gornung 2001; Arai 2011). For all that, chromosome painting has been applied to a marginal fraction 

of fish SPECIES. Apart from few exceptions (Henning et al. 2008; Ráb et al. 2008), the vast majority of 

WCPs from fishes relate to sex chromosomes (e.g. Diniz et al. 2008; Henning et al. 2011; Terencio et 

al. 2012; Pazian et al. 2013) or B chromosomes (Ziegler et al. 1993). WCPs from a complete set of flow 

sorted fish chromosomes are available for Gymnotus carapo even though some chromosomes could 

not be resolved (Nagamachi et al. 2010); and more than 500 chromosome-specific BAC clones are 

available for Danio rerio (Freeman et al. 2007). Nonetheless, the demonstration of Kosyaková and 
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colleagues (2013) by “blindly” microdissecting each chromosome of a single metaphase, may soon 

allow the generation of chromosome-specific DNA libraries for a variety of other fish SPECIES. 

1.3.4. Whole Genomes as Probes 

GENOMIC IN SITU HYBRIDIZATION (GISH) and COMPARATIVE GENOMIC HYBRIDIZATION (CGH) are FISH-derived 

techniques employing two genomic DNAs as probes (one or both labelled, respectively). These are 

rather inexpensive means to study genome organisation and sub-chromosomal structure especially 

among non-model SPECIES for which genome sequence is incomplete or even unavailable. SPECIES-

specific probes are useful for quick identification of immature related SPECIES and for the identification 

of individual parental contribution to interspecific diploid and POLYPLOID HYBRID genomes (reviewed in 

Marková & Vyskot 2009). 

GISH/CGH efficiency is largely based on genome-specific repetitive sequences (Kato et al. 2005). And 

even though many classes of dispersed repeats are shared among closely related SPECIES, they usually 

evolve faster than housekeeping genes enabling to differentiate them (Charlesworth et al. 1994). In 

theory, in GISH/CGH the chromosomal sequences shared between the parental taxa will rapidly block 

 

Figure 1.9 ZOO-FISH of (a) human chromosome 15 (HSA15) on metaphase chromosomes of pigmy hippopotamus 
(Choeropsis liberiensis; courtesy of Josefina Kjöllerström, CBA/Texas A&M University) and of (b) cat chromosome 
A3 (FCA A3) on metaphase chromosomes of Genetta genetta granti (courtesy of Raquel Silva, CBA/Universidade 
de Trás-os-montes e Alto Douro), evidencing chromosome homeologies and evolutionary rearrangements of a 
big syntenic block which corresponds to a single whole chromosome in the donor SPECIES. 
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each other and leave the SPECIES-specific portions (dispersed repetitive sequences such as TRANSPOSABLE 

ELEMENTS) free to hybridize with one of the two sets of the target (HYBRID) chromosomes (Kato et al. 

2005). Therefore, the genetic distance between the parental SPECIES has also an influence in GISH/CGH 

results. 

Notwithstanding, given that genome-specific repeats have frequently a non-random distribution 

chromosome-specific banding patterns can thus be generated even in fish chromosomes. Although 

GISH studies have been mostly developed in plants, its application to fish chromosomes already proved 

useful for basic KARYOTYPE characterization (e.g. Ferreira & Martins 2008), for depicting HYBRID lineages 

(e.g. Zhu & Gui 2007; Rampin et al. 2012; Knytl et al. 2013) and chromosome elimination in HYBRIDS 

(e.g. Fujiwara et al. 1997; Sakai et al. 2007), or to provide new perspectives in PHYLOGENETIC and 

taxonomic studies (e.g. Valente et al. 2009). 

In this work, a brief reference to results of CROSS-SPECIES GISH experiments is made in Chapter 4, 

whereas CGH has been employed to investigate HYBRID genomes and unfortunately successful results 

were only obtained for one specimen (Chapter 3.1). Nevertheless results allowed (1) identifying one 

of the parental SPECIES as the major genomic contributor, (2) proving preferential BACKCROSSING, (3) 

pinpointing chromosomal regions with both shared and recombined ancestry, (4) recognizing 

additional translocations besides NOR translocations, and (5) proving that KARYOTYPE similarities typical 

of subfamily Leuciscinae (Ráb & Collares-Pereira 1995) are restricted to chromosome macrostructure. 

1.4. Objectives & Structure of the Dissertation 

The main objective of this dissertation was, while using a multi-approach scheme to define and 

characterize natural AOLxPDU and AOLxPPO HOMOPLOID HYBRIDS, to follow up and understand some 

processes of genome dynamics in (1) highly conservative Leuciscinae KARYOTYPES (at the 

macrostructural level) versus high SPECIATION rates, and (2) coping mechanisms behind these successful 

cases of extensive natural HYBRIDIZATION. These HYBRID systems provide an excellent opportunity to shed 

some light into the processes of (HOMOPLOID) HYBRIDIZATION, ADAPTATION and evolution on a vertebrate 

context. 

Starting from seemingly very similar KARYOTYPES (Pereira et al. 2009, Appendix II), the progress on 

cytogenomics and sequence data allows now for a deeper level of investigation on these genomes and 

their actual organization. Five specific objectives were then established: 
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1. The characterization of the pure parental SPECIES in ALLOPATRY, based on molecular cytogenetic 

tools. The objective was to define SPECIES-specific chromosomal markers in populations with little or 

no interference from interspecific INTROGRESSION. These markers would then serve as the baseline for 

(1) a comparative study of Iberian Leuciscinae, and (2) to be used in the survey for HYBRIDS in SYMPATRIC 

populations; 

2. Using such markers, expand the cytogenetic knowledge on Iberian chondrostomine SPECIES 

occurring in Portugal, for which only conventional cytogenetic data were available or no data at all in 

some cases; 

3. Survey HYBRID ZONES of interest for individuals with admixed ancestry using the same cytogenetic 

markers and possibly trace genomic rearrangements derived from the HYBRIDIZATION events originating 

them; 

4. PHYSICAL MAPPING of other sets of repetitive DNA to better understand genome organization and 

restructuring in these SPECIES and their HOMOPLOID HYBRIDS; 

5. Correlate results with the evolutionary history of Iberian Chondrostoma s.l. and other Leuciscinae, 

namely the ALLOPOLYPLOID SPECIES COMPLEX of Squalius alburnoides, and try to integrate the findings in a 

more global context of evolutionary potential of HYBRIDS. 

To complete our sample on both parental species and putative hybrids, new individuals were captured 

by electrofishing, fin clipped for genetic purposes, photographed for morphological analysis and 

immediately released back to the river, unless necessary for new chromosome preparations, and 

therefore brought to the lab for processing and voucher deposition (MUNHNAC). Chromosome 

suspensions were either prepared from standard in vivo kidney preparations or in vitro fibroblast fin 

cultures (Rodrigues & CollaresPereira 1996). Many individuals and chromosome suspensions were 

already available at our lab, from previous and continued works on fish cytogenetics, also integrating 

our sample. Cytogenetic analyses included conventional techniques like Giemsa, Chromomycin A3, Ag-

NOR stainings, and C-banding, as well as molecular cytogenetic procedures employing FISH, GISH and 

CGH techniques. 

The present dissertation was structured in six Chapters addressing all the above mentioned specific 

goals. With the exception of the general Introduction (Chapter 1), Discussion (Chapter 5) and Final 

Remarks (Chapter 6), the remaining chapters comprise original scientific papers published (Chapters 

2 and 4), in press (Chapter 3.1, uncorrected proofs) or submitted for publication (Chapter 3.2) in 
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indexed, peer-reviewed international journals. Each publication is preceded by a detailed summary of 

the work in Portuguese. The following section corresponds to a Glossary explaining some of the 

concepts used throughout the text. Finally, in Appendix were gathered all the morphological data 

resulting from this investigation (Appendix I), and three scientific publications also co-authored by the 

author of this dissertation (Appendixes II to IV) that, despite not being part of the core of the PhD, 

were considered of interest as a complement to some of the aspects discussed in Chapter 5. 

As previously stated, Chapter 1 concerns key topics to the integration of the following chapters. 

Chapter 2 deals with the characterization of the parental SPECIES involved in the two HYBRID systems 

under analysis, Achondrostoma oligolepis, Pseudochondrostoma duriense and P. polylepis (objective 

1) while also dealing with the characterization of six other Iberian SPECIES occurring in Portuguese 

territory (namely, A. arcasii, A. occidentale, Iberochondrostoma almacai, I. lemmingii, I. lusitanicum 

and P. willkommii) (objective 2). In Chapter 3 HOMOPLOID HYBRIDS are characterized for the first time in 

a multidisciplinary approach combining morphologic, genetic and cytogenetic markers, using the 

knowledge available for the parental SPECIES as the comparison point: (1) PHYSICAL MAPPING of both rDNA 

families, (2) telomeric (TTAGGG)n-repeats, (3) COMPARATIVE GENOMIC HYBRIDIZATION (CGH) (Chapter 3.1), 

and (4), Rex3 RETROELEMENT (Chapter 3.2) (objectives 3 and 4). Chapter 4 comprises an overview on 

fish cytogenetics with emphasis on Iberian HOMOPLOID HYBRIDS but also on other Iberian Leuciscinae, 

namely the Squalius alburnoides polyploid complex). Finally in Chapter 5, the various evolutionary 

implications of the results obtained in this study are debated, making an effort to incorporate 

theoretical predictions also in comparison to other renowned cases of natural HYBRIDIZATION (HOMOPLOID 

and POLYPLOID). Chapter 6 summarizes the main achievements of this dissertation and puts forward 

some new questions and future prospects on conceivable follow up research. 
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Resumo 

Nove espécies Ibéricas de Chondrostoma sensu lato (s.l.) foram investigadas com vista à descrição e 

análise comparativa dos seus cariótipos, com destaque para o mapeamento cromossómico dos genes 

codificantes para as subunidades de RNA ribossomal (rDNAs). Na literatura encontravam-se já 

descritos e caracterizados primers específicos para os rDNA-5S e 45S, os quais foram utilizados em 

reacções de PCR para amplificar essas sequências a utilizar como sondas específicas no mapeamento 

em cromossomas metafásicos, através da técnica de hibridação in situ fluorescente (FISH). Foram 

caracterizadas neste estudo, designadamente, as espécies Achondrostoma arcasii, A. occidentale, A. 

oligolepis, Iberochondrostoma almacai, I. lemmingii, I. lusitanicum, Pseudochondrostoma duriense, P. 

polylepis e P. willkommii, todas amostradas em Portugal, quatro das quais correspondentes a 

endemismos nacionais (i.e. A. occidentale, A. oligolepis, I. almacai e I. lusitanicum). Todas as espécies 

apresentaram um valor diploide de, invariavelmente, 2n = 50 cromossomas e cariótipos característicos 

de leuciscíneos com seis a sete pares de cromossomas metacêntricos (m), quinze a dezasseis pares de 

cromossomas submetacênctricos (sm), e três a quatro pares de cromossomas subtelo-acrocêntricos 

(st-a). Um dos maiores pares do complemento foi diagnosticado como st-a, também típico da 

subfamília Leuciscinae (ver Apêndice III) e, apesar de algumas diferenças de tamanho em 

determinados pares de cromossomas homólogos, não foram encontrados heteromorfismos que 

pudessem ser inequivocamente associados à determinação sexual em nenhuma destas espécies. 

Apesar da maioria destas espécies ter sido anteriormente alvo de uma descrição citogenética 

convencional (i.e. número diploide, fórmula cromossómica, bandeamento Giemsa), as espécies A. 

occidentale e P. willkommii foram caracterizadas pela primeira vez e os dados citogenéticos existentes 

para as espécies A. arcasii e I. lemmingii foram revistos e actualizados, com base em metodologias 

mais modernas e de maior resolução. A despeito das semelhanças descritas e aparentemente 

conservadas dentro da subfamília Leuciscinae no que respeita à macroestrutura dos cariótipos, foi 

observada uma considerável variabilidade em termos de número e localização de clusters de ambos 

os marcadores moleculares utilizados neste estudo, especialmente dentro dos géneros 

Achondrostoma e Iberochondrostoma. Relativamente ao género Achondrostoma apenas foi possível 

associar tal variabilidade a um politipismo, ou seja, a uma variação entre populações de rios diferentes 

(em especial da espécie mais comum do género, A. oligolepis). No género Iberochondrostoma foi 

possível ir mais além e, paralelamente a uma análise de genética populacional recentemente 

publicada, traçar a história evolutiva destes clusters de genes no seio do género. Em geral, as unidades 

de rDNA-5S foram localizadas em associação com a região peri-centromérica incluindo parcial ou 
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totalmente o braço curto de cromossomas st-a. Foram observados quatro a oito sinais positivos 

independentes destas unidades de genes. Por outro lado, as regiões organizadoras nucleolares (NORs) 

directamente detectadas pela sonda de rDNA-45S foram observadas em posição terminal no braço 

curto de cromossomas sm, variando de três a seis unidades independentes, por vezes com grandes 

polimorfismos de tamanho (i.e. número de cópias) nos cromossomas homólogos. Em nenhuma das 

espécies se observou a co-localização das duas unidades de genes de rRNA num mesmo cromossoma. 

Apesar de apenas um par de NORs ser aceite como a condição ancestral para os leuciscíneos, uma 

variação numérica do género já tinha sido anteriormente confirmada em I. lusitanicum, também por 

FISH. No momento da presente publicação, pensava-se que este polimorfismo pudesse ser 

característico de Leuciscinae Ibéricos. No entanto, foi reportada uma situação semelhante em 

Leuciscinae de Itália. Face aos resultados obtidos, foi colocada a hipótese da frequente ocorrência de 

bottlenecks genéticos nas populações que vivem em habitats Mediterrânicos (tipicamente semi-

áridos) estarem na origem do extenso polimorfismo observado e da maior probabilidade de fixação de 

possíveis translocações envolvendo os clusters de rDNA.  



CHAPTER 2 

 

 45 

 

  



CHAPTER 2 

 

46  

 

  



CHAPTER 2 

 

 47 

 

  



CHAPTER 2 

 

48  

 

  



CHAPTER 2 

 

 49 

 

  



CHAPTER 2 

 

50  

 

  



CHAPTER 2 

 

 51 

 

  



CHAPTER 2 

 

52  

 

  



CHAPTER 2 

 

 53 

 

  



CHAPTER 2 

 

54  

 

  



CHAPTER 2 

 

 55 

 

 



 

 

This page was intentionally left blank 



 

 

Chapter 3 

Characterization of natural 
homoploid hybrids



 

 

This page was intentionally left blank



 

 

Chapter 3.1 

Introgressive hybridization as a promoter of 
genome reshuffling in natural homoploid fish 

hybrids (Cyprinidae, Leuciscinae)  

CARLA SOFIA A.  PEREIRA    Maria Ana Aboim   Petr Ráb   Maria João 

Collares-Pereira 

Heredity (2013) in press (uncorrected proofs)  

DOI:  10.1038/hdy.2013.110



 

 

This page was intentionally left blank



CHAPTER 3 

 

 61 

 

Resumo 

A hibridação introgressiva sabe-se agora poder agir como um promotor eficaz de diversificação e 

especiação também nos animais. Compreender os mecanismos por detrás desse processo é 

actualmente um dos maiores desafios da biologia evolutiva. Foi já proposto que a hibridação possa, 

por si só, ser responsável por uma rápida reorganização genómica e por rearranjos genómicos mais 

substanciais do que multiplicações do genoma (poliploidia); por outro lado, os híbridos são tidos como 

activadores de transposição, um mecanismo que poderá ser responsável pela instabilidade genética e 

pela reorganização que tipicamente se segue a um processo de hibridação inter-específica. Por sua 

vez, o estudo de cromossomas mitóticos permite uma boa visualização do genoma podendo oferecer 

fortes testemunhos de hibridação, recombinação e reorganização genómica, quando se utilizam 

ferramentas como a hibridação in situ fluorescente (FISH) com sondas específicas e a hibridação 

genómica comparativa (CGH). Os peixes da família Cyprinidae contam com vários exemplos de 

hibridação natural e são por isso bons candidatos para estudos de hibridação ao nível do genoma. 

Além disso, não existem muitos estudos de citogenética molecular aplicada a híbridos naturais de 

peixes. Neste trabalho, o estudo da hibridação entre dois pares de espécies Ibéricas da subfamília 

Leuciscinae providenciou novos dados relativos a zonas híbridas independentes envolvendo 

Achondrostoma oligolepis (AOL) e Pseudochondrostoma duriense (PDU), confirmando ainda a 

existência de zonas híbridas onde Achondrostoma oligolepis é simpátrico com Pseudochondrostoma 

polylepis (PPO). Tendo em consideração o padrão heterogéneo de introgressão encontrado na análise 

genética comparativa entre duas zonas híbridas envolvendo A. oligolepis e P. duriense, a adopção de 

uma abordagem múltipla, combinando marcadores morfológicos, genéticos e citogenómicos para os 

quais as espécies parentais já haviam sido caracterizadas, aplicada numa ampla selecção de 

populações, permitiu identificar padrões de mistura genética em todos os peixes amostrados como 

possíveis híbridos. Os resultados obtidos foram semelhantes em ambos os sistemas AOL×PDU e 

AOLxPPO. Em geral, tanto os morfotipos híbridos, como os dados de citogenómica e os dados de perfil 

genético indicaram haver retrocruzamento preferencial, sugerindo ainda AOL como a espécie parental 

com maior contributo genómico na composição dos genomas híbridos sob análise. Adicionalmente, os 

resultados implicaram AOL como mais permissivo à introgressão do que qualquer uma das espécies-

irmãs PDU ou PPO com quem hibrida. Enquanto híbridos de tipo-PDU ou de tipo-PPO pareceram mais 

resilientes a modificações do genoma, AOL pareceu estar mais envolvido e ser mais afectado pelos 

eventos recorrentes de hibridação, uma vez que só foram encontradas translocações cromossómicas 

em híbridos de tipo-AOL. Todos os híbridos analisados mostraram um extenso polimorfismo de rDNA 



CHAPTER 3 

 

62  

 

aparentemente ausente nas espécies parentais até à data, mas geralmente caindo dentro do limite de 

possíveis combinações dos genomas parentais. Não obstante, foram ainda detectados fenótipos 

transgressivos, não explicados por padrões normais de recombinação entre os genomas parentais. Tais 

padrões incluíram (1) mais clusters de rDNA do que o esperado, e (2) a ocorrência de rDNAs 5S e 45S 

sinténicos. Apesar da associação física entre estas duas famílias de rDNAs ter sido descrita noutras 

espécies da subfamília, esta sintenia não parece caracterizar nenhuma das espécies de Chondrostoma 

s.l. até agora investigadas para estes marcadores. Os resultados obtidos sugerem uma evolução 

genómica rápida nos híbridos homoploides, provavelmente responsável pela criação de novas 

combinações genéticas que permitirão às espécies (antigas ou mais recentes) persistir face a 

adversidades impostas (ambientais ou genómicas). E ainda que as derradeiras consequências destes 

acontecimentos aparentemente tão extensivos e recorrentes permaneçam desconhecidas para estes 

genomas e estas espécies, a aplicação de metodologias mais modernas e de um modo mais amplo (ao 

nível de todo o genoma) poderá contribuir para esclarecer questões relacionadas com a dinâmica, as 

causas e o impacto da hibridação inter-específica. 

Esta publicação é acompanhada de informação suplementar disponível em www.nature.com/hdy logo 

que a publicação seja disponibilizada online. O mesmo se aplica aos dados utilizados nesta publicação, 

depositados no repositório do Dryad sob o endereço de acesso doi:10.5061/dryad.5m121.  
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Resumo 

A subfamília de peixes Leuciscinae (família Cyprinidae) é altamente diversa, compreendendo vários 

taxa de origem híbrida (homoploides e poliploides). Os híbridos homoploides descritos dentro dos 

Chondrostoma sensu lato (s.l.), apesar de preservarem as semelhanças cromossómicas ao nível da 

macroestrutura típicas dos leuciscíneos, foram recentemente caracterizados por uma rápida 

reestruturação genómica provavelmente mediada por eventos de hibridação iniciais, contando com a 

transposição de clusters de DNA ribossomal (rDNA) e resultando numa grande variedade de 

combinações presente nos vários híbridos analisados (ver Capítulo 3.1). Na tentativa de compreender 

o papel de algumas sequências repetitivas na diferenciação dos genomas de leuciscíneos Ibéricos, 

várias espécies foram seleccionadas e examinadas recorrendo essencialmente a técnicas de 

citogenética molecular (i.e. mapeamento por hibridação in situ fluorescente usando como sondas um 

fragmento do retroelemento Rex3, a fracção do DNA genómico enriquecida em sequências alta- e 

moderadamente repetitivas – C0t-1 DNA, e genes ribossomais – 5S e 45S rDNA). Nomeadamente, 

foram incluídas nesta análise as espécies Anaecypris hispanica, Iberochondrostoma lemmingii, I. 

lusitanicum, Pseudochondrostoma duriense, P. polylepis, e híbridos naturais entre P. polylepis x 

Achondrostoma oligolepis. O mapeamento cromossómico de Rex3 evidenciou um padrão de 

acumulação preferencial na região centromérica e em menor extensão na região telomérica de vários 

cromossomas, correlacionando-se de um modo geral com a distribuição de heterocromatina 

constitutiva e da fracção de C0t-1 DNA, mas não tanto com cromossomas portadores dos clusters de 

rDNA. O padrão de Rex3 observado revelou-se bastante pronunciado em pelo menos 10 pares de 

cromossomas e o facto de ser aparentemente partilhado por todas as espécies analisadas, sugere uma 

origem anterior ao respectivo processo de diferenciação. Não obstante, foi ainda possível identificar 

determinados padrões de acumulação espécie-específicos em Iberochondrostoma lusitanicum, 

Pseudochondrostoma duriense e P. polylepis. Designadamente, no par nº. 12 de I. lusitanicum, no par 

nº. 15 de P. duriense, e no par nº. 3 de P. polylepis, os quais não co-ocorrem com zonas de 

heterocromatina constitutiva. É de notar, igualmente, a acumulação de Rex3 na porção distal do maior 

par de cromossomas st-a, muito provavelmente um padrão também partilhado por todas as espécies 

da subfamília, como anteriormente proposto num trabalho com sonda específica para este par de 

cromossomas marcador. Assim como outras classes de sequências repetitivas, também a acumulação 

de retroelementos foi já demonstrada em cromossomas sexuais. Até à data não foram decisivamente 

descritos cromossomas sexuais nestes peixes e, se presentes, permanecerão num estado muito 

precoce de indiferenciação morfológica. Neste estudo foi detectada uma acumulação diferencial de 
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Rex3 no maior par de cromossomas sm, mas apenas em indivíduos do sexo masculino. No entanto, a 

insuficiência de fêmeas analisadas com este marcador não permite validar esta ocorrência como 

estando ligada ao sexo sem um estudo mais alargado. Apesar de uma das espécies parentais dos 

híbridos homoploides (A. oligolepis) não ter sido avaliada para a distribuição de Rex3, o padrão 

largamente partilhado por todas as restantes espécies permitiu tirar ilacções relativamente aos 

híbridos. O padrão de acumulação de Rex3 nestes híbridos pareceu seguir basicamente a mesma 

tendência que nas espécies parentais, ainda que tenham sido detectados mais pares de cromossomas 

com grandes acumulações deste elemento transponível (pelo menos 15 pares bem demarcados). Este 

resultado parece indicar haver re-activação de mecanismos de transposição nos híbridos, à 

semelhança do que foi anteriormente verificado noutros organismos. Alguns destes clusters de Rex3 

nos híbridos já apareceram correlacionados com clusters de rDNA: quer com 45S rDNA que se sabem 

hoje corresponder a clusters translocados, como uma das consequências de hibridação inter-específica 

(ver Capítulo 3.1), quer com alguns dos clusters de 5S rDNA, indicando também re-activação do 

retroelemento Rex3 nestes cromossomas em particular. A filogenia do Rex3 conseguida a partir das 

sequências anotadas no GenBank (ncbi.nlm.nih.gov/genbank/) com elevada similaridade após análise 

de BLASTn (ncbi.nlm.nih.gov/blast/) não reflectiu uma filogenia típica / clássica de peixes; mas a 

distribuição deste elemento já havia demonstrado ser descontínua nos teleósteos e, por outro lado, a 

sua distribuição parece congruente com uma tendência evolutiva para proteger a sua actividade e para 

a existência de um sistema regulatório robusto para este tipo de sequências autónomas. Ao se 

acumularem na heterocromatina, estes elementos reduzem o potencial impacto da sua presença / 

actividade no genoma do hospedeiro, ao mesmo tempo que evitam forças selectivas negativas, o que 

permite que se acumulem em grandes clusters, como observado. Os elementos transponíveis são 

considerados uma força dinâmica na regulação e neo-funcionalização genética, na promoção de 

rearranjos cromossómicos e evolução de genomas, e até especiação, por serem uma fonte de 

variabilidade genética que aumentam o potencial adaptativo e evolutivo dos genomas que integram. 

Este estudo permitiu fazer o primeiro mapeamento físico de retroelementos na família Cyprinidae, 

tendo ajudado a definir possíveis homologias cromossómicas ancestrais, bem como a evidenciar a re-

activação de TEs em indivíduos de origem híbrida.  
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Abstract 13 

The highly diverse Iberian Leuciscinae comprise many taxa of hybrid origin (homoploid and 14 

polyploid). Despite preserving the typical macrostructural chromosome similarities, homoploid 15 

hybrids within Chondrostoma s.l. were previously characterized by rapid genome restructuring, 16 

counting with rDNA transposition resulting in a variety of combinations. To understand the role of 17 

repetitive DNAs in the differentiation of Iberian Leuciscinae genomes, a molecular cytogenetic survey 18 

was conducted in Anaecypris hispanica, Iberochondrostoma lemmingii, I. lusitanicum, 19 

Pseudochondrostoma duriense, P. polylepis and P. polylepis×Achondrostoma oligolepis natural 20 

hybrids. Rex3 evidenced preferential accumulation to centromeric regions and some telomeres, 21 

grossly correlating with constitutive heterochromatin and C0t-1 DNA, but not particularly with rDNA-22 

bearing chromosomes. The accumulation was obvious in at least 10 chromosome pairs and it seemed 23 

to be shared among the different species tested, likely predating their divergence. Nevertheless, 24 

species-specific clusters were detected in I. lusitanicum, Pseudochondrostoma duriense, and P. 25 

polylepis indicating some differentiation. In the hybrids, at least 15 bi-armed elements had large 26 

centromeric accumulation of Rex3 this time also correlating with  rDNA clusters. Additionally, 27 

strong telomeric signals in the short arms of some chromosomes could be linked to translocated 45S 28 

rDNA clusters. Rex3 phylogeny did not render the typical phylogeny of fishes but its distribution 29 

pattern is congruent with an evolutionary tendency to protect its activity and a robust regulatory 30 

system. This is the first report of retroelement physical mapping in Cyprinidae and it helped defining 31 

conceivable ancestral homologies and also recognizing retrotransposon activation in hybrids. 32 

Key words: Anaecypris hispanica; Chondrostoma s.l. sp., karyotype differentiation, fish hybrids, 33 

transposable elements, C0t-1 DNA.34 
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Introduction 35 

The subfamily Leuciscinae (Cyprinidae) represents a significant part of the South-European 36 

ichthyofauna. High biodiversity and an intricate systematics make leuciscines very attractive for the 37 

investigation of life history, biogeography and speciation (see e.g. Filipe et al., 2009). Cases of 38 

extensive natural hybridization have been reported in Iberia encompassing both homoploid and 39 

polyploid systems of hybrid origin (e.g. Aboim et al., 2010; Collares-Pereira and Coelho, 2010). 40 

Leuciscinae karyotypes exhibit quite conservative patterns of diploid values (2n= 48-50), chromosome 41 

categories and some chromosome markers (e.g. Ráb and Collares-Pereira, 1995; Ráb et al., 2008; 42 

Pereira et al., 2012; references therein). However, recent advent of molecular cytogenetic protocols 43 

have demonstrated that such uniformity remains restricted to the macrostructural level (Rossi et al. 44 

2012; Pereira et al., 2013b). Genomes of homoploid hybrids within Iberian Chondrostoma s.l. are 45 

apparently characterized by rapid genetic restructuring often associated with inter-specific hybrids 46 

(Pereira et al., 2013a) where transposable elements may play an important role (e.g. Kidwell, 2002; 47 

Fontdevila, 2005; Böhne et al., 2008; Hua-Van et al., 2011; Arkhipova and Rodriguez, 2013). 48 

Retrotransposons of the Rex family are widely spread among teleost genomes (Volff et al., 1999, 49 

2000, 2001) and are known to particularly associate with rDNA (e.g. Cioffi et al., 2010; Gross et al., 50 

2010; Symonová et al., 2013). 51 

Although transposable elements are usually silent, bursts of activity and increased copy number can 52 

lead to rapid genome diversification between closely related species, as a result of lineage-specific 53 

amplification and/or recombination (Hua-Van et al., 2011). Due to their high amplification potential, 54 

rapid genome expansions are thought to be mediated by transposon activity, especially under 55 

conditions that may disrupt normal operation of transposon control systems, like inter-specific 56 

hybridization (Arkhipova and Rodriguez, 2013). In fact, hybridization is known to potentially induce 57 

transposon activation triggering genome-wide reorganization (genetic and epigenetic) or strongly 58 

modifying recombination patterns (Petrov et al., 1995; O’Neill et al., 1998; Fontdevilla, 2005; Abbott 59 
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et al., 2013). As a result, cross incompatibilities between species may arise, potentially constituting a 60 

first step towards reproductive isolation (Hua-Van et al., 2011). 61 

To understand and determine the role of repetitive DNAs in the differentiation of Iberian Leuciscinae 62 

genomes, a molecular cytogenetic survey was conducted in species Anaecypris hispanica (AHI), 63 

Iberochondrostoma lemmingii (ILE), I. lusitanicum (ILU), Pseudochondrostoma duriense (PDU), P. 64 

polylepis (PPO), and PPO × Achondrostoma oligolepis (AOL) natural hybrids. The main goals of 65 

present study were: (1) to map the chromosomal distribution of Rex3 in these species, (2) to compare 66 

it to the distribution of C0t-1 repetitive DNA fraction of their genomes, (3) to explore the possible 67 

transposition (re)activation in the hybrids, and (4) to delineate its association with the translocation of 68 

45S rDNA sites previously identified in these hybrids (see Pereira et al., 2013a). This is the first report 69 

of a retroelement physical mapping in Cyprinidae that may contribute to the understanding of whether 70 

retrotransposons might be at the basis of genome rearrangements, karyotype differentiation or even 71 

speciation. 72 

Materials and Methods 73 

Materials 74 

Data about the individuals used in this study was summarized in Table 1 showing representatives of 75 

Iberian Leuciscinae and some of their natural hybrids. All manipulations were performed in 76 

accordance with Portuguese guidelines and regulations regarding animal welfare and experimentation 77 

(ASAB, 2006). 78 

Genomic DNA was extracted from fin clips or muscle by isopropanol/ethanol precipitation and the set 79 

of specific FISH probes used included: (1) the DNA fraction enriched for repetitive sequences – C0t-1 80 

DNA (Ferreira and Martins, 2008), (2) 5S and 45S ribosomal DNA sequences (Pereira et al., 2012), 81 

and (3) a Rex3 fragment PCR-amplified using the pair of primers F3 and R3 originally designed by 82 

Volff et al. (1999). All sequences were labelled with DIGoxigenin or BIOtin by nick translation 83 
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(Roche) and dissolved in hybmix (50% deionised ultrapure formamide, 10% dextran sulphate, 2x SSC, 84 

pH 7.0) to a final concentration of 20 ng.uL-1. Our lab has available a small bank of chromosome 85 

preparations obtained and stored throughout the many years of continuous fish cytogenetic studies 86 

(from the 80’s to present; see also Pereira et al., 2012). C-banding followed Sumner (1972) with DAPI 87 

or PI counterstaining. Images were processed as a whole simply using pseudo-colouring, over-layering 88 

and brightness/contrast tools. Karyotype assembly followed Levan et al. (1964). 89 

Sequencing and sequence analysis 90 

The PCR-amplified Rex3 fragment was sequenced on an ABI Prism 3130 Genetic Analyzer (Applied 91 

Biosystems) using the BigDye Terminator Cycle Sequencing Kit (Life Technologies). Sequences were 92 

subjected to BLASTn analysis (http://blast.ncbi.nlm.nih.gov/blast) in order to determine similarities to 93 

sequences deposited in GenBank databases (Benson et al., 2011). The purified fragment was further 94 

cloned into pDrive Cloning Vector (Qiagen) and transformed into EZ Competent Cells (Qiagen) for 95 

long time storage/access and future deposition in GenBank. 96 

Results 97 

Characterization of the Rex3 fragment 98 

Using the selected pair of Rex3 primers we were able to retrieve a single fragment of approximately 99 

460 base pairs (bp), with no apparent size variation between species (not shown). BLASTn analysis 100 

confirmed high homology to: (1) partial sequences of Rex3 retroelement described in Esox lucius (91-101 

93%) from Esociformes, Cyprinus carpio (87-91%) and Danio rerio (83%) from Cypriniformes, 102 

Siniperca chuatsi (87-88%), Symphysodon discus (79%) and Cichla monoculus (78%) from 103 

Perciformes, Tetraodon nigroviridis (83-88%) from Tetraodontiformes, Fundulus sp. (85%) from 104 

Cyprinodontiformes, and Polypterus delhezi (84-86%) and P. ornatipinnis (82%) from 105 

Polypteriformes (Fig. 1); as well as (2) high similarity to microsatellite sequences of 102-117 bp found 106 

in the swamp eel Monopterus albus (93%, Synbranchiformes; accession No. EU846210), in the 107 
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Cypriniformes common carp Cyprinus carpio (92%; accession No. JN750700) and Amur ide 108 

Leuciscus waleckii (87%; accession No. JN750700), and in the tongue sole Cynoglossus laevis (90%, 109 

Pleuronectiformes; accession No. EU907166). 110 

Chromosomal distribution of Rex3 retroelement 111 

All genomes examined for Rex3 distribution evidenced a pattern of preferential accumulation to 112 

centromeric regions and more moderate on telomeres (Figs. 2a-d, 3a), grossly correlating with blocks 113 

of constitutive heterochromatin (Figs. 2f, 3b) and C0t-1 DNA fraction (Fig. 2e). The clusters were 114 

particularly obvious in at least 10 chromosome pairs and the pattern appeared to be shared between the 115 

different species tested (Figs. 2a-d); namely, the clusters in metacentric (m) chromosome pairs Nos. 1-116 

2 + 4-6, submetacentric (sm) chromosome pairs 1-2 + 6 + 8 + 10 + 13, and more or less in all subtelo-117 

acrocentric (st-a) chromosome pairs 1-4 (Figs. 2a-d). Few additional distinctive patterns could be 118 

recognized in a species-specific mode; particularly, a big interstitial block in the long arm of 119 

chromosome pair No. 12 of ILU (Fig. 2b), a big telomeric block in chromosome pair No. 3 of PPO 120 

(Fig. 2c), and two clusters in the short arm of chromosome pair No. 15 of PDU (Fig. 2d). Conversely, 121 

these bands do not seem to associate with constitutive heterochromatin (not shown) except for PDU 122 

(Fig. 2d,f). 123 

In PPOxAOL hybrid genomes, Rex3 distribution appears to agree with the overall centromeric and 124 

telomeric patterns of accumulation (Fig. 3a), also correlating with constitutive heterochromatin (Fig. 125 

3b). However, several differences could be found relative to the patterns observed in the parental 126 

species: (1) more independent clusters were evident (at least 15), occurring in all m, most of the sm 127 

and faintly in the st-a chromosome pairs (Fig. 3a); (2) co-localization with 5S rDNA sites; and (3) 128 

conspicuous bands mapped to the short arms of some chromosomes also co-localizing with 45S rDNA 129 

clusters (Figs. 3a, c). 130 
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Interestingly, the pattern of a double band of Rex3 or other repetitive sequences occasionally present 131 

in only one of the homologues in the first sm chromosome pair (Fig.2b,e, 3a) was only observed in 132 

male specimens of ILU, PDU and a PPOxAOL hybrid. 133 

Discussion 134 

Rex3 partial sequence 135 

Sequence homology analysis (Fig. 1) demonstrated higher homology to Esox lucius (Esociformes, 136 

Esocidae; >91%) than to Cyprinus carpio or Danio rerio, (Cypriniformes, Cyprinidae). Moreover, the 137 

levels of sequence homology to the remaining species were very similar (above 78%) despite the 138 

phylogenetic interrelationships. Such discrepancy between Rex3 phylogeny and present fish 139 

phylogeny was also observed before by Volff et al. (2001) for which several possible explanations 140 

were proposed. The most adequate seem to be (1) differences in the evolutionary rates between Rex3 141 

sequence and the host genome, since mobile elements multiply independently within the genome; 142 

and/or (2) the operation of multiple mechanisms during Rex3 evolution in fish genomes. Nonetheless, 143 

present results suggest little sequence variance since divergence from the Esox lineage (at least Late 144 

Cretaceous; Nelson, 2006), indirectly pointing to either (1) some sort of positive selection to protect 145 

Rex3 activity, as already postulated by Volff et al. (2001); (2) the existence of a robust mechanism of 146 

silencing/regulation of Rex3 activity in Leuciscinae (Cyprinidae) preventing its transposition and 147 

consequently its differentiation; or possibly (3) a combination of both. 148 

Conserved Rex3 distribution in natural populations 149 

The species analysed in this study had a karyotype composition varying between (6-7) m chromosome 150 

pairs, (15-17) sm chromosome pairs and (2-4) st-a chromosome pairs (Fig. 2-3) confirming high level 151 

of macrostructural karyotype similarities. Comparative analysis of Rex3 distribution point out possible 152 

chromosomal homologies between these long diverged leuciscine species, probably corresponding to 153 
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the ancestral condition to all these genera. Assuming the model of vertical transfer, Rex3 genome 154 

invasion most certainly preceded their divergence, since it was found quite abundantly even in basal 155 

species such as AHI and ILE or ILU (Alburninae is thought to have diverged from Leuciscinae at ca. 156 

12.1 mya, while Iberian Chondrostoma s.l. are believed to have originated around 9.4 mya; Perea et 157 

al., 2010). 158 

Retrotransposons have been described and mapped in Orders Characiformes (e.g. Cioffi et al., 2010), 159 

Cyprinodontiformes (Nanda et al., 2000), Perciformes (e.g. Gross et al., 2010), Salmoniformes 160 

(Symonová et al., 2013), Siluriformes (e.g. Ferreira et al., 2011a), and Tetraodontiformes (e.g. Fischer 161 

et al. 2004) demonstrating various patterns of genomic distribution from dispersed to clustered. In 162 

cyprinids, retrotransposon sequences have only been described in the common carp Cyprinus carpio, 163 

the zebrafish Danio rerio (Volff et al., 1999) and the common bleak Alburnus alburnus, with a strong 164 

association to the giant B chromosomes found in the latter (Ziegler et al., 2003); but until now there 165 

has been no study targeting the physical mapping of these genetic elements to cyprinid genomes. 166 

Usually, eukaryotic transposable elements are not randomly distributed along the chromosomes and in 167 

agreement Rex3 was generally found concentrated at centromeric and telomeric regions (Figs. 2a-d, 168 

3a). This pattern is especially valid for small genomes like those of evolutionary diploid cyprinid 169 

fishes; by accumulating within heterochromatin the impact of its presence or activity on the host 170 

genome is reduced, while evading negative selection and allowing for their accumulation in clusters, 171 

as observed. 172 

Recent studies have further demonstrated linkage of Rex3 with other classes of repetitive DNA such 173 

as 5S rDNA, usually accompanying increased karyotype diversity (e.g. Cioffi et al., 2010; Gross et al., 174 

2010; Symonová et al., 2013). Such association could not be found in the present investigation (not 175 

shown; but see Pereira et al., 2013b); Rex3 signals in the 5S rDNA-bearing chromosomes (typically 176 

the first 2 pairs of st-a chromosomes; Pereira et al., 2012) were rather faint or small in the 177 

(peri)centromeric region (Fig. 2a-d) – the mapping region of 5S rDNA clusters (Pereira et al., 2012). 178 
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The same was observed for 45S rDNA-bearing chromosomes (e.g. the third sm pair of chromosomes) 179 

where Rex3 signals were barely observed (Fig. 2a-d). 180 

Conversely, large Rex3 clusters were found at the distal part of the largest st-a chromosome pair, once 181 

again co-localizing with heterochromatin (Fig. 2f; but see also Ráb et al., 2008, Monteiro et al., 2009, 182 

Pereira et al., 2009) and most likely intercalating with other repetitive sequences (Fig. 2e). In their 183 

work with a WCP (whole chromosome paint probe) specific for this st-a chromosome, Ráb et al. 184 

(2008) proposed this as the subfamily marker chromosome, likely homologous across this cyprinid 185 

lineage and that at least the distal part would be phylogenetically conserved. Accordingly, Rex3 186 

accumulation in this particular region likely reflects the same evolutionary history, thus predating the 187 

divergence of Leuciscinae subfamily. In fact, Volff et al. (2001) described Rex3 as the most 188 

widespread fish retrotransposon with its presence going back as far as 150-200 mya, despite the 189 

discontinued distribution. 190 

Despite sequence analysis suggested little sequence differentiation (Fig. 1), species-specific patterns of 191 

Rex3 accumulation were identified (Fig. 2b-d) that did not associate with heterochromatin. This 192 

proves that, even with probable mechanisms of expression regulation, somewhere along the evolution 193 

of Iberian species, Rex3 sequences have had the opportunity to transpose and accumulate outside the 194 

‘comfort areas’ of heterochromatin shelter, also indicating independent and rapid divergence of 195 

species-specific sequences. However, a comparative sequence analysis between these species is 196 

required to corroborate this hypothesis. 197 

Among other classes of repetitive sequences, also mobile elements have been demonstrated to 198 

accumulate within the sex chromosomes (e.g. Nanda et al., 2000; Cioffi et al., 2010; Ferreira et al., 199 

2011b). Up to date, no sex-related chromosomes have been convincingly identified or characterized in 200 

Leuciscinae (e.g. Sola and Gornung, 2001) and, if present, they appear to have remained under a high 201 

degree of morphological homology. In the present results differential accumulation of Rex3 between 202 

some homologue chromosome pairs was found in male specimens (Figs. 2b,e, 3a). However, mainly 203 

due to low sample size of female individuals, these findings must be further validated.  204 
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Rex3 expansion in natural homoploid hybrids 205 

Even though one of the parental species involved in the formation of these homoploid hybrids could 206 

not be examined (i.e. AOL), Rex3 distribution in the remaining leuciscines seems grossly comparable, 207 

thus allowing for inferences to be withdrawn for the hybrids. Immediately, one of the first readings is 208 

the increased number of Rex3-bearing chromosomes and the enlarged size of clusters (Fig. 3a). Even 209 

without results of expression levels, it seems safe to deduce an apparent proliferation of Rex3 210 

transposition in the hybrids, occurring in most of the bi-armed elements of the chromosomal sets. 211 

Furthermore, to understand if rDNA translocation in the hybrid genomes (Pereira et al., 2013a) could 212 

be associated with and possibly be facilitated by the presence of transposable elements, rDNAs were 213 

also mapped in the hybrids (Fig. 3c). Previously surveyed hybrids for these markers denote a variety 214 

of possible combinations between parental genome contributions, sometimes surpassing it in the form 215 

of syntenic associations between both types of rDNA (Pereira et al., 2013a). The particular individual 216 

represented in Fig. 3a,c evidenced three translocated clusters of 45S rDNA into chromosomes already 217 

bearing 5S rDNA sites (see also Pereira et al., 2012 and Pereira et al., 2013a). 218 

As previously discussed, Rex3 did not particularly correlate with any of the rDNA sites in the species 219 

inspected. In the hybrid however, this association seems more conceivable, especially with 5S rDNA 220 

clusters (Fig. 3a,c), as described for other fish species (e.g. Cioffi et al., 2010; Gross et al., 2010; 221 

Symonová et al., 2013). Even in 45S rDNA-bearing chromosomes thought to be inherited as a whole 222 

(e.g. chromosome pair No. 12), telomeric Rex3 co-localizing with the 45S rDNA appears as a possible 223 

signature of translocation. The same can be extended to the few homologues’ differences (e.g. 224 

chromosome pairs Nos. 4 and 7) as a result of rearrangements. Similar to recent demonstrations of 225 

stress-activated retrotransposons associated with extensive rDNA multiplication, hybridization-226 

activated transposition and genome rearrangements are likely to occur in other regions of these 227 

genomes for which we currently do not possess the means to examine.  228 



CHAPTER 3 

 

 85 

 

Final remarks 229 

Transposable elements are considered a dynamic force in gene regulation and neo-functionalization, 230 

chromosome rearrangements, genome evolution, and even speciation (e.g. Kidwell, 2002; Böhne et 231 

al., 2008; Hua-Van et al., 2011; Arkhipova and Rodriguez, 2013). By increasing genetic variability, 232 

transposable elements also increase the adaptability and evolvability of genomes and species when 233 

external conditions change (Hua-Van et al., 2011). Thus, mapping these repetitive sequences on other 234 

Leuciscinae representatives – including the Iberian Achondrostoma and Squalius genera, for example 235 

– will allow to support current findings and to better appreciate karyotype differentiation in 236 

Leuciscinae. Also, the inclusion of more hybrid forms (both homoploid and polyploid) would greatly 237 

benefit the understanding of predicted transposon (re)activation. And unquestionably, to follow up the 238 

ongoing work on Squalius sp. transcriptomics (Inácio et al., 2012), including these species and 239 

homoploid hybrids to understand transposon distribution, regulation and (re)activation in a scenario of 240 

genomic, transcriptomic and epigenetic shock subsequent to the hybridization process. 241 
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Figures’ captions 350 

Figure 1 Rex3 partial sequence alignment with annotated Rex3 partial sequences of high similarity 351 

after BLASTn analysis. Sequences are identified by ‘species name abbreviation | accession number’ as 352 

follows: AOL = Achondrostoma oligolepis, CCA = Cyprinus carpio, CMO = Cichla monoculus, DRE 353 

= Danio rerio, ELU = Esox lucius, Fun = Fundulus sp., PDE = Polypterus delhezi, POR = Polypterus 354 

ornatipinnis, SCH = Siniperca chuatsi, SDI = Symphysodon discus, TNI = Tetraodon nigroviridis. 355 

Nucleotide similarities are denoted by ‘.’ and gaps introduced for alignment purposes are represented 356 

by ‘–’. 357 

Figure 2 Karyotypes of (a) Anaecypris hispanica, (b) Iberochondrostoma lusitanicum, (c) 358 

Pseudochondrostoma polylepis, and (d-f) P. duriense, arranged after FISH with (a-d) Rex3 fragment, 359 

(e) C0t-1 DNA fraction and (f) C-banding with DAPI counterstaining (negative image). Bar = 5 m. 360 

Figure 3 Karyotypes of P. polylepis x A. oligolepis homoploid hybrids arranged from mitotic 361 

chromosomes after (a) FISH with Rex3 fragment, (b) C-banding with PI counterstaining, and (c) dual-362 

colour FISH with 5S and 45S rDNA probes. Bar = 5 m.363 
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Table 1. Information regarding the number, sex and location of specimens analysed. 364 

Taxa Origin 
Date of 

collection 

No. and sex of 

specimens analysed 
Fig. 

Anaecypris hispanica Guadiana Basin  1999 1 ♂ 2a 

Iberochondrostoma lemmingii Ardila Basin    

 Ardila River 2011 1 ♀ - 

Iberochondrostoma lusitanicum Tejo Basin    

 Raia River 2005 1 ♂  2b 

Pseudochondrostoma duriense Douro Basin    

 Tâmega River 2008 1 ♂, 1 ♀ 2d-f 

Pseudochondrostoma polylepis Mondego Basin    

 Ceira River 2007 1 ♂ 2c 

P. duriense x A. oligolepis hybrid Douro Basin    

 Sousa River 2008 1 ♂ - 

P. polylepis x A. oligolepis hybrid Vouga basin    

 Serra River 2008 1 ♂ 3a,c 

 Mondego Basin    

 Ceira River 2007 1 ♂ 3b 

     

♂ = male, ♀ = female 365 
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Resumo 

Os Leuciscinae Ibéricos têm sido utilizados como modelos para explorar tópicos como a hibridação, a 

alopoliploidia, as várias formas de reprodução não sexuada e de evolução genómica. Este trabalho 

centra-se na contribuição da citogenómica como promotora de investigação neste grupo de peixes tão 

diverso. Foi feita uma revisão de dados de citogenética convencional e de citogenética molecular, 

facilitando assim a análise comparativa entre as várias espécies de bogas e escalos existentes em 

cursos de água-doce nacionais. A hibridação natural é um fenómeno bem reconhecido dentro dos 

géneros do grupo de Chondrostoma sensu lato (s.l.) e de Squalius, apesar de a alopoliploidia só ter sido 

reportada para estes últimos sem que no entanto sejam conhecidas explicações para uma flexibilidade 

genómica diferencial. A citogenética de peixes foi muito limitada até há bem puco tempo, por questões 

técnicas relacionadas essencialmente com a obtenção de um número elevado de preparações 

cromossómicas de qualidade. Além disso, os peixes caracterizam-se, em geral, pela existência de 

cromossomas pequenos e em número elevado, muito pouco compartimentalizados em termos 

estruturais o que, ao contrário do que aconteceu com os homeotérmicos, impediu a aplicação de uma 

vasta gama de técnicas de bandeamento, dificultando sobremaneira análises comparativas e 

sistematizadas. A aplicação de ferramentas de hibridação in situ fluorescente (FISH) a cromossomas 

de peixes abriu caminho a novas possibilidades, facilitando por exemplo o reconhecimento de outros 

pares de cromossomas além dos poucos pares ditos marcadores. A aplicação desta técnica a 

leuciscíneos Ibéricos permitiu ainda confirmar a condição polimórfica associada aos DNAs ribossomais 

(rDNAs) e identificar e distinguir entre híbridos e espécies parentais, mesmo em casos de homoploidia. 

Adicionalmente, foi ainda possível detectar recombinação e instabilidade genómica tanto em híbridos 

homoploides como em poliploides. Esta reorganização de genoma foi particularmente fácil de 

despistar nos clusters de rDNA testados, corroborando a hipótese de translocação activa de NORs 

anteriormente proposta para salmonídeos. Todavia foi também possível reconhecer outras regiões 

potencialmente envolvidas em translocações e/ou duplicações, apesar de menos evidentes utilizando 

apenas os marcadores actuais. Ainda assim, a multiplicação de clusters de rDNA particularmente 

observada em algumas destas espécies (ver Capítulo 2) não parece estar correlacionada com o 

retroelemento Rex3 (ver Capítulo 3.2), que se sabe disperso por várias famílias de teleósteos e que 

demonstrou já estabelecer uma particular associação com genes ribossomais. Porém, nesta inspecção 

inicial não foram ainda incluídos híbridos, nos quais se antecipava um aumento nas taxas de 

transposição, comprovado posteriormente (ver Capítulo 3.2). As técnicas de hibridação genómica 

comparativa (CGH) e de hibridação genómica in situ (GISH) são metodologias derivadas da FISH e a sua 
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aplicação em leuciscíneos Ibéricos permitiu, por um lado, reafirmar a origem híbrida do complexo 

Squalius alburnoides recentemente contestada; e, por outro lado, confirmar que os padrões de 

cariótipo aparentemente conservados na subfamília Leuciscinae são essencialmente de nível 

macroestrutural. Experiências de GISH cruzada, i.e., utilizando DNA de uma espécie como sonda e os 

cromossomas de outra espécie como alvo, revelaram essencialmente homologia ao nível das 

sequências repetitivas com função estrutural, como centrómeros e telómeros. Como seria de prever, 

espécies mais aparentadas filogeneticamente apresentaram uma maior fracção de regiões com 

hibridação positiva do que espécies mais afastadas. Curiosamente, duas das espécies envolvidas em 

processos de extensa e recorrente hibridação natural (Achondrostoma oligolepis e 

Pseudochondrostoma duriense), mostraram mais regiões homólogas do que seria esperado atendendo 

à sua classificação em géneros diferentes. No entanto, tal semelhança de genomas poderá ser a razão 

do sucesso da hibridação entre elas, de onde resultam organismos homoploides férteis. Os resultados 

obtidos neste trabalho permitiram ainda evidenciar a utilidade do mapeamento de DNAs repetitivos 

sobretudo em espécies não-modelo, de genomas compactos e cariótipos menos variáveis, para os 

quais não existem dados de sequenciação ou são muito limitados, como é o caso de muitas das 

linhagens de ciprinídeos.
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5. Discussion 

The aim of this chapter is to integrate the results already presented throughout Chapters 2 to 4 and 

for which partial discussions were also offered. In this general discussion the various evolutionary 

implications of these results will be debated in light of theoretical predictions and in comparison to 

other known cases of natural HYBRIDIZATION (HOMOPLOID and POLYPLOID) in Cyprinidae. 

5.1. Chromosome Markers 

To study HYBRIDIZATION, diagnostic characters in the taxa of interest must ideally be inferred from 

localities where taxa do not co-occur and where the influence of HYBRIDIZATION can be ruled out or 

minimized. In the case-study of HOMOPLOID HYBRIDIZATION between AOLx(PDU/PPO) (2n=50), defining 

ALLOPATRIC populations is particularly difficult for AOL because (1) co-localization with PDU or PPO 

occurs across the totality of its distribution range (Figure 1.2), and (2) until recently the 

phylogeography of the genus Achondrostoma was not well resolved, with SPECIES undescribed and the 

range of AOL and its sister-SPECIES AAR (A. arcasii) being poorly defined (Doadrio & Carmona 2004; 

Robalo et al. 2005, 2006, 2007; Doadrio & Elvira 2007). Therefore, in the present work ‘ALLOPATRIC’ 

refers to locations where taxa were never sampled together in present or historical collections, 

whereas ‘sympatric’ refers to locations where parental taxa and/or putative HYBRIDS have been 

regularly identified. 

One of the methods to appreciate the impact of HYBRIDIZATION on HYBRID genes and genomes is to search 

for traces of structural rearrangements originated by the merging of two foreign chromosomal sets in 

a single (HYBRID) nucleus (e.g. Chester et al. 2013). Although Leuciscinae KARYOTYPES are ostensibly very 

similar (e.g. Ráb & Collares-Pereira 1995), the progress on cytogenomics and sequence data was 

expected to allow for a deeper investigation on these genomes and their actual organization. Defining 

parental SPECIES-specific chromosomal markers was necessary to establish a starting point of genomic 

information and overall, this inquiry was able to fulfil the purposes it was designed for. Namely, it 

provided chromosomal markers whose distribution and organization can be used to identify and 

distinguish SPECIES, populations or lineages (Chapters 2 and 3.2; Table 5.1); it proved valuable for 

forthcoming surveys on natural HYBRIDIZATION (Chapter 3.1); and it delivered better-resolved leuciscine 

KARYOTYPES, despite the overall macrostructural similarities (Chapters 2 and 4). 
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The largest subtelo-acrocentric (st-a) chromosome pair was one of the first marker chromosomes 

defined in Leuciscinae, being proposed as the Leuciscinae cytotaxonomic marker (Vasilev 1985; Ráb et 

al. 2008). Besides being usually the largest on the complement, a clear subterminal band of 

heterochromatin in the long arms of these chromosomes is frequently found across many Leuciscinae 

SPECIES (e.g. Bianco et al. 2004; Pereira et al. 2009). Even though this band seemed to be absent in 

Alburnus albidus and Squalius cephalus (Bianco et al. 2004), the high homology of this marker across 

Leuciscinae (including as well Squalius cephalus) and probably Phoxininae subfamilies lead us to 

question the power of CROSS-SPECIES painting on reasoning about KARYOTYPE EVOLUTION in cyprinid fishes 

(Ráb et al. 2008), appealing for resolution refinements of preserved syntenic blocks in conservative 

genomes – i.e. sub-chromosomal markers (see e.g. Nie et al. 2012). 

Since molecular data in these SPECIES is restricted to mitochondrial and few nuclear genes or 

microsatellites (e.g. Aboim et al. 2010), the assessment for repetitive sequences allows for a rapid and 

relatively inexpensive method to define genome organization in fishes (e.g. Cabral-de-Mello & Martins 

2010; Cioffi & Bertollo 2012). For this purpose, a set of easily accessible repetitive sequences was 

selected: ribosomal DNAs (Chapters 2-4), (TTAGGG)6-repeats (Chapter 3.1), Rex3 RETROTRANSPOSABLE 

ELEMENT (Chapter 3.2), C0t-1 DNA fraction (Chapter 4), and whole genomic DNA in CROSS-SPECIES GISH 

(Chapter 4) or CGH experiments on the HYBRIDS (Chapters 3.1 and 4). Some of these sequences or 

genome fractions were better explored than others mainly due to some technical constraints. 

Nevertheless, this work represents a broader application of cytogenomic techniques to Iberian 

cyprinids (but see also Gromicho & Collares-Pereira 2007; Rampin et al. 2012; Collares-Pereira et al. 

2013) although the full potential of this approach applied to these taxa is yet to be unveiled. In fact, 

some of these techniques and principles have also been tentatively applied to other hybrid fishes 

endemic to the Iberian Peninsula – the Squalius alburnoides allopolyploid complex. 

5.2. Genome Architecture & Dynamics 

5.2.1. Iberian Leuciscinae 

Fish genomes usually stand for a great genomic flexibility (Venkatesh 2003) by evidencing a broad 

range of chromosome numbers (from 2n=12 in the deep-water spark anglemouth Sigmops 

bathyphilus, to 2n=446 in Ptychobarbus dipogon; www.fishbase.org) and genome sizes (from 0.35 

pg/cell in Tetraodon nigroviridis to 132.83 pg/cell in Protopterus aethiopicus; www.genomesize.com), 

a variety of sex determination systems (e.g. Devlin & Nagahama 2002), a higher tolerance to 
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HYBRIDIZATION and POLYPLOIDIZATION (up to 2n=3-6x in Acipenseridae; Arai 2011; Mable et al. 2011), and 

accounting for slightly more than one half of the total number of recognized living Vertebrates (Nelson 

2006). On the other hand, genome size in teleosts is relatively conserved at the family level (Arai 2011; 

www.genomesize.com) and Leuciscinae KARYOTYPES seem rather conservative regarding chromosome 

number (2n=48-50), size, morphology and base composition (e.g. Ráb & Collares-Pereira 1995; Sola & 

Gornung 2001; Arai 2011), contrasting with the high SPECIATION rates observed not only in Iberian 

Leuciscinae (e.g. Perea et al. 2010). 

At the level of gross chromosomal organization, there is little evidence that chromosomal divergence 

has proceeded at a rapid rate among leuciscines. SPECIATION events in these fishes typically involve 

changes in only a small proportion of the genome or changes in genetic regulation that reveal more 

important than structural changes in determining SPECIATION rates (Avise & Gold 1977). Nevertheless, 

one cannot exclude the possibility of important genomic changes having occurred beyond current 

resolution power. 

Constitutive heterochromatin among eukaryotes is mainly found on the pericentromeric regions, a 

pattern usually considered the ancestral character state. Heterochromatin distribution in 

chondrostomines points to some level of differentiation by evidencing some chromosomes without 

(or with very few) pericentromeric heterochromatin and some chromosomes with only telomeric 

accumulation of this element (e.g. Pereira et al. 2009). However, a thorough inspection including more 

SPECIES within each genus must be performed and chromosome homeologies must be unequivocally 

recognised before a cross-examination against a PHYLOGENETIC tree is possible in order to better 

understand the distinct evolutionary trends of differentiation. The same is valid for any available 

chromosome marker. 

The results of this dissertation demonstrated that this uniformity is actually macrostructural, 

designating lineage- or SPECIES-specific variable features such as (1) number and location of ribosomal 

DNA units (Chapter 2; Table 5.1), (2) accumulation of Rex3 RETROTRANSPOSABLE ELEMENT (Table 5.2), (3) 

accumulation of repetitive sequences (Chapter 3.2), and (4) to some extent a SPECIES-specific 45S rDNA 

cluster (Chapter 4). Therefore, besides the rearrangements we can suspect but not yet prove to have 

occurred (i.e. notorious size heteromorphism between some homologue chromosomes), 

chromosomal modifications underlying SPECIATION in the subfamily Leuciscinae may have involved (1) 

translocations with multiplication of the rDNA clusters, (2) TRANSPOSITION via mobile elements also with 

multiplication of the rDNA units, and most likely (3) intrachromosomal rearrangements preserving the 

overall chromosome structure with minor variations at the total number of meta- (m), submeta- (sm) 
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or st-a chromosome pairs (see Pereira et al. 2009; Pereira et al. 2012). Other examples of such 

karyotype macrostructure uniformity but with totally different sub-chromosomal organization have 

been increasingly documented amongst Characiformes, particularly between fish species of the genus 

Symphysodon (Gross et al. 2010). The authors argued that despite the evolutionary mechanisms 

preventing major karyotype rearrangements, the genomes of the species examined continued evolving 

via minor chromosomal variations. 

Although a single 45S rDNA cluster terminally located on a pair of small acrocentric chromosomes is 

believed to represent the PLESIOMORPHIC state in Cyprinidae (Amemiya & Gold 1990), variability in 

number and/or position of ribosomal genes has been increasingly reported within Leuciscinae, as well 

as the co-localization of both units (e.g. Gromicho et al. 2006a,b; Kirtiklis et al. 2010; Rossi et al. 2012; 

present dissertation). Even though, the ANCESTRAL state for Leuciscinae subfamily is believed to 

comprise a single pair of major rDNA clusters in a medium to small-sized sm chromosome pair (e.g. 

Ráb & Collares-Pereira 1995) and one pair of minor rDNA in the (peri)centromeric regions or short 

arms of the largest st-a chromosomes (Rossi et al. 2012), compiled results indicate that rDNA-

phenotypes of Eurasian Leuciscinae (Table 5.1) may be as variable as in North American leuciscines 

(e.g. Amemiya & Gold 1990). NORs are usually described as very dynamic regions capable of 

dissemination within the genome and variants include (1) multiple rDNA clusters, (2) different 

chromosomal position, (3) different types of rDNA-bearing chromosomes, or (4) loss of rDNA-bearing 

chromosomes (see e.g. Escobar et al. 2011). 

Initially designed to determine whether the POLYMORPHIC state of the rDNAs could be related with 

TRANSPOSON activity, we assessed the distribution of the Rex3 RETROELEMENT in these genomes, the most 

abundant family of RETROTRANSPOSONS in fishes (Volff et al. 1999). Rex3 distribution in the examined 

SPECIES was found compartmentalized with accumulation in pericentromeric regions, suggesting a 

possible correlation between KARYOTYPE EVOLUTION and RETROTRANSPOSON activity. Correlations between 

the accumulation of repetitive elements, heterochromatin and chromosome rearrangements have 

been hypothesized to explain KARYOTYPE differentiation in the fishes Hoplias malabaricus, Erythrinus 

erythrinus (Characiformes), Symphysodon genus, and Notothenia coriiceps (Perciformes) (reviewed in 

Cioffi & Bertollo 2012). Inversely to recent findings where 18S rDNA (Silva et al. 2013) or 5S rDNA were 

found intimately associated to Rex3 and an increased KARYOTYPE diversity (e.g. Cioffi et al. 2010; Gross 

et al. 2010; Symonová et al. 2013), we did not find this correlation with neither of the rDNA families 

suggesting either (1) another mechanism of TRANSPOSITION or (2) the involvement of another mobile 

element instead of Rex3. 
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Interestingly, all of the SPECIES now analysed shared the overall pattern of Rex3 distribution proposing 

an ancient incorporation of this element in their genomes. This result is not strange considering the 

broad incidence of Rex3 in teleosts, despite an intermittent distribution (Volff et al. 2001b). 

Nonetheless, it seems rather interesting to invest in other forms/families of TRANSPOSABLE ELEMENTS for 

the investigation of genome organization and evolution in fishes in general. To start with, there are 

many good candidates such as LINEs (e.g. Oliveira et al. 1999), tc1 and tc1-like (e.g. Izsvák et al. 1995), 

Ty3-gypsy (e.g. Volff et al. 2001a), mariner-like (e.g. Mandrioli 2000), among others (see e.g. Volff et 

al. 2003). 

As previously mentioned, with the increasing number of SPECIES mapped for these sequences, co-

localization of both rDNA gene families has been gradually acknowledged (e.g. Gromicho et al. 

2006a,b; Kirtiklis et al. 2010; Rossi et al. 2012) more than it would be expected (e.g. Martins & Wasko 

2004). However, such association has not been documented among the chondrostomine SPECIES 

analysed to date (Pereira et al. 2012) except in cases of HYBRIDIZATION (Chapter 3.1; discussed ahead). 

In one hand, only seven of the 14 evolutionary lineages sensu Perea et al. (2010) have so far been 

surveyed for both these markers (Table 5.1). Moreover, data compilation demonstrate a huge gap of 

results mainly regarding 5S rDNA mapping. On the other hand, one cannot exclude HYBRIDIZATION events 

as the cause of such interspecific and interpopulation variability. Natural HYBRIDIZATION is a common 

process among cyprinids (Scribner et al. 2001), and particularly within European Leuciscinae, HYBRIDS 

(natural or artificial) have been described involving genera Abramis, Alburnoides, Alburnus, Aspius, 

Blicca, Chondrostoma s.l., Leuciscus, Pachychilon, Phoxinellus, Phoxinus, Rutilus, Scardinius, Squalius 

and Vimba (Treer & Kolak 1994; Scribner et al. 2001). Once again, the importance of including multiple 

independent datasets must be emphasized, especially if inter-specific HYBRIDIZATION is a possibility 

among the SPECIES studied. Moreover, single types of data are insufficient for inferring processes, when 

a number of different mechanisms could have led to the same pattern (e.g. Robinson et al. 2008).
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5.2.2. Natural Hybrids 

Present results discovered the occurrence of syntenic 5S-45S rDNA units as an indicator of inter-

specific HYBRIDIZATION between chondrostomine SPECIES in Iberian freshwaters (Chapters 3.2 and 4). 

Such organization in other Leuciscinae was simply regarded as SPECIES-specific evolutionary patterns 

(Kirtiklis et al. 2010; Rossi et al. 2012), though also put forward as potentially useful to depict cases of 

natural HYBRIDIZATION (Kirtiklis et al. 2010). Since many of the HYBRIDS among Cyprinidae are fertile, 

recurrent BACKCROSSING is highly probable resulting in HYBRIDS virtually indistinguishable from their 

parental taxa (Mallet 2005). Not only do we expect that more SPECIES will soon be evaluated for these 

markers but we also recommend the re-examination of SPECIES where rDNAs occur in synteny to rule 

out cases of natural HYBRIDIZATION at the basis of such association. 

HYBRIDS inspected during the present work represented a variety of possible combinations between 

parental genomic contributions resulting in a random assortment of cytonuclear and chromosomal 

markers distributed among the different HYBRID morphotypes; as well as some TRANSGRESSIVE 

phenotypes rendered as: (1) more rDNA clusters than possibly inherited from any of the parental 

forms, and (2) syntenic associations between both gene clusters (Chapter 3.1). Cases of TRANSGRESSIVE 

phenotypes have been reported in other HYBRID cyprinid populations (reviewed in Corse et al. 2012). 

Similarly to Gila robusta complex, present genetic data suggest a decoupling between morphological 

and cytonuclear markers, possibly pointing to local ADAPTATION and to the role of HYBRIDIZATION in 

evolution (Gerber et al. 2001). 

Obviously, chromosomal repatterning during HYBRIDIZATION and/or evolution may alter the number and 

position of rDNA sites; but recent studies have shown that the dynamism of the rDNA clusters may be 

regarded as a strong indicator of significant intragenomic processes (Cioffi & Bertollo 2012) like 

RETROTRANSPOSON activity, as demonstrated in the fish Erythrinus erythrinus (Cioffi et al. 2010). TEs are 

one of the most fluid components of the genome. Knowing TE’s distribution patterns originally present 

in the parental SPECIES might be highly relevant to understand the nature of changes occurring as a 

result of HYBRIDIZATION (Arkhipová & Rodriguez 2013). On the other hand, HYBRIDS are long known as 

activators of TRANSPOSITION in a variety of organisms (reviewed in Fontdevila 2005 and Hua-Van et al. 

2011). With that in mind, PHYSICAL MAPPING of the RETROELEMENT Rex3 was applied to mitotic 

chromosomes of some chondrostomine HYBRIDS revealing gains of hybridization signals at centromeres 

– other than the original pattern – and short arms of some chromosomes (Chapter 3.2). Despite 

discreet, results seem to corroborate other examples of HYBRID TRANSPOSITION activation. Nevertheless, 

even without a dramatic copy number increase, a certain level of TE activation may lead to 
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chromosomal rearrangements which are particularly likely to contribute to rapid genome reshaping in 

the absence of large-scale TE amplification (reviewed in Arkhipova & Rodriguez 2013). On the other 

hand, this might characterize the expected and the only viable result in case of TRANSPOSITION activation 

in HYBRIDS since other possible combinations are most likely deleterious and/or selected against (e.g. 

non-centromeric accumulation). 

Unfortunately, HYBRIDS of first generation (F1) were never found in the studied HYBRID ZONES during 

present or past sampling campaigns (e.g. from Collares-Pereira & Coelho 1983; Aboim et al. 2010; to 

present work). Ideally, a F1 HYBRID KARYOTYPE would be composed of 25 chromosomes from one 

parental SPECIES and 25 chromosomes from the other. By applying GISH or CGH procedures, one would 

in theory be able to identify the individual contributions by each parent. While the application and the 

results obtained by these methodologies seem quite straightforward in POLYPLOID individuals (e.g. 

Rampin et al. 2012), the same is not valid for HOMOPLOID and highly introgressed HYBRIDS (Chapters 3.1 

and 4). This could either indicate that (1) parental SPECIES are more similar and closer related than 

expected for an 11-my-divergence time between them (Aboim et al. 2010), so that SPECIES-specific 

repetitive elements might not have sufficiently differentiated; or that (2) the HYBRIDIZATION process is 

older than 5 mya, the time-frame considered necessary for the process of genome turnover by means 

of sequence homogenization; if completed, parental genomes can no longer be resolved by GISH as 

demonstrated in Nicotiana natural ALLOPOLYPLOIDS (Lim et al. 2007). 

Indisputably, experimental approaches would significantly contribute to the understanding of HYBRID 

ZONES and HYBRIDIZATION phenomena, despite the limitation that processes revealed in such controlled 

and highly simplified systems may not be representative of processes operating in nature (Scribner & 

Avise 1994). Nevertheless, controlled breeding studies allow (1) to establish important demographic 

variables difficult to monitor in natural settings (e.g. numbers and genetic composition of founders, 

levels of exogenous GENE FLOW, and age of the HYBRID population; Scribner & Avise 1994), as well as (2) 

obtaining precious F1 HYBRIDS to trace genomic restructuring in real time with both progenitor SPECIES 

available for comparison (see Arkhipova & Rodriguez 2013). Mable (2013) even suggests that greatest 

insights would come from comparing HOMOPLOID HYBRIDS, ALLOPOLYPLOIDS and AUTOPOLYPLOIDS artificially 

created from the same parental SPECIES. 
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5.3. Evolutionary Consequences 

The simple fact of two parental genomes co-existing in a single nucleous accounts for both novelty and 

conflict on an intracellular scale, translating as genomic and transcriptomic shock, i.e. massive genome 

restructuring and changes in gene expression (e.g. Fontdevila 2005; Hegarty et al. 2006, 2008; Matos 

et al. 2011; Feldman et al. 2012). Alterations at the chromosome level may explain some of the now 

observed modifications: intergenomic translocations coupled with possible homeologous 

RECOMBINATION may yield novel non-additive combinations of parental genes. HYBRIDS may not only 

provide novelty but accelerate SPECIATION in some cases (reviewed in Abbott et al. 2013 and Soltis 

2013). 

According to Feldman et al. (2012), the modifications observed in the HYBRIDS/POLYPLOIDS may translate 

as ‘revolutionary’ (genetic and epigenetic changes triggered by HYBRIDIZATION and/or POLYPLOIDIZATION) 

and/or ’evolutionary changes’ (post-HYBRIDIZATION/post-POLYPLOIDIZATION genetic changes that 

contribute to diversity and lead to ADAPTATION). SPECIES-specific demographic factors (e.g. gestation 

length, offspring birth size, growth rates, size and age at sexual maturity) can dramatically affect the 

genetic outcomes in HYBRID ZONES (Scribner & Avise 1994), resulting in the current mosaic combination 

of molecular and morphological characters. Although INTROGRESSION may be highly selective, 

HYBRIDIZATION has the potential to introduce large sets of new alleles allowing for the acquisition of a 

genetic architecture otherwise difficult to evolve by sequential accumulation of mutations. A large 

fraction of this INTROGRESSION is likely to be deleterious, but when large numbers of HYBRIDIZATIONS occur 

at the same time, the greater the chance that some will pass on to the next generations (Abbott et al. 

2013). 

The abundant genotypes produced by HYBRID RECOMBINATION should facilitate further exploration of 

different ecological niches thus contributing to ADAPTATION and SPECIATION, in principle highly 

dependent on ecological opportunity (Abbott et al. 2013). The expression of extreme phenotypes may 

lead to (1) population segregation of the HYBRIDS in relation to their parents, by ecological niche 

separation, for example; and/or (2) to HETEROSIS in which HYBRID phenotypes are more fit than parental 

ones (Rieseberg et al. 1999; Corse et al. 2012). Onwards, a combination of founder effect, directional 

INTROGRESSION, and/or SELECTION may result in the total replacement of one genetic marker for another, 

as observed in other examples of HOMOPLOID HYBRIDIZATION (e.g. Gerber et al. 2001; Costedoat et al. 

2005; Broughton et al. 2011). To discriminate among these alternatives, specific investigation to 
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examine the fitness of each class of HYBRIDS (i.e. morphotype-genotype combination) relative to 

different environments is then necessary. 

Data taken from a single population at one point in time, over multiple populations, or in a time series 

for single populations can be particularly useful and informative in terms of identifying plausible 

evolutionary mechanisms driving changes in gene frequency and gene associations over time (mating 

system, SELECTION, population size, GENETIC DRIFT, and degree of population subdivision). There is a 

tendency for HYBRID ZONES to move toward regions of low density, low HYBRID unfitness, low dispersal, 

and in the direction favouring the fitter allele (Scribner et al 2001). For the establishment of a 

HOMOPLOID HYBRID SPECIES however, genome stabilization must be allowed to proceed for some 

additional time after REPRODUCTIVE ISOLATION (Buerkle & Rieseberg 2008). HYBRIDS’ divergence may be 

associated to several phenomena like parental genome DNA losses, RETROELEMENT activity and/or 

intergenomic homogenization (e.g. Lim et al. 2007). In this case-study where HYBRIDIZATION events seem 

recurrent and extensive (Aboim et al. 2010), ecological barriers between HYBRIDS and parental SPECIES 

might be altered and/or degraded, so that GENE FLOW back to pure SPECIES never actually ceases 

(Chapter 3.1) and HYBRID genomes will hardly achieve stabilization or SPECIATION. 

On the other hand, by preserving the ability to interbreed at least periodically (reproductive plasticity) 

and sustaining INTROGRESSION, genetic variation is transferred among the different forms generating 

new genotypes subjected to local selective pressures. By these means, taxa acquire greater flexibility 

and more rapid ADAPTATION than if variants were derived by mutation alone (Dowling & Secor 1997; 

Gerber et al. 2001). Under fluctuating environmental conditions like those found in semi-arid 

Mediterranean habitats (e.g. Magalhães et al. 2002), this process could (1) assure current levels of 

biodiversity, and/or (2) rapidly enhance biodiversity through the creation of new mosaic taxa. 

Therefore, and following the examples of Gila (Gerber et al. 2001) and Cyprinella (Broughton et al. 

2011) complexes, the maintenance of reproductive plasticity and INTROGRESSIVE HYBRIDIZATION among 

chondrostomine taxa may be important for their preservation and/or evolution enabling them to 

adapt to changing environments.  
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5.4. To be or not to be polyploid? 

As already mentioned, fish genomes seem to undergo and tolerate genetic changes more rapidly and 

more often than other vertebrate genomes, suggesting that fish genomes are ‘plastic’ (see Venkatesh 

2003). Order Cypriniformes is characterized by the largest diversity of HYBRID and POLYPLOID fishes 

known to date. Family Cyprinidae contains many HYBRIDIZING and/or POLYPLOID SPECIES and genera (many 

cyprinid genera are composed of stable POLYPLOID lineages), representing cytogenetic extremes but 

with relatively conservative modal diploid values (Arai 2011). Within Iberian Leuciscinae, two 

distinctive types of systems of HYBRIDIZING fish SPECIES can be recognized, resulting in (1) organisms with 

the same number of chromosomes as the parental SPECIES – exemplified by the HOMOPLOID HYBRIDIZATION 

between Achondrostoma oligolepis and either Pseudochondrostoma duriense or P. polylepis (e.g. 

Aboim et al. 2010; present work), or in (2) organisms with ploidy elevation – well represented by the 

diploid-ALLOPOLYPLOID Squalius alburnoides complex (reviewed in Collares-Pereira et al. 2013). 

HYBRIDIZATION and POLYPLOIDY are closely related and both may contribute with potential for ADAPTATION 

to varying environmental conditions (Mable 2013). Both HYBRIDIZATION and POLYPLOIDY can involve 

dramatic and immediate changes in genome structure which could alter the adaptive responses to 

environmental change (Mable et al. 2011). Although POLYPLOID genomes increase the cost of 

replication, they also provide evolutionary advantages, because they present a basis for almost 

instantaneous SPECIATION (different number of chromosomes) (Abbott et al. 2013; Madlung 2013; Soltis 

2013). On the other hand, HYBRIDIZATION alone is thought to induce more substantial genomic 

rearrangements than genome duplication (e.g. Comai et al. 2003; Hegarty et al. 2006; Buggs et al. 

2011; Czypionka et al. 2012). HYBRIDIZATION and POLYPLOIDIZATION are types of ‘genomic shock’ that could 

result in dramatic genomic restructuring and set new contexts for gene expression. That in turn, could 

lead to increased regulatory flexibility or genome destabilization in HOMOPLOID HYBRIDS due to 

imbalances in gene expression and ultimately cause sterility or mortality (reviewed in Mable 2013). 

POLYPLOIDY is most common (but not widespread) among cold-blooded vertebrates therefore directly 

exposed to changes in their environments; but it does not explain why some SPECIES are POLYPLOID and 

other not (see Mable et al. 2011). Although knowledge in POLYPLOID plants is much more advanced 

compared to animals, there is no clear understanding on the factors promoting successful 

POLYPLOIDIZATION and POLYPLOID SPECIATION in the wild, or on the evolutionary relevance of POLYPLOIDY. 

Despite significant progress, there still is not enough information to unequivocally answer many 

unresolved questions on the subject (Madlung 2013; Stöck & Lamatsch 2013). 
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Although both habitat fragmentation and temperature changes during environmental instabilities are 

likely accountable for altering SPECIES interactions, which can increase rates of HYBRIDIZATION (Seehausen 

et al. 2008), the propensity to hybridize seems to be more determined by intrinsic properties (genomic 

constraints) than by environmental conditions. When genetic divergence between parental SPECIES is 

low, there may be little chance of major novelties arising in HYBRIDS but, when divergence is high, 

intrinsic incompatibility may prevent successful HYBRIDIZATION (Abbott et al. 2013). The more closely 

related are the interacting genomes in the HYBRID, the more likely it is for homeologs to pair, resulting 

in chromosomal exchanges between the two genomes (Madlung 2013). There is also some evidence 

that the extent of genomic divergence between hybridizing SPECIES influences the likelihood of diploid 

or POLYPLOID HYBRID SPECIATION (reviewed in Mable et al. 2011). 

Genetic distance and genomic constraints seem to be the key distinguishing factors between both 

SPECIES complexes considered. The Squalius alburnoides complex is composed of HYBRID biotypes with 

different genomic compositions and ploidies (2n = 50, 3n = 75, and 4n = 100), bisexual and altered 

sexual modes (reviewed in Collares-Pereira et al. 2013), self-sustained by close interaction with the 

sympatric bisexual paternal SPECIES, though the paternal ancestor is long extinct. The complex 

originated from unidirectional HYBRIDIZATION events between S. pyrenaicus females and males closely 

related to the extant species Anaecypris hispanica. While the HOMOPLOID chondrostomine HYBRIDS result 

from crosses between closely related SPECIES – once congeneric (Robalo et al. 2007) – Squalius 

alburnoides originated from the interbreeding of phylogenetically more distant SPECIES – different 

lineages (sensu Perea et al. 2010). Notwithstanding, both complexes are most likely maintained by the 

genetic compatibility of producing viable HYBRIDS and, in the case of S. alburnoides, very successful ones 

(widespread complex) with great evolutionary potential (reviewed in Collares-Pereira et al. 2013). 

While HYBRIDIZATION per se can instantaneously produce distinct taxa through an increase in 

chromosome number (allopolyploidy) or by altering the modes of reproduction (unisexuality) – e.g. 

Squalius alburnoides complex, INTROGRESSION can only eventually lead to a stable, independent lineage 

definable by unique combinations of characteristics over time (Dowling & Secor 1997). However, 

diversification is not instantaneous requiring the recombinant lineages to be isolated from the parental 

taxa, for a long time enough to evolve and accumulate genetic differences responsible for their 

independence upon secondary contact (e.g. Dowling & Secor 1997; Buerkle & Rieseberg 2008). The 

presently investigated HZs of chondrostomine species evidenced continuous bi-directional 

INTROGRESSION (see Aboim et al. 2010) indicating an earlier or transient stage of the (potential of the) 

evolutionary process, with the HYBRID SWARM operating as a reservoir of genetic variability and 

adaptability for times to come. 
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5.5. Management & Conservation Measures 

Developmental and genetic explanations for variability in HYBRIDIZATION rates ignore the importance of 

behavioural decisions to mate, which play the major role in preventing HYBRIDIZATION between 

sympatric animals. The prevalence of HYBRIDIZATION most likely results from a mixture of behavioural, 

genetic, and developmental peculiarities of taxa, depending as well on the number of sympatric, 

closely related SPECIES (Mallet 2005). 

The overall evolutionary relevance of natural HYBRIDIZATION is presently unquestionable even though 

the outcomes may be diverse and not always fully known, for which further investigation work is ever 

more necessary. It is the case of the HOMOPLOID SPECIES systems included in this work, for which research 

is still at an embryonic stage. Although HYBRIDIZATION is obviously conditioned by environmental and 

evolutionary constraints, human activities have the potential to increase its manifestation (see e.g. 

Scribner et al. 2001) causing formerly REPRODUCTIVELY ISOLATED taxa to come into contact and/or 

compelling reproductive activities of different SPECIES to smaller areas. HYBRIDIZATION is especially 

problematic for rare SPECIES; the harmful effects of HYBRIDIZATION, with or without INTROGRESSION, have 

led to the extinction of many populations and SPECIES (Allendorf et al. 2001). Most of the Iberian 

Leuciscinae are classified as vulnerable, endangered or critically endangered (Table 5.2) and therefore 

HYBRIDIZATION may have a negative influence on some of these SPECIES. Still, when it comes for the 

establishment of strategies for biodiversity conservation, HYBRIDIZATION creates additional 

complications for which there is no consensus plan. 

Epifanio & Nielsen (2001) reviewed the significance of HYBRIDIZATION in aquatic systems, raising 

important questions worth of debate and global awareness regarding HYBRIDS’ identification, their 

impact on natural populations, their ecological and evolutionary role, management and conservation 

strategies, and legal challenges posed by HYBRIDIZATION. To sum up, Allendorf et al. (2001) concluded 

that any policy dealing with HYBRIDS must be flexible and recognize that each situation is usually 

different enough so that general rules are not likely to be effective. 

In these particular case-studies, we believe that the present battery of data used for HYBRIDS’ 

identification is powerful enough to detect natural HYBRID SWARMS involving these SPECIES, but their 

ultimate impact on natural populations remains unknown, their ecological and evolutionary 

importance remain speculative, and current management/conservation policies only concern the 

parental SPECIES (also often misdiagnosed) (Table 5.2), with complete disregard of natural HYBRIDIZATION 

or natural HYBRIDS between them. Policy revision is recommended to set appropriate conservation 
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guidelines dealing with natural HYBRIDIZATION and INTROGRESSION (sensu genome invasion), taking into 

consideration both case scenarios where (1) hybrids may pose as a direct or indirect threat eventually 

resulting in local species’ extinction, or (2) contribute to the generation of evolutionary novelties and 

ultimately new species. 
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Present work focused mainly on the genome organization of two pairs of hybridizing fish species 

(AOL/PDU and AOL/PPO) previously considered characterized by highly conservative KARYOTYPES, to 

help understanding KARYOTYPE differentiation at the subfamily level and to characterize genome 

dynamics and reorganization in their natural hybrids (AOLxPDU and AOLxPPO). This concluding 

Chapter summarizes the main achievements of this work and puts forward some new questions and 

future prospects on conceivable follow up investigation. 

Overall, present results demonstrated that such KARYOTYPE uniformity within subfamily Leuciscinae 

remains restricted to the macrostructural level and suggested that the aforementioned homoploid 

hybrids are characterized by rapid genetic restructuring where TRANSPOSABLE ELEMENTS may play an 

important role. In particular, concerning the specific aims outlined for this research work: 

- Molecular chromosome markers demonstrated that, despite the overall KARYOTYPE similarities 

in chromosome number, chromosome classes and consequently total number of chromosome arms 

prevalent across the subfamily Leuciscinae, genome organization is rather different between species 

as also seen in e.g. Symphysodon sp.. Such subliminal differentiation is most likely driven by intra-

chromosomal rearrangements and/or translocations, often imperceptible but probably responsible for 

the small variations in number of chromosome pairs within each category (e.g. a KARYOTYPE formula of 

6 m + 16 sm + 3 st/a chromosome pairs in AOL versus 7 m + 15 sm + 3 st/a chromosome pairs in PDU 

and PPO) and for rDNA copy number variation (5S rDNA varying from 4 clusters in PDU and PPO to 6-

8 in AOL, and 45S rDNA varying from 3 clusters in PDU, to 3-4 in AOL and 4 in PPO). These results 

suggest that KARYOTYPE microstructure is expected to be as equally diverse as the variety of species 

within the family Cyprinidae. 

- The set of selected molecular cytogenetic markers revealed adequate enough to distinguish 

between Iberian genera, between most congeneric species, and retrieving individuals with admixed 

ancestry from natural HYBRID SWARMS, proving even more powerful when used together with other sets 

of independent data like morphological and genetic markers. Although fish cytogenetics may be more 

laborious than genetic or morphological assessments, it demonstrated accurate and reliable in 

homoploid hybrid identification among highly BACKCROSSED individuals providing extra evidence for 

RECOMBINATION and INTROGRESSION. 

- Chondrostomine homoploid hybrids were apparently characterized by rapid genome 

restructuring and RETROTRANSPOSON re-activation. Despite highly BACKCROSSED, genome rearrangements 

were still traceable, mainly by the presence of novel traits like the physical association between 5S and 

45S rDNAs, a character state never registered in the parental forms. BACKCROSSING was found 

preferential with the AOL parent, denoted by all markers (genetic, cytogenetic and morphological) but 
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only sound supported by new cytogenetic data. Besides, although parental rDNAs did not seem to 

correlate with Rex3 RETROELEMENT suggesting other means of 5S rDNA propagation within 

Achondrostoma and Iberochondrostoma genera, transposed 45S rDNA clusters in the hybrids appeared 

associated with re-activated copies of Rex3, suggesting its involvement in at least part of the 

HYBRIDIZATION-mediated genome rearrangements. 

- The Iberian Peninsula freshwaters seem a privileged setting for such (genetic, cytogenetic, 

morphologic, biological) diversity to occur, where the semiarid environment probably contributes for 

both its incidence and increased probability of fixation in distinct (isolated) populations. In fact, other 

Leuciscinae species from Mediterranean peninsulas and mainland Europe have also been associated 

with high levels of diversity, probably due to similar reasons. However, we recommend that natural 

HYBRIDIZATION involving those fish species should be more prudently considered in the equation of 

cytogenetic variability that has been documented. 

In studies of hybridizing species or merely taxa PHYLOGEOGRAPHY, the integration of independent but 

complementary methodologies and disciplines like ecology, evolution and genomics is most 

anticipated. Increasingly integrative approaches should allow us to make more direct associations 

between POLYTYPISMS, POLYMORPHISMS, and/or the effects of HYBRIDIZATION and POLYPLOIDY on the 

genome, with the organism responses in its natural environment and hopefully helping to solve many 

unanswered questions. 

In particular for the present case-study: 

- It would be of great value to quantify the fertility of the hybrids as well as to examine patterns 

of chromosome pairing during meiosis (following up the work of Nabais et al. 2012, Appendix IV2). 

Adding the possibility of controlled breeding experiments and fry-rearing until cytogenetic analysis 

could be easily applied, would greatly enhance our knowledge on the rare F1 hybrids regarding 

interacting parental genomes, modes of inheritance, possible genomic instability and rearrangements; 

- Further comparative genomic, cytogenomics, transcriptomic and epigenomic studies of hybrid 

animals is expected to deliver much progress in the near future. On one hand, understanding TE 

behaviour in hybrid and polyploid animals seems to be a very promising direction for future 

investigations. Many reasons have been advanced throughout this dissertation, but also because 

hybrids with normal KARYOTYPES and anomalous expression patterns have been associated with a 

                                                      
2 Nabais C, Pereira C, Cuñado N, Collares-Pereira MJ. 2012. Synaptonemal complexes in the hybridogenetic 
Squalius alburnoides fish complex: new insights on the gametogenesis of allopolyploids. Cytogenet Genome Res 
138: 31–35. 
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weakening in TEs’ repression mechanisms. Similarly, small RNA molecules are increasingly emerging 

as major players in situations when different genomes need to be scanned against each other. Non-

coding RNAs provide both fragility (by preserving chromosome breaks) as well as strength and 

flexibility to chromosomes, and thus may favour new speciation events; 

- On grounds of cytogenomics alone, the use of refined probes like (1) BAC genomic or 

chromosome libraries, or even (2) BAC libraries from other organisms for which sequence data may be 

more readily available (e.g. the zebrafish Danio rerio, the Atlantic salmon Salmo salar, or the common 

carp Cyprinus carpio), would allow to quickly develop GENETIC MAPS otherwise difficult to obtain, since 

standard experimental crosses do not easily apply. (3) Libraries prepared from microdissected 

chromosomes would be very useful for chromosome mapping since chromosome-specific satellite 

DNAs, ESTs and eventually QTLs (and HYBRID rearrangements involving all of them) could be traced by 

FISH. 

To sum up, these HYBRID systems have yet a lot to offer in terms of understanding genome plasticity 

and genome dynamics, as well as evolutionary mechanisms like INTROGRESSION, which are likely to 

promote ADAPTATION and SPECIATION processes. 
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The following table gathers morphologic and meristic data concerning each individual analysed 

throughout the present study, including both museum samples (MUNHAC, Lisbon) and newly sampled 

individuals, each identified by an individual ID code (lab collection code). Information regarding the 

origin (Douro, Vouga, Mondego, or Tejo river basins and one lab cross), the overall morphotype and 

sex is provided; when the morphotype is not typical, a question mark follows the species name. 

Meristic characters included standard length (SL), number of pored scales in the lateral line (LL), 

number of scales in the transverse row bellow the lateral line (BLL), number of scales in the transverse 

row above the lateral line (ALL), number of pharyngeal teeth (PT), number of gill rakers in the first gill 

arch (GR), number of soft rays in the dorsal fin (DR), and number of soft rays in the anal fin (AR). 

Morphologic indicators considered mainly mouth-related characters such as shape and position of the 

mouth and presence/absence of a horny lower lip. Reference values and more detailed information 

for all of these indicators can be found in Chapter 1. You may notice that not all individuals have 

records for all of the selected characters. This was because (1) many of the newly captured individuals 

were fin clipped for genetic purposes, delivered back to the river and further analysed via high 

resolution photograph; (2) others were in very bad state of preservation (lab collection); and (3) others 

were not fully processed mostly due to time constraints.  
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structural level 
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A 

ADAPTATION – or ADAPTIVE TRAIT, is a trait with a current functional role in the life history of an 

organism that is maintained and evolved by means of NATURAL SELECTION. 

ADAPTIVE DIVERGENCE – populations exposed to different ecological environments diverge for 

traits influencing survival and reproduction; by diverging, gene flow between populations is 

reduced since immigrants become less fit than residents and because hybrids perform poorly in 

either environment. 

ADAPTIVE RADIATION – evolution of ecological and phenotypic diversity within a rapidly multiplying 

lineage. 

ALLOPATRIC SPECIATION – see SPECIATION. 

ALLOPOLYPLOIDY – having more than two chromosome sets derived from different species as a 

result of the multiplication of the number of chromosomes in a HYBRID lineage following 

interspecific HYBRIDIZATION. 

ANCESTRAL POLYMORPHISM – a situation in which incomplete LINEAGE SORTING of gene copies over 

generations might lead to fixation of alleles in descendant species whose genealogical structure 

does not reflect true species PHYLOGENY. 

APOMORPHY – the innovative state of character; also known as derived state. 

AUTOPOLYPLOIDY – having more than two chromosome sets derived from a single species; can 

arise spontaneously or from the fusion of unreduced gametes. 

B 

BACKCROSSING – when hybrids mate with parental forms. 

BIOGEOGRAPHY – the study of the distribution of species and ecosystems in a geographic space, 

through a geological time. 

C 

CHROMOSOMAL or PHYSICAL MAPS – method of assigning DNA fragments to chromosomes by means 

of FISH procedures without the need for complete sequencing data. 

COALESCENCE THEORY – statistical model applied to studies of POPULATION GENETICS attempting to 

trace all alleles of a particular gene shared by all members of a population to the most recent 

common ancestor. 

COMPARATIVE GENOMIC HYBRIDIZATION (CGH) – a FISH derived technique based on the simultaneous 

application of two differentially-labelled genomic DNAs as probes. 

CONTACT ZONES – see HYBRID ZONES. 

CROSS SPECIES GISH – see ZOO-FISH. 

D 

DIVERGENCE – see ADAPTIVE DIVERGENCE. 

DRIFT – see GENETIC DRIFT. 
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E 

EVOLUTIONARY ECOLOGICAL GENOMICS – The recognition that evolution can happen on an ecological 

timescale has prompted the integration of ecology and evolution, while easier access to high-

throughput sequencing technologies has increased the number of genetic non-model species 

entering the ‘omics’ era. 

F 

FITNESS – a central concept in NATURAL SELECTION, it can be defined by the reproductive success of 

an organism or species. 

G 
GENE FLOW – the transfer of alleles or genes from one population to another; also known as gene 

migration. 

GENETIC DRIFT – a change in allele frequencies caused by random sampling. 

GENETIC MAP – see LINKAGE MAP. 

GENOMIC IN SITU HYBRIDIZATION (GISH) – a FISH-derived technique based in the application of a 

labelled genomic DNA as probe, in the presence of an excess of unlabelled competitor DNA to 

suppress common repetitive sequences. 

H 

HAPLOTYPE – a combination of alleles at adjacent loci on a chromosome that are inherited 

together. 

HEMIPLASY – HOMOPLASY-like outcomes introduced by LINEAGE SORTING. 

HETEROLOGOUS FISH – when probe DNA and target chromatin DNA are from different species. 

HETEROKARYOTYPE – in this context, referring to a HYBRID KARYOTYPE composed of at least half a set 

of each parental species’ chromosomes. 

HETEROSIS – HYBRIDS’ condition or fitness raised beyond the state observed in the parental forms 

HOMOLOGOUS FISH – when probe and target DNAs are from the same species. 

HOMOPLASY – structural similarity among characters thought to have originated independently as 

a result of convergent or parallel evolution; also considered as PHYLOGENETIC noise. 

HOMOPLOID HYBRID SPECIATION – the process by which an independent lineage arises through 

HYBRIDIZATION and the combination of parental genomes, without an increase in chromosome 

number (ploidy). 

HORIZONTAL TRANSFER – the transfer of genetic material from one organism to another organism 

that is not its offspring, usually by means of host-pathogen interactions. 

HYBRID – in the strict sense, the first offspring resulting from interbreeding between 

differentiated taxa. 

HYBRIDIZATION – reproduction between members of genetically distinct populations yielding 

exclusively unviable or infertile offspring. 
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HYBRID SPECIATION – the origin of a new evolutionary lineage from the HYBRIDIZATION between 

existing lineages, that is at least partially reproductively isolated from both parental lineages and 

demonstrates a distinct evolutionary and ecological trajectory. 

HYBRID SWARM – population of HYBRIDS that has survived beyond the initial hybrid generations, 

with interbreeding between HYBRID individuals and BACKCROSSING with its parental types. 

HYBRID ZONES – geographic regions where genetically distinct populations or species come into 

contact, mate, and produce HYBRIDS. 

I 

INTROGRESSIVE HYBRIDIZATION – reproduction between members of genetically distinct populations, 

producing offspring with mixed ancestry as a result of directional (reciprocal or not) genetic 

exchanges between the hybridizing taxa. 

K 

KARYOEVOLUTION – evolution that results in changes to the KARYOTYPE of organisms caused by 

changes in chromosome characteristics (number, structure, etc.). 

KARYOTYPE – the number and type of chromosomes constituting the complete set of 

chromosomes characteristic of a cell line, an individual or a species, based on chromosome 

length, centromere position, banding patterns, sex determining chromosomes, and other 

physical characteristics. 

L 

LINEAGE SORTING – the evolutionary process whereby multiple gene lineages in an ancestral 

species are eventually replaced by lineages unique to each descendant species. 

LINKAGE GROUP – all of the genes on a single chromosome, inherited as a group. 

LINKAGE MAP – a GENETIC MAP revealing the position of its genes relative to each other based on 

recombination frequencies, rather than a specific physical distance along each chromosome. 

Genetically linked loci are physically less susceptible to recombination and thus improbable to 

be separated onto different chromatids being inherited together during meiosis. 

M 

METAPOPULATION – a group of spatially separated populations of the same species interacting at 

some level. 

MORPHOTYPE – a group of different morphological types of individuals of the same species in a 

population. 

MUTATION – source of genetic variation in the form of new alleles. 

N 

NATURAL SELECTION – a key mechanism of evolution concerning the gradual natural process by 

which biological traits become more or less common in a population as a function of the effect 

of inherited traits on the differential reproductive success of organisms interacting with their 

environment. 
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P 

PARAPATRIC SPECIATION – see SPECIATION. 

PHYLOGENETICS – the study of evolutionary relationships among groups of organisms by means of 

comparative analyses of molecular sequencing and/or morphological data, resulting in 

hypothetical evolutionary history between taxa and/or taxonomic groups. 

PHYLOGEOGRAPHY – the study of the historical processes that may be responsible for the 

contemporary geographic distributions of individuals in light of the patterns associated with a 

gene genealogy. 

PHYSICAL MAP – see CHROMOSOMAL MAP. 

PLESIOMORPHY – a character state inferred to have been retained from its ancestors; also known 

as the ancestral state. 

POLYMORPHISM – when two or more clearly different phenotypes exist in the same population of 

a species. 

POLYPLOIDY – having more than two paired ancestral chromosome sets. 

POLYTYPISM – a special type of POLYMORPHISM concerning one species with genetically distinct 

populations (overall or average gene frequencies and not necessarily the presence of any gene 

or allele in one population absent in the other) in different geographic areas. 

POPULATION GENETICS – the study of allele frequency distribution and alteration under the 

influence of the four main evolutionary processes: NATURAL SELECTION, GENETIC DRIFT, MUTATION and 

GENE FLOW but also taking in consideration factors as RECOMBINATION, population subdivision and 

POPULATION STRUCTURE, in attempt to explain and predict phenomena as ADAPTATION and 

SPECIATION. 

POPULATION STRUCTURE – population-specific patterns in the genetic constitution of the individuals 

within that population, characterised by their genotypes and/or allele frequencies. 

Q 

QUANTITATIVE TRAIT LOCI (QTL) – stretches of DNA containing or linked to the genes that underlie a 

quantitative trait (usually phenotype-related). 

R 

RECOMBINATION – genetic exchange between homologous chromosomes during meiosis. The 

further a loci is from the centromere the greater is its susceptibility or the probability to undergo 

recombination. 

REINFORCEMENT – usually referring to reinforcement of REPRODUCTIVE ISOLATION. 

REPRODUCTIVE ISOLATION – mechanisms, behaviours and physiological processes that prevent the 

members of two different species that cross or mate from producing offspring, or which ensure 

that any offspring that may be produced is not fertile. 

RETROELEMENTS, RETROTRANSPOSONS or RETROPOSONS – class I transposable elements that transpose 

via an RNA intermediate subsequently copied into cDNA by a REVERSE TRANSCRIPTASE and 

integrated into a new genomic site (retrotransposition). 
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REVERSE TRANSCRIPTASE – an enzyme used to generate complementary DNA (cDNA) from an RNA 

template, by a process termed reverse transcription. 

S 

SELF-GISH – synonym of HOMOLOGOUS GISH, is based in the use of a labelled genomic DNA to 

hybridize on the chromosomes of the same donor species; usually used as a positive control. 

SELECTION – see NATURAL SELECTION. 

SPECIATION – evolutionary divergence of subsets of one ancestral species into two different 

species. It can be SYMPATRIC – in the absence of geographic isolation; PARAPATRIC – in the absence 

of geographical barriers to gene flow, resulting in incipient species that occupy adjacent areas; 

or ALLOPATRIC – under strict conditions of geographic isolation. 

SPECIES – separately evolving gene pools, unevenly distributed but interconnected in a 

reproductive community allowing for gene recombination. 

SPECIES COMPLEX – a group of closely related species, interdependent on each other to reproduce 

and subsist, owing to their usually incomplete REPRODUCTIVE ISOLATION and/or altered modes of 

reproduction. 

STASIPATRIC SPECIATION – chromosomal SPECIATION model, by which chromosomal changes 

promote HYBRID dysfunction or UNDERDOMINANCE of HETEROKARYOTYPIC individuals. 

SYMPATRIC SPECIATION – see SPECIATION. 

SYNAPOMORPHY – a trait shared by two or more taxa and inferred to have been present in their 

most recent common ancestor but absent from its own ancestor. 

T 

TRANSGRESSIVE SEGREGATION – generation of phenotypes in segregating hybrid populations that are 

extreme relative to either parental taxa phenotypes. 

TRANSPOSABLE ELEMENTS or TRANSPOSON – genetic entities with the ability to change their 

chromosomal location. See RETROELEMENTS. 

TRANSPOSITION – the transfer of genetic material between chromosomes or organisms in a 

manner other than recombination or traditional reproduction, usually the method by which 

mobile elements change their location in a genome. See also HORIZONTAL GENE TRANSFER. 

U 

UNDERDOMINANCE – SELECTION against the mean of a population distribution, causing disruptive 

SELECTION and DIVERGENT genotypes. 

Z 

ZOO-FISH – synonym of CROSS SPECIES GISH or HETEROLOGOUS GISH, is based in the use of a labelled 

genomic DNA or WCP of one species to hybridize on the chromosomes of another species.
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