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We consider the problem of optimal H.264 scalable video scheduling, with an objective of maximizing the end-user video quality
while ensuring fairness in 3G/4G broadband wireless networks and video sensor networks. We propose a novel framework to
characterize the video quality-based utility of the H.264 temporal and quality scalable video layers. Subsequently, we formulate the
scalable video scheduling framework as a Markov decision process (MDP) for long-term average video utility maximization and
derive the optimal index based-scalable video scheduling policies ISVP and ISVPF towards video quality maximization. Further,
we extend this framework to multiuser and multisubchannel scenario of 4G wireless networks. In this context, we propose two
novel schemes for long-term streaming video quality performance optimization based on maximum weight bipartite and greedy
matching paradigms. Simulation results demonstrate that the proposed algorithms achieve superior end-user video experience
compared to competing scheduling policies such as Proportional Fairness (PF), Linear Index Policy (LIP), Rate Starvation Age
policy (RSA), and Quality Proportional Fair Policy (QPF).

1. Introduction

The advent of portable smart devices and broadband ena-
bling wireless technologies such as LTE and WiMAX have
led to the availability of a plethora of video applications and
services such as video conferencing, multimedia streaming,
interactive gaming, and real-time video monitoring in 3G/
4G wireless networks. A typical scenario in a 4G network is
shown in the Figure 1. Video sensor networks are another
paradigm which is gaining popularity due to its application
in digital security and online surveillance. This demand for
such wireless broadband services is expected to continue to
increase in the future with progressive innovations in wireless
technologies and devices leading to universal appeal of such
services combined with ubiquitous availability of smart
phones. Further, video content, which is the key to such pop-
ular 3G/4G services, is expected to progressively comprise
a dominating fraction of the wireless traffic. However, the
erratic wireless environment coupled with the tremendous
heterogeneity in the display and decoding capabilities of
wireless devices such as smart phones, tablets, and notebooks

renders conventional fixed profile video transmission unsuit-
able in such scenarios.

H.264 based scalable video coding (SVC) has gained sig-
nificant popularity in the context of video transmission over
wireless links owing to its several advantages over conven-
tional video coding. SVC avoids the problem of simulcasting
fixed profile video streams at different spatial and temporal
profiles by embedding a base low resolution stream in a
hierarchical stream consisting of several differential enhance-
ment layers. Another significant advantage of SVC over
conventional video coding is graceful degradation of video
quality in the event of packet drops due to network conges-
tion. As a result of these advantages, SVC is rapidly increasing
in popularity as a de facto scheme for video coding in wire-
less networks. Reliable video transmission over bandwidth
constrained wireless packet networks is further challenging
compared to conventional broadband applications such as
FTP and internet access due to the high delay sensitivity
of video. Hence efficient video scheduling algorithms are
critical towards QoS enforcement and end-user video quality
maximization in broadband 4G networks.
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Figure 1: Typical 4G cellular network with heterogeneous users.

Considerable research has been carried out towards opti-
mal resource allocation and scheduling with Quality of Ser-
vice (QoS) constraints in wireless networks. The authors in
[1] proposed an index-based Highest Urgency First (HUF)
scheme towards multiuser scheduling which assigns an
urgency parameter to each scheduling request and schedules
the packets with the highest urgency factor. The authors in
[2] employ distinct service classes to differentiate flows and
schedule them according to priority. However, such generic
data scheduling schemes are video agnostic. They do not
utilize the unique structure of coded digital video and thus
result in suboptimal schemes for video quality maximization.
On the other front, some work has been carried out in
terms of scheduling video data with maximum quality. The
authors in [3] proposed a scheduling policy to maximize
video quality rendered at the receiver by taking into account
the temporal error concealment of the video frames at
the receiver. The authors in [4] considered the problem of
adaptive scheduling policy for real-time video transmission
and derived optimal policies by employing a Markov decision
process framework. However, both these works do not take
the fairness of users into consideration while deriving the
scheduling policies. Hence, in this paper, we consider the
problem of optimal scheduler design for scalable video data
transmission in downlink 3G/4G wireless networks with a
constraint on user fairness. In this context, we present a novel
framework to characterize the utility of the different scalable
video layers in an H.264 SVC video stream. Further, we set up
the video scheduling problem in 3G systems such as HSDPA
where a single channel such as the high speed downlink
shared channel (HS-DSCH) is scheduled amongst multiple
users as an MDP and derive a novel video utility index based
scalable video scheduling policy for scheduling of scalable
video data in infinite queue length (ISVP) and fixed queue
length (ISVPF) scenarios. Simulation results demonstrate
that these schemes outperform the proportional fair resource
allocation and linear index policy (LIP) based schedulers
in terms of net video quality. A preliminary work on the
ISVP policy has been published by us in a conference article
in [5]. In this work, we have enhanced the results significantly

by including multichannel multiuser scenarios and perform-
ing extensive simulations with more number of users and
comparing with additional policies.

Further, OFDM/OFDMA [6, 7] has emerged as a ubiqui-
tous technology for broadband wireless networks because of
its significant advantages. In OFDM, a wideband channel can
be decomposed into several parallel narrowband frequency
flat wireless fading channels thus avoiding the problem of
intersymbol interference in frequency selective channels. In
such scenarios, efficient multiuser multi-sub-carrier channel
allocation algorithms are critical towards QoS enforcement
and video quality maximization in next generation networks.
However as mentioned earlier, the existing scheduling algo-
rithms [1, 2, 8–10] are generic and do not take into account
the structure of coded video transmission which results in
suboptimal enduser video quality in broadband wireless
access. Hence in this paper, we consider the problem of
optimal multiuser 4G OFDMA channel allocation to max-
imize the video quality while maintaining QoS fairness
amongst users.

The rest of the paper is organized as follows. In Section 2
we develop the utility framework for scalable coded videos.
In Sections 3 and 4, we derive the optimal 3G video schedul-
ing policies for infinite and finite queue sizes, respectively.
In Section 6, we derive the optimality criteria for 4G OFDM
channel allocation in multiuser streaming scenarios. In
Section 7 we describe optimal channel allocation algorithms
to achieve the above optimality criteria. In Section 8, we
present the simulation results, and in Section 9, we conclude.

2. Scalable Video Utility Framework

H.264 supports three modes of video scalability—temporal,
quality, and spatial. In our work, we consider video schedul-
ing for temporal and quality scalable H.264 video and the
extension to spatially scalable video sequences is relatively
straight forward. Coded digital video streams such as H.264
employ a group of pictures (GOP) structure for differential
pulse-code modulation (DPCM) based video coding. In
a scalable video sequence, temporal scalability is achieved
through dynamic GOP size scaling by insertion or deletion of
additional temporal layers. An example of the temporally
scalable GOP structure with dyadic temporal enhancement
video layers is shown in Figure 2. The T0 frames are the base
layer intracoded video frames while T1 frames are intercoded
and those of subsequent layers such as T2 are bidirectional
predictively coded from frames in lower layers. Quality scala-
bility is achieved by using different quantization parameters
for the quality video layers. The base quality layer X0 as
shown in Figure 3 is coded with a coarse quantization
parameter q0. The subsequent higher layer X1 is differentially
coded with a lower quantization parameter q1 and so on for
each higher layer. The highest quality corresponds to the
lowest quantization parameter qmin. Thus, the net video rate
can be scaled dynamically by appropriately choosing the
temporal and quality video layers. It can be readily seen
from the above GOP description that different component
frames of the H.264 salable video GOP have differing
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Figure 2: H.264 group of pictures (GOP) structure for temporal
scalability.

impacts on the net video quality and hence have different
utilities. For example considering temporal scalability, it can
be observed that the base layer T0 has a significant impact
on video quality compared to the enhancement layers T1,T2,
since frames in T0 can be decoded independently as they
are intracoded. However, failing reception of T0 frames, one
cannot decode the enhancement layer frames of T1,T2.
Hence, a realistic video scheduling framework is needed
which ascribes differentiated video utilities accurately char-
acterizing the impact of a particular GOP component on the
net video quality. Further, we define the per bit normalized
utility U(i, j) associated with temporal layer i and quality layer

j as the ratio of the impact on video quality ˜Q(i, j) to frame
size B(i, j) as

U(i, j) =
˜Q(i, j)

B(i, j)
. (1)

The above quantity U(i, j) can be interpreted as the utility
of scheduling each bit of the video layer, thus associating
a higher utility with video sequences of smaller frame sizes
compared to larger ones. Below, we propose a framework to
compute the quality and size parameters ˜Q(i, j), B(i, j) in H.264
scalable video scenarios.

2.1. Video Layer Frame Size Model. The JSVM reference
H.264 codec [11] developed jointly by the ITU-T H.264 and
the ISO/IEC MPEG-4 AVC groups can be conveniently
employed to characterize the frame sizes of the respective
scalable video coded streams. Let V(m,n) denote the scalable
video stream comprising of m+1, that is, 0, 1, . . . ,m temporal
layers and n+ 1 quality video layers, while ˜V(m,n) denotes the
exclusive mth temporal and nth quality layer. We consider 4
temporal layers at the standard frame rates of 3.75, 7.5, 15,
and 30 frames per second and 3 quantization layers in JSVM
corresponding to quantization parameters (QP) 40, 36,
and 32. The quantization step-size q corresponding to the
quantization parameter QP is given as q = 2((QP−4)/6) [12].

X1

X0

Figure 3: Temporal and quantization scalability.

Hence, the quantization step-sizes corresponding to QP = 40,
36, 32 are q = 64, 40.32, 25.40, respectively. We employ the
notation R(m,n) to denote the bit-rate of the stream V(m,n).
Table 1 illustrates the computed layer rates and frame sizes
for the standard Crew video [13]. For instance, the rate R(0,0)

comprising of the spatial and quality base layers exclusively is
given as R(0,0) = 79.2 Kbps. Hence, the average base layer
frame size can be derived by normalizing with respect to the
base-layer frame rate of f(0,0) = 3.75 frames per second as

B(0,0) = R(0,0)

f(0,0)
= 21.12 Kb. (2)

The JSVM codec yields the cumulative bit-rate correspond-
ing to the combination of base and enhancement layers of the
video stream. Hence the rate R(0,1) corresponds to the cumu-
lative bit-rate of the scalable video stream consisting of video
layers ˜V(0,0) and ˜V(0,1). The differential rate ˜R(0,1) comprising
exclusively of the differential video rate arising from the
quality layer enhancement frames is given as

˜R(0,1) = R(0,1) − R(0,0)

= 165.80− 79.2 = 86.6 Kbps.
(3)

Further, employing the dyadic video scalability model, the
exclusive rate of the ˜V(0,1) layer frames is 3.75 fps, as one such
differential frame is added for each ˜V(0,0) base layer frame.
Therefore, the size of each frame belonging to layer ˜V(0,1) is
given as B(0,1) = 86.6/3.75 = 23.09 Kb. Similarly one can
derive the differential rate and frame sizes associated with the
temporal layer ˜V(1,0). Further, as the cumulative rate R(1,1)

incorporates the layers ˜V(1,1), ˜V(0,1), ˜V(1,0), and ˜V(0,0), the
differential rate ˜R(1,1) is given as

˜R(1,1) =
(

R(1,1) − R(0,1)
)− (R(1,0) − R(0,0)

) = 32.4 Kbps. (4)

The differential bit-rates and frame sizes of the higher
enhancement layers can be derived similarly. It can be noted
that because of the dyadic nature of the scalability, the dif-
ferential frame rates progressively double for every higher



4 Advances in Multimedia

Table 1: Calculation bit rate for SVC video with 4 temporal and 3 quantization layers for Crew video.

Video
stream

Cumulative rate
R(m,n)

Cumulative quality
Q(m,n)

Differential relation
Y(m,n) = R(m,n) or Q(m,n)

Differential rate
˜R(m,n)

Differential quality
˜Q(m,n)

N
(Kb)

Utility
U(m,n)

V(0,0) 79.2 41.301 Y(0,0) 79.2000 41.3012 21.120 1.9556

V(0,1) 165.80 48.395 Y(0,1) − Y(0,0) 86.6000 7.0943 23.093 0.3072

V(0,2) 315.80 53.477 Y(0,2) − Y(0,1) 150.0000 5.0822 40.000 0.1271

V(1,0) 107.40 57.801 Y(1,0) − Y(0,0) 28.2000 16.5005 7.520 2.1942

V(1,1) 226.40 67.730 (Y(1,1) − Y(0,1))− (Y(1,0) − Y(0,0)) 32.4000 2.8343 8.640 0.3280

V(1,2) 441.60 74.843 (Y(1,2) − Y(0,2))− (Y(1,1) − Y(0,1)) 65.2000 2.0304 17.386 0.1168

V(2,0) 137.50 67.027 (Y(2,0) − Y(1,0))/2 15.0500 4.6130 4.013 1.1494

V(2,1) 292.80 78.541 ((Y(2,1)−Y(1,1))−(Y(2,0)−Y(1,0)))/2 18.1500 0.7924 4.840 0.1637

V(2,2) 575.90 86.788 ((Y(2,2)−Y(1,2))−(Y(2,1)−Y(1,1)))/2 33.9500 0.5676 9.053 0.0627

V(3,0) 171.40 68.735 (Y(3,0) − Y(2,0))/4 8.4750 0.4269 2.260 0.1889

V(3,1) 369.70 80.542 ((Y(3,1)−Y(2,1))−(Y(3,0)−Y(2,0)))/4 10.7500 0.0733 2.866 0.0256

V(3,2) 727.30 89.000 ((Y(3,2)−Y(2,2))−(Y(3,1)−Y(2,1)))/4 18.6250 0.0525 4.966 0.0106

Table 2: Quality parameter values c,d for standard videos.

Video Akiyo City Crew Football

c 0.11 0.13 0.17 0.08

d 8.03 7.35 7.34 5.38

enhancement layer. Hence, the frame rates associated exclu-
sively with enhancement layers ˜V(2,0) and so forth are 7.5 and
so on. Following the described procedure one can succes-
sively compute the corresponding bit-rates and associated
frame sizes of the differential video layers. The bit-rates of
several enhancement layers of the video sequence Crew
are shown in Table 1. It can be seen that the frame sizes
progressively decrease with increasing enhancement layer
identifier due to the progressively increasing coding gain
arising from the DPCM coding.

2.2. Video Layer Quality Model. We employ the standard
video quality model proposed in [12, 14], which gives the
quality of the scalable video stream coded at frame rate t and
quantization step-size q as

Q = Qmax

(

e−c(q/qmin)

e−c

)(

1− e−d(t/tmax)

1− e−d

)

, (5)

where qmin = 25.40 is the minimum quantization-step size
corresponding to QP = 32, t is frame rate or temporal resolu-
tion, tmax is the maximum frame rate, Qmax is the maximum
video quality at t = tmax, q = qmin, set as Qmax = 89, and
c,d are the characteristic video quality parameters. The
procedure for deriving the parameters c,d specific to a video
sequence is given in [12]. These are indicated in Table 2
for the standard video sequences Akiyo, City, Crew, and
Football. The screen shots of these four standard videos are
shown in Figure 4. The procedure to compute the differential
video layer quality can be described as follows. Consider the
standard video sequence Crew. Let the cumulative impact of
the scalable video stream comprising of m temporal and n
quality layers be denoted by Q(m,n). This Q(m,n) is calculated

by substituting mth layer frame rate and nth layer quantiza-
tion parameter in (5). Hence, the quality associated with the
video stream ˜V(0,0) = V(0,0) consisting of the base temporal
and quality layers coded at t = 3.75 fps and q = 64
corresponding to quantization parameter QP = 40 is given
as

Q(0,0) = Qmax

(

e−0.17(64/25.398)

e−0.17

)(

1− e−7.34(3.75/30)

1− e−7.34

)

= 41.30.

(6)

Similarly the quality for video stream V(1,0) with frame rate
t = 7.5 and q = 64 is given by

Q(1,0) = Qmax

(

e−0.17(64/25.398)

e−0.17

)(

1− e−7.34(7.5/30)

1− e−7.34

)

= 57.80.

(7)

Employing the frame size as computed in the section above,
the per-bit normalized video utility can be computed utiliz-
ing the relation in (1) as

U(0,0) = Q(0,0)

B(0,0)
= 41.30

21.12
= 1.95. (8)

Thus, the above utility can be employed as a convenient han-
dle to characterize the scheduler reward towards scheduling
a particular video stream. Further, similar to the rate deriva-
tion in the above section, the quantity Q(m,n) denotes the
cumulative quality. Hence, the differential quality ˜Q(1,0)

associated with layer ˜V(1,0) for instance is derived as ˜Q(1,0) =
Q(1,0)−Q(0,0) = 16.50 for Crew. The differential per-bit utility
associated with layer ˜V(1,0) can be computed as, U(1,0) = 2.19
and so on. The differential layer qualities and per-bit utilities
of the scalable GOP frames for the standard video sequence
Crew are shown in the Table 1. The utilities of the four stan-
dard video sequences mentioned above are shown in Table 3.
It can be seen from the table that the utility exhibits a decreas-
ing trend across the enhancement layers, thus clearly demon-
strating the different priorities associated with the GOP
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Table 3: Utility for different standard videos.

Video layer Akiyo City Crew Football
˜V(0,0) 12.6906 3.2618 1.9556 1.2266
˜V(0,1) 1.1172 0.3178 0.3072 0.1185
˜V(0,2) 0.4269 0.1223 0.1271 0.0466
˜V(1,0) 24.2893 6.0859 2.1942 1.1310
˜V(1,1) 2.0239 0.6943 0.3280 0.1049
˜V(1,2) 0.8982 0.3289 0.1168 0.0389
˜V(2,0) 9.3842 2.7179 1.1494 0.7410
˜V(2,1) 0.8447 0.2993 0.1637 0.0639
˜V(2,2) 0.3737 0.1405 0.0627 0.0223
˜V(3,0) 1.2832 0.4206 0.1889 0.2299
˜V(3,1) 0.1351 0.0424 0.0256 0.0170
˜V(3,2) 0.0638 0.0198 0.0106 0.0063

components. In the next section we derive an optimal policy
towards video quality maximization while ensuring fairness
in QoS.

3. Index-Based Scalable Video Policy (ISVP)

Employing the framework illustrated in [15], we model the
scalable video scheduling scenario as a Markov decision pro-
cess (MDP). The state of user u at time n is modeled as a
combination of the channel state snu and the video state vnu
of the head of the queue frame of user u. Further, we also
incorporate the user starvation age anu in the system state to
ensure fairness in video scheduling. We assume that snu ∈
{1, 2, . . . L + 1}, where each state represents a maximum bit-
rate R(snu) supported by the fading channel between user
u and base station at time instant n. The vector sn at time
instant n defined as sn = [sn1, sn2, . . . , snU]T characterizes the
joint channel state of all users. We assume that {sn,n ≥
0} is an irreducible discrete time Markov Chain [16] with
the L + 1 dimensional probability transition matrix Pu =
[pui, j]. The objective of the scheduler is to allocate the shared
wireless channel by scheduling the users in each time slot
in such a way that maximizes the quality of scalable video
without leading to starvation of users as shown in Figure 5.
From the GOP structure illustrated previously in the context
of scalable video, the video data state for each user vnu ∈
{1, 2, . . . ,G}, where G is the number of frames in a GOP.
Similar to above, the joint video state of the U users can
be denoted as vn = [vn1 , vn2 , . . . , vnU]T . The starvation age anu
corresponds to the number of slots for which a particular
user has not been served. This quantity is initialized as 0 to
begin with and incremented by one for every slot for each
user who is not served in that slot. If a particular user is
served in the current slot, his starvation age is reset to 0. Let
ω(n) denote the user scheduled at time slot n. The starvation
age transition for a particular user is given as

anu =
{

anu + 1, ifω(n) /=u

0, ifω(n) = u.
(9)

The total user starvation age is similarly denoted by vector
an obtained by stacking the starvation ages of all the users.
The starvation age is important parameter as it can be used
to characterize the fairness. If the starvation age of all users
is almost same then we can say that fairness is achieved. If
the starvation age of users is low then we can say that the
users are not starved. Ideally the starvation of all users should
be equal and close to zero. The system state vector g =
[(vn)T , (sn)T , (an)T]

T
characterizes the complete state of the

system. The action ω(n) at any time instant n corresponds
to choosing one of the U users. Employing the video utility
framework developed above, the reward corresponding to
serving user u in slot n is given as

rn(u) =U
(

vnu
)

R
(

snu
)−

∑

l /=u

Kla
n
l , (10)

where U(vnu) gives the utility of the video packet of user u
in state vnu and Kl is a constant which can control the trade-
off between quality and fairness. The transition probability

from state g = [(v)T , (s)T , (a)T]
T

to g̃ = [(ṽ)T , (s̃)T , (ã)T]
T

contingent on scheduling user u is given as

p
(

g̃ | g,u
) = p1

s1,s̃1
p2
s2,s̃2

. . . pUsU ,s̃U (11)

if ṽu = vu + 1 mod G, ãu = 0 and ãz = az + 1, ṽz =
vz for all z /=u. Our objective is to derive the optimal
policy which maximizes the long-term average reward
limT→∞(1/T)ET(g), where ET(g) denotes the maximum
reward over T time periods with initial state g. As this is an
infinite horizon problem [17] with a very large state space,
conventional schemes for policy derivation are impractical.
We therefore employ the novel procedure proposed in [15]
to derive the optimal scalable video scheduling policy termed
ISVP.

Corollary 1. An index policy Iu(g) close to the optimal policy
for long-term expected average reward maximization in the
context of the video scheduling paradigm defined above is given
as

Iu
(

g
) =U(vu)R(su) + Kuau(U + 1) + KuU. (12)

Proof. As described in (10), the proposed reward structure is
U(vu)R(su) −∑z /=u Kzaz. Replacing the channel state with

the joint video and channel state vector [vT , sT]
T

, reward
with the proposed reward in (10) and applying Theorem 2
in [15] yields the desired result.

The above result guarantees that ISVP, which schedules
the video user with the highest index Iu(g), is close to the
optimal policy and maximizes the video utility while mini-
mizing the starvation age of all users.

4. Finite Queue Video System Model

The above proposed optimal ISVP policy maximizes the scal-
able video quality at the received users when the queue size is
assumed to be infinity. In this section, we derive the optimal
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Figure 4: Screen shots of standard videos Akiyo, City, Football, and Crew.
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Figure 5: Scheduling in shared wireless channel.

policy which maximizes scalable video quality when the
buffer size in the base station is finite. The system model is
identical to the one developed previously for video streaming
except that the scalable video coded packets are buffered in a
finite length queue at the base station. The state of user u
at time n is modified to include the queue state qn

u with the
state space Ωqu along with the channel state snu. The quantity
qn
u is a vector of utilities of the packets in the queue of user

u at time instant n. The vector qn at time instant n defined
as qn = [qn

1 , qn
2 , . . . , qn

U] characterizes the queue state of all
the U mobile video users. Hence, the system state vector g =
[(qn)T , (sn)T , (an)T]

T
characterizes the complete state of the

system. The action ω(n) at any time instant n corresponds to
choosing one of theU users. We define the reward of schedul-
ing a user u in slot n as

Rn
u = qn

u[1] ·R
(

snu
)−

∑

v /=u

Kv

⎛

⎝

i=min{av ,Lv}
∑

i=1

qn
v [i]

⎞

⎠. (13)

Observe that the reward is proportional to the rate of the
channel and also utility of the scheduled video to maximize
the quality of the video. Second the penalty for not schedul-
ing a user in a time slot is proportional to the starvation
age of that user. We choose this penalty function as sum of
utilities of frames in the queue with number of frames as
minimum of starvation age and number of frames in the
queue. Hence this penalty term is implicitly proportional to
the starvation age and utility of the frames of unscheduled
users. The term Kv controls the weight of penalty func-
tion compared to the positive reward. Third mathematical
tractability is also considered in defining the reward. For

example the chosen reward is a regenerative process which
simplifies the derivation of the optimum policy in future
sections.

5. Optimal Finite Queue Length Video
Scheduling Policy (ISVPF)

Similar to the previously derived policy for infinite queue
lengths, let the initial policy be a random policy meaning
allocate user uwith probability αu. The policy iteration step is
to choose the user u which maximizes the index

Iu(in, an) = qn
u[1] ·R

(

snu
)

−
∑

v /=u

Kv

⎛

⎝

min{anv ,Lnv}
∑

k=1

qn
v [k]

⎞

⎠

+
∑

i

Pini(n+1)hr
(

i(n+1), a(n+1)
)

,

(14)

where, in = [qn, sn] ∈ Ωq1 × · · · ×Ωqu ×Ωc, a(n+1) = [an1 +
1, . . . , anu−1+1, 0, anu+1+1, . . . , anU+1] and hr(i(n+1), a(n+1)) is the
bias term of randomized policy starting in state (i(n+1), au). To
derive the bias term, add the expression below

∑

v

Kv

⎛

⎝

min{anv ,Lnv}
∑

k=1

qv[k]

⎞

⎠−
∑

i

Pini(n+1)hr
(

i(n+1), an + e
)

(15)

to (14), where e = [1, 1, . . . , 1]. As this expression is inde-
pendent of u adding, this will not affect the outcome. The
resulting equation is

Iu(in, an) = qn
u[1] ·R

(

snu
)

+ Ku

⎛

⎝

min{anu ,Lnu}
∑

k=1

qn
v [k]

⎞

⎠

+
∑

i

Pini(n+1)

(

hr
(

i(n+1), au
)

− hr
(

i(n+1), an + e
))

.

(16)

To compute the index, we need to find the difference in
biases. Consider two different sample paths of the stochastic
process (i(n,m), a(n,m)), m ∈ {1, 2} such that, w1(n) =
w2(n), i(n,1) = i(n,2), n ≥ 0, and a(0,1) = au, a(0,2) = an + e.
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Let ń be the first time instant at which user u is scheduled,
then

a(n,1)
v = a(n,2)

v , v /=u,∀n

a(n,1)
u = a(n,2)

u , if n > ń

a(n,1)
u = n, a(n,2)

u = anu + 1 + n, if n ≤ ń.

(17)

The difference in biases is equal to the average difference in
the reward acquired in these two sample paths. However in
this scenario, the reward differs only in cost term for user u
till time slot ń = n0. Therefore,

hr
(

i(n+1), au
)

− hr
(

i(n+1), an + e
)

=
n0
∑

n=1

Gu
(

anu + n + 1
)−Gu(n),

(18)

where Gn
u(n) = Ku(

∑min{n,Lnu}
k=1 qn

u[k]).
Since ń follows a geometrical distribution with parameter

αu the average value of the difference in biases considered
above is

r
∞
∑

n0=1

αu(1− αu)n0−1

⎛

⎝

n0
∑

n=1

Gu
(

anu + n + 1
)−Gu(n)

⎞

⎠

= αu
(

Gu
(

anu + 2
)−Gu(1)

)

+ αu(1− αu)
(

Gu
(

anu + 2
)−Gu(1) + Gu

(

anu + 3
)−Gu(2)

)

+ αu(1− αu)2(Gu
(

anu + 2
)−Gu(1) + Gu

(

anu + 3
)

−Gu(2) + Gu
(

anu + 4
)−Gu(3)

) · · ·

= Gu
(

anu + 2
)

(

αu + αu(1− αu) + αu(1− αu)2 + · · ·
)

−Gu(1)
(

αu + αu(1− αu) + αu(1− αu)2 + · · ·
)

+ Gu
(

anu + 3
)

(

αu(1− αu) + αu(1− αu)2 + · · ·
)

−Gu(2)
(

αu(1− αu) + αu(1− αu)2 + · · ·
)

· · ·

=
∞
∑

n0=1

(1− αu)n0−1(Gu
(

anu + n0 + 1
)−Gu(n0)

)

=
∞
∑

n0=1

(1− αu)n0−1

×
⎡

⎣Ku

⎛

⎝

min{anu+n0+1,Lnu}
∑

k=1

qn
u[k]

⎞

⎠− Ku

⎛

⎝

min{n0,Lnu}
∑

k=1

qn
u[k]

⎞

⎠

⎤

⎦

︸ ︷︷ ︸

=Φ(qn
u)

=
Lnu
∑

n0=1

(1− αu)n0−1Ku

⎛

⎝

min{anu+n0+1,Lnu}
∑

k=n0+1

qn
u[k]

⎞

⎠,

(19)

where the last equality follows from the fact that for n0 > Lnu,
the term Φ(qn

u) is equal to 0. Hence the final index Iu(in, an)
for finite queue video scheduling is given by

Iu(in, an) = qn
u[1] ·R

(

snu
)

+ Ku

⎛

⎝

min{anu,Lnu}
∑

k=1

qn
v [k]

⎞

⎠

+
Lnu
∑

n0=1

(1− αu)n0−1Ku

⎛

⎝

min{anu+n0+1,Lnu}
∑

k=n0+1

qn
u[k]

⎞

⎠.

(20)

6. Multiuser OFDMA Video Streaming Model

In the previous section, we have derived the optimal policy
for a single shared channel scenario. In this section, we
extend this to a multiple channel scenario by deriving an
optimal channel allocation policy for 4G wireless systems.
Consider a 4G OFDMA cellular base station BS streaming
videos to a set of U cellular users. Let the users be indexed
by u, 1 ≤ u ≤ U . The H.264 scalable coded video packets of
these users are buffered at the Base station in their respective
individual queues of infinite queue lengths. Consider N
different OFDMA sub-channels to be allocated by the BS to
the users for video transmission refer to Figure 6. Similar to
the standard scheduling models established in literature we
consider slotted time and channel allocation at every time
slot. In this wireless video streaming scenario we wish to
design a scheduler for multiuser sub-channel allocation
towards video quality maximization while maintaining fair-
ness amongst users. As already described above, the scalable
coded video stream can be adapted to comprise varying
combinations of temporal, quality, and spatial scalable layers.
As described in Section 2, each video layer is naturally of
varying utility with respect to its graded impact on the net
video quality. These utility parameters for different frame
components of the scalable GOP structure had been derived
therein and are key towards resource allocation for video
quality maximization. The normalized utility representing
the per bit impact on net video quality can be computed
efficiently employing the framework described in this work.
Below we model this wireless video streaming scenario
as a multidimensional Markov decision process (MDP) to
derive the optimal multiuser multichannel OFDMA video
streaming policy. Let the user state be modelled as a
combination of the N dimensional channel state vector, snu =
[sn(u, 1), sn(u, 2), . . . , sn(u,N)]T , where sn(u, c) represents a
maximum supported bit-rate of R(sn(u, c)) between the BS
and user u over channel c at time slot n, video state of
the head of the line packet vnu . This video state corresponds
to the identity of the frame in the scalable GOP. Hence
the joint multiuser multichannel state Sn ∈ RN×U can be
obtained from the individual channel state vectors as Sn =
[sn1, sn2, . . . , snU]. Similarly the joint video state vector vn ∈ RU

of theU users can be defined as vn = [vn1 , vn2 , . . . , vnU]T . Let the
starvation age of user be denoted by anu. This starvation age is
initialised to 0 to begin with and is incremented by one in
every time slot if the user is not scheduled, while being
reinitialised to 0 once the user is scheduled. Hence the update
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relation for this starvation age parameter anu can be described
as

anu =
{

anu + 1, ifu /∈ ω(n),

0, ifu ∈ ω(n),
(21)

where ω(n) ⊂ {1, 2, . . . ,U} is the set of users scheduled to
transmit in time slot n. The action is choosing any N users
among U users at every time slot. The net video quality
reward of assigning users u1,u2, . . . ,uN in time slot n to
channels 1 through N , respectively, is given as

rn(u1, . . . ,uN ) =
N
∑

i=1

U
(

vnui

)

R(sn(ui, i)) −
∑

v /∈{u1,...,uN}
Kva

n
v ,

(22)

where, U(vnui) denotes the video utility achieved by schedul-
ing user ui over the ith channel and Kv is the penalty factor
corresponding to the starvation age. Deriving the optimal
policy to maximize the above long-term reward for this
multidimensional MDP yields the optimal scheduler policy
for video quality maximization. However it is significantly
challenging to obtain the optimal policy solution of this
MDP. This arises due to the fact that the above MDP has an
extremely large state space which grows exponentially with
the number of users and channels. Thus it is inefficient to
employ conventional policy and value iteration techniques to
derive the optimal policy as they require a significantly large
time for convergence. Hence in such scenarios, one can
initialize with a random policy and employ a one step policy
iteration to derive a policy that is sufficiently close to the opti-
mal policy [18]. Now consider an initial random policy for
individual user selection towards sub-channel allocation.
The policy improvement step towards deriving the optimal
policy for allocation of N sub-channels towards video quality
maximization is to choose the set of N different users which
maximizes the index Iu(in, an) given as

Iu(in, an) =
N
∑

i=1

U
(

vnui

)

R(sn(ui, i))

−
∑

v /∈{u1,...uN}
Kva

n
v +

∑

i

Pini(n+1)hr
(

i(n+1), a(n+1)
)

,

(23)

where in = (Sn, vn) is the joint multiuser multichannel and
video queue state at time slot n and hr(j(n+1), au) is the bias
term of the randomized policy starting in state (i(n+1), a(n+1)).
The starvation age of each user in n + 1 time slot a(n+1) is
obtained by incrementing the previous starvation age by
one if the user is not scheduled and assigning 0 if user is
scheduled. This is represented by

a(n+1)
ui =

{

anui + 1, ifui /∈ {u1, . . . ,uN}
0, otherwise.

(24)

Hence the optimal video policy depends on the bias term
which is derived employing the procedure below. Let u =
{u1,u1 . . . ,uN} be the set of users scheduled in time slot n.

To simplify the above equation, we add the following u
independent term given as

U
∑

v=1

Kva
n
v −

∑

i(n+1)

Pini(n+1)hr
(

i(n+1), an + e
)

, (25)

where e = [1, 1, . . . , 1]T . Adding the above term to the (23),
the resulting expression for the index Iu(in, an) can be simpli-
fied as

Iu(in, an) =
N
∑

i=1

U
(

vnui

)

R(sn(ui, i)) +
N
∑

i=1

Kvia
n
vi

+
∑

i(n+1)

Pini(n+1)

(

hr
(

in+1, a(n+1)
)

− hr
(

in+1, an + e
)

)

.

(26)

From the above equation, it is clear that the optimal in-
dex depends only on the difference in the bias terms
(hr(in+1, a(n+1)) − hr(in+1, an + e)). To compute this consider
two different sample paths of the stochastic process of the
randomized policy (i(n,m), a(n,m)), m ∈ {1, 2} such that
ω1(n) = ω2(n), i(n,1) = i(n,2), n ≥ 0 and a(0,1) = a(n+1),
a(0,2) = an + e. Let ni be the first time instant at which user ui
is scheduled. It can be readily observed that the difference
in biases is equal to the average difference in the reward
acquired in these two sample paths. However in this scenario,
the rewards differ only in cost term for users ui till time slot
ni. Therefore,

a(n,1)
v = a(n,2)

v , v /∈ u, ∀n

a(n,1)
ui = a(n,2)

ui , ui ∈ u, if n > ni,

a(n,1)
ui = n, a(n,2)

ui = anui + 1 + n, ui ∈ u, if n ≤ ni.

(27)

Hence, employing the above relations for the starvation age
vector, the expression for the bias difference hr(i(n+1),
a(n+1))− hr(i(n+1), an + e) can be derived as

hr
(

i(n+1), a(n+1)
)

− hr
(

i(n+1), an + e
)

=
N
∑

i=1

ni
∑

n=1

Kui

(

anui + n + 1
)

− Kui(n).
(28)

Since the policy is random, ni is a random variable which
follows geometric distribution with p = N/U . Therefore the



Advances in Multimedia 9

expected value of the difference in bias term can be further
simplified as

hr
(

i(n+1), a(n+1)
)

− hr
(

i(n+1), an + e
)

=
N
∑

i=1

∞
∑

ni=1

p
(

1− p
)(ni−1)

ni
∑

i=1

Kui

(

anui + n + 1
)

− Kui(n)

=
N
∑

i=1

∞
∑

ni=1

(

1− p
)(ni−1)

Kui

(

anui + ni + 1
)

− Kui(ni)

=
N
∑

i=1

Kui

(

anui + 1
)

⎛

⎝

∞
∑

ni=1

(

1− p
)(ni−1)

⎞

⎠

= 1
p

N
∑

i=1

Kui

(

anui + 1
)

= U

N

N
∑

i=1

Kui

(

anui + 1
)

.

(29)

Substituting the above expression in (23), the resulting ex-
pression for the user video scheduler index Iu(in, an) can be
simplified as

Iu(in, an) =
N
∑

i=1

U
(

vnui

)

R(sn(ui, i))

+
N
∑

i=1

Kuia
n
ui

+
U

N

∑

i(n+1)

Pinin+1

N
∑

i=1

Kui

(

anui + 1
)

=
N
∑

i=1

U
(

vnui

)

R(sn(ui, i))

+ Kuia
n
ui + Kui

(

anui + 1
)

(

U

N

)

.

(30)

Let w(u, c) be defined as w(u, c) =U(vnu)R(sn(u, c))+Kuanu+
Ku(anu + 1)(U/N). Then the index Iu(in, an) can be simplified
as

Iu(in, an) =
N
∑

i=1

w(ui, i). (31)

Therefore the optimal video scheduler policy chooses N
users such that it maximises the sum component index
∑N

i=1 w(ui, i). Next we describe a fast algorithm to compute
the multiuser multi-sub-channel allocation towards video
quality maximization based on the above index optimiza-
tion.

7. Bipartite User Subchannel
Index Maximization

The above multiuser index maximization can be readily
viewed as a maximum weight bipartite matching computa-
tion. Consider a bipartite graph (U ,C,E) such that the par-
titions contain the U users and the N channels as the nodes

Su
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Fr
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u
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O
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ea

d

OFDM frame

Time

Subchannel allocated to user 1

Figure 6: OFDM subchannel allocation with respect to time.
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2
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W(2, 2)

W(1, 2)

W(U , 2)

W(2,N)

W(U ,N)

··
·

··
·

Figure 7: Bipartite graph with users and channels as nodes of the
graph.

and the U × N edges between each user u to each channel c
are associated with the weight w(u, c) as shown in Figure 7.
The optimal index computation for video scheduling thus
reduces to computing the maximally wighted bipartite user
sub-channel matching. This can be achieved through the
Hungarian algorithm-based sub channel allocation given
below. The input to the algorithm is a matrix W whose
(i, j)th element represents weight of the edge between user
i and channel j which is equal to w(i, j). The algorithm is
described below.

The Hungarian method given in Algorithm 1 thus yields
the optimal index based user sub-channel allocation for long
term video quality maximization. However, it has a com-
plexity of O((U + N)3). Hence to reduce the computational
complexity we present a suboptimal greedy algorithm of
complexity O(U2) in Algorithm 2.

8. Simulation Results

We compare the performance of the proposed video optimal
policies with LIP proposed in [15], proportional fair (PF)
scheduling policy, and two heuristic policies. The LIP is an
index policy with index Ilu(sn, an) defined exclusively in terms
of the channel state vector sn and multiuser starvation vector
an as Ilu(sn, an) = R(snu) + Kuau(U + 1) + KuU . The LIP is
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Figure 8: Utility (̂Ψ) versus starvation age (χ̂).
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Figure 9: Utility (̂Ψ) versus Rho (ρ̂d).

an optimal policy for maximizing bit rate with a constraint
on fairness. It is generic in sense it does not depend on
the type of data transmitted. Whereas the policies ISVP,
ISVPF we have proposed are suited for transmission of video
data through wireless channel. These policies take advantage
of the scalability of video and hence they are dynamically
scalable with the state of the changing wireless environment.

The PF scheduling policy is equivalent to an index policy
I
p
u (sn) =R(snu)/Qu(n) where Qu(n) is given as

Qu(n + 1) =
{

(1− τ)Qu(n) + τR
(

snu
)

, ifu = ω(n)

(1− τ)Qu(n), ifu /=ω(n),
(32)

where ω(n) is the scheduled user in slot n and τ is the
damping coefficient. As the above two policies are generic,
we also compare our results with two other heuristic policies.

The first heuristic policy is the Quality Proportional Fair
(QPF) policy. It is similar to PF policy except that the rate
is replace by product of utility and rate. The QPF schedul-
ing policy is equivalent to an index policy IQPF

u (sn) =
U(snu)R(snu)/Qu(n) where Qu(n) is given as

Qu(n + 1) =
{

(1− τ)Qu(n) + τU
(

snu
)

R
(

snu
)

, if u = ω(n)

(1− τ)Qu(n), if u /=ω(n).
(33)

The second heuristic policy is Rate Starvation Age policy
(RSA). It is an Index policy with index directly proportional
to rate and starvation age. The index IRSA

u is defined as
IRSA
u (sn, an) = R(snu) + Kuau. These policies are extended

appropriately for comparison in multichannel scenarios. For
multi channel scenario, we applied Greedy matching and
Hungarian matching algorithms with the weights of the
edges equal to above indexes ILIP and IPF. For finite queue
case whenever the buffer is full, the incoming packets are
dropped.

We consider the performance measures Ψ, the expected
per-slot long-term utility, χ, the expected starvation age and
ρd, the probability that a user is not served for longer than d
time slots, for evaluation of the policies. We consider an L +
1 = 5 channel state model with supported rate states R(snu) ∈
{38.4, 76.8, 102.6, 153.6, 204.8} Kbps. We considered U = 12
users transmitting the standard videos Akiyo, City, Crew,
and Football. We use T = 105 slots and P = 100 sample paths
of the Markov chain. The state transition matrix is similar to
the one considered in [15], with β = 0.999. The Ku value is
varied for the ISVP and LIP schemes while τ is varied for the
PF scheme. The starvation age and utility are calculated for
different values of parameter Ku in the range [0, 500]. In case
of the PF policy, the parameter τ is varied appropriately in
the range [0, 1].

Figure 8 shows a comparison of the video utility of the
proposed ISVP policy with LIP, PF, RSA, and QPF policies.
It can be observed that the proposed ISVP policy yields the
maximum video utility amongst the five competing policies.
Further, as Ku → ∞ and τ → 1, the LIP and PF policies
effectively converge to the round-robin policy. Hence, the
utility and starvation age coincide at this point. Further when
Ku = 0 the index remains same for ISVP and QPF policies
so they also coincide. Figure 9 shows the plot between utility
and the probability ρd that a user is starved for more than d
slots. This is also plotted by varying the parameters as men-
tioned above. We observe that the utility is maximum for a
particular probability for the proposed ISVP scheme com-
pared to other policies. Thus, the proposed ISVP scheduler
maximizes the net video quality while not compromising on
fairness. Further the ISVP policy we proposed is an index
policy and index calculation is of order O(1) similar to PF
and LIP policy so the cost of computation remains same
which is O(U).

Figures 10 and 11 show a comparison of the video utility
of the proposed ISVPF policy with that LIP, RSA, QPF, and
PF policies when each user queue sizes are equal to Lu = 500.
It can be observed that the proposed ISVPF policy yields the
maximum video utility amongst the five competing policies.
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(1) Identify the largest element α of the matrix W and replace each element w(u, c) with α−w(u, c).
(2) From every row of the resultant matrix subtract the row minimum that is, w(i, j) = w(i, j)−min j(w(i, j)),∀i.
(3) From every column of the matrix subtract the column minimum that is, w(i, j) = w(i, j)−mini(w(i, j));∀ j.
(4) while True do
(5) In every row match a row and column if there is only one 0 in a row and strike off the other 0’s in the

matched column that is, i↔ j, if w(i, j) = 0, and w(i′, j) /= 0,∀i′ /= i,∀i ∈ {1, 2, . . . ,U}
(6) In every column match a row and column if there is only one 0 in the column and strike off the other 0’s

in the matched row that is, i↔ j, if w(i, j) = 0, and w(i, j′) /= 0,∀ j′ /= j,∀ j ∈ {1, 2, . . . ,N}
(7) if Allocation is not complete then
(8) Draw minimum number of lines passing through all zeroes.
(9) Identify the smallest number θ amongst all elements through which no line is passing.
(10) For each element subtract θ if no line is passing through and add θ if two lines are passing through.
(11) else
(12) break
(13) end if
(14) end while

Algorithm 1: Hungarian matching.

(1) for i = 0 to N do
(2) Match the ith channel with user u having the highest

weight w(u, i).
(3) Set w(u, j) = −∞, j /= i.
(4) end for

Algorithm 2: Greedy matching.

Figure 9 shows the plot between utility and the probability
ρd that a user is starved for more than d slots. We observe
that the utility is maximum for a particular probability for
the proposed ISVPF scheme compared to other policies.
Thus, the proposed ISVPF scheduler maximizes the net
video quality for finite buffers at the base station while not
compromising on fairness.

In this section, we compare through simulations the
performance of the proposed optimal multichannel alloca-
tion policies, Hungarian MultiChannel Optimal Allocation
(HMOA), and Greedy MultiChannel Sub-Optimal Alloca-
tion (GMOA) with that of the LIP policy proposed in [15]
and the standard Proportional Fair (PF) scheduler. Since
these are designed for single shared channel scheduling we
extend them to multichannel scheduling, by employing the
Hungarian (HMLIP, HMPF) and Greedy matching (GMLIP,
GMPF) paradigms described above. It can be observed
from Figures 12 and 13 that the proposed HMOA policy
yields the maximum video quality amongst the competing
multiuser multichannel video scheduling policies. Although
the GMOA is not optimal but it performs better than PF
policy. Further, as Ku →∞ and τ → 1, the LIP and PF policies
effectively converge to the round-robin policy. Hence, the
utility and starvation age coincide at this point.

9. Conclusions

In this paper, we developed a novel framework to char-
acterize the differential utility of the H.264 scalable video
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Figure 10: Utility (̂Ψ) versus Starvation Age (χ̂) when queue length
= 500.

stream layers. Based on the proposed framework, a utility-
starvation based reward paradigm has been proposed to
characterize the scheduling decisions. The end-user video
quality maximization has been formulated as an appropriate
Markov decision process, and an optimal index based ISVP
and ISVPF have been derived towards scheduling the scalable
video frames for net video quality maximization in next
generation wireless networks. We demonstrated through
simulations that the derived ISVP and ISVPF policies achieve
better utility compared to PF, LIP, RSA, and QPF policies.
Further, we extended this to multiuser multichannel scenar-
ios. The multichannel allocation problem was formulated as
an MDP, and the optimal index based channel allocation
policy was derived towards video quality maximization
which also ensured fairness of video QoS. Two novel index
based video scheduling schemes, namely, the Hungarian and
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Figure 11: Utility (̂Ψ) versus Rho ( ρ̂d) when queue length = 500.
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Figure 12: Utility (̂Ψ) versus Starvation Age (χ̂).

Greedy MultiChannel Allocation were derived for multiuser
multichannel video scheduling. Simulation results demon-
strate that the proposed HMOA and GMOA schemes achieve
a significantly higher video quality for a given starvation age
compared to standard LIP and PF policies.

Notation

U : Number of users
V(m,n): Video stream with m temporal layers and n

quantization layers
R(m,n): Bit rate of V(m,n)
Q(m,n): Quality of V(m,n)
U(m,n): Utility of video stream
n: Time slot index
sn: State of the channel at slot n
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Figure 13: Utility (̂Ψ) versus Rho (χ̂).

L: Number of channel states
vn: Video state of a HOL frame at slot n
an: Starvation age at slot n
R(s): Maximum bit rate of channel at state s
qn
u: Vector of utilities of packets of user u at time

slot n
Lu: Maximum queue size of user u
τ: Damping coefficient of PF policy
χ: Expected starvation age
β: Probability that a channel state remains in

same state
N : Number of channels
˜V(m,n): Video stream of mth temporal layer and nth

quantization layer
˜R(m,n): Bit rate of ˜V(m,n)
˜Q(m,n): Quality of ˜V(m,n)
ω(n): Set of users scheduled at time slot n
u: User index
sn: Joint channel state of all users at slot n
Pu: Probability transition matrix of user u
vn: Joint video state of all users at slot n
an: Joint starvation age of all users at slot n
K : Weight factor for starvation age
qn: Joint vector of utilitiesvector of all users at

time slot n
hr : Bias term of random policy r
Ψ: Expected per slot long-term utility
ρd: Probability that user is not served for

morethan d slots
P: Number of sample paths
PF: Proportional Fair
ISVPF: Index based scalable video scheduling Policy

for finite queue size
QoS: Quality of service
GOP: Group of pictures
JSVM: Joint Scalable Video Model
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QPF: Quality Proportional Fair policy
HMOA: Hungarian Multi-Channel Optimal

Allocation
HMPF: Hungarian Matching Proportional Fair

policy
GMPF: Greedy Matching Proportional Fair policy
MDP: Markov decision process
ISVP: Index based scalable video scheduling policy
SVC: Scalable video coding
HUF: Highest urgency first
QP: Quantization parameter
LIP: Linear Index Policy
RSA: Rate Starvation Age policy
HMLIP: Hungarian matching LIP
GMLIP: Greedy matching LIP
GMOA: Greedy Multichannel sub-Optimal

Allocation.
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