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Abstract.
BACKGROUND: Laminography is a tomographic technique that allows three-dimensional imaging of flat, elongated objects
that stretch beyond the extent of a reconstruction volume. Laminography datasets can be reconstructed using iterative
algorithms based on the Kaczmarz method.
OBJECTIVE: The goal of this study is to develop a reconstruction algorithm that provides superior reconstruction quality
for a challenging class of problems.
METHODS: Images are represented in computer memory using coefficients over basis functions, typically piecewise constant
functions (voxels). By replacing voxels with spherically symmetric volume elements (blobs) based on generalized Kaiser-
Bessel window functions, we obtained an adapted version of the algebraic reconstruction technique.
RESULTS: Band-limiting properties of blob functions are beneficial particular in the case of noisy projections and if only a
limited number of projections is available. In this case, using blob basis functions improved the full-width-at-half-maximum
resolution from 10.2 ± 1.0 to 9.9 ± 0.9 (p value = 2.3·10−4). For the same dataset, the signal-to-noise ratio improved from
16.1 to 31.0. The increased computational demand per iteration is compensated for by a faster convergence rate, such that
the overall performance is approximately identical for blobs and voxels.
CONCLUSIONS: Despite the higher complexity, tomographic reconstruction from computed laminography data should be
implemented using blob basis functions, especially if noisy data is expected.

Keywords: Computed laminography, blob basis function, simultaneous algebraic reconstruction technique, SART,
Kaiser-Bessel window

1. Introduction

Computed tomography (CT) is an established method for three-dimensional (3D) nondestructive
testing (NDT). Hereby, projection images of a sample are acquired from the different directions around
a rotation axis and used to generate a 3D volume numerically. However, CT has limitations for large
planar objects. High absorption of X-rays along longitudinal directions and geometric restrictions cause
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Fig. 1. CLARA scanner set up. X-ray source and detector are initially rotated by a fixed angle around a horizontal axis (z-axis
in the image). The specimen is then rotated incrementally around the vertical y-axis to acquire projections from different
viewing positions. Image adapted from [7].

problems that prevent recording of several projection directions. The lack of a full set of projections
that cover every possible angle then leads to artifacts in the reconstructed object.

Large planar objects are a relatively common case in NDT. Applications featuring flat samples, where
one dimension is much smaller than others, include finding defects in microchips, rotor blades for wind
energy plants, or the analysis of fossils, where samples must not be destroyed. Especially for these areas
of application, where CT has severe drawbacks, a technique called Computed Laminography (CL) has
been developed [1–6]. Hereby, X-ray images are generated using a specific geometry like the CLARA
setup [3, 7]. In this setup, X-ray source and detector are initially rotated by a fixed angle around the
horizontal rotation axis (z-axis). The specimen is then rotated incrementally by a full 360◦ around
the vertical rotation axis (y-axis) to acquire projections from different viewing positions (Fig. 1). A
3D dataset is obtained computationally from these projections. Several reconstruction techniques for
CL exist. One technique is the iterative technique originally developed for tomosynthesis [8]. While
tomosynthesis uses a conventional CT scheme with a limited tilt range, CL uses a special scheme
described above. Other algorithms for the tomographic reconstruction of CL data are for example the
iterative algebraic reconstruction techniques (ART) [9], respectively simultaneous ART (SART) [10].
These algorithms lead to artifacts, particularly in datasets with a poor signal-to-noise ratio and when
only a limited number of projections is available. We propose a new reconstruction algorithm based on
the SART method. The new method replaces the voxel basis functions with a basis with band-limiting
properties. The adapted algorithm helps to suppress artifacts and thus improves reconstruction quality.

In either of these techniques, the object is represented by the three dimensional density function
f : R

3 → R, f (x) = dx, which assigns a density value dx ∈ R to each point x = (x1, x2, x3) in space.
This function is typically discretized using a linear combination of basis functions. Often, a simple
step or ramp function is sufficient, which is called voxel basis function or trilinear interpolated voxel
basis, respectively. The approximation of the volume function is called piecewise constant or piecewise
linear. The corresponding normalized gray value image has values d ∈ {0, . . . , 2bitrange − 1

}
.

Aiming at higher quality of reconstructions, e.g. through quadratic or higher order of interpolation,
the voxel basis has to be replaced by more appropriate basis functions. In this work we use spherically
symmetric volume elements b : R

3 → R, b (x) := b0 (‖x‖2), more specifically, we consider general-
ized Kaiser-Bessel window functions, also called blobs, introduced in [11], as a generalization of the
Kaiser-Bessel window function, see [12]. Here, b0 : R → R denotes the radial part of the blob, located
at the origin, defined as
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The order of a blob is given by m ∈ N, the radius, respectively support, is given by a ∈ R>0, and
the shape is controlled by α ∈ R>0. All parameters can be chosen to match custom demands. Im

denotes the modified Bessel function defined as Im(x) := ∑∞
n = 0
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gamma function. Favorable properties of blob functions include a compact support in real space and
approximately compact support in Fourier space, i.e. band-limiting properties and a radial symmetry,
which can be used for efficient computations as explained below.

Definitions and properties of blobs were given in [11] and [12], which includes the usage with iterative
algorithms for 3D image reconstructions in medical imaging. An efficient transformation of the image
space into spherically symmetric volume elements and cubic volume elements, which resemble blobs
and voxels, was also described. Matej et al. [13] investigated the relationship between the values of
blob parameters and the properties of images represented by blobs. Their experiments showed that
using blobs in iterative reconstruction methods leads to substantial improvements in reconstruction
performance and less image noise without loss of resolution compared to voxels. Garduño et al.
[14] further evaluated blob parameters and gave a formula that reduces the number of parameters by
computing � with help of the optimality criterion from [13]. Additionally, they proposed parameters
to optimize the representation of reconstructed objects. Popescu et al. [15] showed how ray tracing
with blobs works for computing forward projections.

Blob basis functions were also used in the field of electron tomography. Marabini et al. [16] applied
an ART approach with blobs as basis functions to conical tilt geometry electron microscopy data.
Bilbao-Castro et al. [17] proposed a parallel implementation of the ART approach with blobs and
gained a significant performance impact in terms of runtime. O’brien et al. [18] recently examined the
advances made for CL in the last years. They give an overview of advances in CL for both scanner
geometries and reconstruction approaches. Reconstruction techniques based on blobs specifically for
CL have not been investigated yet to the best of our knowledge.

We adapted the idea to use blobs instead of voxels as basis function for CL. As described above, blob
basis functions deliver a higher order of interpolation when working with discrete data. This lead to the
hypothesis that incorporating blob basis functions into a state of the art reconstruction algorithm can
enhance reconstruction quality and resolution. To validate this hypothesis, we implemented voxel based
and blob based SART for CL within the framework Ettention [19] to be able to compare reconstruction
capabilities within one unified codebase.

2. Materials and methods

We implemented the well-known SART for CL with both voxels and blobs as basis functions.
Our implementation was based on the framework Ettention [19], which is a software package for
tomographic reconstructions in electron tomography running on high-performance computing devices.

2.1. SART algorithm

The problem of reconstructing an image from measured CL data can be formulated as the inverse
problem of recovering the unknown density function f from measured data g by solving Df = g for
a given measurement operator D. Here, we use the basis functions (voxels resp. blobs) to discretize
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the reconstruction problem leading to a system of linear equations Ax = b, with the matrix A = (
aij

)
containing the forward projections of each basis function, b ∈ R

N describing the measured data,
and x ∈ R

M being the coefficients of the basis discretization. In CL, the forward projections aij are
modeled by the cone beam transform, which is basically the integral along straight lines through the
basis functions. For SART, all projections are processed successively in a specified order. With Pai

being the projection of the X-ray source position ai, the iterative process of the SART [10] is given as
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where λ is a relaxation parameter.
An important observation is that a large number of tomographic reconstruction problems either have

or can be transformed to a representation of the form Ax = b. Differences in the geometric setup
of the image acquisition and the discretization of the reconstruction volume including the choice of
basis functions are exclusively reflected in the structure of A. Thus, SART-type algorithms can be used
on both conventional CT and CL datasets. In either case, voxel or blob basis functions can be used.
Mathematically, these variations are expressed by different structures of A and the algorithmic schema
(1) is left unchanged. As A is typically computed on-the-fly and given only implicitly in code, every
change to A requires new computational methods.

2.2. Implementation

The SART algorithm computes a solution to the tomographic reconstruction problem by starting
from an initial guess and iteratively finding better approximations to this solution. Hereby, a forward
projection generates a virtual projection for a given intermediate solution and one source/detector
constellation. The virtual image is compared with the real X-ray image to determine the per-pixel
error, or residual image. The intermediate solution is then corrected with respect to the source/detector
constellation by means of a back projection of the residual. This procedure can readily be applied
to CL by ensuring that the individual source/detector positions respect the CL acquisition geometry,
as recently investigated in [20]. However, the implementation of both forward and back projection
depend on the computation of line integrals through the corresponding basis functions. Hence, in order
to implement a variation of SART using blobs as basis functions, both forward and back projection
must be adopted to blobs.

As a blob basis function is radially symmetric, the value of the function depends only on the distance
of its argument vector to the blob center. A one-dimensional lookup table with precomputed function
values can be used to evaluate this function. This property also applies to the line integral through the
blob: These line integrals only depend on the distance of the ray to the blob center, so that these values
can also be precomputed and stored in a one-dimensional lookup table.

2.3. Forward projection

Due to the radial symmetry of the blob basis functions, the forward projections are computed as the
radial symmetric function, c.f. [11],

p(s) =
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Fig. 2. Forward projection algorithm including slice stepping using blobs. For each pixel in the projection image the line
integral of a line through this pixel is computed using nested loops. The outer loop iterates slices in the primary line direction.
For each slice, the blob closest to the line is determined and all blobs within radius a are iterated. For each blob, the line
integral is determined by means of a lookup dependent on the distance d between blob center and line.

with s being the distance of the X-ray to the blob center. Note that the forward projection is proportional
to a lower dimensional smoother blob, as can be seen in Fig. 3. Contrary to the simpler voxel basis
function, where the forward projection coincides with the ray length through the voxel, the forward
projection of the blob can be written in a closed form. Thus, it does not depend on the dimension or
the angle of the rays hitting the blobs.

Nevertheless, when using a regular Cartesian grid with grid size h > 0 as typically done for voxels,
sampling the volume at a specific point becomes more complex for blobs with a radius of a > h/2,
since neighboring blobs overlap. For example given a blob radius of a = 2h, each point intersects up
to five blobs in each dimension. In three dimensions, this results in 125 blobs, whereas for piecewise
linear basis functions there are eight, and for the voxel basis there is only one voxel that has to be
considered. Consequently, way more basis functions are hit and must be identified when using blobs.
The corresponding line integrals must be computed and their values summed up, which is done by a
slice-stepping approach (Fig. 2).

The stepping approach consists of three nested loops, one for each primary coordinate axis. The
outer loop corresponds to the coordinate axis with the largest component of the line direction. For
example, if the line direction vector has the largest component in y direction, the outer loop iter-
ates all y-slices of the volume. Within each slice, the blob closest to the line is calculated. The
algorithm then iterates all blobs within a distance a to the closest blob element. The distance d
between each blob center point and the line is computed. The line integral of this blob is then deter-
mined by means of the lookup table described above. The individual values are summed up. The
voxel enumeration scheme is an adapted Bresenham algorithm [21] for three-dimensional thick line
drawing.

2.4. Perspective back projection

For the back projection, each blob is projected onto the image plane and all pixels covered
by the projection are summed up in weighted form. For this, the bounding rectangle of a pro-
jected blob is determined and all pixels inside the rectangle are enumerated (Fig. 3). As the
projection of a blob onto a pixel is highly dependent on its relative position, the ray source,
and the projection plane, the pixels contribute differently to each blob. This makes the blob back
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Fig. 3. Geometry of the back projection operation. The parallel projection of a three dimensional blob onto a two dimensional
grid is a blob with the same radius as the original blob. However, a perspective projection can cover an area on the image
plane much larger than the blob itself and is not symmetric in general.

projection computationally more expensive compared to the back projection using voxel basis
functions.

2.5. Evaluation method

Projections of a welded aluminum piece with a crack were acquired using the CLARA geometry
(Fig. 1). Tomographic reconstruction was performed with the software Ettention [19] using a volume
resolution of 20482 × 192 voxels and an isotropic voxel size of 20 �m. For this purpose, the SART
was implemented as described above using blobs as well as voxels as basis functions. The relaxation
factor λ was set constantly to 0.3 for all reconstructions, as finding optimal relaxation factors was not
a goal of this study. This choice is based on experience and may be improved in further studies. The
projections were processed in a random but fixed order for each iteration, and each reconstruction was
computed with the same projection order. For each dataset, we selected the best result based on the
following evaluation measures for comparing outcomes.

For assessment of reconstruction quality we estimated the resolution with help of the full width half
maximum (FWHM) of the point spread function at different positions in the reconstructed volume,
because FWHM is a good approximation of the possible resolution [22]. FWHM of a function that has
an extremum is the difference of the two argument values that have half the value of the extremum, i.e.
FWHM = |x1 − x2| for f (x1) = f (x2) = 1

2 · f (xextremum). Before estimating FWHM, we normalized
the noise level of reconstructed volumes based on image background to a mean of 0 and a standard
deviation of 1. Line profiles were then measured at transitions from edges to background. Half the
value of the extremum was selected as half the maximum of the line profile as normalization lead
to a value of 0 as baseline for the measurements. Both half the maximum and the width at half the
maximum were linearly interpolated based on enclosing voxels, which was needed due to discrete
data.

Furthermore, to approximate the edge spread function, we estimated slopes of line profiles at tran-
sitions from edges to background, called edge profiles. An edge profile, respectively its slope, is an
approximation for the sharpness and relates to resolution. The steeper a slope is, the higher are sharp-
ness and resolution in the evaluated region [23]. The estimation was performed by placing a line
through the zero crossing of the edge profile and the corresponding extremum of this edge profile. The
slope of this line constitutes an average slope of the edge profile, which has different slope values at
varying points of the profile.
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Fig. 4. Excerpt of slice 64 from reconstructed volume. a) lownoise400 voxel based, b) lownoise400 blob based, c) lownoise100
voxel based, d) lownoise100 blob based, e) highnoise400 voxel based, f) highnoise400 blob based, g) highnoise100 voxel
based, and h) highnoise100 blob based.

3. Results

The welding dataset was reconstructed with (i) SART using voxel basis functions and (ii) SART
using blob basis functions (Fig. 4). Reconstructions of four different settings were analyzed: (a) The
dataset lownoise400 consisted of 400 single projections of the aluminum piece. A single projection
was acquired by using a tube current of 100 �A and an integration time of 1000 ms. In order to
reduce noise, three images were acquired for each rotation direction and averaged. The signal-to-noise
ratio (SNR), which is computed as mean of signal divided by standard deviation of noise, of the
projections of lownoise400 was 9.0. (b) The dataset lownoise100 consisted of 100 single projections
that were acquired and averaged analogously to lownoise400 resulting in the same SNR of 9.0. (c) The
dataset highnoise400 consisted of 400 single projections of the aluminum piece. Projection quality was
not enhanced, which means a single projection originates from a single acquisition. Additionally, we
lowered the tube current to 50 �A and the integration time to 266 ms, such that the acquired projections
became very noisy. The SNR of the projections of highnoise400 was 6.12. (d) The dataset highnoise100
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consisted of 100 single projections that were acquired analogously to highnoise400 resulting in the
same SNR of 6.12.

3.1. Reconstruction quality

The optimal number of iterations for each setup was determined experimentally. For each setup,
we performed reconstructions with one to twenty iterations, i.e. twenty different results for each
setup were acquired, and selected the best result for the final evaluation. Depending on the setup,
the voxel based reconstructions had best results between six and fifteen iterations, whereas the blob
based reconstructions always were best with only one iteration. In order to compare voxel and blob
based reconstructions, the blob based reconstructions were transformed to a voxel basis using a con-
volution with a kernel corresponding to input blob parameters, from now on called voxelized blob
reconstructions.

We picked two different kinds of line profiles for the evaluation: i) clearly visible cracks (big crack)
in a region of high contrast change for measuring FWHM and slopes (Fig. 5), ii) a hardly visible crack
(small crack) in a region with little contrast change as example for detectability (Fig. 6).

For big cracks we estimated FWHM and slopes at transitions from crack to background as described
before. The estimates of 30 FWHM and 60 slope values were used for a statistical analysis. We removed
outliers to ensure a normal distribution, which was confirmed with a Shapiro-Wilk test for normality
[24] for each analysis. A paired two-tailed t-test was used for evaluating the null hypothesis that
mean of voxel based reconstruction and mean of voxelized blob based reconstruction are statistically
indistinguishable for both FWHM and slope. A p-value < 0.05 led to rejecting this null hypothesis,
which implies that the means are statistically different. For each test, mean and standard deviation for
voxels and voxelized blobs, SNR, the degrees of freedom, the t-statistic value, the p-value, and the
effect size, which is a quantitative measure of the strength of a statistical claim [25], are reported for
FWHM (Table 1) and slope (Table 2).

Lownoise400 and lownoise100 showed no statistical difference of means for FWHM (p-value 0.67
for both, cf. Table 1). However, means of highnoise400 (p-value 2.6 10−10) and highnoise100 (p-value
2.3 10−4) statistically differed with lower FWHM means for the voxelized blob reconstructions. Both
also showed effect sizes > 0.6. Furthermore, SNR for lownoise400 was similar for voxel and blob based
reconstructions. For lownoise100, highnoise400, and highnoise100, SNR was between 65% and 90%
higher for blob based compared to voxel based reconstructions.

Comparing slope means (Table 2), lownoise400 again showed no statistical difference (p-value
0.21). Slope means of lownoise100, highnoise400, and highnoise100 all statistically differed (p-
values < 2.2 10−16) with effect sizes > 0.9, constituting bigger slopes for voxelized blob based
reconstructions.

We also examined if a convolution of the voxel based reconstruction with a kernel correspond-
ing to the used blob parameters is able to achieve comparable results. Convolving the highnoise100
voxel based reconstruction with the corresponding blob kernel, the same statistical evaluation was
performed as shown above. FWHM values were statistically not different with voxel based values
of 10.13 ± 0.84 and blob based values of 10.03 ± 0.74 resulting in a p-value 0.13 and an effect size
0.29. For the slope values, the convolution enhanced results with voxel based values of 1.34 ± 0.3
and convolution based values of 2.58 ± 0.48, which resulted in a p-value < 2.2 10−16 and an effect size
0.96. However, comparing convolution and blob based reconstruction gave a statistically significant
impact with convolution based values of 2.58 ± 0.48 and blob based values of 3.3 ± 0.57 resulting in a
p-value < 2.2 10−16 and an effect size 0.89. This means, that the blob based reconstruction enhanced the
convolved reconstruction much further, which experimentally verified that a blob based reconstruction
is superior.
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Fig. 5. Comparison of a big crack. a) lownoise400 voxel based, additionally, line profiles for the line analysis are depicted,
b) lownoise400 blob based, c) lownoise100 voxel based, d) lownoise100 blob based, e) highnoise400 voxel based, f)
highnoise400 blob based, g) highnoise100 voxel based, and h) highnoise100 blob based.

Measuring FWHM and slope was not possible for the small crack in a meaningful manner for most
setups. Because of this, we analyzed the line profiles with added mean and standard deviations of
one, two, and three (Fig. 7). As the images were normalized so that the noise has Gaussian distribu-
tion with a mean of 0 and a standard deviation of 1, it is known that 95.45% of the noise has values
between –2 and 2, and 99.73% lie within –3 to 3. That means a signal is detectable with high prob-
ability if it has values bigger than 2 or lower than –2. Based on that we compared the small crack
results.

For lownoise400, the small crack was visible in both voxelized blob and voxel based reconstruction.
The line profile of the voxels had two minima and values near –4 that were signal. The blobs had a
smoother line profile with only one minimum and lowest value around –2.5. In this case, FWHM for
voxels was bigger with 4.59 compared to voxelized blobs with 3.74. For lownoise100 the voxelized
blobs reconstruction looked more blurry, but the small crack was clearer separated from the neigh-
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Fig. 6. Comparison of a small crack. a) lownoise400 voxel based, additionally, the line for the line profile is depicted,
b) lownoise400 blob based, c) lownoise100 voxel based, d) lownoise100 blob based, e) highnoise400 voxel based, f)
highnoise400 blob based, g) highnoise100 voxel based, and h) highnoise100 blob based.

borhood as in the voxels reconstruction (Fig. 7b). The line profile of the voxels had almost no values
below two standard deviations, whereas the blobs line profile had several values below, which showed
that there is signal.

In the highnoise400 dataset the small crack was visible for voxelized blobs, but hardly for vox-
els. The line profile of the voxelized blobs was smoother and around the crack several values were
large enough to be signal. The values of the voxel line profile were mainly within two standard
deviations, and only a single value was below. In the highnoise100 it was similar for voxelized
blobs and voxels but with bigger values. Furthermore, the line profile of the voxels had an addi-
tional minimum with a lower value than the small crack minimum at a position with only noise,
so that noise and signal were indistinguishable. That is the reason that nothing was visible in the
voxels reconstruction, but also in the voxelized blobs reconstruction the small crack was hardly
visible.

3.2. Parametrizing blob functions

The basis functions used in our algorithm are specified by three parameters: the smoothness parameter
or order m, the radius a, and the shape parameter �. Mathematical arguments suggest that an order of
m = 2 should be a good choice, as using this value results in a bell shaped radial profile that decreases
smoothly to zero at r = a [12]. The expectation was confirmed experimentally.

The radius a and the shape parameter � specify the support and the bandlimit of the basis functions,
respectively. Blobs with a larger radius have a lower bandlimit, i.e. result in a more effective suppression
of noise but also blur the reconstruction. We found experimentally that for our dataset, a = 3.0 gives
optimal results. However, the desired bandlimit depends on the properties of the dataset. Therefore,
we expect this finding to be specific to our dataset and an optimal value for a needs to be determined
manually for each situation.

Once the radius a is known, an optimal value for � can be computed using the formula from [13]. For
our dataset, � was derived to be ≈11.3. As expected, using this value resulted in best reconstruction
quality.
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Table 1
FWHM statistics of up to 30 different line profiles of the big crack. For the reconstruction using voxel basis functions, the
number of iterations was six for lownoise400, ten for lownoise100, six for highnoise400, and 15 for highnoise100. For the
reconstruction using blob basis functions, results are given after one iteration. Given are: FWHM: mean ± standard deviation
of FWHM values, SNR: signal-to-noise ratio estimated by (mean of signal / standard deviation of noise), df: the degrees of

freedom (number of samples – 1), t-stat: statistic value, p-val: p-value, and r: effect size

dataset voxels blobs
FWHM SNR FWHM SNR df t-stat p-val r

lownoise400 9.08 ± 1.24 53.3 9.13 ± 1.3 50.8 27 –0.43 0.67 0.08
lownoise100 9.64 ± 0.87 40.1 9.61 ± 0.6 70.7 28 0.43 0.67 0.08
highnoise400 9.24 ± 1.32 18.7 8.58 ± 1.26 31.2 29 9.40 2.6 10−10 0.87
highnoise100 10.22 ± 1.0 16.1 9.90 ± 0.86 31.0 26 4.27 2.3 10−4 0.64

Table 2
Slope statistics of up to 60 different edge profiles. Values given analogously to Table 1. Left and right slope of the profile

were analyzed separately

voxels slope blobs slope df t-stat p-value r

lownoise400 6.76 ± 1.45 6.95 ± 1.58 55 –1. 28 0.20 0.17
lownoise100 4.14 ± 0.86 8.06 ± 1.64 59 –30.89 <2.2.10−16 0.97
highnoise400 2.09 ± 0.52 4.36 ± 1.15 59 –19.65 <2.2.10−16 0.93
highnoise100 1.34 ± 0.32 3.29 ± 0.60 59 –29.24 <2.2.10−16 0.97

Fig. 7. Line profiles of the small crack. Dashed line: voxel based reconstruction and solid line: voxelized blob based recon-
struction. Additionally, dotted lines for mean (�) and standard deviations (σ) of one, two, and three are shown. a) lownoise400,
b) lownoise100, c) highnoise400, and d) highnoise100. Due to normalization, x- and y-axis have the same spacing (� = 0,
σ = 1).
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3.3. Computational efficiency

Reconstructions were performed on an AMD Radeon R9 390 and on an NVidia GeForce GTX
970, both installed in an Intel Core i7-4790 system running at 3.6 GHz. For the dataset with 400
slices, the runtime on the AMD hardware was 8:38 min (NVidia: 8:43 min) per iteration using voxel
basis functions and 1:56:38 (NVidia: 1:54:36) per iteration using blob basis functions. For the dataset
with 100 slices, the runtime on the AMD hardware was 1:47 min (NVidia: 1:52 min) using voxel basis
functions and 29:21 min (NVidia: 28:51) per iteration using blobs. So overall, using blob basis functions
lead to an increased computational demand of a factor of ∼13 − 17 per iteration compared to using
voxel basis functions. This increase is caused mainly by the larger support of blob basis functions
compared to voxel basis functions, which leads to an increased memory bandwidth consumption.
However, the increased computational demand is mostly compensated for by a faster convergence
rate. Using the blob basis, optimal results can be achieved after only one iteration of SART, while the
voxel basis function requires 6–15 iterations to reach optimal results.

4. Discussion

We compared SART reconstructions of laminography datasets using a volume discretization based
on (i) voxel basis functions and (ii) based on blob basis functions. Performance was evaluated with
varying setups, so that different levels of noise and different numbers of input projections for the
reconstruction could be tested. These setups reflected a varying amount of radiation dose, whereby
noisier datasets as well as fewer projections constituted less dose. Several parameters and iteration
numbers were applied and the best result for each setup was used as input for the evaluation. For
each setup, a statistical analysis of line profile properties was conducted. FWHM for 30 line profiles
and 60 slopes at transitions from background to signal were estimated. After removing outliers to
ensure normality, a paired two-tailed t-test was applied between voxel based and voxelized blob based
reconstructions. This statistical analysis in combination with visual inspections was used to judge the
capabilities of the two approaches.

Results were influenced by the amount of noise in the input images and the number of projections
used for a reconstruction. Lownoise400 showed no statistical difference for both FWHM and slopes,
and also SNR values were similar. For lownoise100, there was no statistical difference for FWHM,
but slopes indicated a small but statistically significant advantage for the blob reconstruction, also
confirmed by SNR values. Visual inspection of the results did not reveal a clear advantage for either
method. The voxelized blob reconstruction looked smoother in both cases but also less sharp, so the
overall impression was ambiguous. That means, for perfect datasets with little to no noise, none of the
methods was superior.

For noisy datasets, however, blob basis functions showed a benefit over voxel basis functions,
particularly if only a small number of projections was available. In highnoise400 and highnoise100,
blob based reconstructions showed superior quality both quantitatively in terms of FWHM, slopes and
SNR and by subjective inspection. Voxel based reconstructions were much noisier, which made it hard
to identify visually the exact locations of transitions from background to signal. In addition, the small
crack was hardly visible in highnoise400 and not visible in highnoise100. In contrast, voxelized blob
based reconstructions separated background and signal clearer, which was supported by the better
visibility of the small crack in highnoise400. For highnoise100 it was harder to judge, but at least
a signal different from the background was visible. This showed, that blob based reconstructions
can enhance prominent structures, but may not help with small structures, especially when only few
projections with too low dose are given.
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For data with little to no noise and a sufficient number of projections in the sense of the Crowther
criterion [26], results were different from voxel based reconstructions, but with no clear preference
for either method. That means blob based reconstructions should be used for laminography datasets
in cases where incomplete or noisy data can be expected.

5. Conclusion

We have presented a blob based reconstruction scheme for laminography datasets. A voxel based
approach has been implemented within the same framework to be able to demonstrate the benefits of
using blobs. A laminography dataset was evaluated with different setups from a low level of noise to
a high level and from a small number of projections to a larger number. We found that if the number
of projections fulfills the Crowther criterion and the amount of noise is small compared to the signal
strength, both choices of basis functions provide results of identical quality. In the presence of a high
level of noise compared to the signal and with a smaller number of input projections that does not
fulfill the Crowther criterion, using blobs as basis functions resulted in superior reconstruction quality,
which was assessed quantitatively using FWHM, slopes of edge profiles, and SNR.

Taking these results it is recommendable to use blobs as basis function for laminography datasets,
as they deliver equal or better results than voxels in terms of resolution and sharpness. A higher
resolution facilitates the interpretation of reconstructed datasets as it is easier to identify structures
when applying blob based reconstructions. Furthermore, this enhancement may make it possible to
acquire datasets using less dose that, nevertheless, achieve a comparable resolution to higher dose
datasets (i) by using less dose for a single projection, which leads to more noise, or (ii) by reducing
the number of projections.
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