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A new formation framework of large-scale intelligent autonomous vehicles is developed, which
can realize complex formations while reducing data exchange. Using the proposed hierarchy
formation method and the automatic dividing algorithm, vehicles are automatically divided into
leaders and followers by exchanging information via wireless network at initial time. Then, leaders
form formation geometric shape by global formation information and followers track their own
virtual leaders to form line formation by local information. The formation control laws of leaders
and followers are designed based on consensus algorithms.Moreover, collision-avoiding problems
are considered and solved using artificial potential functions. Finally, a simulation example that
consists of 25 vehicles shows the effectiveness of theory.

1. Introduction

Distributed formation control of intelligent vehicles, including unmanned aerial vehicles,
unmanned ground vehicles, and unmanned underwater submarines, has attracted a great
attention, due to its broad applications, such as cooperative searching, surveillance, and
combating using multiple unmanned air or ground vehicles. Roughly speaking, formation
control strategy falls into six categories, namely, the behavior strategy [1–3], the potentials
strategy [4–6], the virtual structure strategy [7–10], the distributed optimize strategy [11–14],
and the consensus-based strategy [15–20].

The performances of the above strategies are almost excellent and effective when
vehicles’ number is small. However, when the number is large and formation is complex,
formation problems become complicated. In [21], a formation control framework is
developed through dividing information into two independent parts. It can greatly reduce
data exchange and realize various kinds of static formations. But, framework is developed



2 Mathematical Problems in Engineering

based on a first-order model and the information dividing criterion is not given. Another
approach in controlling a large group of vehicles is flocking control strategies [22–26]. The
essence difference between formation control and flocking is that flocking is concentrated
on achieving three heuristic rules introduced by Reynolds [22]. The rules are cohesion,
separation, and alignment in which formation requirements are not considered. In [23], a
distributed flocking controller is proposed which only utilizes the neighbor information in
both free and obstacle space. However, the flocking shape problems are studied in [24], a new
piecewise smooth neighbor-based local controller is designed to regulate the flocking shape,
three kinds of flocking shapes are obtained, such as, in a single line, vee shape or corner
shape. Furthermore, flocking with formation within a constrained environment is studied in
[25], a potential field-based method is proposed to achieve the specific formation, but each
agent must know the relative positions of information. Also, the flocking shape problems are
studied in the consensus framework [26] and in the Lie group setting [27].

Compared with the centralized formation, the communication and control structure of
distributed formation ismore flexible and is excluded from the restrictions of individual num-
ber. Consensus-based distributed formation control only needs local information acquired by
wireless network and has received significant attention in the control community [28, 29].
Usually, intelligent vehicle acquires information through wireless network conveniently.
However, communication time delays induced by network are inevitable. It is very important
to study stability problems of time delay system. By using a small gain stability theorem and
structured singular value in the frequency domain, a criterion to guarantee convergence is
derived [30]. A leader-following consensus problem of autonomous agents with coupling
delays is studied and system stability conditions are obtained by using Lyapunov functions
[31]. Considering a finite set of bounded internal point and distributed delays, output-
feedback stabilization is considered by linear dynamic controllers and an alternative
stabilization technique on time delays in the controller is proposed in [32]. Amultiestimation-
based adaptive controller is proposed in [33] to improve the transparency property of the
teleoperation scheme. The closed-loop system’s stability is analyzed and stability capabilities
of the overall scheme are carried out. With internal constant point delays, [34] researched
the global asymptotic stability properties of switched systems under not very stringent
conditions on the matrix functions of parameters. Several important and valued asymptotic
stability conditions are obtained in this paper. In [35], by using algebraic graph theory, a
method for decentralized stabilization of vehicle formations is proposed and a necessary and
sufficient condition for an appropriate decentralized linear stabilizing feedback is obtained.
In [36], the problems of packet dropouts, transmission delays, and quantization effects
existing in the decentralized networked control systems are studied deeply. An efficient
decentralized state feedback controller is designed and system stability conditions are
acquired by using linear matrix inequalities.

When the number is large and formation is complex, it is impractical for each vehicle
to obtain all the other vehicles’ state information quickly. Moreover, there are many
uncertainties and disturbances in environment, which may lead to information transmission
failure. In fact, it is worth paying more attention to some key members in a formation.
One simple example is the line formation with loose space constraint between vehicles. It
is necessary and very important to design appropriate formation frameworks.

In this paper, we propose a new hierarchy decentralized formation framework.
Our purpose is to realize large-scale vehicles’ complex formations. In order to make the
framework more close to reality, the second-order model and time delay are considered in
formation control algorithm. The study is motivated by the work [19], the consensus-based
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formation control strategy [13–15], and the flocking shape problems [22–26]. The basic idea
is given as follows.

(1) Formation is described using vertexes and edges, and the number of leaders and
followers is ascertained, respectively.

(2) Automatically, based on initial position states and the formation information, vehi-
cles are divided into two parts through wireless ad hoc network.

(3) Leaders receive global information from control center by tel-network and form
desired geometric shape based on consensus control strategy, meanwhile, broadcast
their states through local wireless ad hoc network.

(4) Followers receive leaders’ information and track their own virtual leaders using
tracking consensus control strategy separately.

(5) All vehicles adjust their states in a distributed manner.

The rest of the paper is organized as follows: in Section 2, some definitions are pre-
sented; in Section 3, formation control framework and control laws are discussed in detail;
in Section 4, system stability conditions are obtained; in Section 5, numerical simulations are
given to illustrate the effectiveness of the theoretical results; finally, concluding remarks are
made in Section 6.

2. Problem Description and Preliminaries

Suppose the system under consideration consists of N autonomous vehicles, labeled 1 −N.
All these vehicles share a common state space and interact with each other via wireless
network. Moreover, each vehicle updates its current states based upon the information
received from its neighbors. The dynamics of the vehicles are all the same and described
by double integrators, the ith vehicle has the dynamics as follows:

ẋi(t) = vi(t), v̇i(t) = ui(t), i = 1, 2, . . . ,N, (2.1)

where xi(t) ∈ R
n, vi(t) ∈ R

n, ui(t) ∈ R
n denote the position state, velocity state, and control

vector separately.
We use graphs to describe complex formations. Thus, a formation can be constructed

by a sequence of vertexes and lines. Vehicles in the vertex positions are called leaders and
determine the basic frame of a formation. Vehicles in the line positions are called followers
and associate with two leaders. Some examples of formations are given in Figure 1.

Definition 2.1. In n dimension Euclidean space, each agent’s position vector is hi ∈ R
n, i =

1, 2, . . . ,N, and relative position vector is hij = hi−hj , for all i, j = 1, 2, . . . ,N; thus, a formation
vector h ∈ R

n×N×N is defined as h = [ h1
11,h

1
12,...,h

1
1N,...,hn

N1,...,h
n
NN ]T , where hk

ij , k = 1, 2, . . . , n is the
projection of hij in each coordinate axis.

Definition 2.2. When t → ∞, if for all i, j ∈ N, xi(t) − xj(t) = hij , vi(t) = vj(t) holds, then
formation is formed and maintained.

Definition 2.3. Potential function Vij is a differentiable, nonnegative function of the distance
hij between vehicles i and j if j ∈ Ni such that Vij → ∞ when |hij | → 0 and Vij attains its
unique minimum when vehicles i and j are located at a desired distance.
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Leaders
Followers

Figure 1: Leaders and followers in a formation.

Definition 2.4. The Kronecker of two matrixes P = [pij], Q = [qij] is defined as P⊗Q = [pijQ].

It is natural to model the interaction among vehicles using directed graph. Let G =
(V, E,A) be a graph of order N, with a set of nodes V = {V1, V2, . . . , Vn}, a set of edges ε ⊆
V ×V , and an adjacency matrixA = [aij], for all i, j, n ∈ I = {1, 2, . . . , n}. If there is information
exchange between node Vi and Vj , aij = 1, else aij = 0. In a directed graph, if (Vi, Vj) ∈ ε,
node Vj is Vj ’s out-degree neighbor, if (Vj, Vi) ∈ ε, node Vj is Vj ’s in-degree neighbor. A set
of node Vi’s out-degree neighbors is Ni(out). A set of node Vi’s in-degree neighbors is Ni(in);
similarly, a set of node Vi’s neighbors isNi = Ni(out)

⋃
Ni(in). The degree matrix of graph G is

a diagonal matrix D = [dij], dij = 0, for all i /= j and L = D −A is a Laplacian matrix of graph
G. Furthermore, we can obtain the normalized Laplacian matrix L = D−1L.

3. Main Results

3.1. Overview of Formation Framework

All vehicles equip the same wireless communication devices. That is they can interact with
each other through local ad hoc wireless network and interact with control center through tel-
network on demanding. It is necessary to design appropriate ad hoc network architecture and
communication protocol to improve system’s performances. We adopt a cluster architecture
ad hoc network and TDMA-type MAC protocol, where each vehicle is assigned to a specific
time slot. We propose a distributed formation framework; see Figure 2.

Formation information is divided into global information and local information.
Global information including number of leaders and followers, formation shape, velocity, and
acceleration is transmitted by tel-network. Corresponding to global information, vehicle’s
position and velocity are defined as local information transmitted via a local ad hoc network.

Once a formation is given, global formation information is ascertained by a control
center. Follow on, the control center sends global formation information to a leader by a
tel-network and obtained by the other leaders via local Ad hoc network. It is worth to
note that global information can be set, changed, and injected to leaders at any time by the
control center. However, there is one exception that initial information must be known by
each vehicle. Then, using the dividing method, vehicles are automatically divided into two
groups according to initial position information. Based on consensus algorithm and artificial
potentials’ functions, leaders form a basic formation using global formation information set
by the control center, and followers track their leaders to form the entire formation.
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Figure 2: A distributed formation framework.

Assumption 3.1. Suppose that communication delays in the system are uniform and acquiring
own state information has no delay, then, communication delay can be denoted by τ(t) and
τ(t) = τ, τ > 0.

3.2. Automatic Dividing Algorithm

When the number of vehicles is large and the formation is complex, it is very convenience
to design an efficient dividing algorithm. Under the assumption that network is in the
connectivity state at initial time, vehicles can elect leaders and followers automatically using
the following algorithm.

Step 1. At the first time period, using flooding protocol, each vehicle acquires all the other’s
initial position information and the global formation information.

Step 2. Each vehicle calculates the center of initial positions x = (1/N)
∑N

i=1 xi separately.

Step 3. Each vehicle calculates its distance to the center di = ‖xi − x‖ and composites the
results in descending order (small node ID has higher prior) separately. The first vehicle in
the descending sequence is defined as a leader, written as L1.

Step 4. Each vehicle calculates the angle θiL1 made by the center, local agent, and L1:

θiL1 = arc cos
‖xi − x‖2 + ‖xL1 − x‖2 − ‖xL1 − xi‖2

2‖xi − x‖‖xL1 − x‖ . (3.1)

Step 5. Each vehicle calculates kil1 = N0θiL1/2π , and composites the results in descending
order (small node id has higher prior) separately. Tick out the vehicle kiL1 > 1 and form a new
sequence, then, the first vehicle in the descending sequence is defined as a leader, written as
L2.
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Figure 3: (a) Control of leaders. (b) Control of followers.

Step 6. Repeat Step 3 to Step 5 until find leader LN, then, other vehicles are followers.

Step 7. Ascertain a followers’ leader. Compute the angle between leaders and followers θiLj
in turn. According to the global formation information and the angle θiLj , followers associate
with their two leaders which have max θiLj :

θiLj = arccos

∥
∥xi − xLj

∥
∥2 +

∥
∥xi − xL(j+1)

∥
∥2 − ∥∥xLj − xL(j+1)

∥
∥2

2
∥
∥xi − xLj

∥
∥
∥
∥xi − xL(j+1)

∥
∥

. (3.2)

Step 8. Ascertain virtual leaders. The position and velocity of virtual leader is written as xia,
via and defined as follows:

xia(t) =
(
1 − pi

)
xiL1(t) + pixiL2(t), via(t) = 0.5(viL1(t) + viL2(t)), (3.3)

where pi ∈ [0, 1] is a proportion factor correlative with expectation position.
A virtual leader can maintain that the virtual leader is at the expectation position of

the line. The line is made by its leader each time.

3.3. Formation Control Laws

The design method of formation control laws are shown in Figure 3. Formation control law
depends on the role of the vehicle if it is a leader, αi = 1, otherwise, αi = 0. Thus, the control
law for an individual vehicle ui(t) is designed as follows:

ui(t) = αiuL
i (t) + (1 − αi)uF

i (t) + fig(t), (3.4)

where uL
i (t), u

F
i (t), fi

g(t) are leaders’ formation control law, followers’ formation control law,
and collision avoidance control law separately.
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The leaders’ formation control law is designed based on consensus algorithm. The
control purpose is used to form desired formation shape and movement. Considering com-
munication delay, control law is designed as follows:

uL
i (t) = αv̇d − β(vi(t) − vd) − 1

Ni

N∑

j=1

aij

(
vi(t) − vj(t − τ)

) − 1
Ni

N∑

j=1

aij

((
xi(t) − xj(t − τ) − hij

))
.

(3.5)

Because of that,

1
Ni

⎛

⎝−
N∑

j=1

aij

(
vi(t) − vj(t − τ)

) −
N∑

j=1

aij

(
xi(t) − xj(t − τ) − hij

)
⎞

⎠

=
1
Ni

⎛

⎝−
N∑

j=1

aijvi(t) +
N∑

j=1

aijvj(t − τ) −
N∑

j=1

aijxi(t) +
N∑

j=1

aijxj(t − τ) +
N∑

j=1

aijhij

⎞

⎠

=
1
Ni

⎛

⎝−
N∑

j=1

aijvi(t) −
N∑

j=1

aijxi(t) +
N∑

j=1

aijvj(t − τ) +
N∑

j=1

aijxj(t − τ) +
N∑

j=1

aijhij

⎞

⎠

= −vi(t) − xi(t) +
1
Ni

N∑

j=1

aijvj(t − τ) +
1
Ni

N∑

j=1

aijxj(t − τ) +
1
Ni

N∑

j=1

aijhij

= −vi(t) − xi(t) + vi(t − τ) + xi(t − τ) − 1
Ni

N∑

j=1

aij

(
vi(t − τ) − vj(t − τ)

)

− 1
Ni

N∑

j=1

aij

(
xi(t − τ) − xj(t − τ)

)
+

1
Ni

N∑

j=1

aijhij .

(3.6)

Then, we can rewrite uL
i (t) as follows:

uL
i (t) = αv̇d − β(vi(t) − vd) − vi(t) − xi(t) + vi(t − τ) + xi(t − τ) +

1
Ni

N∑

j=1

aijhij

− 1
Ni

N∑

j=1

aij

(
vi(t − τ) − vj(t − τ)

) − 1
Ni

N∑

j=1

aij

(
xi(t − τ) − xj(t − τ)

)
,

(3.7)

where uL
i (t) ∈ R

n is control vector; vd, v̇d ∈ R
n are the expected velocity and acceleration; aij

is the communication weight, if information flows from j to i, aij = 1, else aij = 0; α > 0, β > 0
are control parameters; hij is desired relative distance vector and Ni is number of current
neighbors.
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According to the individual control law (3.7), we can get the leader system’s control
vector ud(t)

ud(t) = α(1N ⊗ v̇d) − β(v(t) − 1N ⊗ vd) − v(t) − x(t) + v(t − τ)

+ x(t − τ) −
(
L ⊗ In

)
v(t − τ) −

(
L ⊗ In

)
x(t − τ) + E

= α(1N ⊗ v̇d) + β(1N ⊗ vd) −
(
β + 1

)
v(t) − x(t) + E

+
(
InN − L ⊗ In

)
v(t − τ) +

(
InN − L ⊗ In

)
x(t − τ),

(3.8)

where

E =

⎡

⎢
⎢
⎢
⎣

In ⊗ L1

In ⊗ L2

· · ·
In ⊗ LN

⎤

⎥
⎥
⎥
⎦
h. (3.9)

Considering that,

− x(t) − (β + 1
)
v(t) +

(
InN − L ⊗ In

)
x(t − τ) +

(
InN − L ⊗ In

)
v(t − τ)

=
[

0 0
−InN −(β + 1

)
InN

][
x(t)
v(t)

]

+

[
0 0

InN − L ⊗ In InN − L ⊗ In

][
x(t − τ)
v(t − τ)

]

.

(3.10)

We can rewrite ud(t) as follow:

ud(t) = α(1N ⊗ v̇d) + β(1N ⊗ vd) + E − x(t) − (β + 1
)
v(t)

+
(
InN − L ⊗ In

)
x(t − τ) +

(
InN − L ⊗ In

)
v(t − τ)

= α(1N ⊗ v̇d) + β(1N ⊗ vd) + E

+
[−InN −(β + 1

)
InN
]
[
x(t)
v(t)

]

+
[
InN − L ⊗ In InN − L ⊗ In

][x(t − τ)
v(t − τ)

]

.

(3.11)

Note that system model (2.1) can be rewritten as follows:

[
ẋ(t)
v̇(t)

]

=
[
0 InN
0 0

][
x(t)
v(t)

]

+
[

0
ud(t)

]

. (3.12)
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Consequently, substituting equation (3.11) into system model (3.12), we have

[
ẋ(t)
v̇(t)

]

=
[
0 InN
0 0

][
x(t)
v(t)

]

+
[

0
α(1N ⊗ v̇d) + β(1N ⊗ vd) + E

]

+
[

0 0
InN −(β + 1

)
InN

][
x(t)
v(t)

]

+

[
0 0

InN − L ⊗ In InN − L ⊗ In

][
x(t − τ)
v(t − τ)

]

=
[

0 InN
−InN −(β + 1

)
InN

][
x(t)
v(t)

]

+

[
0 0

InN − L ⊗ In InN − L ⊗ In

][
x(t − τ)
v(t − τ)

]

+
[

0
α(1N ⊗ v̇d) + β(1N ⊗ vd) + E

]

.

(3.13)

Furthermore, we define

ξ(t) =
[
x(t)
v(t)

]

, ξ̇(t) =
[
ẋ(t)
v̇(t)

]

, ξ(t − τ(t)) =
[
x(t − τ)
v(t − τ)

]

. (3.14)

Thus, the close loop of the leader system state equation is derived:

ξ̇(t) = Aξ(t) + Bξ(t − τ) + C, (3.15)

where

A =
[

0 InN
−InN −(β + 1

)
InN

]

, B =

[
0 0

InN − L ⊗ In InN − L ⊗ In

]

,

C =
[

0
E + β(1N ⊗ vd) + α(1N ⊗ v̇d)

]

.

(3.16)

The followers’ formation control law is designed based on the consensus algorithm
also. The control purpose is tracking its virtual leader, respectively. Considering communica-
tion delay, control law is designed as follows:

uF
i (t) = fiv(t) + fic(t),

fvi (t) = − c

Ni

Ni∑

j=1

(
vi − vj(t − τ)

)
,

fci (t) = −(vi(t) − via(t)) − γ(xi(t) − xia(t)).

(3.17)

The velocity feedback damp control term fvi (t) is used to regulate the vehicles’ velocity
and c is the damp control parameter. The consensus tracking control term fci (t) is used to track
its own virtual leader and γ is the consensus control parameter.
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Let ṽi(t) = vi(t) − via(t), x̃i(t) = xi(t) − xia(t), then we have

vi(t) − vj(t − τ) = ṽi(t) − ṽj(t − τ) + via(t) − vja(t − τ). (3.18)

Since that,

− c

Ni

N∑

j=1

aij

(
vi(t) − vj(t − τ)

)
= − c

Ni

N∑

j=1

aij

(
ṽi(t) − ṽi(t − τ) + via(t) − vja(t − τ)

)

= − c

Ni

N∑

j=1

aij ṽi(t) +
c

Ni

N∑

j=1

aij ṽj(t − τ)

− c

Ni

N∑

j=1

aij

(
via(t) − vja(t − τ)

)
.

(3.19)

The followers’ formation control law is rewritten as follows:

ũF
i (t) = − ṽi(t) − γ x̃i(t) − cṽi(t) + cṽi(t − τ) − cvia(t) + cvia(t − τ)

− c

Ni

N∑

j=1

aij

(
ṽi(t − τ) − ṽj(t − τ)

) − c

Ni

N∑

j=1

aij

(
via(t − τ) − vja(t − τ)

)
.

(3.20)

Furthermore, we can acquire the formation control law of the follower system:

ũF(t) = − ṽ(t) − γ x̃(t) − cṽ(t) + cṽ(t − τ) − c
(
L ⊗ In

)
ṽ(t − τ) − cva(t) + c

(
L ⊗ In

)
va(t − τ)

= − γ x̃(t) − (1 + c)ṽ(t) + c
(
InN − L ⊗ In

)
ṽ(t − τ) − cva(t) + cva(t − τ)

+ c
(
L ⊗ In

)
va(t − τ).

(3.21)

Consequently, the close loop of the follower system state equation is derived:

˙̃ξ(t) = Dξ(t) + Eξ(t − τ) + F(t), (3.22)

where

D =
[

0 InN
−γInN −(1 + c)InN

]

, E =

[
0 0
0 c
(
InN − L ⊗ In

)

]

,

F(t) =

[
0

−cva(t) + cva(t − τ) + c
(
L ⊗ In

)
va(t − τ)

]

.

(3.23)
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Figure 4: (a) Safe zone, communication zone, and collision zone. (b) Artificial potential function.

The collision avoidance control law is designed based on artificial potential functions
and the design methods are showed in Figure 4.

Consequently, the collision avoidance control law is designed as follows:

fgi (t) =
1
Ni

∑

j∈Ni(t)

xij(t)Vij

(∥
∥xij(t)

∥
∥
)∥
∥xij(t)

∥
∥−1,

Vij

(∥
∥xij(t)

∥
∥
)
= kϕ

(
xij(t)

)∥
∥xij(t)

∥
∥−1,

ϕ
(
xij(t)

)
=

{
log2
(∥
∥xij(t)

∥
∥d−1

e

) ∥
∥xij(t)

∥
∥ < de,

0
∥
∥xij(t)

∥
∥ ≥ de.

(3.24)

The control term fgi (t) is designed on artificial potential functions which are used to
avoid collision, Vij(‖xij(t)‖) is artificial potential function, de is the safe range, d is communi-
cation range, and k is positive control parameter.

4. Stability Analysis

In the following, we get two steps to study the system’s stability problems.

Lemma 4.1 (Schur complement). For a given symmetric matrix S with the form S =
[
S11 S12
S12 S22

]
,

where S11 ∈ R
r×r , S22 ∈ R

(n−r)×(n−r), S12 ∈ R
r×(n−r), S21 ∈ R

(n−r)×r , S < 0 if and only if S22 < 0 and
S11 − S12S−1

22S
T
12 < 0.

Step 1. The stability analysis of a leader system.

Theorem 4.2. Given communication delay 0 < τ ≤ d, 0 < d < ∞, formation vector h, velocity vd,
acceleration v̇d, and control parameters α > 0, β > 0 are bounded constants. Under the condition that



12 Mathematical Problems in Engineering

directed network topology is connectivity, if there exit two symmetric matrixes P > 0, Q > 0 subject
to Γ1 < 0, then for any time delay τ , the leader system is stable:

Γ1 =

⎡

⎣
(A + B)TP + P(A + B) + 2τ

(
ATQA + BTQB

)
PB

BTP −Q
τ

⎤

⎦. (4.1)

Proof. When the formation vector h and desired velocity and acceleration vd, v̇d are known
accurately and control parameters α > 0 and β > 0 are bounded constant, the bias vector C
is a bounded constant and plays no role in the system’s convergence. So, the leader system’s
convergence (3.17) is the same as the following system:

ξ̇(t) = Aξ(t) + Bξ(t − τ). (4.2)

By the Newton-Leibniz formula, we have

ξ̇ = (A + B)ξ(t) − B
∫ t

t−τ
ξ̇(s)ds. (4.3)

Define a Lyapunov-Krasovskii function for system (4.3) as follows:

V (t) = V1(t) + V2(t) + V3(t),

V1(t) = ξT (t)Pξ(t), V2(t) =
∫ τ

0

∫ t

t−β
ξ̇
T (s)Qξ̇(s)dsdβ,

V3(t) = 2
∫ t

t−τ
τξT (s)BTQBξ(s)ds.

(4.4)

Differentiating V (t) along the system (4.3), we can acquire

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t),

V̇1(t) = ξ̇
T (t)Pξ(t) + ξT (t)Pξ̇(t)

=

(

(A + B)ξ(t) − B
∫ t

t−τ
ξ̇(s)ds

)T

Pξ(t) + ξT (t)P

(

(A + B)ξ(t) − B
∫ t

t−τ
ξ̇(s)ds

)

= ξT (t)
(
(A + B)TP + P(A + B)

)
ξ(t) −

∫ t

t−τ

(
ξ̇
T (s)BTPξ(t) + ξT (t)PBξ̇(s)

)
ds,

V̇2(t) =
∫ τ

0

∫ t

t−β
ξ̇
T (s)Qξ̇(s)dsdβ = τ ξ̇

T (t)Qξ̇(t) −
∫ t

t−τ
ξ̇
T (s)Qξ̇(s)ds,

V̇3(t) = 2τξT (t)BTQBξ(t) − 2τξT (t − τ)BTQBξ(t − τ).

(4.5)
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Sum the integral terms in V̇1(t), V̇2(t), V̇3(t), then, we have

∫ t

t−τ

(
−ξ̇T (s)BTPξ(t) − ξT (t)PBξ̇(s) − ξ̇

T (s)Qξ̇(s)
)
ds

=
∫ t

t−τ

(

−
(
BTPξ(t) +Qξ̇(s)

)T
Q−1
(
BTPξ(t) +Qξ̇(s)

)
+ ξT (t)PBQ−1BTPξ(t)

)

ds

=
∫ t

t−τ

(

−
(
BTPξ(t) +Qξ̇(s)

)T
Q−1
(
BTPξ(t) +Qξ̇(s)

))

ds +
∫ t

t−τ

(
ξT (t)PBQ−1BTPξ(t)

)
ds

= −
∫ t

t−τ

((
BTPξ(t) +Qξ̇(s)

)T
Q−1
(
BTPξ(t) +Qξ̇(s)

))

ds + τξT (t)PBQ−1BTPξ(t).

(4.6)

Since that,

τ ξ̇
T (t)Qξ̇(t) + 2τξT (t)BTQBξ(t) − 2τξT (t − τ)BTQBξ(t − τ)

= τ
(
ξT (t)ATQAξ(t) + ξT (t)ATQBξ(t − τ) + ξT (t − τ)BTAξ(t) + ξT (t − τ)BTBξ(t − τ)

)

+ 2τξT (t)BTQBξ(t) − 2τξT (t − τ)BTQBξ(t − τ),

ξT (t)ATQAξ(t) + ξT (t)ATQBξ(t − τ) + ξT (t − τ)BTAξ(t) + ξT (t − τ)BTBξ(t − τ)

− 2ξT (t)ATQAξ(t) − 2ξT (t − τ)BTQBξ(t − τ) + 2ξT (t)BTQBξ(t) + 2ξT (t)ATQAξ(t)

= −(Aξ(t) − Bξ(t − τ))TQ(Aξ(t) − Bξ(t − τ)) + 2ξT (t)BTQBξ(t) + 2ξT (t)ATQAξ(t).
(4.7)

According to (4.4) to (4.7), we have

V̇ (t) = ξT (t)
(
(A + B)TP + P(A + B)

)
ξ(t) + τξT (t)PBQ−1BTPξ(t)

− τ(Aξ(t) − Bξ(t − τ))TQ(Aξ(t) − Bξ(t − τ)) + 2τξT (t)BTQBξ(t)

+ 2τξT (t)ATQAξ(t) −
∫ t

t−τ

((
BTPξ(t) +Qξ̇(s)

)T
Q−1
(
BTPξ(t) +Qξ̇(s)

))

ds

= ξT (t)
(
(A + B)TP + P(A + B) + τPBQ−1BTP + 2τATQA + 2τBTQB

)
ξ(t)

− τ(Aξ(t) − Bξ(t − τ))TQ(Aξ(t) − Bξ(t − τ))

−
∫ t

t−τ

((
BTPξ(t) +Qξ̇(s)

)T
Q−1
(
BTPξ(t) +Qξ̇(s)

))

ds.

(4.8)
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Figure 5: (a) The desired formation of all vehicles. (b) The desired formation shape of leaders.

According to (4.9), we get

−(Aξ(t) − Bξ(t − τ))TQ(Aξ(t) − Bξ(t − τ)) < 0,

−
(
BTPξ(t) +Qξ̇(s)

)T
Q−1
(
BTPξ(t) +Qξ̇(s)

)
< 0.

(4.9)

Let

Ω = (A + B)TP + P(A + B) + τPBQ−1BTP + 2τATQA + 2τBTQB < 0. (4.10)

Then we have V̇ (t) < 0. By Lemma 4.1, we get Ω < 0 which is equivalent to Γ1 < 0:

Γ1 =

⎡

⎣
(A + B)TP + P(A + B) + 2τ

(
ATQA + BTQB

)
PB

BTP −Q
τ

⎤

⎦. (4.11)

If Γ1 < 0, then we have V̇ (t) < 0. Therefore, the leader system is stable and a basic
formation is formed and maintained.

Step 2. The stability analysis of followers.

Theorem 4.3. Under the condition of Theorem 4.2, if a leader system is stable and there exit two sym-
metric matrixes R > 0, S > 0 subject to Γ2 < 0, then for any delay τ , a follower system is stable:

Γ2 =

⎡

⎣
(D + E)TR + R(D + E) + 2τ

(
DTSD + ETSE

)
RE

ETR −Q
τ

⎤

⎦. (4.12)
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Figure 6: (a) Initial states of all vehicles. (b) States of all vehicles after grouping.

Proof. Similar to the proof of Theorem 4.2, we can derive the follower system’s stability
condition. It is that if there exit two symmetric matrixes R > 0, S > 0 subject to Γ2 < 0,
then for any delay τ , the follower system is stable.

Γ2 =

⎡

⎣
(D + E)TR + R(D + E) + 2τ

(
DTSD + ETSE

)
RE

ETR −Q
τ

⎤

⎦. (4.13)

According to the follower system’s close-loop state equation, the equilibrium point of
the dynamic system ξ̃e = F(t) is stable. If a leader system is stable, it means the condition
vi(t) = vj(t), for all i, j ∈ N, is true. Consequently, we can easily acquire the equation via(t) =
vja(t) = via(t − τ) = vja(t − τ). Thus, equations cva(t) = cva(t − τ) and (L ⊗ In)va(t − τ) = 0
are true which lead to F(t) = 0. Furthermore, it is easy to see that ṽi(t) = vi(t) − via(t) = 0
and x̃i(t) = xi(t) − xia(t) = 0 when t → ∞. According to the virtual leader’s definition, local
formation can be formed and maintained.

5. Simulations

In this section we give a simulation example of multiple vehicles formation in the plane
to illustrate the effectiveness of the proposed algorithm in the paper. In the simulations,
25 vehicles are randomly distributed in [0, 100] and [0, 100]; initial velocities are randomly
distributed in [0, 1] and [0, 1]. Expected velocity is Vd = [6, 6]T and expected formation is
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Figure 7: (a) States of all vehicles at time 5 seconds. (b) States of all vehicles at time 10 seconds. (c) States
of all vehicles at time 15 seconds. (d) Final states of all vehicles.

shown as Figure 5. According to the proposed method, it is easily known that the number of
leaders is 5 and the number of followers is 20. Leaders’ formation vector is hT :

h = [0,−30,−30, 30, 30, 0, 40, 100, 100, 40, 30, 0, 0, 60, 60,−40, 0, 60, 60, 0, 30, 0, 0, 60, 60,−100,
−60, 0, 0,−60,−30,−60,−60, 0, 0,−100,−60, 0, 0,−60,−30,−60,−60, 0, 0,−40, 0, 60, 60, 0].

(5.1)

Control parameters are α = 1, β = 5, k = 10, damp feedback coefficient c = 1, and
velocity navigation coefficient γ = 0.4. Communication range is 20 and safe range is 6. Time
delay is 0.2 second. Simulation step is not fixed and total time is 60 seconds.

The initial positions of all vehicles are randomly distributed and the initial network is
connectivity as shown in Figure 6(a). In the designed formation framework, vehicles can elect
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Figure 8: (a) Trajectories of leader vehicles. (b) Velocities of leader vehicles. (c) Trajectories of follower
vehicles. (d) Velocities of follower vehicles.

leaders and followers automatically using the dividing algorithm. The states of all vehicles
after grouping are shown in Figure 6(b).

Formation movement of 25 vehicles can be seen clearly in Figure 7. At time 5
seconds, followers are tracking their own virtual leader shown in Figure 7(a). At time 10
seconds, followers have tracked their own virtual leaders shown in Figure 7(b). At time 15
seconds, leaders are forming desired formation geometric shape using the global formation
information shown in Figure 7(c). Final states of all vehicles are shown in Figure 7(d); the
desired formation is formed and maintained.

To show the simulation results clearly, we choose position and velocity on x and y axes
to make the results fill in Figure 8. Trajectories of leader vehicles are shown in Figure 8(a); it
shows that the desired formation is formed and maintained. Velocities of leader vehicles are
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shown in Figure 8(b); it shows that desired velocities are achieved. Trajectories of follower
vehicles are shown in Figure 8(c), it shows that local formation is formed and maintained.
Velocities of follower vehicles are shown in Figure 8(d); it shows that desired formation
velocities are achieved.

6. Conclusions

In this paper, we proposed a distributed formation framework of large-scale intelligent
autonomous vehicles. Under the assumption that the initial network is connected, the
vehicles are divided into leaders and followers automatically. Global formation information
is only injected to leaders which can greatly reduce data exchange. Using the designed for-
mation control law, the vehicles are able to realize various kinds of formation asymptotically
while avoiding collision. It is illustrated that the proposed formation framework is effective
by simulation results.

Nevertheless, there are still some other problems that need to be discussed in further
detai, such as introducing more complex dynamic model and considering obstacle avoidance
problems.
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