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We study the following nonhomogeneous A-harmonic equations: d∗A(x, du(x)) + B(x, u(x)) =
0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω, where Ω ⊂ R

n is a bounded and convex Lipschitz domain,
A(x, du(x)) and B(x, u(x)) satisfy some p(x)-growth conditions, respectively. We obtain the
existence of weak solutions for the above equations in subspace K

1,p(x)
0 (Ω,Λl−1) ofW1,p(x)

0 (Ω,Λl−1).

1. Introduction

Spaces of differential forms have been discussed in great details (see [1, 2] and the references
therein). The theory of differential forms is an approach to multivariable calculus that is
independent of coordinates and provides a better definition for integrals. Differential forms
have played an important role in physical laws of thermodynamics, analytical mechanics,
and physical theories, in particular Maxwell’s theory, and the Yang-Mills theory, the theory
of relativity, see for example [3–6].

In recent years, the study ofA-harmonic equations for differential forms has developed
rapidly. Many interesting results concerning A-harmonic equation have been established
recently (see [7–11] and the references therein). In [12], spaces Lp(x)(Ω) and Wk,p(x)(Ω)
are first introduced, and they used them to study the solutions of nonlinear Dirichlet
boundary value problems with p(x)-growth conditions. In [13], spaces Lp(x)(Ω,Λl, ω) and
W1,p(x)(Ω,Λl, ω) are first introduced and used to study the weak solutions of obstacle
problems of A-harmonic equations with variable growth for differential forms.
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2 Abstract and Applied Analysis

Let Ω ⊂ R
n be a bounded and convex Lipschitz domain. It is our purpose to study the

following systems:

d∗A(x, du(x)) + B(x, u(x)) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where u ∈ Λl−1(Ω), l = 1, 2, . . . , n, and A : Ω × Λl(Ω) → Λl(Ω), B : Ω × Λl−1(Ω) → Λl−1(Ω)
satisfy the following conditions.

(H1) A(x, ξ) and B(x, ς) are measurable with respect to x for all ξ, ς and continuous with
respect to ξ, ς, respectively, for a.e. x ∈ Ω.

(H2) |A(x, ξ)|+|B(x, ς)| ≤ C1|ξ|p(x)−1+C2|ς|p(x)−1+G(x), whereG ∈ Lp′(x)(Ω) andC1, C2 ≥ 0
are constants.

(H3) 〈A(x, ξ), ξ〉 ≥ a|ξ|p(x) − |h(x)|, where a > 0 is a constant and h ∈ L1(Ω).

(H4) 〈B(x, ς), ς〉 ≥ a|ς|p(x) − |h(x)|, where a ≥ 0 is a constant and h ∈ L1(Ω).

(H5) For a.e. x0 ∈ Ω, the mapping ξ → A(x0, ξ) satisfies

∫
D

〈A(x0, ξ0 + dv(x)), dv(x)〉dx ≥ γ
∫
D

|dv(x)|p(x)dx, (1.2)

for each ξ0 ∈ Λl(Ω), D ⊂ Ω and v ∈ C1
0(Ω,Λ

l−1), where γ > 0 is a constant. Here p′

is the conjugate function of p. Throughout this paper we suppose (unless declare
specially)

p ∈ Plog(Ω), 1 < p∗ = essinfΩ p(x) ≤ p(x) ≤ esssupΩ p(x) = p∗ <∞. (1.3)

2. Preliminaries

Let e1, e2, . . . , en be the standard orthogonal basis of R
n. The space of all l-forms in R

n is
denoted by Λl(Rn). The dual basis to e1, e2, . . . , en is denoted by e1, e2, . . . , en and referred to
as the standard basis for 1-form Λ1(Rn). The Grassman algebra Λ(Rn) = ⊕Λl(Rn) is a graded
algebra with respect to the exterior products. The standard ordered basis for Λ(Rn) consists
of the forms

1, e1, e2, . . . , en, e1 ∧ e2, . . . , en−1 ∧ en, . . . , e1 ∧ e2 . . . ∧ en. (2.1)

For α(x) =
∑
αI(x)eI ∈ Λl(Rn) and β(x) =

∑
βI(x)eI ∈ Λl(Rn), the inner product

is obtained by 〈α, β〉 =
∑
αI(x)βI(x) with summation over all l–tuples I = (i1, . . . il) and all

integers l = 0, 1, . . . , n. The Hodge star operator (see [14]) 	 : Λ(Rn) → Λ(Rn) is defined by
the formulas

	1 = e1 ∧ e2 · · · ∧ en, α ∧ 	β = β ∧ 	α =
〈
α, β
〉
e1 ∧ e2 · · · ∧ en. (2.2)
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Hence, the norm of α is given by the formula |α|2 = 〈α, α〉 = 	(α ∧ 	α) =
∑
αI(x)αI(x) ∈

Λ0(Rn) = R. Notice, the Hodge star operator is an isometric isomorphism operator on Λ(Rn).
Moreover,

	 : Λl(Rn) −→ Λn−l(Rn), 		 = (−I)l(n−l) : Λl(Rn) −→ Λl(Rn), (2.3)

where I is the identity map.
Let Ω ⊂ R

n be a bounded domain. The coordinate functions x1, x2, . . . , xn in Ω are
considered to be differential forms of degree 0. The 1-forms dx1, dx2, . . . , dxn are constant
functions from Ω into Λl(Rn). The value of dxi is simply ei, i = 1, 2, . . . , n. Therefore, every
l-form u : Ω → Λl(Rn) may be written uniquely as

u(x) =
∑
I

uI(x)dxI =
∑

1≤i1<···<il≤n
ui1,...il(x)dxi1 ∧ · · · ∧ dxil , (2.4)

where the coefficients ui1,...il(x) are distributions from D′(Ω), dual to the space of smooth
functions with compact support on Ω.

We use D′(Ω,Λl) to denote the space of all differential l-forms. For each form u(x) ∈
D′(Ω,Λl), the exterior differential d : D′(Ω,Λl) → D′(Ω,Λl+1) is expressed by

du(x) =
n∑

k=1

∑
1≤i1<···<il≤n

∂ui1,...il(x)
∂xk

dxk ∧ dxi1 ∧ · · · ∧ dxil . (2.5)

For u ∈ D′(Ω,Λl), the vector-valued differential form

∇u =
(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)
(2.6)

consists of differential forms ∂u/∂xi ∈ D′(Ω,Λl), where the partial differentiation is applied
to the coefficients of u.

The formal adjoint operator, called the Hodge codifferential, is given by

d	 = (−1)nl−1 	 d	 : D′
(
Ω,Λl+1

)
−→ D′

(
Ω,Λl

)
. (2.7)

By C∞(Ω,Λl) denote the space of infinitely differentiable l-forms on Ω and by C∞
0 (Ω,Λl)

denote the subspace of C∞(Ω,Λl)with compact support on Ω.
Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → (1,∞). For

p ∈ P(Ω), we put p∗ = essinfΩ p(x) and p∗ = esssupΩ p(x). Given p ∈ P(Ω) we define
the conjugate function p′ ∈ P(Ω) by

p′(x) =
p(x)

p(x) − 1
, ∀x ∈ Ω. (2.8)
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Definition 2.1 (see [15]). A Lebesgue measurable function p : Ω → R is called globally log-
Hölder continuous in Ω if there exist p∞ ∈ R and a constant C > 0 such that

∣∣p(x) − p(y)∣∣ ≤ C

log
(
e + 1/

∣∣x − y∣∣) ,
∣∣p(x) − p∞∣∣ ≤ C

log(e + |x|) (2.9)

hold for all x, y ∈ Ω. P log(Ω) is defined by

Plog(Ω) =
{
p ∈ P(Ω) :

1
p

is globally log-Hölder continuous
}
. (2.10)

For a differential l-form u(x) on Ω, l = 0, 1, . . . , n, define the functional ρp(x) by

ρp(x),Λl(u) =
∫
Ω
|u(x)|p(x)dx. (2.11)

The space Lp(x)(Ω,Λl) = {u ∈ Λl(Ω) : ∃λ > 0, ρp(x),Λl(λu) < ∞} is a reflexive Banach
space endowed with the norm

‖u‖Lp(x)(Ω,Λl) = inf
{
λ > 0 : ρp(x),Λl

( u

λ

)
≤ 1
}
. (2.12)

The space W1,p(x)(Ω,Λl) = {u ∈ Λl(Ω) : u ∈ Lp(x)(Ω,Λl) and du ∈ Lp(x)(Ω,Λl+1)} is a
reflexive Banach space endowed with the norm

‖u‖W1,p(x)(Ω,Λl) = ‖u‖Lp(x)(Ω,Λl) + ‖du‖Lp(x)(Ω,Λl+1). (2.13)

Note that Lp(m)(Ω,Λ0) and W1,p(m)(Ω,Λ0) are spaces of functions on Ω. In this paper,
we denote them by Lp(m)(Ω) andW1,p(m)(Ω).

Iwaniec and Lutoborski proved the following results in [2].
Let Ω ⊂ R

n be a bounded and convex domain. If u(x) ∈ Λl(Rn) is defined for some
x ∈ Ω, then the value of u(x) at the vectors ξ1, . . . , ξl ∈ R

n is denoted by u(x)(ξ1, . . . , ξl). Then
to each y ∈ Ω, there corresponds a linear operator Ky : L1

loc(Ω,∧l) → L1
loc(Ω,∧l−1) defined by

Kyu(x)(ξ1, ξ2, . . . , ξl−1) =
∫1

0
tl−1u

(
tx + y − ty)(x − y, ξ1, ξ2, . . . , ξl−1

)
dt. (2.14)

The homotopy operator T : L1
loc(Ω,∧l) → L1

loc(Ω,∧l−1) is defined by averaging Ky over all
points y ∈ Ω

Tu(x) =
∫
Ω
ϕ
(
y
)
Kyu(x)dy, (2.15)
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where ϕ ∈ C∞
0 (Ω) is normalized so that

∫
Ω ϕ(y)dy = 1. Then we have a pointwise estimate

|Tu(x)| ≤ 2nμ(Ω)
∫
Ω

∣∣u(y)∣∣∣∣x − y∣∣n−1dy, ∀x ∈ Ω, (2.16)

where

μ(Ω) = (diamΩ)n+1 inf

{∥∥∇ϕ∥∥L∞(Ω)∥∥ϕ∥∥L1(Ω)

: ϕ ∈ C∞
0 (Ω)

}
, (2.17)

further infimum is attained at ϕ(x) = diam(x, ∂Ω), and the decomposition

u = dTu + Tdu (2.18)

holds for u ∈ L1
loc(Ω,Λ

l).

Definition 2.2. For u ∈ L1
loc(Ω,Λ

l), define the l-form uΩ ∈ D′(Ω,Λl) by

uΩ =

⎧⎨
⎩

1
meas(Ω)

∫
Ω
u(x)dx, for l = 0,

dTu, for l = 1, 2, · · · , n,
(2.19)

and the Maximal operator is defined by

(Mu)(x) = sup
r>0

1
meas(Br(x))

∫
Br(x)

∣∣u(y)∣∣dy, (2.20)

where Br(x) = {y ∈ R
n : |y − x| < r}.

Lemma 2.3 (see [15]). Let p(x) satisfies (1.3). Then the inequality

‖(Mu)(x)‖Lp(x)(Rn) ≤ C
(
n, p
)‖u(x)‖Lp(x)(Rn) (2.21)

holds for every u ∈ Lp(x)(Rn).

Lemma 2.4 (see [15]). Let Ω ⊂ R
n be a bounded convex domain, x ∈ Ω and u ∈ L1

loc(R
n). Then

∫
Ω

∣∣u(y)∣∣∣∣x − y∣∣n−1 dy ≤ C(n)(diamΩ)(Mu)(x). (2.22)
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Lemma 2.5 (see [15]). Let Ψ be a Calderón-Zygmund operator with Calderón-Zygmund kernel K
on R

n × R
n. Then Ψ is bounded on Lp(x)(Rn). Further there exists a constant C = C(n,p) such that

‖Ψu(x)‖Lp(x)(Rn) ≤ C
(
n, p
)‖u(x)‖Lp(x)(Rn) (2.23)

holds for every u ∈ Lp(x)(Rn).

Lemma 2.6. If u ∈ Lp(x)(Ω,Λl), then

‖Tu‖Lp(x)(Ω,Λl−1) ≤ C
(
n, p
)
μ(Ω)(diamΩ)‖u‖Lp(x)(Ω,Λl). (2.24)

Moreover, if u ∈W1,p(x)(Ω,Λl), then

‖uΩ‖Lp(x)(Ω,Λl) ≤ C
(
p
)‖u‖Lp(x)(Ω,Λl) + C

(
n, p
)
μ(Ω)(diamΩ)‖du‖Lp(x)(Ω,Λl+1). (2.25)

Proof. First define u(x) = 0 if x ∈ R
n \Ω. From pointwise estimate (2.16) and Lemma 2.4,

|Tu(x)| ≤ C(n)μ(Ω)(diamΩ)M(|u|)(x), ∀x ∈ Ω. (2.26)

In view of Lemma 2.3, we have

‖|Tu|‖Lp(x)(Ω) ≤ C
(
n, p
)
μ(Ω)(diamΩ)‖|u|‖Lp(x)(Ω), (2.27)

that is to say, (2.24) holds.
From the definition of uΩ and (2.18), we have uΩ = u − Tdu. Therefore,

‖uΩ‖Lp(x)(Ω,Λl) ≤ C
(
p
)‖u‖Lp(x)(Ω,Λl) + C

(
n, p
)‖Tdu‖Lp(x)(Ω,Λl). (2.28)

Now in (2.24) replace uwith du, we obtain (2.25).

Lemma 2.7. Let p(x) satisfies (1.3).

(1) C∞
0 (Ω,Λl) is dense in Lp(x)(Ω,Λl),

(2) Lp(x)(Ω,Λl) is separable.

Proof. (1) For any u(x) =
∑

I uI(x)dxI ∈ Lp(x)(Ω,Λl), since C∞
0 (Ω) is dense in Lp(x)(Ω) and

uI(x) ∈ Lp(x)(Ω) for all I, we can find a sequence {uIk}∞k=1 ⊂ C∞
0 (Ω)which converges to uI(x)
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in Lp(x)(Ω) for each I. Now let uk(x) =
∑

I uIkdxI , then the sequence {uk(x)} ⊂ C∞
0 (Ω,Λl)

converges to u(x) in Lp(x)(Ω,Λl), since

∫
Ω
|u(x) − uk(x)|p(x)dx =

∫
Ω

⎛
⎝
(∑

I

|uI(x) − uIk(x)|2
)1/2

⎞
⎠

p(x)

dx

≤
∫
Ω

(∑
I

|uI(x) − uIk(x)|
)p(x)

dx

≤ 2p
∗∑
I

∫
Ω
|uI(x) − uIk(x)|p(x)dx.

(2.29)

That is to say, C∞
0 (Ω,Λl) is dense in Lp(x)(Ω,Λl).

(2) Let u(x) =
∑

I uI(x)dxI ∈ Lp(x)(Ω,Λl). Since Lp(x)(Ω) is separable, there exists a
countable dense subset K of Lp(x)(Ω). Then for any uI(x) above we can extract a sequence
{uIk(x)} inK which converges to uI(x) in Lp(x)(Ω). Similar to (1), the sequence {uk : uk(x) =∑

I uIk(x)dxI} converges to u(x) in Lp(x)(Ω,Λl). That is to say, Lp(x)(Ω,Λl) is separable.

Let K1,p(x)(Ω,Λl) = {u(x) = ϑ(x) − ϑΩ(x) : ϑ ∈ W1,p(x)(Ω,Λl)}. Note that u ∈
K1,p(x)(Ω,Λl) if and only if uΩ = 0.

Lemma 2.8. Let p(x) satisfies (1.3). Then K1,p(x)(Ω,Λl) is a closed subspace of W1,p(x)(Ω,Λl). In
particular, it is a reflexive Banach space.

Proof. Set a sequence {uk(x)} ⊂ K1,p(x)(Ω,Λl) convergent to u(x) in W1,p(x)(Ω,Λl), then
(uk)Ω = 0. By Lemma 2.6, the operator T is continuous on K1,p(x)(Ω,Λl). Therefore, uΩ =
0, we have u(x) ∈ K1,p(x)(Ω,Λl). That is to say, K1,p(x)(Ω,Λl) is a closed subspace of
W1,p(x)(Ω,Λl).

In [2], Iwaniec and Lutoborski obtained

∂

∂xi
(Tu) = Aiu + Siu, (2.30)

where

|Aiu(x)| ≤
2nμ(Ω)
diam(Ω)

∫
Ω

|u(z)|
|x − z|n−1

dz, (2.31)

Siu(x)(ξ) =
∫
Ω
u(z)(Ki(z, x − z), ξ)dz, (2.32)
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where ξ = (ξ1, ξ2, . . . , ξl−1) and

Ki(z, x − z) = ei
|x − z|n

∫∞

0
sn−1ϕ

(
z − s x − z

|x − z|
)
ds

− x − z
|x − z|n+1

∫∞

0
snϕi

(
z − s x − z

|x − z|
)
ds.

(2.33)

Further for each z ∈ Ω and h ∈ R
n − {0}, Ki(z, h) satisfies the following properties:

(i) Ki(z, h) ≤ μ(Ω)|h|−n,
(ii) Ki(z, sh) = s−nKi(z, h), s > 0,

(iii)
∫
|h|=1Ki(z, h) = 0 for all z ∈ Ω.

Let Ki(z, h) = (Ki1, Ki2, . . . , Kin). Then Kiα satisfies the conditions of Calderón-
Zygmund kernel on R

n × R
n for each α = 1, 2, . . . , n.

Lemma 2.9. Let u ∈ Lp(x)(Ω,Λl). Then

‖|∇Tu|‖Lp(x)(Ω) ≤ C
(
n, p,Ω

)‖u‖Lp(x)(Ω,Λl). (2.34)

Proof. By Lemmas 2.3 and 2.4, and (2.31),

‖Aiu‖Lp(x)(Ω,Λl) ≤ C
(
n, p
)
μ(Ω)‖u‖Lp(x)(Ω,Λl). (2.35)

Let

Siu(x) =
∑

1≤j1<j2<···<jl−1≤n
ωj1,j2,...,jl−1dxj1 ∧ dxj2 ∧ · · · ∧ dxjl−1 , (2.36)

we can write u(x) as

u(x) =
∑

1≤α≤n,α /= j1,j2,...,jl−1

∑
1≤j1<j2<···<jl−1≤n

uα,j1,j2,...,jl−1dxα ∧ dxj1 ∧ · · · ∧ dxjl−1 . (2.37)

Hence,

ωj1,j2,...,jl−1(x) = Siu(x)
(
ej1 , ej2 , . . . , ejl−1

)
. (2.38)

Taking ξ = (ej1 , ej2 , . . . , ejl−1) in (2.32), we obtain

ωj1,j2,...,jl−1(x) =
∫
Ω

∑
1≤α≤n,α /= j1,...,jl−1

Kiα(z, x − z)uα,j1,j2,...,jl−1(z)dz. (2.39)
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Now define u(x) = 0 if x ∈ R
n \ Ω. Since Kiα satisfies the conditions of Calderón-

Zygmund kernel on R
n × R

n for each α, in view of Lemma 2.5,

∥∥ωj1,j2,...,jl−1

∥∥
Lp(x)(Ω) ≤ C

(
n, p
) ∑
1≤α≤n,α /= j1,...,jl−1

∥∥uα,j1,j2,...,jl−1∥∥Lp(x)(Ω). (2.40)

So that

‖Siu‖Lp(x)(Ω,Λl) ≤ C
(
n, p
)‖u‖Lp(x)(Ω,Λl). (2.41)

By (2.30), (2.35), and (2.41), we have

‖|∇Tu|‖Lp(x)(Ω) ≤ C
(
n, p,Ω

)‖u‖Lp(x)(Ω,Λl). (2.42)

Now define another norm

‖|ω|‖K1,p(x)(Ω,Λl) = ‖ω‖Lp(x)(Ω,Λl) + ‖|∇ω|‖Lp(x)(Ω). (2.43)

Remark 2.10. Replacing uwith du in (2.34), we get by the definition of uΩ

‖|∇(u − uΩ)|‖Lp(x)(Ω) = ‖|∇Tdu|‖Lp(x)(Ω)

≤ C
(
n, p
)
μ(Ω)‖du‖Lp(x)(Ω,Λl)

= C
(
n, p
)
μ(Ω)‖d(u − uΩ)‖Lp(x)(Ω,Λl).

(2.44)

Therefore ‖| · |‖K1,p(x)(Ω,Λl) is equivalent to ‖ · ‖K1,p(x)(Ω,Λl).

In this paper we also need the following two lemmas.

Lemma 2.11 (see[15]). Let p(x) satisfies (1.3). Then the embedding W1,p(x)
0 (Ω) ↪→ Lp(x)(Ω) is

compact.

Lemma 2.12 (see[15]). Suppose that p ∈ L∞(Ω). Let {uk}∞k=1 be bounded in Lp(x)(Ω). If uk → u
a.e. on Ω, then uk ⇀ u weakly in Lp(x)(Ω).

Remark 2.13. Let K
1,p(x)
0 (Ω,Λl) be the completion of C∞

0 (Ω,∧l) in K1,p(x)(Ω,Λl). Then from

Remark 2.10 and Lemma 2.11, the embedding K
1,p(x)
0 (Ω,Λl) ↪→ Lp(x)(Ω,Λl) is compact.

Remark 2.14. Suppose p(x) satisfies (1.3), Lemma 2.12 also holds on space Lp(x)(Ω,∧l).
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3. Weak Solutions of Dirichlet Problems for the
A-Harmonic Equations with Variable Growth

Theorem 3.1. Under conditions (H1)–(H5), the Dirichlet problem (1.1) has at least one weak solution
in K

1,p(x)
0 (Ω,Λl), that is to say, there exists at least one u = ϑ − ϑΩ ∈ K

1,p(x)
0 (Ω,Λl) satisfying

∫
Ω

〈
A(x, du(x)), dϕ(x)

〉
+
〈
B(x, u(x)), ϕ(x)

〉
dx = 0, (3.1)

for all ϕ ∈W1,p(x)
0 (Ω,Λl−1). Here, ϑ ∈W1,p(x)(Ω,Λl−1) and p(x) satisfies (1.3).

Let V = W
1,p(x)
0 (Ω,Λl−1) and K0 = K

1,p(x)
0 (Ω,Λl). For u ∈ V , define A : V → V ∗ in the

following way: for each ϕ ∈ V

(
Au, ϕ

)
=
∫
Ω

〈
A(x, du(x)), dϕ(x)

〉
+
〈
B(x, u(x)), ϕ(x)

〉
dx. (3.2)

Now we need only to show that there exists u ∈ K0 such that (Au, ϕ) = 0 for all ϕ =∑
ϕI(x)dxI ∈ V .

Lemma 3.2. A is strong-weakly continuous on V .

Proof. Let {uk : uk(x) =
∑

I ukI(x)dxI} ⊂ V be a sequence strongly convergent to an element
u(x) =

∑
uI(x)dxI ∈ V in V . Let duk(x) =

∑
J ωkJ(x)dxJ and du(x) =

∑
J ωJ(x)dxJ . Then

(h1) ‖uk‖V ≤ C for some constant C,

(h2) {ωkJ(x)} is a sequence strongly convergent to ωJ(x) in Lp(x)(Ω) for each J .

In view of (H2) and (h1), we know that A(x, duk) =
∑
AkJ(x)dxJ and B(x, uk) =∑

BkI(x)dxI are uniformly bounded in Lp
′(x)(Ω,Λl) and Lp

′(x)(Ω,Λl−1), respectively. Hence,
AkJ(x) and BkI(x) are uniformly bounded in Lp

′(x)(Ω). On the other hand, by (h2), there exists
a subsequence of {ωkJ(x)} (still denoted by {ωkJ(x)}) such that

lim
k→∞

ωkJ(x) = ωJ(x), a.e. x ∈ Ω, for each J. (3.3)

Then there exists a subsequence of {uk(x)} (still denoted by {uk(x)}) such that

lim
k→∞

uk(x) = u(x), lim
k→∞

duk(x) = du(x), a.e. x ∈ Ω. (3.4)

In view of (H1), we obtain

lim
k→∞

A(x, duk) = A(x, du), a.e. x ∈ Ω,

lim
k→∞

B(x, uk) = B(x, u), a.e. x ∈ Ω.
(3.5)
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Let dϕ(x) =
∑
ψJ(x)dxJ , A(x, du) =

∑
AJ(x)dxJ , and B(x, u) =

∑
BI(x)dxI , then ψJ(x) ∈

Lp(x)(Ω), in the meantime

lim
k→∞

AkJ(x) = AJ(x), a.e. x ∈ Ω, (3.6)

lim
k→∞

BkI(x) = BI(x), a.e. x ∈ Ω, (3.7)

for each J and I.
Now by Lemma 2.12, we can show that

∫
ΩAkJ(x)ψJ(x)dx → ∫

ΩAJ(x)ψJ(x)dx and∫
Ω BkI(x)ϕI(x)dx → ∫

Ω BI(x)ϕI(x)dx as k → ∞. Therefore,

(
Auk, ϕ

)
=
∫
Ω
〈A(x, duk), dϕ〉 + 〈B(x, uk), ϕ〉dx

−→
∫
Ω
〈A(x, du), dϕ〉 + 〈B(x, u), ϕ〉dx

=
(
Au, ϕ

)
,

(3.8)

that is to say, A is strong-weakly continuous on V .

Lemma 3.3. A is coercive on K0, that is,

lim
‖u‖K →∞

(Au, u)
‖u‖K

= +∞, ∀u ∈ K0. (3.9)

Proof. By (H3) and (H4),

(Au, u) =
∫
Ω
〈A(x, du), du〉 + 〈B(x, u), u〉dx

≥
∫
Ω

(
a|du|p(x) − |h(x)| + a|u|p(x) −

∣∣∣h(x)
∣∣∣)dx

≥
∫
Ω
a|du|p(x)dx − C

(
h, h
)
.

(3.10)

By dϑΩ = 0 and Lemma 2.6, we have

‖u‖Lp(x)(Ω,Λl−1) = ‖Tdϑ‖Lp(x)(Ω,Λl−1) ≤ 2nC
(
n, p
)
μ(Ω)(diamΩ)‖du‖Lp(x)(Ω,Λl), (3.11)

for all u = ϑ − ϑΩ ∈ K0. Then ‖du‖Lp(x)(Ω,Λl) → ∞, as ‖u‖K → ∞. Taking

δ =
1
2
‖du‖Lp(x)(Ω,Λl) > 1, (3.12)
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we have

∫
Ω |du|p(x)dx
‖du‖Lp(x)(Ω,Λl)

=
∫
Ω

(
|du|

‖du‖Lp(x)(Ω,Λl) − δ

)p(x)
(
‖du‖Lp(x)(Ω,Λl) − δ

)p(x)
‖du‖Lp(x)(Ω,Λl)

dx

≥

(
‖du‖Lp(x)(Ω,Λl) − δ

)p∗
‖du‖Lp(x)(Ω,Λl)

=
(
1
2

)p∗
‖du‖p∗−1

Lp(x)(Ω,Λl).

(3.13)

Therefore,

∫
Ω |du|p(x)dx
‖du‖Lp(x)(Ω,Λl)

−→ ∞ as ‖du‖Lp(x)(Ω,Λl) −→ ∞. (3.14)

Then it is immediate to obtain that

(Au, u)
‖u‖K

−→ ∞ as ‖u‖K −→ ∞. (3.15)

That is to say, A is coercive on K0.

Lemma 3.4 (see[16]). Suppose g = A(x) is a mapping from R
m into itself such that

lim
|x|→∞

A(x) · x
|x| = ∞. (3.16)

Then the range of A is the whole of R
m.

Lemma 3.5. There exists a sequence {uk} ⊂ K0 and u0 ∈ K0, such that

(Auk, uk − u0) −→ 0 as k −→ ∞. (3.17)

Proof . By Lemmas 2.7 and 2.8, we can choose a Schauder basis {ωs} of K0 such that the union
of subspace finitely generated from ωs is dense in K0. Let Kk

0 be the subspace of K0 generated
byω1, ω2, . . . , ωk. Since Kk

0 is topologically isomorphic to R
k. By By Lemmas 3.3, and 3.4, there

exists uk ∈ Kk
0 such that

(Auk,ω) = 0 ∀ω ∈ Kk
0 . (3.18)

By Lemma 3.3 again, we know that ‖uk‖K ≤ C, where C is independent of k. Since K0 is
reflexive, by Remark 2.14 and (H1), we can extract a subsequence of {uk} (still denoted by
{uk}) such that

uk ⇀ u0 weakly in K0, Auk ⇀ ξ weakly∗ in K∗
0, (ξ, ω) = 0, (3.19)
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where ω is in a dense subset of K0. For fixed ξ, by the continuity of (ξ, ·), we get (ξ, ω) = 0 for
all ω ∈ K0. For (Auk, uk − u0), we have

(Auk, uk − u0) = (Auk, uk) − (Auk, u0) = −(Auk, u0) −→ 0 as k −→ ∞. (3.20)

This completes the proof of Lemma 3.5.

Set vk = uk − u0 =
∑
vkIdxI . Then

vk ⇀ 0 weakly in K0 as k −→ ∞. (3.21)

Consider (Auk, uk − u0) once more, then

(Auk, uk − u0) =
∫
Ω
〈A(x, du0 + dvk), dvk〉 + 〈B(x, u0 + vk), vk〉dx −→ 0, (3.22)

as k → ∞. By Remark 2.13, we get

vk −→ 0 strongly in Lp(x)
(
Ω,Λl−1

)
. (3.23)

In view of (3.23) and (H2), it is immediate that

∫
Ω
〈B(x, u0 + vk), vk〉dx −→ 0 as k −→ ∞, (3.24)

that is to say,

∫
Ω
〈A(x, du0 + dvk), dvk〉dx −→ 0 as k −→ ∞. (3.25)

Now if we can prove that there exists a subsequence of {vk} which is strongly
convergent in K0, then from the strong-weakly continuity of A, we get Auk ⇀ Au0 = ξ weakly
in K0 as k → ∞ and u0 will be a weak solution of (1.1). We need the following lemmas.

Definition 3.6. Let Ω be an open subset of R
n provided with the Lebesgue measure. The

mapping f : Ω × R
N → R is said Carathéodory function if for almost all x ∈ Ω, f(x, ·) is

continuous on R
N , for all ξ ∈ R

N is measurable on Ω.

Lemma 3.7 (see[17]). A mapping f : Ω × R
N → R is a Carathéodory function if and only if for all

compact setsK ⊂ Ω and all ε > 0, there exists a compact subsetKε ⊂ K such thatmeas(K −Kε) < ε
for with the restriction of f to Kε × R

N is continuous.
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Lemma 3.8 (see[15]). Let {fk} be a sequence of bounded function in L1(Rn). For each ε > 0 there
exists (Aε, δ,N) (whereAε is measurable andmeas(Aε) < ε, δ > 0,N is an infinite subset of natural
numbers set N) such that for each k ∈N,

∫
B

∣∣fk(x)∣∣dx < ε, (3.26)

where B and Aε are disjoint and meas(B) < δ.

Definition 3.9. For u ∈ C1
0(R

n), define

(M∗u)(x) = (Mu)(x) +
n∑
α=1

(
M

∂u

∂xα

)
(x). (3.27)

Lemma 3.10 (see[18]). If u ∈ C∞
0 (Rn), thenM∗u ∈ C0(Rn) and for all x ∈ R

n,

|u(x)| +
n∑
α=1

∣∣∣∣ ∂u∂xα (x)
∣∣∣∣ ≤ (M∗u)(x). (3.28)

Furthermore, if p > 1, then

‖M∗u‖Lp(Rn) ≤ C
(
n, p
)‖u‖W1,p(Rn), (3.29)

and if p = 1, then

meas({x ∈ R
n : (M∗u)(x) > λ}) ≤ C(n)

λ
‖u‖W1,1(Rn), (3.30)

for all λ > 0.

Lemma 3.11 (see[19]). Let u ∈ C∞
0 (Rn) and λ > 0. Set

Hλ = {x ∈ R
n : (M∗u)(x) < λ}. (3.31)

Then for all x, y ∈ Hλ, we have

∣∣u(y) − u(x)∣∣ ≤ C(n)λ∣∣y − x∣∣. (3.32)

Lemma 3.12 (see[16]). Let X be a metric space, E be a subspace of X, and k be a positive number.
Then any k-Lipchitz mapping from E into R can be extended to a k-Lipchitz mapping from X into R.

Proof of Theorem 3.1. We need only to show that there exists subsequence of {vk} which is
strongly convergent in K0.
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For each measurable set S ⊂ Ω, define

F(v, S) =
∫
S

〈A(x, du0 + dv), dv〉dx, (3.33)

where v ∈ K0. Similar to the proof of Lemma 3.2, F(·, S) is strongly continuous on K0. Since
C∞

0 (Ω,Λl−1) is dense in K0, there exists hk ⊂ C∞
0 (Ω,Λl−1) such that

‖hk − vk‖K <
1
k
, |F(hk,Ω) − F(vk,Ω)| < 1

k
. (3.34)

So we can suppose that {vk} ⊂ C∞
0 (Ω,Λl−1) is bounded in K0.

Next define

vk(x) = 0 when x ∈ R
n \Ω. (3.35)

In this way, we extend the domain of vk to R
n and supp vk ⊂ Ω.

Let β : R
+ → R

+ be a continuous increasing function satisfying β(0) = 0 and for each
measurable set D ⊂ Ω,

∫
D

(
|G(x)|p′(x) + |h(x)| + (C1 + 1)|du0|p(x)

)
dx ≤ β(meas(D)), (3.36)

where C1 is the constant in (H2).
Let {εj} be a positive decreasing sequence with εj → 0 as j → ∞. For ε1, by

Lemma 3.8, we get a subsequence {k1} of {k}, a set Aε1 ⊂ Ω satisfying meas (Aε1) < ε1,
and a real number δ1 > 0 such that

∫
B

(M∗vk1I)
p(x)dx < ε1, (3.37)

for each k1, I and B ⊂ Ω \Aε1 satisfying meas(B) < δ1. By Lemma 3.10, we can choose λ > 1
so large that for all I and k1,

meas({x ∈ R
n : (M∗vk1I)(x) ≥ λ}) ≤ min{ε1, δ1}. (3.38)

For each I and k1, define

Hλ
k1I

= {x ∈ R
n : (M∗vk1I)(x) < λ}, Hλ

k1
=
⋂
I

Hλ
k1I
. (3.39)

In view of Lemma 3.11, we have

∣∣vk1I(y) − vk1I(x)∣∣∣∣y − x∣∣ ≤ C(n)λ ∀x, y ∈ Hλ
k1

and I. (3.40)
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Form Lemma 3.12, there exists a Lipschitz function gk1I which extends vk1I outside H
λ
k1

and
Lipschitz constant of gk1I is no more than C(n)λ. As Hλ

k1
is an open set, we have gk1I = vk1I

and ∇gk1I(x) = ∇vk1I(x) for all x ∈ Hλ
k1
, and ‖∇gk1I‖L∞(Rn) ≤ C(n)λ. We can further suppose

that

∥∥gk1I∥∥L∞(Rn) ≤ ‖vk1I‖L∞(Hλ
k1
) ≤ λ,

∥∥gk1I∥∥W1,∞(Ω) ≤ C(n)λ. (3.41)

By the uniformly boundedness of {‖gk1I‖W1,∞(Ω)}, there exists a subsequence of {gk1I} (still
denoted by {gk1I}) such that

gk1I ⇀ ωI weakly∗ in W1,∞(Ω) as k1 −→ ∞ ∀I. (3.42)

Set ω =
∑

I ωIdxI and gk1 =
∑

I gk1IdxI . We have

F(vk1 ,Ω) = F
(
gk1 ,Ω \Aε1

) − F(gk1 , (Ω \Aε1) \Hλ
k1

)
+ F
(
vk1 , Aε1 ∪

(
Ω \Hλ

k1

))
. (3.43)

Next we estimate F(vk1 ,Ω) in four steps.
(1) The estimate of F(gk1 , (Ω \Aε1) \Hλ

k1
) and F(vk1 , Aε1 ∪ (Ω \Hλ

k1
)). Since

meas
(
(Ω \Aε1) \Hλ

k1

)
≤
∑
I

meas
(
(Ω \Aε1) \Hλ

k1I

)
≤ Cl−1

n min{ε1, δ1}, (3.44)

where Cl−1
n = n(n − 1) · · · (n − l + 2)/(l − 1)(l − 2) · · · 1, from (H2), (H3), and the choose of Aε1 ,

we have

∣∣∣F(gk1 , (Ω \Aε1) \Hλ
k1

)∣∣∣

≤
∫
(Ω\Aε1 )\Hλ

k1

(
C1
∣∣du0 + dgk1∣∣p(x) −1∣∣dgk1∣∣ + |G(x)|∣∣dgk1∣∣

)
dx

≤
∫
(Ω\Aε1 )\Hλ

k1

(
C12p

∗−1
(
|du0|p(x) +

∣∣dgk1∣∣p(x)
)
+ C1

∣∣dgk1∣∣p(x) + |G(x)|p′(x) + ∣∣dgk1∣∣p(x)
)
dx

≤ 2p
∗−1β

(
meas

(
(Ω \Aε1) \Hλ

k1

))
+2p

∗
(C1+1)

∫
(Ω\Aε1 )\Hλ

k1

∣∣dgk1∣∣p(x)dx

≤ 2p
∗−1β

(
meas

(
(Ω \Aε1) \Hλ

k1

))
+2p

∗
(C1+1)

∫
(Ω\Aε1 )\Hλ

k1

(∑
I

∣∣∇gk1I∣∣
)p(x)

dx
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≤ 2p
∗−1β

(
Cl−1
n ε1

)
+ 2p

∗
C(C1, n, l)

∫
(Ω\Aε1 )\Hλ

k1

λp(x)dx

≤ 2p
∗−1β

(
Cl−1
n ε1

)
+ 2p

∗
C(C1, n, l)

∑
I

∫
(Ω\Aε1 )\Hλ

k1I

(M∗vk1I)
p(x)dx

≤ 2p
∗−1β

(
Cl−1
n ε1

)
+ 2p

∗
C(C1, n, l)ε1 ≤ O(ε1),

(3.45)

F
(
vk1 , Aε1 ∪

(
Ω \Hλ

k1

))

=
∫
Aε1∪(Ω\Hλ

k1
)
〈A(x, du0 + dvk1), du0 + dvk1〉 − 〈A(x, du0 + dvk1), du0〉dx

≥
∫
Aε1∪(Ω\Hλ

k1
)

(
a|du0 + dvk1 |p(x) − h(x)

)
−
(
C1|du0 + dvk1 |p(x)−1|du0| + |G(x)||du0|

)
dx

≥
∫
Aε1∪(Ω\Hλ

k1
)

((
a2−(p

∗−1) − C1μ2p
∗−1
)
|dvk1 |p(x) − |h(x)| − |G(x)|p′(x)

)

−
(
−a2−(p∗−1) + C1μ2p

∗−1 + C1C
(
μ
)
+ 1
)
|du0|p(x)dx

≥
(
a2−(p

∗−1)−C1μ2p
∗−1
)∫

Aε1∪(Ω\Hλ
k1
)
|dvk1 |p(x)dx−C

(
a, p, C1, μ

)
β
(
meas

(
Aε1 ∪

(
Ω\Hλ

k1

)))

≥ a2−p∗
∫
Aε1∪(Ω\Hλ

k1
)
|dvk1 |p(x)dx −O(ε1),

(3.46)

where μ > 0 is small enough.
From (3.43)–(3.46), we get

F(vk1 ,Ω) ≥ F(gk1 ,Ω \Aε1

)
+ a2−p

∗
∫
Aε1∪(Ω\Hλ

k1
)
|dvk1 |p(x)dx −O(ε1). (3.47)

(2) The estimate of F(gk1 ,Ω \ Aε1). Set fk1I = gk1I − ωI , where ωI is defined by (3.42).
Then

fk1I ⇀ 0 weakly∗ in W1,∞(Ω) as k1 −→ ∞ ∀I,
∥∥fk1I∥∥L∞(Ω) ≤ 2λ,

∥∥dfk1I∥∥L∞(Ω,Λl) ≤ 2C(n)λ.
(3.48)
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Let G =
⋃
I GI with GI = {x ∈ Ω : ωI(x)/= 0}. According to Acerbi and Fusco [19], we

have meas(G) ≤ (Cl−1
n + 1)ε1 where Cl−1

n = n(n − 1) · · · (n − l + 2)/(l − 1)(l − 2) · · · 1, and set
fk1 =

∑
I fk1IdxI , then

F
(
gk1 ,Ω \Aε1

)
= F

(
fk1 , (Ω \Aε1) \G

)

+ F
(
vk1 , (Ω \Aε1) ∩Hλ

k1
∩G
)

+ F
(
gk1 , (Ω \Aε1) ∩

(
G \Hλ

k1

))
.

(3.49)

Define

Ωε1,k1
1 = Aε1 ∪

(
Ω \Hλ

k1

)
, Ωε1

2 = (Ω \Aε1) \G,

Ωε1,k1
3 = (Ω \Aε1) ∩Hλ

k1
∩G, Ωε1,k1

4 = (Ω \Aε1) ∩
(
G \Hλ

k1

)
.

(3.50)

Similar to the proof of (3.46), we get

F
(
vk1 ,Ω

ε1,k1
3

)
≥ a2−p∗

∫
Ω
ε1 ,k1
3

|dvk1 |p(x)dx −O(ε1). (3.51)

Since on Ωε1,k1
4 we have

∫
Ω
ε1 ,k1
4

∣∣dgk1∣∣p(x)dx ≤ C(n, p)(Cl−1
n + 1

)
ε1, (3.52)

then similar to the proof of (3.45), we get

∣∣∣F(gk1 ,Ωε1,k1
4

)∣∣∣ ≤ O(ε1). (3.53)

By (3.49)–(3.53), we have

F
(
gk1 ,Ω \Aε1

) ≥ F(fk1 ,Ωε1
2

)
+ a2−p

∗
∫
Ω
ε1 ,k1
3

|dvk1 |p(x)dx −O(ε1). (3.54)

Thus, we have

F(vk1 ,Ω) ≥ F(fk1 ,Ωε1
2

)
+ a2−p

∗
∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx −O(ε1), (3.55)

where Ωε1,k1
5 = Ωε1,k1

1 ∪Ωε1,k1
3 .



Abstract and Applied Analysis 19

Choose an open set Ω′ ⊂ Ωwhich contains Ωε1
2 such that

∣∣F(fk1 ,Ω′) − F(fk1 ,Ωε1
2

)∣∣ < ε1. (3.56)

From (3.55), we get

F(vk1 ,Ω) ≥ F(fk1 ,Ω′) + a2−p∗
∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx −O(ε1). (3.57)

Approximate Ω′ by hypercubes with edges parallel to coordinate axes, that is, con-
struct

Hj ⊂ Ω′,

meas
(
Ω′ \Hj

) −→ 0 as j −→ ∞,

Hj =
hj⋃
s=1

Dj,s,

meas
(
Dj,s

)
= 1/2nj , 1 ≤ s ≤ hj .

(3.58)

Let j > 0 be large enough such that for all k1 > 0, we have

∣∣F(fk1 ,Ω′) − F(fk1 ,Hj

)∣∣ < ε1,
∫
Ω′\Hj

∣∣dfk1∣∣p(x)dx < ε1,

meas
(
Ω′ \Hj

)
< min{ε1, δ1}.

(3.59)

Thus,

F(vk1 ,Ω) ≥ F(fk1 ,Hj

)
+ a2−p

∗
∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx −O(ε1) − 2ε1. (3.60)

(3) The estimate of F(fk1 ,Hj). Let α > 0 be large enough such that for E = {x ∈ Ω′ :
η(x) ≤ α}. Then

meas
(
Ω′ \ E) < ε1

N
,

∫
Ω′\E

η(x)dx < ε1, (3.61)

where ‖dfk1‖L∞(Ω,Λl) ≤ 2Cl−1
n C(n)λ =N and η(x) = |G(x)|p′(x) + 2p

∗−1(C1 + 1)|du0|p(x).
For x ∈ Ω, ξ ∈ Λl(Ω), define

ψ(x, ξ) = 〈A(x, du0(x) + ξ), ξ〉. (3.62)
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By Lemma 3.7 and (H1), there exists a compact subsetK ⊂ Hj such that ψ(x, ξ) is continuous
on K × Λl(Ω) and meas(Hj \ K) < ε1/(α + N). Hence, ψ(x, ξ) is uniformly continuous on
bounded subsets of K ×Λl(Ω).

Divide each Dj,s into 2nm hypercubes Qm
t,j,s with edge length 2−jm, 1 ≤ t ≤ 2nm. For all

j, s,m, t, take xmt,j,s ∈ Qm
t,j,s ∩K ∩ E (if this set is empty, take xmt,j,s ∈ Qm

t,j,s) such that

η
(
xmt,j,s

)
meas

(
Qm
t,j,s

)
≤
∫
Qm
t,j,s

η(x)dx. (3.63)

Then

F
(
fk1 ,Hj

)
= F
(
fk1 ,Hj ∩K ∩ E) + F(fk1 ,Hj \ E

)
+ F
(
fk1 ,

(
Hj ∩ E

) \K)

≥ F(fk1 ,Hj ∩K ∩ E) −
∫
Hj\E

η(x)dx −
∫
(Hj∩E)\K

η(x)dx

− 2p
∗
(C1 + 1)

(∫
Hj\E

∣∣dfk1∣∣p(x)dx +
∫
(Hj∩E)\K

∣∣dfk1∣∣p(x)dx
)

= F
(
fk1 ,Hj ∩K ∩ E) −O(ε1)

= bm,j
k1

+ cm,j
k1

+ dm,j
k1

−O(ε1),

(3.64)

where

b
m,j

k1
=
∑
t,s

∫
Qm
t,j,s∩K∩E

(
ψ
(
x, dfk1(x)

) − ψ(xmt,j,s, dfk1(x)
))
dx,

c
m,j

k1
=
∑
t,s

∫
Qm
t,j,s

ψ
(
xmt,j,s, dfk1(x)

)
dx,

d
m,j

k1
= −

∑
t,s

∫
Qm
t,j,s\(K∩E)

ψ
(
xmt,j,s, dfk1(x)

)
dx.

(3.65)

By (3.25), we have

lim
k1 →∞

F(vk1 ,Ω) = 0. (3.66)

Note that if Qm
t,j,s ∩K ∩ E is an empty set, then

∫
Qm
t,j,s∩K∩E

[
ψ
(
x, dfk1(x)

) − ψ(xmt,j,s, dfk1(x)
)]
dx = 0. (3.67)
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Now we only consider Qm
t,j,s which satisfies Qm

t,j,s ∩ K ∩ E/=φ. Since du0(x) is uniformly
continuous on Hj , then by the uniform continuity of ψ on bounded subsets of K × Λl(Ω),
we obtain that for x ∈ Qm

t,j,s, there exists a constant L > 0 such that

∣∣∣ψ(x, dfk1(x)) − ψ
(
xmt,j,s, dfk1(x)

)∣∣∣
=
∣∣∣〈A(x, du0(x) + dfk1(x)) −A

(
xmt,j,s, du0

(
xmt,j,s

)
+ dfk1(x)

)
, dfk1(x)

〉∣∣∣
<

1
meas

(
Hj

)ε1
(3.68)

holds for allm > L and each k1. Therefore, |bm,jk1
| < ε1 for all k1.

∣∣∣dm,jk1

∣∣∣ ≤ ∑
t,s

∫
Qm
t,j,s\(K∩E)

∣∣∣ψ(xmt,j,s, dfk1(x)
)∣∣∣dx

=
∑
t,s

∫
Qm
t,j,s\(K∩E)

〈
A
(
xmt,j,s, du0

(
xmt,j,s

)
+ dfk1(x)

)
, dfk1(x)

〉
dx

≤
∑
t,s

∫
Qm
t,j,s\(K∩E)

C1

∣∣∣du0
(
xmt,j,s

)
+ dfk1(x)

∣∣∣p(x)−1∣∣dfk(x)∣∣ +
∣∣∣G(xmt,j,s

)∣∣∣∣∣dfk1(x)∣∣dx

≤
∑
t,s

∫
Qm
t,j,s\(K∩E)

(
η
(
xmt,j,s

)
+ 2p

∗
(C1 + 1)N

)
dx

≤
∫
(Hj∩E)\K

(
η
(
xmt,j,s

)
+ 2p

∗
(C1 + 1)N

)
dx + C

(
C1, p

)∑
t,s

∫
Qm
t,j,s\E

(
η
(
xmt,j,s

)
+N

)
dx

≤ C
(
α,N,C1, p

)
meas

((
Hj ∩ E

) \K) + C(C1, p
) ∫

Hj\E

[
η(x) +N

]
dx

≤ C
(
α,N,C1, p

)
ε1 ≤ O(ε1).

(3.69)

Nowwe suppose thatm is large enough that |bm,jk1
| < ε1 for each k1 > 0 and there exists

k1 > 0 such that F(vk1Ω) < ε1 for k1 > k1. Therefore, from (3.25), (3.60), and (3.64), we have

ε1 ≥ F(vk1 ,Ω)

≥ c
m,j

k1
+ a2−p

∗
∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx −O(ε1) − 3ε1 − C
(
C1, p

)
ε1

= c
m,j

k1
+ a2−p

∗
∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx −O(ε1).

(3.70)
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(4) The estimate of cm,jk1
. By fk1I ⇀ 0 weakly∗ in W1,∞(Ω) as k1 → ∞, we obtain

‖fk1I‖L∞(Ω) → 0 ask1 → ∞ for each I. Then

Rk1,m
t,s,j =

∥∥|fk1 |∥∥L∞(Qm
t,s,j )

−→ 0 as k1 −→ ∞ for fixed m. (3.71)

Define a hypercube Ek1,mt,s,j contained in Qm
t,s,j with edge length 1/2jm − 2Rk1,m

t,s,j such that

dist(∂Qm
t,s,j , E

k1,m
t,s,j ) = R

k1,m
t,s,j .

Next define

ϕk1(x) = 0, x ∈ ∂Qm
t,s,j ,

ϕk1(x) = fk1(x), x ∈ Emt,s,j .
(3.72)

Since ϕk1I is a Lipschitz mapping on set Emt,s,j ∪ ∂Qm
t,s,j and its Lipschitz constant is no more

than 2C(n)λ, by Lemma 3.12, ϕk1I can be extended to the whole Qm
t,s,j , where it is also a

Lipschitz mapping with the same Lipchistz constant. We still denote the extension by ϕk1I
and suppose that it is defined on the wholeHj . Then by [20]

∇ϕk1I − ∇fk1I −→ 0 a.e. on Hj. (3.73)

Thus, there exists a k1 > k1 such that for all k1 > k1, we have

∫
Hj

∣∣dϕk1 − dfk1∣∣p(x)dx ≤ ε1
2
,

∑
t,s

∣∣∣∣∣
∫
Qm
t,j,s

ψ
(
xmt,j,s, dfk1(x)

)
− ψ
(
xmt,j,s, dϕk1(x)

)
dx

∣∣∣∣∣ ≤
ε1
2
.

(3.74)

In view of (H5), we obtain that

c
m,j

k1
=
∑
t,s

∫
Qm
t,j,s

ψ
(
xmt,j,s, dfk1(x)

)
dx

≥
∑
t,s

∫
Qm
t,j,s

ψ
(
xmt,j,s, dϕk1(x)

)
dx − ε1

2

=
∑
t,s

∫
Qm
t,j,s

〈
A
(
xmt,j,s, du0

(
xmt,j,s

)
+ dϕk1(x)

)
, dϕk1(x)

〉
dx − ε1

2

≥ γ
∑
t,s

∫
Qm
t,j,s

∣∣dϕk1∣∣p(x)dx − ε1
2

≥ γ

2p∗−1

∫
Hj

∣∣dfk1∣∣p(x)dx −
(
γ + 1

)
ε1

2
.

(3.75)
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Thus in (3.70) for k1 > k1, we obtain the estimate of F(vk1 ,Ω) from the four steps above

ε1 ≥ F(vk1 ,Ω)

≥ a2−p
∗
∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx +
γ

2p∗−1

∫
Hj

∣∣dfk1∣∣p(x)dx −
(
γ + 1

)
ε1

2
−O(ε1).

(3.76)

Let K(ε1) = (γ + 1)ε1/(2 + o(ε1))/min{a2−p∗ , γ/2p∗−1}. Then
∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx +
∫
Hj

∣∣dfk1∣∣p(x)dx ≤ K(ε1), for k1 > k1. (3.77)

Form (3.59) and (3.77), we deduce that

∫
Ω
ε1 ,k1
5

|dvk1 |p(x)dx ≤ K(ε1),
∫
Ω′

∣∣dfk1∣∣p(x)dx ≤ K(ε1) + ε1. (3.78)

According to the definition of Ωε1
2 , we have

∫
Ω2
ε1

∣∣dgk1∣∣p(x)dx ≤ K(ε1) + ε1. (3.79)

Since dgk1(x) = dvk1(x) for each x ∈ Hλ
k1
, we get

∫
Ω2
ε1∩Hλ

k1

|dvk1 |p(x)dx ≤ K(ε1) + ε1. (3.80)

By the definitions of Ωε1
2 and Ωε1,k1

5 , it is immediate that

(
Ωε1

2 ∩Hλ
k1

)
∪Ωε1,k1

5 = Ω, (3.81)

which implies that

∫
Ω
|dvk1 |p(x)dx ≤ 2K(ε1) + ε1 ≤ O(ε1). (3.82)

For ε2 > 0 and the sequence {vk1}, repeating the above arguments we can extract a
subsequence {vk2} of {vk1} such that

∫
Ω
|dvk2 |p(x)dx ≤ O(ε2), (3.83)
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whenever k2 > k2 for some k2. If {vkn} has been obtained, repeating the above process, we
can extract a subsequence {kn+1} of {kn} such that

∫
Ω
|dvkn+1 |p(x)dx ≤ O(εn+1), (3.84)

whenever kn+1 > kn+1 for some kn+1. Finally, by a diagonal argument we get a subsequence
{vki}∞i=1 which satisfies

∫
Ω
|dvki |p(x)dx −→ 0 as i −→ ∞. (3.85)

Therefore,

‖dvki‖Lp(x)(Ω,Λl) −→ 0 as i −→ ∞, (3.86)

and by (3.23), {vki}∞i=1 strongly converges to zero in K0 as i → ∞. This completes the proof of
Theorem 3.1.

4. Applications

In this section, we explore applications of our results developed in this paper.
Let Ω ⊂ R

n be a bounded and convex Lipschitz domain. Suppose that maps A : Ω ×
Λl(Ω) → Λl(Ω) and B : Ω ×Λl−1(Ω) → Λl−1(Ω), where l = 1, 2, . . . , n.

Example 4.1. If p(x) satisfies (1.3), let l = 1, A(x, ξ) = ξ|ξ|p(x)−2 and B(x, ς) = ς|ς|p(x)−2 − f(x),
where f(x) ∈ Lp

′(x)(Ω). Then A,B satisfy the required conditions, and (1.1) reduce to the
following p(x)-Laplacian equations:

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2u = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(4.1)

Now by Theorem 3.1, we deduce that the p(x)-Laplacian equations (4.1) have at least one
weak solution in K1,p(x)(Ω)with u = 0 on ∂Ω.

Example 4.2. If l = 1, A(x, ξ) =
∑

i,j Aij(x)ξjdxi, B(x, ς) = B(x)ς − f(x), where f(x) ∈ L2(Ω),
and Aij(x), B(x) satisfy the following conditions:

Aij(x) = Aji(x), ∧|ξ|2 ≥
n∑

i,j=1

Aij(x)ξiξj ≥ λ|ξ|2, λ ≤ B(x) ≤ ∧, (4.2)
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for some constants λ,∧ > 0. Then A,B satisfy the required conditions, and (1.1) reduce to the
following Divergence form equations:

n∑
i,j=1

∇j

(
Aij(x)∇iu(x)

)
+ B(x)u(x) = f(x), x ∈ Ω, (4.3)

u(x) = 0, x ∈ ∂Ω, (4.4)

where ∇i = (∂/∂xi). Now by Theorem 3.1, we deduce that the divergence form (4.3) have
at least one weak solution u(x) in K1,2(Ω) with u = 0 on ∂Ω. The comparison principles, the
maximum principles, and the existence of weak solutions for divergence form equation (4.3)
can be found in [21].

Example 4.3. If p(x) satisfies (1.3), let A(x, ξ) = ξ|ξ|p(x)−2 and B(x, ς) = ς|ς|p(x)−2 − f(x), where
f(x) ∈ Lp

′(x)(Ω,∧l−1). Then A,B satisfy the required conditions, and (1.1) reduce to the
following p(x)-harmonic equations for differential forms:

d∗
(
du|du|p(x)−2

)
+ u|u|p(x)−2 = f(x), x ∈ Ω, (4.5)

u(x) = 0, x ∈ ∂Ω. (4.6)

Now by Theorem 3.1, we deduce that (4.5) have at least one weak solution u(x) in
K
1,p(x)
0 (Ω,∧l−1). If p(x) is a constant q and 1 < q < ∞, the equation (4.5) is called

nonhomogeneous q-harmonic equation. In [2], Iwaniec and Lutoborski studied the Lq theory
of weak solution for homogeneous q-harmonic equations.
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