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We introduce a new modified Ishikawa iterative process and a new W-mapping for comput-
ing fixed points of an infinite family of strict pseudocontractions mapping in the framework of
g-uniformly smooth Banach spaces. Then, we establish the strong convergence theorem of the
proposed iterative scheme under some mild conditions. The results obtained in this paper extend
and improve the recent results of Cai and Hu 2010, Dong et al. 2010, Katchang and Kumam 2011
and many others in the literature.

1. Introduction

Let E be a real Banach space with norm || - || and C a nonempty closed convex subset of E. Let
E* be the dual space of E, and let (-, -) denotes the generalized duality pairing between E and
E*. For q > 1, the generalized duality mapping J; : E — 2F is defined by

Jo(x) = {f € E*: (x, ) = I%l1% | £1] = 117"}, (1.1)

for all x € E. In particular, if g = 2, the mapping | = ] is called the normalized duality mapping
and J,;(x) = llx||972 ]2 (x) for x #0. It is well known that if E is smooth, then J4 is single-valued,
which is denoted by j.
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A mapping T : C — C is called nonexpansive if
|ITx-Ty| < |lx-vy|, VxyeC (1.2)

We use F(T) to denote the set of fixed points of T; thatis, F(T) = {x € C : Tx = x}.
T is said to be a A-strict pseudocontraction in the terminology of Browder and Petryshyn
[1] if there exists a constant A > 0 and for some j;(x - y) € J;(x — y) such that

(Tx =Ty jy(x-)) < e -yl - MU -Tyx - -Tll", veyeC. (3
T is said to be a strong pseudocontraction if there exists k € (0,1) such that
(Tx-Ty,j,(x-y)) <klx-yll, Vx,yeC. (1.4)

Remark 1.1 (see [2]). Let T be a A-strict pseudocontraction in a Banach space. Let x € C and
p € F(T). Then,

1
I7x-pl < (1+ 375 ) I =Pl 1.5

Recall that a self mapping f : C — C is contraction on C if there exists a constant
a € (0,1) and x, y € C such that

157G = F @)l < allx = y- (1.6)

We use I¢ to denote the collection of all contractions on C. That is, IIc = {f | f : C —
C a contraction}. Note that each f € I'lc has a unique fixed point in C.

Very recently, Cai and Hu [3] also proved the strong convergence theorem in Banach
spaces. They considered the following iterative algorithm:

x1 = x € C chosen arbitrarily,

yn=Pc [ﬂnxn + (1 - ﬂn)iﬂi(n)Tixn:Ir (1.7)

Xne1 = AnY f (Xn) + YnXn + (L= y) I - ayA)yn, Yn2>1,

where T; is a non-self-\;-strictly pseudocontraction, f is a contraction, and A is a strongly
positive linear bounded operator.
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Dong et al. [2] proved the sequence {x,} converges strongly in Banach spaces under
certain appropriate assumptions and used the W, mapping defined by (1.11). Let the
sequences {x,} be generated by

xo = x € C chosen arbitrarily,
Yn = OpXn + (1 = 6,)Wyxy, (1.8)

Xnt1 = lxnf(xn) + ,ﬁnxn + Yan]/nr Vn > 0.

On the other hand, Katchang and Kumam [4, 5] introduced the following new
modified Ishikawa iterative process for computing fixed points of an infinite family
nonexpansive mapping in the framework of Banach spaces; let the sequences {x,} be
generated by

xo = x € C chosen arbitrarily,
Zn = YnXn t+ (1 - Yn)ann/

Yn = pnxn + (1 - ﬂn)annr

Xne1 = Y f(x) + (I =y A)y,, VYn >0,

(1.9)

where f is a contraction, A is a strongly positive linear bounded self-adjoint operator, and
W, mapping (see [6, 7]) is defined by
un,n+l = I/
un,n = )LnTnun,nH + (1 - )‘n)I/
un,n—l = -)Ln—lTn—lun,n + (1 - -)‘n—l)I/

Uk = MTilppen + (1= Ae) 1, (1.10)
U1 = M1 TeeaUp e + (1= M),

Upp = LUz + (1-A2)I,
Wn = Lln,1 = )qulln,z + (1 — )Ll)I,

where Ty, T, ... is an infinite family of nonexpansive mappings of C into itself and Ay, Ay, ...
is real numbers such that 0 < A, < 1 for every n € N. In 2010, Cho [8] considered and
proved the strong convergence of the implicit iterative process for an infinite family of strict
pseudocontractions in an arbitrary real Banach space.
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In this paper, motivated and inspired by Cai and Hu [9], we consider the mapping W,
defined by

un,n+1 = I/
un,n = tnTn,nun,n+1 + (1 - tn)I/

Ui = Tl + (1 - t)1,
(1.11)
Uit =t T Ui + (1 = teo1),

U,p = toTyolys + (1 -t),
Wn = un,l = tlTn,lun,Z + (1 - tl)I/

where f1,t;, ... are real numbers such that 0 < t,, < 1. Ty, = 0, xSk + (1 — 0,,)I, where S is a
Ag-strict pseudocontraction of C into itself and 6, € (0, 4], 4 = min{1, {q)‘/ C, }1/ q-1 }, where
A = inf Ak for all k € N. By Lemma 2.3, we know that T, x is a nonexpansive mapping, and
therefore, W,, is a nonexpansive mapping. We note that the W-mapping (1.10) is a special
case of a W-mapping (1.11) when 6, = 6k is constant for all n > 1.

Throughout this paper, we will assume that infl; > 0,0 <t, <b < 1foralln € Nand
{0} satisfies

(H1) O,k € (0, 4], 4 = min{1,infi{g" /C,}"/47"} forallk € N,

(H2) 10441k — Oni| < an forallm e Nand 1 < k < n, where {a,} satisfies ;" a, < oo.

The hypothesis (H2) secures the existence of lim, _,g,, for all k € N. Set 01x =
lim;, -, 0, for all k € N. Furthermore, we assume that

(H3) 61 >0 forall k € N.

It is obvious that 6, k satisfy (H1). Using condition (H3), from T;, x = 0k S+ (1-0,x)1,
we define mappings Ty kx := limy, o Ty xx = 01k Skx + (1 — 01 1)x for all x € C.

Our results improve and extend the recent ones announced by Cai and Hu [3],
Dong et al. [2], Katchang and Kumam [4, 5], and many others.

2. Preliminaries

Recall that U = {x € E : ||x|| = 1}. A Banach space E is said to be uniformly convex if, for any
€ € (0,2], there exists 6 > 0 such that for any x, y € U, ||x — y|| > € implies ||(x +y)/2|| < 1-6.
It is known that a uniformly convex Banach space is reflexive and strictly convex (see also
[10]). A Banach space E is said to be smooth if the limit lim;_,o(]|x + ty|| — ||x||) /¢ exists for all
x,y € U. Itis also said to be uniformly smooth if the limit is attained uniformly for x,y € U.
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In a smooth Banach space, we define an operator A as strongly positive if there exists
a constant y > 0 with the property

(Ax, J(x)) 2 ¥lIxI?, llal = bA| = sup |((al ~bA)x,](x))| a€[0,1], be[-11], 2.1)

flxll<1

where [ is the identity mapping and | is the normalized duality mapping.

If C and D are nonempty subsets of a Banach space E such that C is a nonempty
closed convex and D C C, then a mapping Q : C — D is sunny [11, 12] provided that
Q(x+t(x - Q(x))) = Q(x) forall x € C and t > 0 whenever x + t(x — Q(x)) € C. A mapping
Q : C — Ciis called a retraction if Q*> = Q. If a mapping Q : C — C is a retraction, then
Qz = z for all z in the range of Q. A subset D of C is said to be a sunny nonexpansive retract
of C if there exists a sunny nonexpansive retraction Q of C onto D. A sunny nonexpansive
retraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions
play an important role in our argument. They are characterized as follows [11, 12]: if Eis a
smooth Banach space, then Q : C — D is a sunny nonexpansive retraction if and only if there
holds the inequality

(x-Qx,J(y-Qx))<0, VxeC, yeD. (2.2)

We need the following lemmas for proving our main results.

Lemma 2.1 (see [13]). In a Banach space E, the following holds:
lx+ ylI* < IxI” +2(y,j(x +v)), Vxye€E, (2.3)

where j(x +y) € J(x +y).

Lemma 2.2 (see [14]). Let E be a real g-uniformly smooth Banach space, then there exists a constant
Cy > 0 such that

lx+yll” < llxll +q(y, jax) + Colly||”, Vx,y € E. (2.4)

In particular, if E be a real 2-uniformly smooth Banach space with the best smooth constant K, then
the following inequality holds:

lx+y||> < Ix? + 2(y, jx) +2||Ky||>, Vx,y€E. (2.5)

The relation between the A-strict pseudocontraction and the nonexpansive mapping
can be obtained from the following lemma.

Lemma 2.3 (see [15]). Let C be a nonempty convex subset of a real g-uniformly smooth Banach space
Eand S : C — C a A-strict pseudocontraction. For a € (0,1), one defines Tx = (1 — a)x + aSx.
Then, as a € (0, u], p = min{1, {q*/Cq}l/””1 }, T:C — Cis nonexpansive such that F(T) = F(S),
where Cg is the constant in Lemma 2.2.
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Concerning W,,, we have the following lemmas, which are important to prove the main
results.

Lemma 2.4 (see [2]). Let C be a nonempty closed convex subset of a g-uniformly smooth and strictly
convex Banach space E. Let S;,i=1,2,..., bea \;i-strict pseudocontraction from C into itself such that
N, F(Sy) #0, and let inf \; > 0. Let t,,n = 1,2,..., be real numbers such that 0 < t, < b < 1 for
any n > 1. Assume that the sequence {0, } satisfies (H) and (H,). Then, for every x € C and k € N,
the limit lim,, _, ..U, X exists.

Using Lemma 2.4, we define the mappings U;x and W : C — C as follows:

U pex = lim Uy, kx,
n—oo

(2.6)
Wx := lim Wyx = lim U, x,

n—oo

for all x € C. Such W is called the W-mapping generated by Si,5,..., ti,t,... and
Ok forallmeNand 1<k <m.

Lemma 2.5 (see [2]). Let {x,} be a bounded sequence in a g-uniformly smooth and strictly convex
Banach space E. Under the assumptions of Lemma 2.4, it holds

Hm [[Wx, = Wox|| = 0. (2.7)

Lemma 2.6 (see [2]). Let C be a nonempty closed convex subset of a g-uniformly smooth and strictly
convex Banach space E. Let S;,i = 1,2,..., be a \j-strict pseudocontraction from C into itself such
that N, F(Sy,) #0, and let inf \; > 0. Let t,,n = 1,2,..., be real numbers such that 0 <t, <b <1
for any n > 1. Assume that the sequence {0, } satisfies (H1)~(Hs). Then, F(W) = N2 F(S,).

Lemma 2.7 (see [16]). Assume that {a,} is a sequence of nonnegative real numbers such that

api1 < (1-ay)a, +6,, n>0, (2.8)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that

(i) X521 an = oo,

(ii) imsup, ,  6n/an <0o0r 372, 64| < 0.

Then, lim,, _, ,a, = 0.

Lemma 2.8 (see [17]). Let {x,} and {y,} be bounded sequences in a Banach space X, and let {f,} be
a sequence in [0,1] with 0 < liminf, , ,p, <limsup, , f, < 1. Suppose that x,,1 = (1~ Pn)yn +
Puctu for all integers n > 0 and limsup,,_ , (1yus1~Yull w1 =all) < 0. Then, limy, ool 22l =
0.

Lemma 2.9 (see [3]). Assume that A is a strong positive linear bounded operator on a smooth Banach
space E with coefficient Y > 0 and 0 < p < ||A||™L. Then, ||I — pAl| <1 - pY.
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3. Main Results
In this section, we prove a strong convergence theorem.

Theorem 3.1. Let E be a real g-uniformly smooth and strictly convex Banach space which admits
a weakly sequentially continuous duality mapping | from E to E*. Let C be a nonempty closed and
convex subset of E which is also a sunny nonexpansive retraction of E such that C + C C C. Let A
be a strongly positive linear bounded operator on E with coefficient y > 0 such that 0 < y < y/a,
and let f be a contraction of C into itself with coefficient a € (0,1). Let S;, i = 1,2,..., be ;-
strict pseudocontractions from C into itself such that N2° | F(S,) #0 and inf \; > 0. Assume that the
sequences {an}, {Pn}, {yn}, and {6,} in (0,1) satisfy thefollowmg conditions:

(1) X2 &ty = 00; and limy, , a0, = 0,

(ii) 0 < liminf, o B, <limsup, , _ p. <1,

)

)
(iii) limy, - ool yne1 =yl =0,
(iv) limy, — o |6ns1 — 6| = 0,
)

(V) 6n(1 + yu) — 2y, > a for some a € (0,1),
and the sequence {0, } satisfies (H1)—(Hsz). Then, the sequence {x,} generated by

xo € C chosen arbitrarily,

Zp = Onxy + (1= 0,) Wiy,

(3.1)
Yn = YnXn + (1 - Yn)annr
X1 = O f (Xn) + Py + (1= )] — 2y A)y,, Yn>0
converges strongly to x* € N, F(S,), which solves the following variational inequality:
(rf(x*) - Ax*, J(p-x*)) <0, Vf eI, p € )F(Sn). (3.2)

n=1

Proof. By (i), we may assume, without loss of generality, that a, < (1 - 8,)||A[|"! for all n.
Since A is a strongly positive bounded linear operator on E and by (2.1), we have

Al = sup{[(Ax, J(x))| : x € E, ||x]|| = 1}. (3.3)

Observe that

((1=Bu)I = anA)x, J(x)) =1~ Pn — an(Ax, J(x))
> 1= Pu—anllAll (3.4)
>0, VxeE.
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This shows that (1 - f,)I — a, A is positive. It follows that
(1= Bn)I = anAll = sup{[{((1 - fu) I - anA)x, ] (x))] : x € E, [|x]| = 1}

=sup{l -, —a.(Ax, J(x)) : x € E,||x|| = 1} (3.5)

<1-6n—a,y.

First, we show that {x,} is bounded. Let p € Nn%  F(S,,). By the definition of {z,}, {v.},
and {x,}, we have

120 = pll = 16nxn + (1 = 6)Waixw = p||
< 6ullxn = pll + (1= 80) [|[Waxa = p|

(3.6)
< 6nllxen —pl| + (1= 8a)[|xn = pl
= [lxn = pll,
and from this, we have
”yn - P” = ”Ynxn + (1 - Yn)ann _P”
< Yullxn = pll + (1= y) [[Wazn = p|
<Yullxn = pll + (1 =ya) |20 - Pl (3.7)
< Yaullxn = pll + (1 =) |20 — Pl
= [|xn —pl|-
It follows that
|1 =Pl = ety f () + Buxtn + ((1 = Bu) I = €nA)yn —p|
= [Jan(yf (xn) = Ap) + Bu(xn = p) + ((1 = Bu) I = € A) (yn - ) ||
< ||y f(xn) = Ap|| + Bull2n = pl| + (1 = B = anY) |y ~ |
< aullyfxn) = Apl| + Bullxn = pl| + (1 = Bn — ) [|l2n = p|
<allyf o) f @+ allyf o) - Apll+ -alxpl g
< anyal|xn = pll + aa|lyf(p) = Ap|| + (1 = an¥) [|xn — p|
_ _ yf(p) - Ap
= (1= (r—ya)an) |lxn - p|| + (Y—Ya)anny_7”

_py, F @) = Apl }

Smax{”xl ~
y-y«x
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By induction on n, we obtain ||x, — p|| < max{||xo —p||, Iy f(p) — Apll/y — yal||} for every n > 0
and xp € C, then {x,} is bounded. So, {yx}, {zn}, {Ayn}, (Wauxn}, {(Whz,), and {f(x,)} are
also bounded.

Next, we claim that |[x,;1 — x,]| — Oasn — oo. Let x € Cand p € N2, F(S,).
Fix k € N for any n € N with n > k, and since T, x and U, x are nonexpansive, we have
ITuex — pll < |lx = pll and [[Upkx — pll < |lx — pl|, respectively. From (1.5), it follows that
ISkx = pll < (1+ (1/1))sup,, [lx = p|l. We can set

M, = irl)f<2 + #>suﬂp”xn -p|| < oo,

. 1
M, = 11;_1f<2 + W>suﬂp”zn - p|| < oo.

From (1.11), we have

(3.9)

Wai1xn = Waxal| = [Uns1,10 = UnaXal|
= [T U000 + (1= t1)x, — 81T 1 Uy 220, — (1 = £) x4 ]|
= t|| T, 1 U1 2% — T a U o x|
= 11]|(One1,1S1 + (1 = 0p41,1) ) U1 2% — Ty U 24 ||
=1 [(0151 + (1 = 0,,1))Ups12%n
T 1 Uppxpn + (One1,1 — 0n1) (S1lpa1 2% — U1 2X5) ||
<l TuaUns12%n = TuaUnpXall + £1|0n41,1 = On1[[1S1U 1,230 — Uns1 20|
< tlUni200 = UppXn|l + 11041, — 6,1 My

< tl|Ups1 X0 = UppXul| + tra, My

n
< Hti||un+1,n+1xn - Un,n+1xn|| +a, M,

n j
ti
i=1 j=1 i=1

n
b
< Hti||tn+lTn+l,n+1xn + (1 - tn+1)xn - xn” + aanm
i=

n+1

b
< Hti||Tn+1,n+lxn - xn” + aanm
i=1

b
< <bn+1 + anm)Ml,
(3.10)
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for all n > 0. Similarly, we also have ||[W.1z, = Wyza|| < (6™ + a,(b/(1-b)))M; for all n > 0.
We compute that

1zne1 = zall = 1(Ons1 2041 + (1 = 6p41) Wins1Xn41) = (6nXn + (1 = 6,) W) ||
< (1= 6u) Wi xns1 = W xull + 6041 = Oulllxn = W1 X || + G| Xne1 — Xl
+ (1= 6,) [[Was1xn — Waxu||
< (1= 6ne1) %1 = Xnll + [6041 = OnlIWis1Xn — Xull + Ot || Xns1 — X4l
+ (1= 6,) [[Wh1Xn — Whxyl|
= [|xtna1 = Xull + 16041 = OulllWis1xn = x|l + (1 = 60) [Wis1xn — Wil
< lxenar = Xull + 16041 = OulllWii1xn = xnll + [[Wis130 = Wil

< st = Xall + 6ss1 = Eal[Wissa 6 = 2| + (lw1 tan g - b>M1,
(3.11)

and
lyna = vall = | (raxnea + (1= Yae1) Wisazna1) = (yaXn + (1 = 1) Waza) ||
= |lymxna + (1= Yue1) Wi Zne1 = (1= Yuu1) W Zn + (1 = Y1) W1 20
~YnXn = (L= Yn)Wazn — (1 = ) Wi zn + (1 = Yn) W12 = Yne1 X + Y1 X ||
= | (1 = Y1) Wis12Zne1 = Wia12a) + (Y = Y1) Was1 Zn + Y1 (Xns1 — X)
+(Ynrt = Yn) Xn + (1= y) Wie120 — Waza) ||
< (1= Yus1) IWna1Zne1 = Wi Zall + |Yner = Y| 160 = Waaa Zall + Y1 |01 — 2]
+ (1= ) (Wha12n = Wazal|

< (1 - Yn+1)||zn+1 - Zn” + |Yn+1 - Yn|||Wn+1Zn - xn” + Yn+1||xn+1 - xn”

+ [[Wha12n — Whz||

b
< (1= o) (e =l + 181 = Gall Wit = 5ol + (670 a2 ) M)

b
+ |Yn+1 - Yn|||Wn+1zn = Xn|| + Yns1[|Xne1 — x|l + (bn+1 + anl _ b>M2

S ||xn+1 - xn” + |6n+1 - 6n|”Wn+1xn - xn” + |Yn+1 - Ynl”WnJrlzn - xn”

b
n+1
+2<b +an1_b>M,

(3.12)
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where M = inf;(2 + (1/11-1/q_1))5upn(||xn - pll + llzn = pll) < oo. Observe that we put [, =
(er—l - ,ann)/l - ,Bn/ then

Xpe1 = (1= Pu)ly + Puxn, Yn>0. (3.13)

Now, we have

_ “n+1)’f(xn+1) + ((1 _ﬁn+1)1 - an+1A)yn+1 “n)’f(xn) + ((1 - ﬁn)I - “nA)yn
st = 1ol = - - —
ﬂn+1 ﬂn

_ an+1Yf(xn+1) + (1 - ﬂn+1)yn+1 B A1 AYns _an}’f(xn) B (1 - ﬂn)]/n anA]/n

1- ﬂn+1 1- ﬁn+1 1- ,Bn+1 1- ,Bn 1- ﬁn 1 ﬂn

[L o7
=11(ﬁWMIWM+1ﬁMWYNmH%rW
Ayt

< 3o ﬁl 17 f (ns1) = Ay || + 7 IIAyn Y ) || + [yns1 = yal|

Aptl

Sl B ”Yf Xni1) — Ayn+1||+1 B ”Ayﬂ Yf(xn)”

+ ”xn+1 - xn” + |6n+1 - 6n|||Wn+1xn - xn” + |Yn+1 - Yn|||Wn+1Zn - xn”

+ 2(19’“rl + aanbb>M.
(3.14)

Therefore, we have

s = bl = s =l < 25—l f Gone) = Agmal| + 7275 [ Ay = |

+ 6041 = On|[[Wis1Xn — x| + |Yn+1 - Yn| Whi1Zn — x4|| (3.15)

b
n+1
+2<b + an—1 — b)M'

From the conditions (i)-(iv), (H2), 0 < b < 1 and the boundedness of {x,}, { f(x4)}, {Ayn},
{Wuxy}, and {W,z,}, we obtain

im sup (et~ Iull = X1 = xal)) < 0. (3.16)

It follows from Lemma 2.8 that lim,, _, ||/, — x,|| = 0. Noting (3.13), we see that

1241 = Xl = (1 - ﬂn)”ln - x5 — 0, (3.17)
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as n — oo. Therefore, we have
_ﬂhj{}o”xn-ﬂ — x|l = 0. (3.18)
We also have ||yu+1 — Y|l — 0and ||z — zn|| — 0asn — oo. Observing that

”xn - yn” < ”xn - xn+1|| + ||xn+1 - yn”
(3.19)

< |lxn = xpaa || + an”}’f(xn) - A]/n” + ﬁn”xn - ynll,
it follows that
(1= Bu) 1% = yull < N120n = Xnall + taly f () = Ayn]|- (3.20)

By the conditions (i), (ii), (3.18), and the boundedness of {x,}, { f(x,)}, and { Ay, }, we obtain

Jim |x, = ynl| = 0. (3.21)
Consider
”y" - W"Z"” = ”Yﬂxn + (1 - Yn)ann - ann” = YullXn = Wazall,
(3.22)
1zn = Xnll = 1600 + (1 = 60) Wiy = Xull = (1 = 6,) [Wa2tn — xa]-
It follows that
126 = Waxull < |0 = yal + [|yn = Waza| + [[Wnzn = Waa|
< [lxn = yull + Yalltn = Wazall + 120 = xu]
< |\xn = Y| + Yallxn = Wanll + yul[Waxn = Wazal| + (|20 — x4 (3.23)
< ”x" - yn” + Y"”xn - ann” + (1 + Yn)“zn - xn”
= ”xn - yn” + Yﬂ”xn - ann” + (1 + Yn)(l - 6n)||ann - xn”-
This implies that
(6"(1 + Y") - Zyn)”ann - xn” < “xn - yn” (324)
From the condition (v) and (3.21), we get
JEI;O||ann - an =0. (3_25)

On the other hand,

Wx = xull < [[Wxy = Wyxall + [Waxn — xal|- (3.26)
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From the boundedness of {x,} and using (2.7), we have |[Wx, - W,x,|| — 0asn — oo.It
follows that

11121}0||Wxn —xy|| = 0. (3.27)
Next, we prove that
limsup(y f (x*) = Ax", ] (xx = x*)) <0, (3.28)

n—oo

where x* = lim;_, ox; with x; being the fixed point of contraction x — tyf(x) + (1 - tA)Wx.
Noticing that x; solves the fixed point equation x; = ty f (x;) + (1 — tA)Wxy, it follows that

llxe = 2|l = ||(T = tA) (W, = x0) + £(y f (x1) = Ax) |- (3.29)

It follows from Lemma 2.1 that
lloct = 2a]|? = || (T = LAY (Wx, = ) + E(y f (1) = Ax) ||
< (1=F8) Wy = ] + 26y £ (1) = Ax, J (1 — %))
=(1- ?t)2||Wxt ~ W, + Wy — x> + 2ty f (1) — A, J (2 = ) )
< (1-7t) [||Wxt — Waxu|* + 2(Way — x, J(Ws - xn))]
+ 2t(y f(xr) — Axp, J (20 = X))
< (U7 [llxs = 2all® + 20W 0 = XulIWxs = ] + 26(1.f (1) = A, J (51 = 20))
< (1=l = all+ 2W s = all i = ) + [ W, = )]
+28(y f (1) — Axy, J (x4 — X))
= (1-27t+ (7)) e = xall* + 201 =7 W = a1 = all + [ Wty = )

+20(y f (o) — Axy, J (¢ — X)) + 28(Axy — Axp, J (X4 = X)),
(3.30)

where
Fult) = 2(1 = 78)2 [ Wty = x| (12 = 2]l + [Woxy = xa]) — 0 as n — oo, (3.31)

Since A is linearly strong and positive and using (2.1), we have

(Axi = Axn, ] (¢ = %)) = (A = Xn), J (Xt = X)) 2 Tllxe = xall”. (3.32)
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Substituting (3.32) in (3.30), we have

—
(Ax; =y f (xp), J (o1 = xn) ) < <Y7t —?) [l — x| + %fn(t) + (Axy — Axy, J (0 — x3) )

< (T; - 1) (Axt - Axy, ](xt - xn)>

(3.33)
1
+ an(t) + <Axt - Axn/](xt - xn)>
= T At = A Tt = 3)) + 1)
= 5 (Axt = Axy, J (xt = xn thn .
Letting n — oo in (3.33) and noting (3.31) yield that
. t
limsup(Ax; — yf(x1), J(x:—2xn)) < §M3, (3.34)

n—oo

where M3 > 0is a constant such that M3 > y(Ax; — Axy, J (xt—x,)) forallt € (0,1) and n > 0.
Taking t — 0 from (3.34), we have

lim sup lim sup(Ax; — yf (x:), J (2 — x,,)) < 0. (3.35)

t—0 n— o
On the other hand, we have

(rfx") = Ax", J(xn = x7)) = (yf(x7) = Ax", ] (xn = X))
—(rf(x") = Ax", J (xtn = 21)) + (y f(x") = Ax", J (3tn = x1))
~(rf(x") = Axy, J(xn = x1)) + (Y f(x7) = Axi, J (X0 = X1))
=y f(xe) = Axy, J (2 — xp) ) + (y f(x1) = Axy, J (%0 — X1))
= (yf(x") = Ax", ] (xn = x*) = J (xn = 1))
+ (Ax; — Ax™, J(xy — xt))
+(rf Q) =y f (), J Gen = x0)) + (r f () = Axi, ] (3 = x)),

(3.36)
which implies that
liI;l_)S:ip<Yf(x*) — AX*, J(xtq — x*)) < 111:1_)53p<yf(x*) — AX*, J (30 — x*) = J (20 — x1))
+ LAl — x*||li£ln_)szp||xn = xi|
(3.37)

+ ya||x* — x¢||lim sup||x, — x¢|

n— oo

+ limsup(y f(x¢) — Axy, J (xn — x1)).

n— oo
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Noticing that J is norm-to-norm uniformly continuous on bounded subsets of C, it
follows from (3.35) that

lim sup(y f(x*) — Ax*, J (x, — x*)) = hm sup lim sup(y f(x*) — Ax*, J(x, - x*)) <0.  (3.38)

n— oo n—oo

Therefore, we obtain that (3.28) holds.
Finally, we prove that x, — x* asn — oo. Now, from Lemma 2.1, we have

et = x*|* = [|etuy f (en) + Butn + [(1 = Bu)T = an Al yn — x*||*
= [[[(1 = pu)T = anA] (yn = x*) + an(y f (xn) = Ax™) + P (xn
< (1= B = an¥)? [y = 17 + 2(an (rf (en) = AX) + Bt = %), ] (1 = X))
= (1~ o~ aaT) ||y (n(yf (xn) = AX"), J (i1 = x7))
+ 2P (X0 — X7, J (Xns1 — X7))
= (1= P = an?)[lyn = x| + 2y (F () = (&), T (tnir = X))
+ 20, (Y f(x) = Ax", J (xps1 = X)) + 2B (200 — X%, ] (Xps1 — X¥))

< (1= = ) % = X117 + aya (s = %I + 0 = x°IF)
2, (yf (") = Ax*, ] (ner = %)) + Bu([ner = %"+ [len = x|
= (1= = @)+ @wya + o]l — 21+ (@ya + )l — I

+ 20, (Y f(x*) = Ax*, J (Xpe1 — X¥)),

(3.39)
and consequently,
—2
e (=Pu—any) +anya+ Py
I = 2 S S e - |
2a
m(}ff(x ) = AX", J (X1 = X7))
_ Zan(y—ya) *(12 ﬁ721+2ﬂnany+a$l?2 %112
= [1—m llxn — X7 + 1—apya—pn [l — x|
(3.40)
2—( f(x*) = Ax*, J (xp1 — x¥))
1-a Y- ﬁ Y ’ n+1

2n - 271__
:[1_ an (Y Ya)]”xn_x*”z+ an (7 - ya)

1-ayya—p, 1-apya—pn

ﬂi + Zﬁnan? + zxny
* [ 2a, (Y — ya) M, + ¥ <Yf(x ) — Ax", J(xp41 — )>]
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where My is an appropriate constant such that My > sup,,.o|lx, — x*||%. Setting ¢, = 2a,(y -

ya)/(1 - ayya — B,) and by, = (B2 + 2fuany + a2y")/ Qan(y — ya)) Ma + (1/ (¥ — ya))(y f (x*) -

Ax*, J(xp41 — x*)), then we have
[l2ne1 — X*HZ < (1 =cp)llxn = x*”z + Cnby. (341)

By (3.28), (i) and applying Lemma 2.7 to (3.41), we have x, — x* asn — oo. This completes
the proof. O

Corollary 3.2. Let E be a real g-uniformly smooth and strictly convex Banach space which admits
a weakly sequentially continuous duality mapping J from E to E*. Let C be a nonempty closed and
convex subset of E which is also a sunny nonexpansive retraction of E such that C + C C C. Let A
be a strongly positive linear bounded operator on E with coefficient y > 0 such that 0 < y < y/a,
and let f be a contraction of C into itself with coefficient a € (0,1). Let S;, i = 1,2,..., be ;-
strict pseudocontmctions from C into itself such that 03>, F(S,) #@ and inf \; > 0. Assume that the
sequences {an}, {Pn}, {¥n), and {6,} in (0,1) satisfy the following conditions:

(1) X2 @y = 00; and limy, o a4y = 0,

(ii) 0 < liminf, . B, <limsup, ,  pn <1,

)
)
(iii) limy o |Yns1 — yul = 0,
(iv) limy, . o [6n41 — Op| =

)

V) 6,1 +y2) — 2yn>aforsomea€ 0,1),

and the sequence {0, } satisfies (Hy). Then, the sequence {x,} generated by

xo € C chosen arbitrarily,

Zn = OpXxy + (1 - 6n)ann/

(3.42)
Yn = YnXn + (1 - Yn)annr
X1 = O f (Xn) + Puxn + (1= ) — @A)y, Yn>0
converges strongly to x* € N F(S,), which solves the following variational inequality:
(rf(x*) = Ax*, J(p-x*)) <0, Vf €Tl pe()F(Sn). (3.43)

n=1

Corollary 3.3. Let E be a real g-uniformly smooth and strictly convex Banach space which admits
a weakly sequentially continuous duality mapping J from E to E*. Let C be a nonempty closed and
convex subset of E which is also a sunny nonexpansive retraction of E such that C + C C C. Let
A be a strongly positive linear bounded operator on E with coefficient ¥ > 0 such that 0 < y <
Y/a, and let f be a contraction of C into itself with coefficient a € (0,1). Let S;, i = 1,2,..., bea
nonexpansive mapping from C into itself such that N F(S,) #0 and inf \; > 0. Assume that the
sequences {an}, {Pn}, {yn), and {6,} in (0,1) satisfy the following conditions:

(1) Xy an = 00; and lim, o at, = 0,
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(ii) 0 < liminf, o B, <limsup, B, <1,

lirnn—>oo|6‘rl+1 - 6n| =0,

)
(iii) Timy, - oo|Yne1 — Yul =0,
(iv)

)

(V) 60(1 + yu) — 2y, > a for some a € (0,1).
Then, the sequence {x, } generated by

xo € C chosen arbitrarily,

Zn = 6nxn + (1 - 6n)ann1

(3.44)
Yn = YnXn + (1 - Yn)annr
X1 = 0 f (%) + Py + (1= ) — @A)y, Yn>0
converges strongly to x* € N2, F(S,), which solves the following variational inequality:
(rf(x") = Ax*, J(p-x")) <0, Vfel, pe(\F(Sn). (3.45)

n=1

Remark 3.4. Theorem 3.1, Corollaries 3.2, and 3.3, improve and extend the corresponding
results of Cai and Hu [3], Dong et al. [2], and Katchang and Kumam [4, 5] in the following
senses.

(i) For the mappings, we extend the mappings from an infinite family of nonexpansive
mappings to an infinite family of strict pseudocontraction mappings.

(ii) For the algorithms, we propose new modified Ishikawa iterative algorithms, which
are different from the ones given in [2-5] and others.
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