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2 Département de Génie Physique et Instrumentations, Institut National des Sciences Appliquées et de Technologies,
Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia

Correspondence should be addressed to Novlene Zoghlami, novlene zoglami@yahoo.fr

Received 20 March 2012; Revised 24 May 2012; Accepted 30 May 2012

Academic Editor: Raj Senani

Copyright © 2012 N. Zoghlami and Z. Lachiri. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper describes a new speech enhancement approach using perceptually based noise reduction. The proposed approach is
based on the application of two perceptual filtering models to noisy speech signals: the gammatone and the gammachirp filter
banks with nonlinear resolution according to the equivalent rectangular bandwidth (ERB) scale. The perceptual filtering gives a
number of subbands that are individually spectral weighted and modified according to two different noise suppression rules. The
importance of an accurate noise estimate is related to the reduction of the musical noise artifacts in the processed speech that
appears after classic subtractive process. In this context, we use continuous noise estimation algorithms. The performance of the
proposed approach is evaluated on speech signals corrupted by real-world noises. Using objective tests based on the perceptual
quality PESQ score and the quality rating of signal distortion (SIG), noise distortion (BAK) and overall quality (OVRL), and
subjective test based on the quality rating of automatic speech recognition (ASR), we demonstrate that our speech enhancement
approach using filter banks modeling the human auditory system outperforms the conventional spectral modification algorithms
to improve quality and intelligibility of the enhanced speech signal.

1. Introduction

The high quality sound of talking speech in real environment
is very important for automatic speech processing systems
and human- machine interfaces. However, the performance
of these systems can be affected by background noise.
Thus, there is a strong need to resolve this problem and
improve the performance of these applications in high level
noise environment by applying effective speech enhancement
techniques able to suppress the undesirable noise. These
techniques are concerned with improving some perceptual
aspect, the quality and intelligibility of degraded speech.
In a broad context, many methods are developed in order
to remove the background noise while retaining speech
intelligibility based on short time spectral estimation of the
clean speech. These methods are able to reduce the noise and
improve the quality, but at the expanse of introducing speech

distortion which results in loss of intelligibility. Hence, the
main challenge in designing effective speech enhancement
algorithms is to suppress the noise without introducing
any perceptible speech distortion. The spectral modification
methods are historically one of the first algorithms proposed
for noise reduction, especially the generalized spectral sub-
traction is the most popular technique [1]. This method
is able to reduce the background noise using estimation
of the short-time spectral magnitude of the speech signal
by subtracting the noise estimation from the noisy speech.
The spectral subtraction technique offers a high flexibility
and simplicity in implementation. However, it needs to be
improved since its major drawback, the introduction in the
enhanced speech of residual noise called “musical noise”
with unnatural structure, is composed of tones at random
frequencies. The unnatural structure of the musical noise is
perceived as nonstationary noise artifacts that depend on the
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time and frequency changes of the noise, on one side and on
the way that the human auditory system perceives these arti-
facts, on the other side. The minimum-mean-square-error-
based-noise reduction proposed by Ephraim and Malah
subtraction rule [2] exploits the average spectral estimation
of the speech signal based on a prior knowledge of the noise
variance, in the goal to mask and reduce the residual noise.
In [3–8], the noise is reduced based on subtractive type
algorithms according to a multibands and nonlinear spectral
process. In [9–11], the authors exploit the human perceptual
masking proprieties to improve the quality and intelligibility
of the speech signal without introducing speech distortion.
The difficulty with these approaches is that an estimate of
the clean speech itself is necessary in order to calculate the
masking threshold.

The solution proposed in this paper works towards
achieving a high noise reduction with efficient residual
noise elimination, at the same time, to preserve speech
components. This is done by meeting several requirements to
the speech analysis/synthesis system based on the knowledge
of human perception proprieties. So it is proposed to adapt
the spectral modification algorithms to a multibands analysis
using human perceptual filter banks models according
critical band concept and nonlinear frequency resolution.
This allows to find the best tradeoff between the amount
of noise reduction, the speech distortion and the level of
musical noise in a perceptual view, and to overcome the
limitation of spectral modification algorithms for speech
enhancement in real-world listening situation where the
background noise level and characteristics are constantly
changing.

The paper is organized as follows: in Section 2, the prin-
ciple of common spectral modification algorithms reviewed
in the speech enhancement literature is described. In
Section 3, the proposed enhancement approach is presented.
Finally, an objective and subjective evaluation is performed
in Section 4.

2. Spectral Modification Principle

The spectral modification techniques operate in the fre-
quency domain. These methods are widely used for the
enhancement of speech signals, which are corrupted by
additive noise with constant or slowly varying spectral
characteristics. The basic idea is to manipulate the magnitude
of the noisy speech spectrum using fixed and uniform
spaced frequency transformation. Consider a speech signal
x(n) degraded by additive background noise d(n), the noisy
speech y(n) can be expressed as

y(n) = x(n) + d(n). (1)

The signal is divided into uniform frame using an
adequate analysis window and it is processed in the frequency
domain. The spectral analysis and synthesis are usually
performed by a discrete Fourier transform and its inverse
with overlap-add technique. The noise suppression process

is a multiplication of the short-time spectral magnitude of
the noisy speech |Y(p,w)| by a gain function G(p,w),

∣
∣
∣X̂
(

p,w
)
∣
∣
∣ = G

(

p,w
)

with 0 ≤ G
(

p,w
) ≤ 1. (2)

With p is the frame index and w is the frequency index.
|X̂(p,w)| is the magnitude spectrum of the processed speech.
Each gain function corresponds to a given noise suppression
rule that changes depending to the characteristics of the noisy
signal spectrum and the estimated noise spectrum.

3. Using Perceptual Filtering Models for
Speech Enhancement

The spectral modification techniques performed in noise
reduction using short time spectral analysis based on
fixed and uniform speech decomposition. This processing,
however, creates small isolated fluctuations in the spectrum
occurring at random frequency locations in each frame, con-
verted in the time domain, these fluctuations sound similar
to tones with frequency peaks that change randomly from
frame to frame. These artifacts described as residual noise
consists of tonal remnant noise component significantly
disagreeable to the ear. Focusing on the perceptual processing
based on how human listeners process tones and bands of
noise, it is possible to suppress the background noise and
completely attenuate the random peaks in the structure of
musical noise. The human auditory system may be sensitive
to abrupt artifacts changes and transient component in the
noisy speech signal based on time-frequency analysis with
a nonlinear frequency selectivity of the basilar membrane
Thus, the human hearing process is modeled as a series
of transformations of the acoustic signal via an array of
overlapping band-pass filters known as perceptual filters.
These filters occur along the basilar membrane and increase
the frequency selectivity of the human ear. Hence, the
speech component can be identified and the selectivity
can be amplified. The idea behind this is that embedding
the psychoacoustics models of human auditory system in
perceptual filter banks may lead to improve intelligibility
and perceptual quality of speech. Moreover, it is known
that humans are capable of detecting the desired speech
in noisy environment without any prior information of
the noise type. Taking into account the psychoacoustic
analysis and human perception properties, it is possible
to make a successful speech enhancement system when
we use a suitable perceptual model to obtain nonuniform
filter banks representing the human ear processing and
an appropriate spectral modification approach, such as
the generalized spectral subtraction technique (GSS) and
the minimum mean square Error (MMSE) for spectral
enhancement of each nonuniform filter banks bands out-
put.

The proposed enhancement scheme is presented in
Figure 1.

Step 1. Speech decomposition via perceptual filter-bank
analysis stage.
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Figure 1: Proposed speech enhancement method based on perceptual filtering model.

Step 2. Speech enhancement process: multibands noise sup-
pression process.

Step 3. Continuous noise estimation.

Step 4. Speech synthesis via perceptual filter banks synthesis
stage.

3.1. Perceptual Filtering Models. The aim in perceptual
modeling is to find mathematical model which represents
some physiological and perceptual aspects of the human
auditory system. Perceptual modeling is very useful, since
the sound wave can be analyzed according to the human
ear comportment, with a good mode. The simplest way to
model the frequency resolution of the basilar membrane
is to make analysis using filter banks. The simplest and
the most realistic model is the gammatone filter banks
[12], the impulsion response is based on psychoacoustics
measurements, providing a more accurate approximation to
the perceptual frequency response, and it is represented by a
gammatone function defined in the temporal model by the
following expression:

gt(t) = Atn−1 exp(−2πbBc) cos
(

2π fct + ϕ
)

, (3)

where A defines the magnitude normalization parameter, n
is the filter order, f c is the center frequency of filters, B is
filters bandwidths, and bB( fc) represents the filter envelop.
The gammachirp filter bank is another perceptual model
[13], it is an extension of the popular gammatone filter
with an additional frequencymodulation term to produce
an asymmetric amplitude spectrum. The complex impul-
sion response is based on psychoacoustics measurements,
providing a more accurate approximation to the perceptual
frequency response, and it is given in the temporal model as

gc(t) = Atn−1 exp(−2πbBc) cos
(

2π fct + c ln t + ϕ
)

, (4)

where time t > 0, A is the amplitude, nand b are parameters
defining the envelope of the gamma distribution, fc is the
asymptotic frequency, c is a parameter for the frequency
modulation (c = 3), ϕ is the initial phase, ln t is a natural
logarithm of time, and ERB ( fc) is the equivalent rectangular
bandwidth of the perceptual filter at fc.

The frequency resolution of human hearing is a complex
phenomenon which depends on many factors, such as
frequency, signal bandwidth, and signal level. Despite of

the fact that our ear is very accurate in single frequency
analysis, broadband signals are analyzed using quite sparse
frequency resolution. The equivalent rectangular bandwidth
(ERB) scale is an accurate way to explain the frequency
resolution of human hearing with broadband signals. The
expression used to convert a frequency f in Hz in its value
in ERB is

ERB
(

f
) = 21,41 · log

(
4,37
1000

+ 1
)

. (5)

Figure 2 shows the correspondence between frequencies
in Hz and its values in ERB and the frequency response of
the gammatone and the gammachirp filter banks with k = 27
ERB bands.

3.2. Multibands Perceptual Process Using Perceptual Filter
Bank. The proposed speech enhancement method is based
on nonuniform decomposition of the degraded input wave-
form y(n). The processing is done by dividing the incoming
noisy speech into separate bands yk,gt(n) that could be indi-
vidually manipulated using spectral modification algorithms
to achieve quality and intelligibility improvement of the
overall signal. The analysis filter banks consists of 27-4th
order gammatone filters and of 27-4th order gammachirp
filters that cover the frequency range of the signal.

The filters bandwidth changes according the equivalent
rectangular bandwidth ERB scale. The output of the kh filter
of the analysis gammatone filter banks can be expressed as

yk,gt(n) = y(n)∗ gtk(n), (6)

where gtk(n) is the impulse response of the kth, 4th-order
gammatone filter. And the output of the kh filter of the
analysis gammachirp filter banks can be expressed as

yk,gc(n) = y(n)∗ gck(n), (7)

where gck(n) is the impulse response of the kth, 4th-order
gammachirp filter.

The proposed speech enhancement method is based on
nonuniform decomposition of the degraded input waveform
y(n). The processing is done by dividing the band k
obtained by nonuniform gammatone decomposition yk,gt(n)
and obtained by nonuniform gammachirp decomposition
yk,gc(n) are divided into frames (10 ms–30 ms length) by
multiplication with a sliding window F(n). Nonuniform



4 Journal of Electrical and Computer Engineering

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

Band number (ERB)

Fr
eq

u
en

cy
 (

H
z)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

Frequency (Hz)

M
ag

n
it

u
de

 (
dB

)

−50

−40

−30

−20

−10

(b)

500 1000 1500 2000 2500 3000 3500 4000

0

20

40

Frequency (Hz)

M
ag

n
it

u
de

 (
dB

)

−60

−40

−20

(c)

Figure 2: Frequency and ERB-scale correspondence (a) and the frequency response of the gammatone filter banks (b) and the gammachirp
filter banks (c) with k = 27 ERB bands.

Noise
estimation

Generalized
spectral

subtraction
weight

Windowing

FFT

Filter banks
gammatone/chirp

output

Noise
suppression

subband
signals output

IFFT

overlp-add

+
+

| ^Dk(p,w) |2

GGSS
1 (p,w)

GGSS
2 (p,w)

| · ·· |2

GSSGk (p,w)

Yk,gt /gc(p,w)

Y1,gt /gc(p,w)

Y2,gt /gc(p,w)

Figure 3: Proposed perceptual generalized spectral subtraction technique applied in a multirate system.



Journal of Electrical and Computer Engineering 5

IFFT

Enhanced

Gain
function
MMSE

subsignals

overlp-add

Filter-bank

Continous noise

estimation

gammtone/chirp
output

Windowing

FFT
+

+

| · ·· |2

| · ·· |2 Rpriori

Rpriori

Rpost

Rpost

| ^Dk(p,w) |2

GMMSE
i (p,w)

GMMSE
k (p,w)

Yi,gt/gc(p,w)
Yi,gt/gc(p,w)
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subband signals yk,gt/gc(n, p) are transformed into the fre-
quency domain with the fast Fourier transformation (FFT)
and manipulated using the spectral gain given by the
generalized spectral subtraction rule (GSS), on one side, and
the Ephraim and Malah spectral rule (MMSE), on the other
side.

3.2.1. Perceptual Generalized Spectral Subtraction Technique.
The function gain of the generalized spectral subtraction rule
is applied in a multirate system (Figure 3). The subbands
spectrums of the noisy signal are multiplied by the general
weights GGSS

k,gt/gc(p,w) in each subband k.
The multibands weights are calculated from the sub-

bands magnitude spectrum of the noisy speech signal and
the noise estimate in each frame p and for each frequency
w. Using the generalized spectral subtraction technique, the
enhanced speech spectrum |X̂GSS

k,gt (p,w)| in each gammatone
subband signal is given by

∣
∣
∣X̂GSS

k,gt

(

p,w
)
∣
∣
∣ = GGSS

k,gt

(

p,w
) ·
∣
∣
∣Yk,gt

(

p,w
)
∣
∣
∣. (8)

And in each gammachirp subband signal, the enhanced
speech spectrum |X̂GSS

k,gc (p,w)| is given by

∣
∣
∣X̂GSS
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(
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)
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∣
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(
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∣
∣
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)
∣
∣
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where the gain functions GGSS
k,gt (p,w) and GGSS

k,gc(p,w) are
expressed in each subband k as
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where |D̂k,gt/gc(p,w)|2 and |Yk,gt/gc(p,w)|2 are respectively
the power spectrum of the noise estimate and the noisy
speech signal in each nonuniform gammatone (gt) and
gammachirp (gc) subband k. α is the over-subtraction factor
(α ≥ 1), and β (0 < β < 1) is the spectral floor.

3.2.2. Perceptual MMSE Spectral Modification. In this sec-
tion, we are interested in using the spectral gain Gmmse

k,gt/gc(p,w)
given by the spectral modification according to the Ephraim
and Malah rule (MMSE) in each frame p and each frequency
w (Figure 4) to obtain the enhanced speech spectrum
X̂mmse
k,gt/gc(p,w) in each gammatone subband signal as

∣
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) ·
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∣
∣
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And in each gammachirp subband signal, the enhanced
speech spectrum |X̂mmse

k,gc (p,w)| is given by
∣
∣
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∣, (12)
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where the gain functions Gmmse
k,gt (p,w) and Gmmse

k,gc (p,w) are
expressed in each subband k as

Gmmse
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(
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=
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·
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×
(
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)

.

(13)

The local and relative level a posterior and the prior sig-
nal to noise ratio in the current frame p and each gammatone
(gt) and gammachirp (gc) subband are defined as:
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Figure 8: SIG-BAK-OVRL scores for proposed speech enhancement with the gammtone decomposition compared to the GSS and the
MMSE at different SNR input for car noise.
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Figure 9: SIG-BAK-OVRL scores for proposed speech enhancement with the gammachirp decomposition compared to the GSS and the
MMSE at different SNR input for car noise.
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γ is a parameter defined as 0 ≤ η ≤ 1.
|Yk,gt/gc(p − 1,w)|2 is the power spectral density defined

in the frame (p − 1) and Rpost is the relative level a
posterior defined in each frame p and for each frequency
w.

The temporal enhanced speech signal x̂k,gt/gc(n) in each
temporal subband k is estimated using the overlap-add
technique and the inverse Fourier transform based on the
assumption that phase distortion is not perceived by the
human ear, the phase of the noisy speech is not processed and
the enhanced speech signal in each subband k is obtained by
using the inverse Fourier transform and the phase from the
noisy speech signal.

The final enhanced output speech signal x̂gt(n) from
the gammatone synthesis filter banks and the gammachirp
synthesis filter banks x̂gc(n) are obtained by using the
summation of the subband signals after processing

x̂gt(n) =
M
∑

k=1

x̂k,gt(n),

x̂gt(n) =
M
∑

k=1

x̂k,gt(n),

(15)

where x̂k,gt(n) and x̂k,gc(n) are given by

x̂k,gt(n) = IFFT
[∣
∣
∣X̂k,gt

(

p,w
)
∣
∣
∣e jφ(Yk,gt(p,w))

]

,

x̂k,gc(n) = IFFT
[∣
∣
∣X̂k,gc

(

p,w
)
∣
∣
∣e jφ(Yk,gc(p,w))

]

.
(16)

The noise estimate can have an important impact on the
quality and intelligibility of the enhanced signal. If the noise
estimate is too low, a residual noise will be audible; if the
noise estimate is too high, speech will be distorted resulting
in intelligibility loss. In the spectral subtraction algorithm,
the noise spectrum estimate is updated during the silent
moment of the signal. Although this approach might give
satisfactory result with stationary noise, it will not with more
realistic environments where the spectral characteristics of
the noise change constantly. Hence, there is a need to
update the noise spectrum continuously over time. Several
noise-estimation algorithms have been proposed for speech
enhancement applications [14]. In [15], the minimum
statistics method for estimating the noise spectrum (MS)
is based on tracking the minimum of the noisy speech
over a finite window. As the minimum is typically smaller
than the mean, unbiased estimates of noise spectrum were
computed by introducing a bias factor based on the statistics

Table 1: Experimental parameters used in the noise suppression
process.

Algorithms Parameters

GSS
γ = 2; α = 1

β = 2 · 10−3

MMSE η = 0.95

of the minimum estimates. In [16], a minima controlled
recursive algorithm (MCRA) is proposed; it updates the
noise estimate by tracking the noise-only regions of the noisy
speech spectrum. These regions are found by comparing
the ratio of the noisy speech to the local minimum against
a threshold. In the improved minima controlled recursive
algorithm (IMCRA) approach [17], a different method was
used to track the noise-only regions of the spectrum based on
the estimated speech-presence probability. This probability,
however, is also controlled by the minima. Recently, a new
noise estimation algorithm (MCRA2) was introduced [18],
the noise estimate was updated in each frame based on voice
activity detection. The speech presence decision made in
each frame is based on the ratio of the noise speech spectrum
to its local minimum. In our work, the noise power spectrum
is continuously estimated using these algorithms.

4. Results and Evaluation

The speech signals are obtained from TIMIT corpus. The
sentences are sampled at 16 kHz. The noise is added
to the original speech signal at different signal to noise
ratio (0 dB, 5 dB, 10 dB, and 15 dB) from the AURORA
database and includes multitalker babble and car noise.
The database is used as it contains phonetically balanced
sentences with relatively low word context predictability.
To cover the frequency range of the signal, the analysis
stage used in the multibands subtraction consists of 27-4th
order gammatone/gammachirp filter banks according to the
ERB scale. The parameters used in the noise suppression
algorithms are set to Table 1.

The performance of the proposed speech enhance-
ment method: the generalized spectral subtraction rule
implemented on ERB gammatone/gammachirp filter banks
(GSS GTFB/GSS GCFB) and the Ephraim and Malah
spectral modification rule implemented on ERB gam-
matone/gammachirp filter banks (MMSE GTFB/MMSE
GCFB) using continuous noise estimation algorithms based
on the MCRA method (mcra), the IMCRA method (imcra),
the MCRA2 method (mcra2), and the minimum statistics
method (ms), are evaluated and compared with that the
generalized spectral subtraction (GSS) and the Ephraim and
Malah (MMSE) spectral modification basics techniques.

4.1. Objective Evaluation. In order to evaluate the perfor-
mance, we measure the perceptual evaluation of speech
quality PESQ [13]. The PESQ score is able to predict
subjective quality with good correlation in a very wide range
of conditions, the original and degraded signals are mapped
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Table 2: Recognition rate for the proposed perceptual generalized spectral subtraction method based on the gammatone and the
gammachirp filter banks decomposition (GSS GT and GSS GC) compared with the spectral subtraction rule (GSS).

Babble noise

Methods/SNR 0 5 10 15

GSS 16.88% 31.25% 44.19% 64.96%

GSS GT

MCRA 30.02% 39.76% 51.56% 80.98%

MCRA2 28.12% 36.88% 47.69% 64.25%

IMCRA 30.68% 45.77% 63.21% 84.24%

MS 26.63% 33.86% 50.03% 79.58%

GSS GC

MCRA 33.80% 41.62% 56.23% 89.01%

MCRA2 29.99% 37.80% 48.89% 71.53%

IMCRA 33.89% 56.07% 68.21% 91.22%

MS 27.38% 35.96% 55.83% 83.98%

Car noise

Methods/SNR 0 5 10 15

GSS 47.88% 61.25% 65.19% 73.56%

GSS GT

MCRA 67.90% 82.83% 77.63% 88.98%

MCRA2 58.61% 77.76% 67.42% 74.09%

IMCRA 70.68% 86.40% 87.87% 90.09%

MS 57.08% 70.85% 75.29% 88.08%

GSS GC

MCRA 69.09% 87.99% 79.80% 89.97%

MCRA2 68.78% 85.60% 79.04% 80.43%

IMCRA 71.08% 88.86% 89.89% 91.95%

MS 59.18% 72.15% 78.90% 89.01%

onto an internal representation using a perceptual model to
predict the perceived speech quality of the degraded signal.
The subjective experiments used in the development of the
PESQ uses the absolute category rating opinion scale.

According to the results illustrated in Figure 5, we
note that the approach based on nonuniform filter banks
decomposition using two different models of the human
perceptual comportment is performed in speech enhance-
ment. We observe that the PESQ score is consistent with the
subjectively perceived trend of an improvement in speech
quality with the proposed speech enhancement approach
over that the spectral modification (GSS) algorithm alone.

This improvement is particularly significant in the case
of car noise at 15 dB, and we register a score of 3,26 for
the proposed GSS GT (using gammatone decomposition) in
spite of 2,73 for the GSS alone; the PESQ improvement is
also observed using the GSS GT at 0 dB (2,22) for babble
noise continuously estimated with the MCRA2, contrary
to the GSS (1, 78). On the other hand, the gammachirp
filter banks decomposition in association with the MMSE
spectral modification rules (MMSE GC MCRA) contributes
significantly in the enhancement of speech signal corrupted
by car noise (3,54 PESQ score at 15 dB). In order to
strengthen the objective evaluation, we measure the scores
relative to the standard norm P. 835 [19].

This norm attends and rates successively the enhanced
speech signal on the distortion of the speech signal alone
using five-point scale of signal distortion (SIG), the noise dis-
tortion using a five-point scale of background intrusiveness
(BAK), and the overall quality effect (OVRL). This process
is designed to integrate the effects of both the signal and the
background in making the rating of overall quality.

Figures 6 and 7 list at different signal to noise ratio the
subjective overall quality the OVRL measure that includes the
naturalness of speech (SIG) and intrusiveness of background
noise (BAK) for babble noise. Figures 8 and 9 list the SIG-
BAK and OVRL scores for the car noise. the proposed
perceptual spectral modification using different continuous
noise estimation algorithms performed significantly better
than the classic spectral subtractive algorithms.

Lower signal distortion (higher SIG score) is observed
with the proposed approach in most condition with sig-
nificant differences at 10 dB for car noise: a SIG score
of 3,09 given by the GSS, and improved by the GSS GT
to 4,27 using IMCRA noise estimation and a score of
4,62 registered by the proposed MMSE GC with the MS
noise estimation. This demonstrates the performance of our
approach based on nonuniform gammatone/gammachirp
filter banks decomposition to reduce the noticeable of the
background noise and minimize the signal distortion. We
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Table 3: Recognition rate for the proposed perceptual generalized spectral subtraction method based on the gammatone and the
gammachirp filter banks decomposition (MMSE GT and MMSE GC) compared with the spectral modification rule (MMSE).

Babble noise

Methods/SNR 0 5 10 15

MMSE 64.81% 79.41% 89.36% 90.13%

MMSE GT

MCRA 67.69% 84.79% 93.18% 94.97%

MCRA2 65.90% 83.74% 92.24% 93.93%

IMCRA 68.76% 84.41% 93.80% 94.62%

MS 66.24% 82.15% 92.07% 93.07%

MMSE GC

MCRA 57.36% 74.40% 87.66% 93.00%

MCRA2 61.29% 74.73% 87.32% 92.89%

IMCRA 67.91% 84.08% 91.83% 93.24%

MS 65.78% 75.33% 90.33% 91.10%

Car noise

Methods/SNR 0 5 10 15

MMSE 75.88% 85.25% 91.40% 92.96%

MMSE GT

MCRA 80.68% 89.56% 92.64% 95.13%

MCRA2 79.03% 86.83% 91.51% 93.84%

IMCRA 82.40% 90.51% 92.06% 94.99%

MS 79.78% 90.15% 91.88% 93.35%

MMSE GC

MCRA 74.77% 86.71% 91.95% 93.69%

MCRA2 72.64% 82.49% 90.33% 93.08%

IMCRA 80.18% 90.20% 92.29% 94.89%

MS 79.13% 89.75% 92.57% 93.80%

notice also that incorporating continuous noise estimation
in particularly the IMCRA and the MCRA continuous noise
estimation in the perceptual spectral modification approach
performed better than the generalized spectral subtraction
and the MMSE rules in the overall quality improvement.

This indicates that the proposed perceptual spectral
modification for speech enhancement is sensitive to the noise
spectrum estimate.

4.2. Subjective Evaluation. Significant gains in noise reduc-
tion are accompanied by a decrease in speech intelligibility.
Formal subjective test is the best indicator of achieved overall
quality. So the subjective evaluation used in our work is based
on an automatic recognition system (ASR) developed under
the HTK platform [20]. Thus, we used a standard continuous
density HMM recognizer with 3 Gaussian mixtures per state,
diagonal covariance matrices, and 5 emitting states per word
model.

The parameterise step is consisted of 12 MFCC coeffi-
cients.

Tables 2 and 3 show the world recognised rate in percent
(%) at different SNRs for the proposed approach using the

two auditory filtering models compared to the classic spectral
modification rules.

We observe that the proposed multibands approach gives
the best world rate recognition. It can be seen that the
amelioration is significant, especially, in the case of car noise
at different level of degradation.

5. Conclusion

In this paper, we proposed a new speech enhancement
method which consists of integrating psychoacoustics pro-
prieties of the human auditory system, especially perceptual
filters modeling. It is based on decomposing the input
signal in nonuniform subbands using an analysis/synthesis
gammatone and gammachirp filter banks that are manipu-
lated in each nonlinear block with the generalized spectral
subtraction process and the MMSE spectral modification
technique. We noticed that the use of the two perceptual
filter banks models with frequency resolution according to
the ERB scale allowed obtaining, from the perceptive point
of view and from the vocal quality, better results than those
supplied by the classic spectral modification algorithms to
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improve the quality and intelligibility of the enhanced speech
signal.

References

[1] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement
of speech corrupted by acoustic noise,” in Proceedings of
the International Conference on Acoustics, Speech, and Signal
Processing, pp. 208–211, April 1979.

[2] Y. Ephraim and D. Malah, “Speech enhancement using a min-
imum mean-square error-log-spectral amplitude estimator,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 33, no. 2, pp. 443–445, 1985.

[3] S. Kamath and P. Loizou, “A multi-band spectral subtraction
method for enhancing speech corrupted by colored noise,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’02), vol. 4, pp. 4160–
4164, May 2002.
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