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Modifications in software can affect some functionality that had been working until that point. In order to detect such a problem,
the ideal solution would be testing the whole system once again, but there may be insufficient time or resources for this approach.
An alternative solution is to order the test cases so that the most beneficial tests are executed first, in such a way only a subset of the
test cases can be executed with little lost of effectiveness. Such a technique is known as regression test case prioritization. In this
paper, we propose the use of the Reactive GRASP metaheuristic to prioritize test cases. We also compare this metaheuristic with
other search-based algorithms previously described in literature. Five programs were used in the experiments. The experimental
results demonstrated good coverage performance with some time overhead for the proposed technique. It also demonstrated a

high stability of the results generated by the proposed approach.

1. Introduction

More than often, when a system is modified, the modifica-
tions may affect some functionality that had been working
until that point in time. Due to the unpredictability of the
effects that such modifications may cause to the system’s
functionalities, it is recommended to test the system, as a
whole or partially, once again every time a modification takes
place. This is commonly known as regression testing. Its
purpose is to guarantee that the software modifications have
not affected the functions that were working previously.

A test case is a set of tests performed in a sequence and
related to a test objective [1], and a test suite is a set of
test cases that will execute sequentially. There are basically
two ways to perform regression tests. The first one is by
reexecuting all test cases in order to test the entire system
once again. Unfortunately, and usually, there may not be
sufficient resources to allow the reexecution of all test cases
every time a modification is introduced. Another way to
perform regression test is to order the test cases in respect to
their beneficial factor to some attribute, such as coverage, and
reexecute the test cases according to that ordering. In doing
this, the most beneficial test cases would be executed first,

in such a way only a subset of the test cases can be executed
with little lost of effectiveness. Such a technique is known as
regression test case prioritization. When the time required
to reexecute an entire test suite is sufficiently long, test case
prioritization may be beneficial because meeting testing goals
earlier can yield meaningful benefits [2].

According to Myers [3], since exhaustive testing is out of
question, the objective should be to maximize the yield on
the testing investment by maximizing the number of errors
found by a finite number of test cases. As Fewster stated
in [1], software testing needs to be effective at finding any
defects which are there, but it should also be efficient by
performing the tests as quickly and cheaply as possible.

The regression test case prioritization problem is closely
related to the regression test case selection problem. The
Regression Test Case Selection problem can be directly
modeled as a set covering problem, which is a well-known
NP-Hard problem [4]. This fact points to the complexity of
the Test Case Prioritization problem.

To order the test cases, it is necessary to consider a
base comparison measure. A straightforward measure to
evaluate a test case would be based on APFD (Average of
the Percentage of Faults Detected). Higher APFD numbers



mean faster fault detection rates [5]. However, it is not
possible to know the faults exposed by a test case in advance,
so this value cannot be estimated before testing has taken
place. Therefore, the research on test case prioritization
concentrates on coverage measures. The following coverage
criteria have been commonly used, APBC (Average Percent-
age Block Coverage), which measures the rate at which a
prioritized test suite covers the blocks of the code, APDC
(Average Percentage Decision Coverage), which measures
the rate at which a prioritized test suite covers the decision
statements in the code, and APSC (Average Percentage
Statement Coverage), which measures the rate at which a
prioritized test suite covers the statements. In this work, these
three coverage measures will be considered.

As an example, consider a test suite T containing n test
cases that covers a set B of m blocks. Let TB; be the first test
case in the order T" of T that covers block i. The APBC for
ordering T" is given by the following equation (equivalent
for the APDC and APSC metrics) [6]:

TB,+ TB, + ---+TBer 1
nm 2n’

APBC =1 — (1)

Greedy algorithms have been employed in many
researches regarding test case prioritization, in order to find
an optimal ordering [2]. Such Greedy algorithms perform by
iteratively adding a single test case to a partially constructed
test suite if this test case covers, as much as possible, some
piece of code not covered yet. Despite the wide use, as
pointed out by Rothermel [2] and Li et al. [6], Greedy
algorithms may not choose the optimal test case ordering.
This fact justifies the application of global approaches, that
is, approaches which consider the evaluation of the ordering
as a whole, not individually to each test case. In that context,
metaheuristics have become the focus in this field. In this
work, we have tested Reactive GRASP, not yet used for test
case prioritization.

Metaheuristic search techniques are algorithms that may
find optimal or near optimal solutions to optimization
problems [7]. In the context of software engineering, a
new research field has emerged by the application of
search techniques, especially metaheuristics, to well-known
complex software engineering problems. This new field has
been named SBSE (Search-Based Software Engineering). In
this field, the software engineering problems are modeled as
optimization problems, with the definitions of an objective
function—or a set of functions—and a set of constraints.
The solutions to the problems are found by the application
of search techniques.

The application of genetic algorithms, an evolutionary
metaheuristic, has been shown to be effective for regression
test case prioritization [8, 9]. We examine in this paper the
application of another well-known metaheuristic, GRASP,
not applied yet neither to the regression test case selection
problem nor to any other search-based software engineering
problem. The GRASP metaheuristic was considered due to
its good performance reported by several studies in solving
complex optimization problems.

The remaining of this paper is organized as follows:
Section 2 describes works related to the regression test
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case prioritization problem and introduces some algorithms
which have been applied to this problem. These algorithms
will be employed in the evaluation of our approach later
on the paper. Section 3 describes the GRASP metaheuristic
and the proposed algorithm using Reactive GRASP. Section 4
presents the details of the experiments, and Section 5 reports
the conclusions of this research and states future works.

2. Related Work

This section reports the use of search-based prioritization
approaches and metaheuristics. Some algorithms imple-
mented in [6] by Li et al. which will have their performance
compared to that of the approach proposed later on this
paper will also be described.

2.1. Search-Based Prioritization Approaches. The works bel-
ow employed search-based prioritization approaches, such as
greedy- and metaheuristic-based solutions.

Elbaum et al. [10] analyze several prioritization tech-
niques and provide responses to which technique is more
suitable for specific test scenarios and their conditions.
The metric APFD is calculated through a greedy heuristic.
Rothermel et al. [2] describe a technique that incorporates
a Greedy algorithm called Optimal Prioritization, which
considers the known faults of the program, and the test cases
are ordered using the fault detection rates. Walcott et al. [8]
propose a test case prioritization technique with a genetic
algorithm which reorders test suites based on testing time
constraints and code coverage. This technique significantly
outperformed other prioritization techniques described in
the paper, improving in, on average, 120% the APFD over
the others.

Yoo and Harman [9] describe a Pareto approach to
prioritize test case suites based on multiple objectives, such
as code coverage, execution cost, and fault-detection history.
The objective is to find an array of decision variables
(test case ordering) that maximize an array of objective
functions. Three algorithms were compared: a reformulation
of a Greedy algorithm (Additional Greedy algorithm), Non-
Dominating Sorting Genetic Algorithm (NSGA-II) [11], and
avariant of NSGA-II, vNSGA-II. For two objective functions,
a genetic algorithm outperformed the Additional Greedy
algorithm, but for some programs the Additional Greedy
algorithm produced the best results. For three objective
functions, Additional Greedy algorithm had reasonable
performance.

Li et al. [6] compare five algorithms: Greedy algorithm,
which adds test cases that achieve the maximum value for the
coverage criteria, Additional Greedy algorithm, which adds
test cases that achieve the maximum coverage not already
consumed by a partial solution, 2-Optimal algorithm, which
selects two test cases that consume the maximum coverage
together, Hill Climbing, which performs local search in
a defined neighborhood, and genetic algorithm, which
generates new test cases based on previous ones. The authors
separated test suites in 1,000 small suites of size 8-155 and
1,000 large suites of size 228-4,350. Six C programs were used
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in the experience, ranging from 374 to 11,148 LoC (lines of
code). The coverage metrics studied in that work were APBC,
APDC, and APSC, as described earlier. For each program, the
block, decision, and statement coverage data were found by
tailor-made version of a commercial tool, Cantata++. The
coverage data were obtained over 500 executions for each
search algorithm, using a different suite for each execution.
For small programs, the performance was almost identical
for all algorithms and coverage criteria, considering both
small and large test suites. The Greedy algorithm performed
the worst and the genetic algorithm and Additional Greedy
algorithm produced the best results.

2.2. Algorithms. This section describes some algorithms
which have been used frequently in literature to deal with the
test case prioritization problem. The performance of them
will be compared to that of the approach proposed later on
this paper.

2.2.1. Greedy Algorithm. The Greedy Algorithm performs in
the following way: all candidate test cases are ordered by their
coverage. Then, the test case with the highest percentage of
coverage is then added to an initially empty solution. Next,
the test case with the second highest percentage is added, and
so on, until all test cases have been added.

For example, let APBC be the coverage criterion, and
let a partial solution contain two test cases that cover 100
blocks of code. Suppose there are two other test cases that
can be added to the solution. The first one covers 80 blocks,
but 50 of these were already covered by the current solution.
Then, this solution covers 80% of the blocks, but the actual
added coverage of this test case is of 30% of coverage (30
blocks). The second test case covers 40 blocks of code, but
none of these blocks was covered by the current solution.
This means that this solution covers 40% of the blocks. The
Greedy algorithm would select the first test case, because it
has greater percentage of block coverage overall.

2.2.2. Additional Greedy Algorithm. The Additional Greedy
algorithm adds a locally optimal test case to a partial test
suite. Starting from an empty solution, the algorithm follows
these steps: for each iteration, the algorithm adds the test case
which gives the major coverage gain to the partial solution.

Let us use the same example from Section 2.2.1. Let a
partial solution contain two test cases that cover 100 blocks of
code. There are two remaining test cases: the first one covers
80 blocks, but 50 of these were already covered; the second
one covers 40 blocks of code, none of these already covered.
The first solution represents an actual 30% of coverage and
the second one represents 40% of coverage. The Additional
Greedy algorithm would select the second test case, because
that solution has greater coverage factor related to the current
partial solution.

2.2.3. Genetic Algorithm. Genetic algorithm is a type of Evo-
lutionary Algorithm which has been employed extensively
to solve optimization problems [12]. In this algorithm, an
initial population of solutions—in our case a set of test

suites—is randomly generated. The procedure then works,
until a stopping criterion is reached, as new populations are
generated based on the previous one [13]. The evolution
from one population to the next one is performed via
“genetic operators”, including operations of selection, that
is, the biased choice of which individuals of the current
population will reproduce to generate individuals for the new
population. This selection prioritizes individuals with high
fitness value, which represents how good this solution is.
The other two genetic operators are crossover, that is, the
combination of individuals to produce the offspring, and
mutation, which randomly changes a particular individual.

In the genetic algorithm proposed by Li et al. [6],
the initial population is produced by selecting test cases
randomly from the test case pool. The fitness function is
based on the test case position in the current test suite. The
fitness value was calculated as follows:

(pos—1)

T @

fitness(pos) = 2 -
where pos is the test case’s position in the current test suite
and n is the population size.

The crossover algorithm follows the ordering chromo-
some crossover style adopted by Antoniol [14] and used in
[6] by Li et al. for the genetic algorithm in the experiments.
It works as follows. Let p; and p, be the parents, and let
01 and o, be the offspring. A random position k is selected,
and the first k elements of p; become the first k elements of
01, and the last n — k elements of 0; are the n — k elements
of p, which remain when the k elements selected from p,
are removed from p,. In the same way, the first k elements
of p, become the first k elements of 0,, and the last n — k
elements of 0, are the n—k elements of p; which remain when
the k elements selected from p, are removed from p;. The
mutation is performed by randomly exchanging the position
of two test cases.

2.2.4. Simulated Annealing. Simulated annealing is a gener-
alization of a Monte Carlo method. Its name comes from
annealing in metallurgy, where a melt, initially disordered
at high temperature, is slowly cooled, with the purpose
of obtaining a more organized system (a local optimum
solution). The system approaches a frozen ground state
with T = 0. Each step of simulated annealing algorithm
replaces the current solution by a random solution in its
neighborhood, based on a probability that depends on the
energies of the two solutions.

3. Reactive GRASP for Test Case Prioritization

This section is intended to present a novel approach
for test case prioritization based on the Reactive GRASP
metaheuristic.

3.1. The Reactive GRASP Metaheuristic. Metaheuristics are
general search algorithms that find a good solution, some-
times optimal, to optimization problems. In this section we
present, in a general fashion, the metaheuristic which will be
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FIGURE 1: GRASP’s phases.

employed to prioritize test cases by the approach proposed
later on this paper.

GRASP (Greedy Randomized Adaptative Search Proce-
dures) is a metaheuristic with two phases: construction and
local search [15]. This metaheuristic is defined as a multistart
algorithm, since the procedure is executed multiple times in
order to get the best solution found overall; see Figure 1.

In the construction phase, a feasible solution is built by
applying some Greedy algorithm. The greedy strategy used in
GRASP is to add to an initially empty solution one element
at a time. This algorithm tends to find a local optimum.
Therefore, in order to avoid this local best, GRASP uses
a randomization greedy strategy as follows. The Restrict
Candidate List (RCL) stores the possible elements which
can be added at each step in this construction phase. The
element to be added is picked randomly from this list. RCL
is associated with a parameter named «, which limits the
length of the RCL. If « = 0, only the best element—with
highest coverage—will be present in the RCL, making the
construction process a pure Greedy algorithm. Otherwise, if
a = 1, the construction phase will be completely random,
because all possible elements will be in RCL. The parameter
a should be set to calibrate how random and greedy the
construction process will be. The found solution is then used
in the local search phase.

In the local search phase, the aim is to find the best
solution in the current solution neighborhood. Indeed, a
local search is executed in order to replace the current
solution by the local optimum in its neighborhood. After
this process, this local optimum is compared with the best
local optimum solution found in earlier iterations. If the local
optimum just found is better, then this is set to be the best
solution already found. Otherwise, there is no replacement.

As can be easily seen, the performance of the GRASP
algorithm will strongly depend on the choice of the
parameter a. In order to decrease this influence, a GRASP

variation named Reactive GRASP [15, 16] has been pro-
posed. This approach performs GRASP while varying the
values of a according to their previous performance. In
practice, Reactive GRASP will initially determine a set of
possible values for a. Each value will have a probability of
being selected in each iteration.

Initially, all « probabilities are assigned to 1/n, where n
is the quantity of a. For each one of the i values of «, the
probabilities p; are reevaluated for each iteration, according
to the following equation:

1 (3)

b= Z;'l:l qj’

with g; = $*/A;, where S* is the incumbent solution and A; is
the average value of all solutions found with &« = a;. This way,
when a particular « generates a good solution, its probability,
given by p;, of being selected in the future is increased. On
the other hand, if a bad solution is created, the « value used
in the process will have its selection probability decreased.

3.2. The Reactive GRASP Algorithm. The pseudocode below,
in Algorithm 1, describes the Reactive GRASP algorithm.

The first step initializes the probabilities associated with
the choice of each « (line 1).

Initially, all probabilities are assigned to 1/n, where # is
the length of « Set, the set of a values. Next, the GRASP
algorithm runs the construction and local search phases, as
described next, until the stopping criterion is reached. For
each iteration, the best solution is updated when the new
solution is better.

For each iteration, « is selected as follows; see
Algorithm 2. Let §* be the incumbent solution, and let A; be
the coverage average value of all solutions found with & = «;,
where i = 1,...,m, and m is the number of test cases. As



Advances in Software Engineering

(1) initialize probabilities associated
with « (all equal to %)

(2) for k = 1 to max_iterations do

(3)  a < select_a (aSet);

(4)  solution — run_construction_phase(«a);

(5) solution — run_local_search_phase(solution);
(6) update_solution(solution, best solution);

(7) end;

(8) return best_solution;

AvrLcoriTHM 1: Reactive GRASP for Test Case Prioritization.

procedure select_a(aSet)
qi
Z;n:l qj

(1) & — a with probability p; =

(2) return «

ALGORITHM 2: Selection of a.

described in Section 3.1, the probabilities p; are reevaluated
at each iteration by taking

qi
i = <m (4)
4 2.i-14]

The pseudocode in Algorithm 3 details the construction
phase. For each iteration, one test case which increases the
coverage of the current solution (set of test cases) is selected
by a greedy evaluation function. This element is randomly
selected from the RCL (Restricted Candidate List), which has
the best elements, that is, the best coverage values. After the
element is incorporated to the partial solution, the RCL is
updated. The increment of coverage is then reevaluated.

The «a Set is updated after the solution is found, in order
to change the selection probabilities of the a Set elements.
This update is detailed in Algorithm 4.

After the construction phase, a local search phase is
executed in order to improve the generated solution. This
phase is important to avoid the problems mentioned by
Rothermel [2] and Li et al. [6], where Greedy algorithms may
fail to choose the optimal test case ordering. The pseudocode
for the local search is described in Algorithm 5.

Let s be the test suite generated by the construction phase.
The local search is performed as follows: the first test case on
the test suite is exchanged with the other test cases, one at a
time, that is, n — 1 new test suites are generated, exchanging
the first test case with the ith one, where 7 varies from 2 to #,
and n is the length of the original test suite. The original test
suite is then compared with all generated test suites. If one
of those test suites is better—in terms of coverage—than the
original one, it replaces the original solution. This strategy
was chosen because, even with very little computational
effort, any exchange with the first test case can generate a
very significant difference in coverage. In addition, it would
be prohibitive to test all possible exchanges, since it would
generate n® new test suites, instead of n — 1, in which most of

(1) solution— &
(2) initialize the candidate set C with random

test cases from the pool of test cases;
(3) evaluate the coverage ¢’ (e) foralle € C;
(4) while C# @ do
(5) ¢ = min{c'(e) | e € C};
(6) ¢ = max{c’(e) | e € C};
(7) RCL={ee C|c(e) < cmn

+ a(cmax _ Cmin)};

(8) s — test case from the RCL at random;
9) solution —solution U{s};
(10) update C;
(11)  reevaluate ¢'(e) for all e € C;
(12) end;
(13) update_aSet(solution);
(14) return solution;

ALGORITHM 3: Reactive GRASP for Test Case Prioritization, Con-
struction Phase.

procedure update_aSet (solution)
(1) update probabilities of all @ in aSet, using
4
b Z;'”:I qj

ArcoriTaM 4: Update of .

(1) while s not locally optimal do

(2) Finds" e Neighbour (s) with f(s") < f(s);
(3) s—5s;

(4) end;

(5) returns;

ALGORrITHM 5: Reactive GRASP for Test Case Prioritization, Local
Search Phase.

them would exchange the last elements, with no significant
difference in coverage.

4. Empirical Evaluation

In order to evaluate the performance of the proposed
approach, a series of empirical tests was executed. More
specifically, the experiments were designed to answer the
following question.

(1) How does the Reactive GRASP approach compare—
in terms of coverage and time performances—
to other search-based algorithms, including Greedy
algorithm, Additional Greedy algorithm, genetic
algorithm, and Simulated Annealing?

In addition to this result, the experiments can confirm
results previously described in literature, including the
performance of the Greedy algorithm.
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TABLE 1: Programs used in the Evaluation.

Program LoC Blocks ~ Decisions  Test Pool Size
Print_tokens 726 126 123 4,130
Print_tokens2 570 103 154 4,115
Schedule 412 46 56 2,650
Schedule2 374 53 74 2,710
Space 9,564 869 1,068 13,585

4.1. Experimental Design. Four small programs (print_
tokens, print_tokens2, schedule, and schedule2) and a larger
program (space) were used in the tests. These programs were
assembled by researchers at Siemens Corporate Research [17]
and are the same Siemens’ programs used in Li et al. [6]
for the experiments regarding test case prioritization. Table 1
describes the five programs’ characteristics.

Besides Reactive GRASP, other search algorithms have
also been implemented, in order to compare their effec-
tiveness. They are Greedy algorithm, Additional Greedy
algorithm, genetic algorithm, and simulated annealing.
These algorithms were implemented exactly as described
in Section 3 of this paper. For the genetic algorithm, as
presented by Li et al. [6], the population size was set
at 50 individuals and the algorithm was terminated after
100 generations. Stochastic universal sampling was used
in selection and mutation, the crossover probability (per
individual) was set to 0.8, and the mutation probability
was set to 0.1. For the Reactive GRASP approach, the
maximum number of iterations was set, by preliminary
experimentation, to 300.

For the simulated annealing approach, the initial temper-
ature was set to a random number between 20 and 99. For
each iteration, the new temperature is given by the following
steps:

(1) dividend = actualTemperature + initial Temperature,
(2) divisor = 1+ log,,1,
dividend
(3) new temperature = ————.
divisor

In the experiments, we considered the three coverage
criteria described earlier (APBC, APDC, and APSBC). In
addition, we considered different percentages of the pool of
test cases. For example, if the percentage is 5%, 5% of test
cases are randomly chosen from the pool to compare the
performance of the algorithms. We tested with 1%, 2%, 3%,
5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and
100% for the four small programs and 1%, 5%, 10%, 20%,
30%, 40%, and 50% for space. Each algorithm was executed
10 times for the four small programs and 1 time for the space
program, for each coverage criterion and each percentage.

The pools of test cases used in the experiments were col-
lected from SEBASE [18]. The test cases used are composed
of “0”s and “17s, where “0” represents “code not covered”
and “1” represents “code covered”. The length of a test case is
the quantity of portions of code of the program. For example,
when we are analyzing the decision coverage, the length of
the test cases is the quantity of decisions on the program. In
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the APDC, a “0” for the first decision means that the first
decision is not covered by the test suite and a “1” for the
second decision means that the second decision is covered
by the test suite, and so on.

All experiments were performed on Ubuntu Linux
workstations with kernel 2.6.22-14, a Core Duo processor,
and 1GB of main memory. The programs used in the
experiment were implemented using the Java programing
language.

4.2. Results. The results are presented in Tables 2, 3, 4,
5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 and
Figures 2 to 17, separating the four small programs from
the space program. Tables 2, 3, 4, and 5 detail the average
of 10 executions of the coverage percentage achieved for
each coverage criterion and each algorithm for printtokens,
printtokens2, schedule, and schedule2, respectively. Table 12
has this information regarding the space program. The TSSp
column is the percentage of test cases selected from the test
case pool. The mean differences on time execution in seconds
are also presented in Tables 6 and 16, for small programs and
space, respectively.

Tables 7 and 14 show the weighted average for the metrics
(APBC, APDC, and APSC) for each algorithm. Figures 2 to
17 demonstrate a comparison among the algorithms for the
metrics APBC, APDC, and APSC, for the small programs and
space program.

4.3. Analysis. Analyzing the results obtained from the exper-
iments, which are detailed in Tables 2, 3, 4, 5, and 9 and
summarized in Tables 6 and 13, several relevant results
can be pointed out. First, the Additional Greedy algorithm
had the best performance in effectiveness of all tests. It
performed significantly better than the Greedy algorithm,
the genetic algorithm, and simulated annealing, both for the
four small programs and for the space program. The good
performance of the Additional Greedy algorithm had already
been demonstrated in several works, including Li et al. [6]
and Yoo and Harman [9].

4.3.1. Analysis for the Four Small Programs. The Reactive
GRASP algorithm had the second best performance. This
approach also significantly outperformed the Greedy algo-
rithm, the genetic algorithm, and simulated annealing, con-
sidering the coverage results. When compared to the Addi-
tional Greedy algorithm, there were no significant differences
in terms of coverage. Comparing the metaheuristic-based
approaches, the better performance obtained by the Reactive
GRASP algorithm over genetic algorithm and simulated
annealing was clear.

In 168 experiments, the genetic algorithm generated a
better coverage only once (block criterion, the schedule
program, and 100% of tests being considered). The two
algorithms tied also once. For all other tests, the Reactive
GRASP outperformed the genetic algorithm. The genetic
algorithm approach performed the fourth best in our
evaluation. In Li et al. [6], the genetic algorithm was also
worse than the Additional Greedy algorithm. The results



Advances in Software Engineering 7
TaBLE 2: Results of Coverage Criteria (Average of 10 Executions), Program Print-tokens.
Block Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.6591 98.235 96.6893 96.1242 97.808
2% 98.3209 99.2101 98.3954 98.3113 99.0552
3% 98.6763 99.5519 98.5483 98.5553 99.3612
5% 98.5054 99.6909 98.8988 98.9896 99.5046
10% 98.2116 99.8527 99.2378 99.3898 99.7659
20% 98.266 99.9317 99.2378 99.6414 99.8793
30% 98.3855 99.9568 99.6603 99.6879 99.9204
40% 98.3948 99.9675 99.7829 99.736 99.9457
50% 98.4064 99.9747 99.8321 99.8213 99.9627
60% 98.4097 99.979 99.8666 99.8473 99.9622
70% 98.4133 99.9818 99.8538 99.8698 99.9724
80% 98.4145 99.9841 99.8803 99.8657 99.9768
90% 98.4169 99.9859 99.9013 99.8958 99.9783
100% 98.418 99.9873 99.9001 99.8895 99.9775
Decision Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.7692 98.3836 96.9125 95.9213 98.1204
2% 98.0184 99.1429 97.9792 98.2299 98.8529
3% 98.5569 99.4499 98.3785 98.0762 99.2886
5% 98.4898 99.6971 98.7105 98.7513 99.4631
10% 98.1375 99.8462 98.8659 99.1759 99.697
20% 98.2486 99.928 99.3886 99.5111 99.8668
30% 98.3131 99.952 99.587 99.6955 99.9061
40% 98.3388 98.3388 99.7137 99.7505 99.9237
50% 98.3437 99.9712 99.7305 99.78 99.9386
60% 98.358 99.9766 99.817 99.8235 99.959
70% 98.3633 99.9799 99.8109 99.7979 99.9543
80% 98.3651 99.9821 99.8631 99.8447 99.9663
90% 98.4169 99.9859 99.9013 99.8541 99.9783
100% 98.418 99.9873 99.9001 99.869 99.9775
Statement Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.2989 98.3561 97.0141 97.251 98.0439
2% 97.7834 99.2557 98.0175 98.576 98.9675
3% 98.0255 99.4632 98.5163 98.5633 99.2356
5% 97.8912 99.6826 98.5167 99.0268 99.4431
10% 97.8137 99.8534 99.1497 99.3131 99.681
20% 98.0009 99.9264 99.5024 99.5551 99.8554
30% 98.0551 99.954 99.6815 99.7151 99.9079
40% 98.0661 99.9656 99.7342 99.7677 99.9296
50% 98.0705 99.9724 99.8123 99.8108 99.9464
60% 98.0756 99.9773 99.8348 99.8456 99.9598
70% 98.0887 99.9805 99.8641 99.8633 99.9704
80% 98.088 99.9831 99.89 99.8649 99.9682
90% 98.0924 99.985 99.9026 99.8819 99.9709
100% 98.0943 99.9865 99.8998 99.8897 99.977
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TaBLE 3: Results of Coverage Criteria (Average of 10 Executions), Program Print-tokens2.

Block Coverage%

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.233 98.3518 97.6629 98.042 98.1576
2% 98.3869 99.2665 98.6723 98.8302 99.208
3% 97.9525 99.5122 98.8576 99.1817 99.3274
5% 98.1407 99.711 99.2379 99.3382 99.5932
10% 98.131 99.8564 99.5558 99.6731 99.7994
20% 98.01 99.9293 99.7894 99.8015 99.8689
30% 98.0309 99.9535 99.8269 99.839 99.9239
40% 98.0462 99.9656 99.8602 99.8957 99.9495
50% 98.0569 99.9727 99.9166 99.9106 99.9653
60% 98.0589 99.977 99.9165 99.9269 99.9689
70% 98.0611 99.9805 99.9264 99.9236 99.9756
80% 98.0632 99.9828 99.9383 99.9261 99.9778
90% 98.0663 99.9849 99.9543 99.9385 99.9796
100% 98.0671 99.9864 99.9562 99.9434 99.9811
Decision Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.05 98.3055 97.2108 97.6375 98.0859
2% 98.6637 99.2489 98.4368 98.5244 99.0987
3% 98.5798 99.5496 98.8814 99.0411 99.4344
5% 98.5903 99.7371 99.3676 99.2289 99.6772
10% 98.5673 99.8628 99.5183 99.6528 99.8118
20% 98.6351 99.9353 99.7939 99.8084 99.913
30% 98.6747 99.9593 99.8615 99.8405 99.9482
40% 98.6837 99.9692 99.8836 99.8802 99.9556
50% 96.1134 99.9552 99.8269 99.8992 99.9318
60% 98.6948 99.9795 99.9181 99.9109 99.9751
70% 98.6964 99.9826 99.9358 99.9302 99.9768
80% 98.6985 99.9848 99.9478 99.931 99.9788
90% 98.0663 99.9849 99.9543 99.9409 99.9796
100% 98.0671 99.9864 99.9562 99.9424 99.9811
Statement Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.4458 98.3742 97.8234 97.453 98.2804
2% 98.7611 99.2552 98.755 98.5444 99.0653
3% 98.3634 99.4745 98.9385 98.9165 99.3279
5% 97.8694 99.6856 99.1507 99.3858 99.5327
10% 98.0271 99.8494 99.5268 99.6258 99.7906
20% 98.1264 99.927 99.7455 99.7283 99.9086
30% 97.9467 99.9518 99.8533 99.8297 99.9328
40% 97.9653 99.9645 99.8833 99.864 99.9564
50% 97.9762 99.9717 99.9126 99.8891 99.9584
60% 97.9792 99.9768 99.9162 99.905 99.9644
70% 97.9851 99.9803 99.9265 99.9156 99.9708
80% 97.9854 99.9827 99.9399 99.9187 99.9759
90% 97.9877 99.9847 99.9399 99.9288 99.9789

100% 97.9894 99.9863 99.9477 99.9262 99.9791
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TaBLE 4: Results of Coverage Criteria (Average of 10 Executions), Program Schedule.
Block Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.6505 98.2286 98.2286 97.9387 98.2286
2% 96.5053 99.0237 98.9499 98.8596 99.0073
3% 96.451 99.3315 99.2336 99.1955 99.2445
5% 95.6489 99.5652 99.2481 99.4066 99.3233
10% 95.2551 99.767 99.5586 99.6455 99.7013
20% 95.9548 99.8884 99.7604 99.7497 99.8589
30% 95.8225 99.9224 99.8219 99.8442 99.8918
40% 96.0783 99.9429 99.8995 99.8982 99.9163
50% 96.3159 99.9553 99.9051 99.899 99.9396
60% 96.9283 99.9644 99.918 99.9156 99.9546
70% 97.0744 99.9695 99.9235 99.9322 99.9643
80% 97.0955 99.9733 99.9464 99.9411 99.9649
90% 97.1171 99.9763 99.9474 99.946 99.9704
100% 97.0495 99.9786 99.9573 99.9454 99.7013
Decision Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.3492 98.2671 98.0952 98.0092 98.2407
2% 95.9838 99.0566 98.7129 98.7364 98.9218
3% 95.933 99.3303 98.9107 98.9575 99.2589
5% 95.1047 99.5327 98.6224 99.0856 99.2427
10% 94.8611 99.7668 99.2237 99.3422 99.6159
20% 94.75 99.8739 99.4858 99.6266 99.7749
30% 95.3616 99.9241 99.7047 99.7181 99.8757
40% 95.3396 99.9413 99.7944 99.7871 99.9144
50% 96.1134 99.9552 99.8269 99.8515 99.9318
60% 96.3241 99.9627 99.852 99.8541 99.9416
70% 96.5465 99.968 99.8673 99.8927 99.9586
80% 96.9312 99.9722 99.88 99.8868 99.9553
90% 97.1171 99.9763 99.9474 99.9077 99.9704
100% 97.0495 99.9786 99.9573 99.9118 99.9701
Statement Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.747 98.1768 98.0792 98.1911 98.1596
2% 97.0323 99.039 98.8108 98.8664 99.0273
3% 96.937 99.3284 99.1366 99.1927 99.2257
5% 96.3181 99.5751 99.2731 99.4252 99.4398
10% 96.1091 99.782 99.452 99.6635 99.6428
20% 96.9909 99.8945 99.7965 99.8168 99.8693
30% 97.2931 99.9307 99.8703 99.8683 99.9112
40% 97.0724 99.9471 99.9003 99.8983 99.9358
50% 97.4288 99.9584 99.9214 99.9146 99.9445
60% 97.4015 99.9653 99.932 99.9281 99.9594
70% 97.6458 99.9707 99.9374 99.931 99.9653
80% 97.8832 99.9748 99.9399 99.9273 99.9722
90% 97.8907 99.9777 99.9496 99.9471 99.9653
100% 97.8901 99.9799 99.9627 99.9494 99.978
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TaBLE 5: Results of Coverage Criteria (Average of 10 Executions), Program Schedule2.

Block Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.2708 98.1199 98.066 98.167 98.1064
2% 98.2538 99.0566 98.9605 99.0325 99.036
3% 98.6447 99.3764 99.3304 99.3464 99.3534
5% 99.4678 99.6184 99.5851 99.5879 99.6184
10% 98.2116 99.8527 99.2378 99.7869 99.7659
20% 99.9056 99.907 99.8952 99.893 99.907
30% 99.9385 99.9385 99.9348 99.9267 99.9385
40% 99.9538 99.9538 99.9476 99.9418 99.9538
50% 99.963 99.963 99.9586 99.9535 99.963
60% 99.9692 99.9692 99.9676 99.9612 99.9692
70% 99.9736 99.9736 99.9702 99.9584 99.9736
80% 99.9769 99.9769 99.972 99.9641 99.9769
90% 99.9794 99.9794 99.9779 99.9735 99.9794
100% 99.9815 99.9815 99.9796 99.9701 99.9815
Decision Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 95.6563 98.3687 97.9922 98.1129 98.3301
2% 96.1375 98.9533 98.2113 98.5404 98.8501
3% 95.5965 99.3111 98.4344 98.9122 99.0936
5% 97.6887 99.6164 99.058 99.2189 99.4773
10% 97.1277 99.7985 99.4385 99.4873 99.7057
20% 97.2249 99.9027 99.7033 99.7575 99.8713
30% 97.2647 99.9352 99.8177 99.8224 99.9126
40% 97.2726 99.9513 99.8145 99.8673 99.9144
50% 97.2823 99.9712 99.8745 99.8907 99.9411
60% 97.2869 99.9676 99.8827 99.9143 99.9584
70% 97.2981 99.9722 99.915 99.9013 99.9595
80% 97.3005 99.9756 99.9311 99.915 99.9695
90% 99.9794 99.9794 99.9779 99.9304 99.9794
100% 99.9815 99.9815 99.9796 99.9297 99.9815
Statement Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.7116 98.2883 98.1984 98.0316 98.2777
2% 97.4612 99.1097 98.9346 98.6235 99.0208
3% 97.1499 99.336 98.9259 99.0397 99.1481
5% 97.7227 99.6029 99.3066 99.428 99.5114
10% 98.3422 99.8072 99.6104 99.6295 99.734
20% 98.4317 99.9014 99.7765 99.7866 99.8815
30% 98.474 99.9363 99.8543 99.8455 99.9074
40% 98.4861 99.9525 99.8892 99.8833 99.9441
50% 98.4988 99.962 99.9159 99.9055 99.9568
60% 98.5041 99.9683 99.9251 99.9123 99.9626
70% 98.5109 99.9728 99.9345 99.9278 99.9663
80% 98.512 99.9762 99.9429 99.9291 99.9725
90% 98.5166 99.9788 99.9549 99.9463 99.9757

100% 98.521 99.981 99.9583 99.9453 99.9783
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TasLE 6: Coverage Significance and Time Mean Difference, Small Programs.

11

Mean Coverage Difference (%)

Coverage Difference

Time Mean Difference

Algorithm (x) Algorithm (y)
§ § y (x — y) Significance (¢-test) (s) (x — y)
Additional Greedy Algorithm —1.9041 0.0000 —1.4908
Greedy Algorithm G'enetlc Algorlthrr} —1.8223 0.0000 —8.4361
Simulated Annealing —1.8250 0.0000 —-0.0634
Reactive GRASP —1.8938 0.0000 —100.0312
Additional Greedy Greedy Algorithm 1.9041 0.0000 1.4908
Algorithm Genetic Algorithm 0.0818 0.0000 —6.9452
Simulated Annealing 0.0790 0.0000 1.4274
Reactive GRASP 0.0103 0.1876 —98.5403
Greedy Algorithm 1.8223 0.0000 8.4361
Genetic Algorithm A.ddltlonal Greed}f Algorithm —-0.0818 0.0000 6.9452
Simulated Annealing —-0.0026 0.4918 8.3727
Reactive GRASP —0.0715 0.0000 —91.5951
Greedy Algorithm 1.8250 0.0000 0.0634
Simulated Annealing Addltl.onal Grf.eedy Algorithm —-0.0790 0.0000 —1.4274
Genetic Algorithm 0.0026 0.4918 —-8.3727
Reactive GRASP —0.0688 0.0000 —99.9679
Greedy Algorithm 1.8938 0.0000 100.0312
Reactive GRASP Additional Greedy Algorithm —-0.0103 0.1876 98.5403
Genetic Algorithm 0.0715 0.0000 91.5951
Simulated Annealing 0.0688 0.0000 99.9679
TABLE 7: Weighted Average for the Metrics, Small Programs.
Coverage Criterion  Greedy Algorithm  Additional Greedy Algorithm  Genetic Algorithm  Simulated Annealing  Reactive GRASP
Block Coverage 98.2858 99.9578 99.8825 99.8863 99.9335
Decision Coverage 97.8119 99.9276 99.8406 99.8417 99.9368
Statement Coverage 98.0328 99.9573 99.8743 99.8706 99.9417
TaBLE 8: Difference in Performance between the Best and Worst Criteria, Small Programs.
Greedy Algorithm Addltlona.I Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
Algorithm
Difference in performance . 0.4739 0.0302 0.0419 0.0446 0.0082
between the best and worst criteria
TABLE 9: Average for Each Algorithm (All Metrics), Small Programs.
Greedy Algorithm  Additional Greedy Algorithm  Genetic Algorithm  Simulated Annealing ~ Reactive GRASP
Final Average 98.0435 99.9476 99.8658 99.8662 99.9373
TasLE 10: Standard Deviation of the Effectiveness for the Four Algorithms, Small Programs.
Greedy Algorithm  Additional Greedy Algorithm  Genetic Algorithm  Simulated Annealing  Reactive GRASP
Standard Deviation 0.002371 0.000172 0.000222 0.000226 0.000041

TaBLE 11: Summary of Results, Small Programs.

Algorithm Coverage Performance Execution Time  Observations

Greedy Algorithm The worst performance Fast

Additional Greedy Algorithm  Best performance of all Fast

Genetic Algorithm Fourth best performance Medium It generated a better coverage only once.

Simulated Annealing Third best performance Fast No significant difference to genetic algorithm.

Reactive GRASP Second best performance Slow No significant difference to Additional Greedy Algorithm.
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TABLE 12: Results of Coverage Criteria (1 Execution), Program Space.

Block Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP

1% 87.4115 96.4804 92.6728 91.4603 95.6961

5% 85.8751 98.5599 94.8614 94.9912 98.0514

10% 85.5473 99.1579 95.9604 96.7242 98.6774

20% 86.5724 99.6063 98.0118 97.991 99.4235

30% 86.9639 99.7423 98.5998 98.6937 99.6431

40% 87.3629 99.811 98.9844 98.9004 99.7339

50% 87.8269 99.842 99.1271 99.216 99.7755

Decision Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP

1% 88.753 96.9865 91.6811 92.0529 96.4502

5% 85.5131 98.553 93.6639 94.9256 97.8443

10% 86.9345 99.1999 95.9172 96.6152 98.358

20% 87.9909 99.6074 98.0217 97.7348 99.2446

30% 88.4008 99.7464 98.4662 98.5373 99.3256

40% 88.6799 99.8074 98.9283 98.8599 99.7149

50% 88.6635 99.8476 99.0786 98.84 99.7469

Statement Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP

1% 92.8619 97.7642 94.3287 93.5957 97.0516

5% 90.9306 99.1171 95.7946 96.4218 98.4031

10% 91.3637 99.5086 97.5863 97.7154 99.3172

20% 91.7803 99.7598 98.6129 98.6336 99.6214

30% 92.1344 99.8473 99.0048 99.2151 99.6555

40% 92.1866 99.8859 99.3106 99.2963 99.8365

50% 92.2787 99.9117 99.4053 99.4852 99.8517

in the present paper demonstrate that this algorithm is
also worse than the proposed Reactive GRASP approach.
The simulated annealing algorithm had the third best
performance, outperforming only the Greedy algorithm.

Figures 2, 3, and 4 demonstrate a comparison among
the five algorithms used in the experiments. It is easy to
see that the best performance was that of the Additional
Greedy algorithm, followed by that of the Reactive GRASP
algorithm. Reactive GRASP surpassed the genetic algorithm
and simulated annealing in all coverage criteria, and it had
the best performance at APDC criterion. The Additional
Greedy algorithm was better at APBC and APSC criteria and
Greedy algorithm was the worst of all.

For better visualization, consider Figures 5 and 6 that
show these comparisons among the used algorithms. To
make the result clearer, Figures 7 and 8 have this information
regarding the 3 more efficient algorithms in this experiment.
Figure 9 shows the final coverage average for each algorithm.

To investigate the statistical significance, we used t-test,
which can be seen in Table 6. For each pair of algorithms,
the mean coverage difference is given, and the significance
level. If the significance is smaller than 0.05, the difference
between the algorithms is statistically significant [6]. As can
be seen, there is no significant difference between Reactive

GRASP and Additional Greedy, in terms of coverage. In
addition, one can see that there is no significant difference
between simulated annealing and genetic algorithm, also in
accordance with Table 6.

We can also notice in Table 6 the time mean difference
for execution, for each pair of algorithms. It is important to
mention that the time required to execute Reactive GRASP
was about 61.53 larger than the time required to execution
for Additional Greedy algorithm.

Another conclusion that can be drawn from the graphs
is that the performance of the Reactive GRASP algorithm
has remained similar for all metrics used, while Additional
Greedy algorithm was a slightly different behavior for each
metric.

Table 7 shows the weighted average of the algorithms, for
each coverage criterion. The best results are highlighted in
the table (bold). Table 8 shows the difference in performance
between the best and the worst metric regarding the coverage
percentage. In this experiment, Reactive GRASP had the
minor difference in performance between the best and the
worst coverage criterion, which demonstrates an interesting
characteristic of this algorithm: its stability.

Table 9 contains the effectiveness average for all coverage
criteria for each algorithm (APBC, APDC, and APSC).
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TABLE 13: Coverage Significance and Time Mean Difference, Program Space.
Algorithm (x) Algorithm (y) Mean Coverage Coverage Difference Time Mean
Difference (%) Significance Difference (s)
(x—y) (t-test) (x—y)
Additional Greedy Algorithm —-10.5391 0.0000 —16.643
Greedy Algorithm Genetic Algorithm —-9.4036 0.0000 —495.608
Simulated Annealing —9.4459 0.0000 —-5.339
Reactive GRASP —-10.3639 0.0000 —36,939.589
Greedy Algorithm 10.5391 0.0000 16.643
Additional Greedy Algorithm Genetic Algorithm 1.1354 0.0000 —478.965
Simulated Annealing 1.0931 0.0000 11.303
Reactive GRASP 0.1752 0.0613 —36,922.945
Greedy Algorithm 9.4036 0.0000 495.608
Genetic Algorithm Additional Greedy Algorithm —-1.1354 0.0000 478.965
Simulated Annealing —0.0423 0.4418 490.268
Reactive GRASP —0.9602 0.0000 —36,443.980
Greedy Algorithm 9.4459 0.0000 5.339
Simulated Annealing Additional Greedy Algorithm —-1.0931 0.0000 —-11.303
Genetic Algorithm 0.0423 0.4418 —490.268
Reactive GRASP -0.9180 0.0000 —3,6934.249
Greedy Algorithm 10.3639 0.0000 36,939.589
Reactive GRASP Additional Greedy Algorithm -0.1752 0.0613 36,922.945
Simulated Annealing 0.9180 0.0000 3,6934.249
Genetic Algorithm 0.9602 0.0000 36,443.980

TaBLE 14: Weighted Average for the Metrics, Program Space.

Coverage Criterion

Greedy Algorithm  Additional Greedy Algorithm  Genetic Algorithm  Simulated Annealing  Reactive GRASP

Block Coverage 87.1697 99.6781
Decision Coverage 88.3197 99.6856
Statement Coverage 92.0653 99.8081

98.4650 98.53273 99.5424
98.3631 98.33361 99.4221
98.9375 99.02625 99.6819

Together with Figure 9, Table 9 reinforces that the best
performance was obtained by Additional Greedy algorithm,
followed by that of the Reactive GRASP algorithm. Notice
that Reactive GRASP algorithm has little difference in the
performance compared with that of Additional Greedy
algorithm.

The standard deviation shown in Table 10 refers to the 3
metrics (APBC, APDC, and APSC). It was calculated using
the weighted average percentage of each algorithm. Accord-
ing to data in Table 10, the influence of the effectiveness
performance regarding the coverage criterion is the lowest in
the proposed Reactive GRASP algorithm, since its standard
deviation value is the minimum among the algorithms.
These data mean that the proposed technique is the one that
less varies its performance related to the coverage criteria,
which, again, demonstrates its higher stability.

4.3.2. Analysis for the Space Program. The results for space
program were similar to results for the four small programs.
The Reactive GRASP algorithm had the second best per-
formance. Additional Greedy algorithm, genetic algorithm,

simulated annealing, and Reactive GRASP algorithms signifi-
cantly outperformed the Greedy algorithm. Comparing both
metaheuristic-based approaches, the better performance
obtained by the Reactive GRASP algorithm over the genetic
algorithm and simulated annealing is clear.

The Reactive GRASP algorithm was followed by genetic
algorithm approach, which performed the fourth best in
our evaluation. The third best evaluation was obtained by
simulated annealing.

Figures 10, 11, and 12 demonstrate a comparison
between the five algorithms used in the experiments, for
the space program. Based on these figures, it is possible
to conclude that the best performance was that of the
Additional Greedy algorithm, followed by the Reactive
GRASP algorithm. Reactive GRASP surpassed the genetic
algorithm, simulated annealing, and Greedy algorithm. One
difference between the results for space program and the
small programs is that Additional Greedy algorithm was
better for all criteria, while, for small programs, Reactive
GRASP had the best results for the APDC criteria. Another
difference is the required execution time. As the size of the
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TasLE 15: Difference in Performance between the Best and the Worst Criteria, Program Space.

Greedy Algorithm Additional Greedy Genetic Algorithm ~ Simulated Annealing Reactive GRASP

Algorithm
Difference in performance 4.8956 0.1300 0.5744 0.6926 0.2598
between the best and worst criteria
TABLE 16: Average for Each Algorithm (All Metrics), Program Space.
Greedy Algorithm ~ Additional Greedy Algorithm  Genetic Algorithm  Simulated Annealing ~ Reactive GRASP
Final Average 89.1849 99.7240 98.5885 98.6308 99.5488
100 100
99.5 + 99.5
o 99f 99
< 985 < 985
L L9
& o8 f & 9
z 2
Q 975 a 975
) )
97 97
96.5 96.5
96 e 96 —
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

TSSp

—4— Greedy algorithm —®- Simulated annealing
—¥— Additional Greedy algorithm —— Reactive GRASP
—®— Genetic algorithm

F1GURrE 2: APBC (Average Percentage Block Coverage), Comparison

among Algorithms for Small Programs.

100
99.5 +
99t
98.5 1
98
97.5 §
97 t
96.5
96

Coverage (%)

0 10 20 30 40 50 60 70 80 90 100
TSSp

—#4— Greedy algorithm —#— Simulated annealing
—¥— Additional Greedy algorithm —— Reactive GRASP
—®— Genetic algorithm

FiGgure 3: APDC (Average Percentage Decision Coverage), Compar-
ison among Algorithms for Small Programs.

program increases, the Reactive GRASP algorithm has its
time relatively less slow compared with the others.

For better visualization, consider Figures 13 and 14
that show these comparisons among the used algorithms.
To make the result clearer, Figures 15 and 16 have this
information regarding the 3 more efficient algorithms in this

TSSp

—#4— Greedy algorithm —#— Simulated annealing
—¥— Additional Greedy algorithm —— Reactive GRASP
—®— Genetic algorithm

FIGURE 4: APSC (Average Percentage Statement Coverage), Com-
parison among Algorithms for Small Programs.
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FIGURE 5: Weighted Average for the Metrics (Comparison among
the Metrics), Small Programs.

experiment. Figure 17 shows the coverage average for each
algorithm.

The t-test was used to investigate the statistical signifi-
cance for space program, which can be seen in Table 13. As in
the analysis for the small programs, the level of significance
of the result was set to 0.05. In the same way to the small
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TaBLE 17: Standard Deviation of the Effectiveness for the Four Algorithms, Program Space.
Greedy Algorithm  Additional Greedy Algorithm  Genetic Algorithm  Simulated Annealing  Reactive GRASP

Standard Deviation 0.025599 0.000730 0.003065 0.003566 0.001300
TABLE 18: Summary of Results, Program Space.
Algorithm Coverage Performance Execution Time Observations
Greedy Algorithm The worst performance. Fast
Additional Greedy Algorithm  Best performance of all. Fast
Genetic Algorithm Fourth best performance. Medium
Simulated Annealing Third best performance. Fast No significant difference to genetic algorithm.
Reactive GRASP Second best performance Slow No significant difference to Additional Greedy Algorithm.
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FIGURE 6: Weighted Average for the Metrics (Comparison among
the Algorithms), Small Programs.

programs, there is no significant difference between Reactive
GRASP and Additional Greedy, in terms of coverage, for
space program, neither for simulated annealing nor for
genetic algorithm.

4.3.3. Final Analysis. These results qualify the Reactive
GRASP algorithm as a good global coverage solution for the
prioritization test case problem.

It is also important to mention that the results were
consistently similar across coverage criteria. This fact had
already been reported by Li et al. [6]. It suggests that there
is no need to consider more than one criterion in order
to generate good prioritizations of test cases. In addition,
we could not find any significant difference in the coverage
performance of all algorithms when varying the percentage
of test cases being considered.

Note that we have tried from 1% to 100% of test cases for
each program and criterion for the four small programs, and
the performances of all algorithms remained unaltered. This
demonstrated that the ability of the five algorithms discussed
here is not deeply related to the number of test cases required
to order.

B Additional Greedy algorithm
M Simulated annealing
H Reactive GRASP

FIGURE 7: Weighted Average for the 3 More Efficient Algorithms
(Comparison among the Metrics), Small Programs.

In terms of time, as expected, the use of global app-
roaches, such as both metaheuristic-based algorithms eval-
uated here, adds an overhead to the process. Considering
time efficiency, one can see from Tables 6 and 13 that
the Greedy algorithm performed more efficiently than all
other algorithms. This algorithm was, on average, 1.491
seconds faster than Additional Greedy algorithm, 8.436 faster
than the genetic algorithm, 0.057 faster than the simulated
annealing, and almost 50 seconds faster than the Reactive
GRASP approach, for the small programs. In terms of
relative values, Reactive GRASP was 61.53 times slower than
Additional Greedy, 11.68 slower than genetic algorithm,
513.87 slower than simulated annealing, and 730.92 slower
than Greedy algorithm. This result demonstrates, once again,
the great performance obtained by the Additional Greedy
algorithm compared to that of the Greedy algorithm, since
it was significantly better, performance-wise, and achieved
these results with a very similar execution time. On the
other spectrum, we had the Reactive GRASP algorithm,
which performed on average 48,456 seconds slower than
the Additional Greedy algorithm and 41,511 seconds slower
than the genetic algorithm. In favor of both metaheuristic-
based approaches is the fact that one may calibrate the time
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FIGURE 9: Average for Each Algorithm (All Metrics), Small Pro-
grams.

required for prioritization depending on time constraints
and characteristics of programs and test cases. This flexibility
is not present in the Greedy algorithms.

Tables 11 and 18 summarize the results described above.

5. Conclusions and Future Works

Regression testing is an important component of any
software development process. Test Case Prioritization is
intended to avoid the execution of all test cases every time
a change is made to the system. Modeled as an optimization
problem, this prioritization problem can be solved with well-
known search-based approaches, including metaheuristics.
This paper proposed the use of the Reactive GRASP
metaheuristic for the regression test case prioritization
problem and compared its performance with other solutions
previously reported in literature. Since the Reactive GRASP
algorithm performed significantly better—in terms of cov-
erage performance—than the genetic algorithm, Simulated
Annealing, and similarly to the Greedy algorithm and it
avoids the problems mentioned by Rothermel [2] and Li et al.
(6], where Greedy algorithms may fail to choose the optimal
test case ordering, the use of the Reactive GRASP algorithm is
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indicated to the problem of test case prioritization, especially
when time constraints are not too critical, since the Reactive
GRASP added a considerable overhead.

Our experimental results confirmed also the previous
results reported in literature regarding the good performance
of the Additional Greedy algorithm. However, some results
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F1GURE 16: Weighted Average for the 3 More Efficient Algorithms
(Comparison among the Algorithms, Program Space.
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point out to some interesting characteristics of the Reactive
GRASP solution. First, the coverage performance was not
significantly worse when compared to that of the Additional
Greedy algorithm. In addition, the proposed solution had a
more stable behavior when compared to all other solutions.
Next, GRASP can be set to work with as many or as little time
as available.

As future work, we will evaluate the Reactive GRASP with
different number of iterations. This will elucidate whether its
good performance was due to its intelligent search heuristics
or its computational effort. Finally, other metaheuristics
will be considered, including Tabu Search and VNS, among
others.
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