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A stochastic delay predator-prey model in a polluted environment with impulsive toxicant input is proposed and studied. The
thresholds between stability in time average and extinction of each population are obtained. Some recent results are extended and
improved greatly. Several simulation figures are introduced to support the conclusions.

1. Introduction

Environmental pollution by industries, agriculture, and other
human activities is one of the most important socio-
ecological problems in the world today. Due to toxins in
the environment, lots of species have gone extinct, and
many are on the verge of extinction. Thus, controlling the
environmental pollution and the conservation of biodiversity
are the major focus areas of all the countries around the
world. This motivates scholars to study the effects of toxins
on populations and to find out a theoretical persistence-
extinction threshold.

Recently, a lot of population models in a polluted
environment have been proposed and investigated; here,
we may mention, among many others, [1–23]. Particularly,
Yang et al. [15] pointed out that in many cases toxicants
should be emitted in regular pulses, for example, the use
of pesticides and the pollution by heavy metals (see, e.g.,
[24]). Thus, they proposed the following two-species Lotka-
Volterra predator-prey system in a polluted environmentwith
impulsive toxicant input:
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where all the parameters are positive constants and Δ𝑓(𝑡) =
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(𝑡): the egestion and

depuration rates of the toxicant in the 𝑖th organism; ℎ𝐶
𝑒
(𝑡):

the toxicant loss from the environment itself by volatilization
and so on; 𝛾: the period of the impulsive effect about the
exogenous input of toxicant; 𝑏: the toxicant input amount at
every time.

Yang et al. [15] showed that in the following Lemma
holds.
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Lemma 1. For system (1), define
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Some interesting and important problems arise naturally.

(Q1) In the real world, the growth of species depends on
various environmental factors, such as temperature,
humidity and parasites and so forth. Therefore popu-
lation models should be stochastic rather than deter-
ministic (May [25]). Thus, what happens if model (1)
is subject to stochastic noises?

(Q2) In addition, time delays occur in almost every sit-
uation. Kuang [26] has pointed out that ignoring
time delays means ignoring reality. Therefore, what
happens if model (1) takes time delays into account?

(Q3) Can we improve the results given in Lemma 1?

The aim of this paper is to study the above problems. Suppose
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time delays into account, we obtain the following model:

𝑑𝑥
1
(𝑡) = 𝑥

1
(𝑡) [𝑟
10
− 𝑟
11
𝐶
10
(𝑡) − 𝑎

11
𝑥
1
(𝑡)

−𝑎
12
𝑥
2
(𝑡 − 𝜏
1
)] 𝑑𝑡 + 𝛼

1
𝑥
1
(𝑡) 𝑑𝐵

1
(𝑡) ,

𝑑𝑥
2
(𝑡) = 𝑥

2
(𝑡) [−𝑟

20
− 𝑟
21
𝐶
20
(𝑡) − 𝑎

22
𝑥
2
(𝑡)

+𝑎
21
𝑥
1
(𝑡 − 𝜏
2
)] 𝑑𝑡 + 𝛼

2
𝑥
2
(𝑡) 𝑑𝐵

2
(𝑡) ,

𝑑𝐶
10
(𝑡)

𝑑𝑡
= 𝑘
1
𝐶
𝑒
(𝑡) − (𝑔

1
+ 𝑚
1
) 𝐶
10
(𝑡) ,

𝑑𝐶
20
(𝑡)

𝑑𝑡
= 𝑘
2
𝐶
𝑒
(𝑡) − (𝑔

2
+ 𝑚
2
) 𝐶
20
(𝑡) ,

𝑑𝐶
𝑒
(𝑡)

𝑑𝑡
= −ℎ𝐶

𝑒
(𝑡) ,

𝑡 ̸= 𝑛𝛾, 𝑛 ∈ 𝑍
+
,

Δ𝑥
𝑖
(𝑡) = 0, Δ𝐶

𝑖0
(𝑡) = 0,

Δ𝐶
𝑒
(𝑡) = 𝑏, 𝑡 = 𝑛𝛾, 𝑛 ∈ 𝑍

+
, 𝑖 = 1, 2,

(3)

with initial condition

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) > 0, 𝑡 ∈ [−𝜏, 0] ; 𝜙

𝑖
(0) > 0, 𝑖 = 1, 2, (4)

where 𝜏
𝑖
≥ 0, 𝜏 = max{𝜏

1
, 𝜏
2
}, 𝜙
𝑖
(𝑡) is continuous on [−𝜏, 0].

Our main result is the following theorem.

Theorem 2. For system (3), define
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Remark 3. By comparing Lemma 1 with our Theorem 2, we
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system (3) becomes model (1); on the other hand, our results
in Theorem 2 improve that in Lemma 1. Lemma 1 shows that
the superior limit is positive, while Theorem 2 reveals that
the limit exists and gives the explicit form of the limit. The
contribution of this paper is therefore clear.
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Proof. The proof is similar to Hung [29] by defining
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𝑡→+∞

𝑡
−1

∫

𝑡

0

𝐶
𝑖0
(𝑠) 𝑑𝑠

=
𝐾
𝑖

𝛾
, 𝑖 = 1, 2.

(17)

Then, for all 𝜀 > 0, there exists 𝑇 > 0 such that

𝐾
𝑖

𝛾
− 𝜀 ≤ ⟨𝐶

𝑖0
(𝑡)⟩ ≤

𝐾
𝑖

𝛾
+ 𝜀, 𝑡 > 𝑇, 𝑖 = 1, 2. (18)
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An application of Itô’s formula to (15) yields

ln𝑦
1
(𝑡) − ln𝑦

1
(0)

= 𝜃
1
𝑡 − 𝑟
11
∫

𝑡

0

𝐶
10
(𝑠) 𝑑𝑠 − 𝑎

11
∫

𝑡

0

𝑦
1
(𝑠) 𝑑𝑠 + 𝛼

1
𝐵
1
(𝑡) ,

ln𝑦
2
(𝑡) − ln𝑦

2
(0)

= −𝜃
2
𝑡 − 𝑟
21
∫

𝑡

0

𝐶
20
(𝑠) 𝑑𝑠

+ 𝑎
21
∫

𝑡

0

𝑦
1
(𝑠 − 𝜏
2
) 𝑑𝑠 − 𝑎

22
∫

𝑡

0

𝑦
2
(𝑠) 𝑑𝑠 + 𝛼

2
𝐵
2
(𝑡)

= −𝜃
2
𝑡 − 𝑟
21
∫

𝑡

0

𝐶
20
(𝑠) 𝑑𝑠 + 𝑎

21
∫

𝑡

0

𝑦
1
(𝑠) 𝑑𝑠

− 𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠]

− 𝑎
22
∫

𝑡

0

𝑦
2
(𝑠) 𝑑𝑠 + 𝛼

2
𝐵
2
(𝑡) .

(19)

That is to say, we have shown that

𝑡
−1 ln

𝑦
1
(𝑡)

𝑦
1
(0)

= 𝜃
1
− 𝑟
11
⟨𝐶
10
(𝑡)⟩ − 𝑎

11
⟨𝑦
1
(𝑡)⟩ + 𝑡

−1
𝛼
1
𝐵
1
(𝑡) ,

(20)

𝑡
−1 ln

𝑦
2
(𝑡)

𝑦
2
(0)

+ 𝑡
−1
𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠]

= −𝜃
2
− 𝑟
21
⟨𝐶
20
(𝑡)⟩ + 𝑎

21
⟨𝑦
1
(𝑡)⟩

− 𝑎
22
⟨𝑦
2
(𝑡)⟩ + 𝑡

−1
𝛼
2
𝐵
2
(𝑡) .

(21)

When (18) is used in (20), we can see that for 𝑡 > 𝑇,

𝑡
−1 ln

𝑦
1
(𝑡)

𝑦
1
(0)

≤ 𝜃
1
−
𝑟
11
𝐾
1

𝛾
+ 𝑟
11
𝜀

− 𝑎
11
⟨𝑦
1
(𝑡)⟩ + 𝑡

−1
𝛼
1
𝐵
1
(𝑡) ,

(22)

𝑡
−1 ln

𝑦
1
(𝑡)

𝑦
1
(0)

≥ 𝜃
1
−
𝑟
11
𝐾
1

𝛾
− 𝑟
11
𝜀

− 𝑎
11
⟨𝑦
1
(𝑡)⟩ + 𝑡

−1
𝛼
1
𝐵
1
(𝑡) .

(23)

Let 𝜀 be sufficiently small such that 𝜃
1
− 𝑟
11
𝐾
1
/𝛾 − 𝑟

11
𝜀 > 0.

Making use of (I) and (II) in Lemma 6 to (22) and (23),
respectively, we have

⟨𝑦
1
(𝑡)⟩
∗

≤
𝜃
1
− 𝑟
11
𝐾
1
/𝛾 + 𝑟

11
𝜀

𝑎
11

,

⟨𝑦
1
(𝑡)⟩
∗
≥

𝜃
1
− 𝑟
11
𝐾
1
/𝛾 − 𝑟

11
𝜀

𝑎
11

.

(24)

It then follows from the arbitrariness of 𝜀 that

lim
𝑡→+∞

⟨𝑦
1
(𝑡)⟩ =

𝜃
1
− 𝑟
11
𝐾
1
/𝛾

𝑎
11

. (25)

Substituting (17) and (25) into (20) and noting that lim
𝑡→+∞

𝑡
−1
𝐵
1
(𝑡) = 0, one can derive that

lim
𝑡→+∞

𝑡
−1 ln𝑦

1
(𝑡) = 0, a.s. (26)

Employing (20) and (21) in the expression 𝑎
21
ln(𝑦
1
(𝑡)/

𝑦
1
(0)) + 𝑎

11
ln(𝑦
2
(𝑡)/𝑦
2
(0)) yields

𝑎
11
𝑡
−1 ln

𝑦
2
(𝑡)

𝑦
2
(0)

+ 𝑎
21
𝑡
−1 ln

𝑦
1
(𝑡)

𝑦
1
(0)

= Δ̃
2
− 𝑟
11
𝑎
21
⟨𝐶
10
(𝑡)⟩ − 𝑟

21
𝑎
11
⟨𝐶
20
(𝑡)⟩

− 𝑎
11
𝑎
22
⟨𝑦
2
(𝑡)⟩

− 𝑡
−1
𝑎
11
𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠]

+ 𝑡
−1

[𝑎
21
𝛼
1
𝐵
1
(𝑡) + 𝑎

11
𝛼
2
𝐵
2
(𝑡)] .

(27)

In view of (25), we get

lim
𝑡→+∞

𝑡
−1

∫

𝑡

𝑡−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠

= lim
𝑡→+∞

𝑡
−1

(∫

𝑡

0

𝑦
1
(𝑠) 𝑑𝑠 − ∫

𝑡−𝜏
2

0

𝑦
1
(𝑠) 𝑑𝑠) = 0, a.s.

(28)

By (17), (26), (27), and (28), for all 𝜀 > 0, there exists 𝑇 > 0

such that, for 𝑡 ≥ 𝑇,

𝑎
11
𝑡
−1 ln

𝑦
2
(𝑡)

𝑦
2
(0)

≤ Δ̃
2
− Δ
2
+ 𝜀 − 𝑎

11
𝑎
22
⟨𝑦
2
(𝑡)⟩

+ 𝑡
−1

[𝑎
21
𝜎
1
𝐵
1
(𝑡) + 𝑎

11
𝜎
2
𝐵
2
(𝑡)] ,

(29)

𝑎
11
𝑡
−1 ln

𝑦
2
(𝑡)

𝑦
2
(0)

≥ Δ̃
2
− Δ
2
− 𝜀 − 𝑎

11
𝑎
22
⟨𝑦
2
(𝑡)⟩

+ 𝑡
−1

[𝑎
21
𝜎
1
𝐵
1
(𝑡) + 𝑎

11
𝜎
2
𝐵
2
(𝑡)] .

(30)

If Δ̃
2
< Δ
2
, then we can choose 𝜀 sufficiently small such that

Δ̃
2
−Δ
2
+ 𝜀 < 0. Then, by (29) and (I) in Lemma 6, we obtain

lim
𝑡→+∞

𝑦
2
(𝑡) = 0 a.s. If Δ̃

2
> Δ
2
, then we can choose 𝜀

sufficiently small such that Δ̃
2
−Δ
2
− 𝜀 > 0. An application of

(I) and (II) in Lemma 6 to (29) and (30), respectively, makes
one observe that

Δ̃
2
− Δ
2
− 𝜀

𝑎
11
𝑎
22

≤ ⟨𝑦
2
(𝑡)⟩
∗
≤ ⟨𝑦
2
(𝑡)⟩
∗

≤
Δ̃
2
− Δ
2
+ 𝜀

𝑎
11
𝑎
22

, a.s.

(31)

Therefore, using the arbitrariness of 𝜀 results in

lim
𝑡→+∞

⟨𝑦
2
(𝑡)⟩ =

Δ̃
2
− Δ
2

𝑎
11
𝑎
22

a.s. (32)

This completes the proof.

We are now in the position to prove our main results.
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Proof of Theorem 2. Applying Itô’s formula to (3) leads to

ln𝑥
1
(𝑡) − ln𝑥

1
(0)

= 𝜃
1
𝑡 − 𝑟
11
∫

𝑡

0

𝐶
10
(𝑠) 𝑑𝑠 − 𝑎

11
∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠

− 𝑎
12
∫

𝑡

0

𝑥
2
(𝑠 − 𝜏
1
) 𝑑𝑠 + 𝛼

1
𝐵
1
(𝑡)

= 𝜃
1
𝑡 − 𝑟
11
∫

𝑡

0

𝐶
10
(𝑠) 𝑑𝑠 − 𝑎

12
∫

𝑡

0

𝑥
2
(𝑠) 𝑑𝑠

+ 𝑎
12
[∫

𝑡

𝑡−𝜏
1

𝑥
2
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
1

𝑥
2
(𝑠) 𝑑𝑠]

− 𝑎
11
∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 + 𝛼

1
𝐵
1
(𝑡) .

(33)

ln𝑥
2
(𝑡) − ln𝑥

2
(0)

= −𝜃
2
𝑡 − 𝑟
21
∫

𝑡

0

𝐶
20
(𝑠) 𝑑𝑠 + 𝑎

21
∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠

− 𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑥
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑥
1
(𝑠) 𝑑𝑠]

− 𝑎
22
∫

𝑡

0

𝑥
2
(𝑠) 𝑑𝑠 + 𝛼

2
𝐵
2
(𝑡) .

(34)

(i) It follows from (17) and (33) that

𝑡
−1 ln𝑥

1
(𝑡) − 𝑡

−1 ln𝑥
1
(0)

≤ 𝜃
1
− 𝑟
11
⟨𝐶
10
(𝑡)⟩ − 𝑎

11
⟨𝑥
1
(𝑡)⟩ +

𝛼
1
𝐵
1
(𝑡)

𝑡

≤ 𝜃
1
−
𝑟
11
𝐾
1

𝜆
+ 𝜀 − 𝑎

11
⟨𝑥
1
(𝑡)⟩ +

𝛼
1
𝐵
1
(𝑡)

𝑡

(35)

for sufficiently large 𝑡. Since 𝜃
1
− 𝑟
11
𝐾
1
/𝜆 < 0, then we can

choose 𝜀 sufficiently small such that 𝜃
1
− 𝑟
11
𝐾
1
/𝜆 + 𝜀 < 0.

Then, by (I) in Lemma 6,

lim
𝑡→+∞

𝑥
1
(𝑡) = 0, a.s. (36)

When (36) is used in (34), one can see that

𝑡
−1 ln𝑥

2
(𝑡) − ln𝑥

2
(0) ≤ −𝜃

2
+ 𝜀 − 𝑎

22
⟨𝑥
2
(𝑡)⟩ +

𝛼
2
𝐵
2
(𝑡)

𝑡

(37)

for sufficiently large 𝑡, where 𝜀 > 0 obeys −𝜃
2
+ 𝜀 < 0. In view

of Lemma 6 again, lim
𝑡→+∞

𝑥
2
(𝑡) = 0, a.s.

(ii) By the stochastic comparison theorem [40], one can
observe that

𝑥
1
(𝑡) ≤ 𝑦

1
(𝑡) , 𝑥

2
(𝑡) ≤ 𝑦

2
(𝑡) . (38)

Note that 𝜃
1
> 𝑟
11
𝐾
1
/𝛾 and Δ̃

2
< Δ
2
; it then follows from

Lemma 7 that lim
𝑡→+∞

𝑦
2
(𝑡) = 0, a.s. Making use of (38)

gives lim
𝑡→+∞

𝑥
2
(𝑡) = 0, a.s. Thus, for all 𝜀 > 0, there exists

𝑇 > 0 such that, for 𝑡 ≥ 𝑇,
𝜀

2
≤ 𝑎
12
𝑥
2
(𝑡) ≤

𝜀

2
. (39)

Substituting the above inequalities into (33) and then using
(18), we obtain

𝑡
−1 ln𝑥

1
(𝑡) ≤ 𝑡

−1 ln𝑥
1
(0) + 𝜃

1
− 𝑟
11
⟨𝐶
10
(𝑡)⟩

− 𝑎
11
⟨𝑥
1
(𝑡)⟩ +

𝜀

2
+
𝛼
1
𝐵
1
(𝑡)

𝑡

≤ 𝜃
1
−
𝑟
11
𝐾
1

𝛾
+ 2𝜀 − 𝑎

11
⟨𝑥
1
(𝑡)⟩ +

𝛼
1
𝐵
1
(𝑡)

𝑡
,

(40)

𝑡
−1 ln𝑥

1
(𝑡) ≥ 𝑡

−1 ln𝑥
1
(0) + 𝜃

1
− 𝑟
11
⟨𝐶
10
(𝑡)⟩

− 𝑎
11
⟨𝑥
1
(𝑡)⟩ −

𝜀

2
+
𝛼
1
𝐵
1
(𝑡)

𝑡

≥ 𝜃
1
−
𝑟
11
𝐾
1

𝛾
− 2𝜀 − 𝑎

11
⟨𝑥
1
(𝑡)⟩ +

𝛼
1
𝐵
1
(𝑡)

𝑡
.

(41)

Let 𝜀 be sufficiently small such that 𝜃
1
− 𝑟
11
𝐾
1
/𝛾 − 𝜀 > 0,

and then, applying (I) and (II) in Lemma 6 to (40) and (41),
respectively, one can see that

𝜃
1
− 𝑟
11
𝐾
1
/𝛾 − 2𝜀

𝑎
11

≤ ⟨𝑥
1
(𝑡)⟩
∗
≤ ⟨𝑥
1
(𝑡)⟩
∗

≤
𝜃
1
− 𝑟
11
𝐾
1
/𝛾 + 2𝜀

𝑎
11

a.s.
(42)

An application of the arbitrariness of 𝜀 gives

lim
𝑡→+∞

⟨𝑥
1
(𝑡)⟩ =

𝜃
1
− 𝑟
11
𝐾
1
/𝛾

𝑎
11

, a.s. (43)

(iii) Clearly, Δ̃
2
> Δ
2
implies 𝜃

1
> 𝑟
11
𝐾
1
/𝛾, and then, by

Lemma 7,

lim
𝑡→+∞

⟨𝑦
2
(𝑡)⟩ =

Δ̃
2
− Δ
2

𝑎
11
𝑎
22

. (44)

Thus, similar to the proof of (28), we get

lim
𝑡→+∞

𝑡
−1

∫

𝑡

𝑡−𝜏
1

𝑦
2
(𝑠) 𝑑𝑠 = 0 a.s. (45)

Therefore, by (26), (28), and (38), we can observe that

lim sup
𝑡→+∞

𝑡
−1 ln𝑥

1
(𝑡) ≤ lim
𝑡→+∞

𝑡
−1 ln𝑦

1
(𝑡) = 0, (46)

lim
𝑡→+∞

𝑡
−1

∫

𝑡

𝑡−𝜏
2

𝑥
1
(𝑠) 𝑑𝑠 = 0,

lim
𝑡→+∞

𝑡
−1

∫

𝑡

𝑡−𝜏
1

𝑥
2
(𝑠) 𝑑𝑠 = 0, a.s.

(47)
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Employing (33) and (34) in the expression 𝑎
21
ln(𝑥
1
(𝑡)/

𝑥
1
(0)) + 𝑎

11
ln(𝑥
2
(𝑡)/𝑥
2
(0)) yields

𝑡
−1
𝑎
21
ln 𝑥
1
(𝑡)

𝑥
1
(0)

+ 𝑡
−1
𝑎
11
ln 𝑥
2
(𝑡)

𝑥
2
(0)

= 𝑎
12
𝑎
21
𝑡
−1

[∫

𝑡

𝑡−𝜏
1

𝑥
2
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
1

𝑥
2
(𝑠) 𝑑𝑠]

− 𝑎
11
𝑎
21
𝑡
−1

[∫

𝑡

𝑡−𝜏
2

𝑥
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑥
1
(𝑠) 𝑑𝑠]

+ Δ̃
2
− 𝑎
21
𝑟
11
⟨𝐶
10
(𝑡)⟩ − 𝑎

11
𝑟
21
⟨𝐶
20
(𝑡)⟩

− Δ ⟨𝑥
2
(𝑡)⟩ + 𝑡

−1
𝑎
21
𝛼
1
𝐵
1
(𝑡) + 𝑡

−1
𝑎
11
𝛼
2
𝐵
2
(𝑡) .

(48)

When (18), (46) and (47), are used in (48), one can obtain

𝑡
−1
𝑎
11
ln 𝑥
2
(𝑡)

𝑥
2
(0)

≥ Δ̃
2
− Δ
2
− 𝜀 − Δ ⟨𝑥

2
(𝑡)⟩

+ 𝑡
−1
𝑎
21
𝛼
1
𝐵
1
(𝑡) + 𝑡

−1
𝑎
11
𝛼
2
𝐵
2
(𝑡)

(49)

for sufficiently large 𝑡, where 𝜀 > 0 obeys Δ̃
2
− Δ
2
− 𝜀 > 0. It

then follows from (II) in Lemma 6 that

⟨𝑥
2
(𝑡)⟩
∗
≥

Δ̃
2
− Δ
2
− 𝜀

Δ
. (50)

By virtue of the arbitrariness of 𝜀, we can see that

⟨𝑥
2
(𝑡)⟩
∗
≥

Δ̃
2
− Δ
2

Δ
. (51)

Consequently, for every 0 < 𝜀 < 𝑎
12
(Δ̃
2
−Δ
2
)/Δ, there is𝑇 > 0

such that

𝑎
12
⟨𝑥
2
(𝑡)⟩ ≥ 𝑎

12
⟨𝑥
2
⟩
∗
− 𝜀 ≥

𝑎
12
(Δ̃
2
− Δ
2
)

Δ
− 𝜀, 𝑡 > 𝑇.

(52)

Substituting the above inequality into (33) and then using (18)
and (47), one can see that

𝑡
−1 ln 𝑥

1
(𝑡)

𝑥
1
(0)

≤ 𝜃
1
−
𝑎
12
(Δ̃
2
− Δ
2
)

Δ
+ 3𝜀

− 𝑎
11
𝑡
−1

∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 + 𝑡

−1
𝛼
1
𝐵
1
(𝑡)

=
𝑎
11
(Δ̃
1
− Δ
1
)

Δ
+ 3𝜀 − 𝑎

11
𝑡
−1

∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠

+ 𝑡
−1
𝛼
1
𝐵
1
(𝑡)

(53)

for sufficiently large 𝑡. Since Δ̃
1
− Δ
1

> 0, and then, by
Lemma 6 and the arbitrariness of 𝜀, one can observe that

⟨𝑥
1
(𝑡)⟩
∗

≤
Δ̃
1
− Δ
1

Δ
. (54)

When this inequality, (18) and (47), are used in (34), we can
see that

𝑡
−1 ln 𝑥

2
(𝑡)

𝑥
2
(0)

≤ −𝜃
2
+ 𝑎
21

Δ̃
1
− Δ
1

Δ
+ 3𝜀

− 𝑎
22
𝑡
−1

∫

𝑡

0

𝑥
2
(𝑠) 𝑑𝑠 + 𝑡

−1
𝛼
2
𝐵
2
(𝑡)

=
𝑎
22
(Δ̃
2
− Δ
2
)

Δ
+ 3𝜀 − 𝑎

22
𝑡
−1

∫

𝑡

0

𝑥
2
(𝑠) 𝑑𝑠

+ 𝑡
−1
𝛼
2
𝐵
2
(𝑡)

(55)

for sufficiently large 𝑡.Then, it follows from Lemma 6 and the
arbitrariness of 𝜀 that

⟨𝑥
2
(𝑡)⟩
∗

≤
Δ̃
2
− Δ
2

Δ
. (56)

Substituting the above inequality and (18) into (33), we get

𝑡
−1 ln 𝑥

1
(𝑡)

𝑥
1
(0)

≥ 𝜃
1
− 𝑎
12

Δ̃
2
− Δ
2

Δ
− 3𝜀

− 𝑎
11
𝑡
−1

∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 + 𝑡

−1
𝛼
1
𝐵
1
(𝑡)

=
𝑎
11
(Δ̃
1
− Δ
1
)

Δ
− 3𝜀 − 𝑎

11
𝑡
−1

∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠

+ 𝑡
−1
𝛼
1
𝐵
1
(𝑡)

(57)

for sufficiently large 𝑡. By (II) in Lemma 6 and the arbitrari-
ness of 𝜀 again, we obtain

⟨𝑥
1
(𝑡)⟩
∗
≥

Δ̃
1
− Δ
1

Δ
. (58)

Then, the required assertion follows from (51), (54), (56), and
(58).

3. Numerical Simulations

Let us use the famous Milstein method (see, e.g., [41]) to
illustrate the analytical results.

To begin with, we choose 𝑟
10

= 0.85, 𝑟
20

= 0.05, 𝑟
11

=

𝑟
21

= 1, 𝑎
11

= 0.4, 𝑎
12

= 0.4, 𝑎
21

= 0.3, 𝑎
22

= 0.3, 𝜏
1
= 3, 𝜏
2
=

8, 𝛼2
2
= 0.1, 𝑘

𝑖
= 𝑔
𝑖
= 𝑚
𝑖
= 0.1, 𝑖 = 1, 2, ℎ = 0.5, 𝑏 = 0.6, and

𝛾 = 12. Then,

𝐾
𝑖
=

𝑘
𝑖
𝑏

ℎ (𝑔
𝑖
+ 𝑚
𝑖
)
= 0.6,

Δ
2
= 𝑟
10
𝑎
21
− 𝑟
20
𝑎
11

= 0.235 > Δ
2

=
𝑎
21
𝑟
11
𝐾
1

𝛾
+
𝑎
11
𝑟
21
𝐾
2

𝛾
= 0.035.

(59)
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Figure 1: Solutions of system (3) for 𝑟
10

= 0.85, 𝑟
20

= 0.05, 𝑟
11

= 𝑟
21

= 1, 𝑎
11

= 0.4, 𝑎
12

= 0.4, 𝑎
21

= 0.3, 𝑎
22

= 0.3, 𝜏
1
= 3, 𝜏

2
= 8, 𝛼2

2
= 0.1,

𝑘
𝑖
= 𝑔
𝑖
= 𝑚
𝑖
= 0.1, 𝑖 = 1, 2, ℎ = 0.5, 𝑏 = 0.6, 𝛾 = 12, 𝑥

1
(0) = 0.9, 𝑥

2
(0) = 0.5, 𝐶

0
(0) = 𝐶

𝑒
(0) = 0.1, and step size Δ𝑡 = 0.001. (a) is with

𝛼
2

1
/2 = 0.82; (b) is with 𝛼

2

1
/2 = 0.65; (c) is with 𝛼

2

1
/2 = 0.2.

By (c) in Lemma 1, the solution of model (1) obeys

lim sup
𝑡→+∞

𝑡
−1

∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 > 0, lim sup

𝑡→+∞

𝑡
−1

∫

𝑡

0

𝑥
2
(𝑠) 𝑑𝑠 > 0.

(60)

However, when the white noises are taken into account, the
properties of the system may be changed greatly. In Figure 1,
we let the coefficients be same with the above. The only
difference between conditions of Figures 1(a), 1(b), and 1(c)

is that the value of 𝛼2
1
is different. In Figure 1(a), we choose

𝛼
2

1
/2 = 0.82. Therefore,

𝜃
1
= 𝑟
10
−
𝛼
2

1

2
= 0.03 <

𝑟
11
𝐾
1

𝛾
= 0.05. (61)

Then, by (i) in Theorem 2, both 𝑥
1
and 𝑥

2
are extinctive.

Figure 1(a) confirms these. In Figure 1(b), we choose 𝛼2
1
/2 =

0.65. That is to say 𝜃
1

= 0.2 > 𝑟
11
𝐾
1
/𝛾 = 0.05

and Δ̃
2
= 0.02 < Δ

2
= 0.035. It then follows from (ii) in
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Figure 2: Solutions of system (3) for 𝑟
10

= 0.85, 𝑟
20

= 0.05, 𝑟
11

=

𝑟
21

= 1, 𝑎
11

= 0.4, 𝑎
12

= 0.4, 𝑎
21

= 0.3, 𝑎
22

= 0.3, 𝜏
1
= 3, 𝜏

2
= 8,

𝛼
2

1
= 0.4, 𝛼2

2
= 0.1, 𝑘

𝑖
= 𝑔
𝑖
= 𝑚
𝑖
= 0.1, 𝑖 = 1, 2, ℎ = 0.5, 𝑏 = 0.6,

𝛾 = 0.8, 𝑥
1
(0) = 0.9, 𝑥

2
(0) = 0.5, 𝐶

0
(0) = 𝐶

𝑒
(0) = 0.1, and step size

Δ𝑡 = 0.001.

Theorem 2 that 𝑥
2
is extinctive and 𝑥

1
is stable in time

average:

lim
𝑡→+∞

⟨𝑥
1
(𝑡)⟩ =

𝜃
1
− 𝑟
11
𝐾
1
/𝛾

𝑎
11

= 0.375. (62)

See Figure 1(b). In Figure 1(c), we choose 𝛼2
1
/2 = 0.2. Then,

Δ̃
2
= 0.155 > Δ

2
= 0.035. In view of (iii) in Theorem 2, we

can obtain that both 𝑥
1
and 𝑥

2
are stable in time average:

lim
𝑡→+∞

⟨𝑥
1
(𝑡)⟩ =

Δ̃
1
− Δ
1

Δ
=

0.24

0.24
= 1,

lim
𝑡→+∞

⟨𝑥
2
(𝑡)⟩ =

Δ̃
2
− Δ
2

Δ
=

0.12

0.24
= 0.5.

(63)

Figure 1(c) confirms these.
In Figure 2, we choose 𝑟

10
= 0.85, 𝑟

20
= 0.05, 𝑟

11
=

𝑟
21

= 1, 𝑎
11

= 0.4, 𝑎
12

= 0.4, 𝑎
21

= 0.3, 𝑎
22

= 0.3, 𝜏
1
= 3,

𝜏
2
= 8, 𝛼2

1
= 0.4, 𝛼2

2
= 0.1, 𝑘

𝑖
= 𝑔
𝑖
= 𝑚
𝑖
= 0.1, 𝑖 = 1, 2,

ℎ = 0.5, and 𝑏 = 0.6. The only difference between conditions
of Figures 1(c) and 2 is that the value of 𝛾 is different. In
Figure 2, we choose 𝛾 = 0.8. Then, 𝜃

1
= 0.65 < 𝑟

11
𝐾
1
/𝛾 =

0.75. It follows from (i) in Theorem 2 that both 𝑥
1
and 𝑥

2
are

extinctive. Figure 2 confirms these. By comparing Figure 1(c)
with Figure 2, one can see that the impulsive period 𝛾 plays a
key role in determining the stability in time average and the
extinction of the species.

4. Conclusions and Future Directions

This paper is concerned with stochastic delay predator-prey
model in a polluted environment with impulsive toxicant

input. For each species, the threshold between stability in
time average and extinction is established. Some recent
results are improved and extended. Our Theorem 2 reveals
some interesting and important results.

(A) Firstly, time delay is harmless for stability in time
average and extinction of the stochastic system (3).

(B) Thewhite noise𝛼
1
𝑑𝐵
1
(𝑡) and𝛼

2
𝑑𝐵
2
(𝑡) can change the

properties of the system greatly.

(C) The impulsive period 𝛾 plays an important role in
determining the stability in time average and the
extinction of the species.

Some interesting questions deserve further investiga-
tions. One may consider some more realistic but more
complex systems, for example, stochastic delay model with
Markov switching (see, e.g., [30, 32, 39]). It is also interesting
to investigate what happens if 𝑎

𝑖𝑗
is stochastic.
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