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Conventional equilibrium statistical mechanics of open gravitational systems is known to be problematical. We first recall that
spherical stars/galaxies acquire unbounded radii, become infinitely massive, and evaporate away continuously if one uses the
standard Maxwellian distribution f B (which maximizes the usual Boltzmann-Shannon entropy and hence has a tail extending to
infinity). Next, we show that these troubles disappear automatically if we employ the exact most probable distribution f (which
maximizes the combinatorial entropy and hence possesses a sharp cutoff tail). Finally, if astronomical observation is carried out
on a large galaxy, then the Poisson equation together with thermal de Broglie wavelength provides useful information about the
cutoff radius rK , cutoff energy εK , and the huge quantum number K up to which the cluster exists. Thereby, a refinement over the
empirical lowered isothermal King models, is achieved. Numerically, we find that the most probable distribution (MPD) prediction
fits well the number density profile near the outer edge of globular clusters.
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1. Introduction

It is well known that standard methods [1, 2] of equilibrium
statistical mechanics run into conceptual difficulties when
applied to gravitational bound systems [3–11]. Basically,
these troubles arise due to the peculiar behaviour of the
gravitational interaction (either the pair potential or the
mean field) at short or long distances. The aim of the
present paper is to focus attention on the triple problems,
namely, unbounded radius, infinite mass, and continuous
evaporation of every stellar/galactic system described by the
conventional Maxwell-Boltzmann (hereinafter referred to as
the MB) distribution.

Section 2 below points out that since the MB func-
tion f B maximizes only the simple-minded Boltzmann-
Shannon entropy, its tail becomes illogical in the energy
cells of small occupancy. The ensuing problems of the
Maxwellian distribution cannot be really overcome by using
ad hoc prescriptions such as enclosing the system in a
hypothetical box [7] or modifying the Maxwellian form
empirically by invoking gravitational tidal cutoff [4, 8].
Next, Section 3 presents a detailed derivation of our most

probable distribution (MPD) f by taking hints from a
preliminary investigation by Menon and Agrawal [12] in
the molecular context and by Menon et al. [13] in the
cosmological context. Such f maximizes rigorously the more
sophisticated combinatorial entropy and the corresponding
variational conditions dictate that f must possess a sharply
truncated tail. Next, Section 4 demonstrates how our MPD
idea applied to cosmology resolves the aforesaid troubles of
the MB formalism, and how the Poisson equation brings
additional features into our theory. We feel that the MPD
philosophy may have bright applicational prospects in fitting
cosmological data such as the classic study of stellar number
densities in globular clusters done by King [14, Figure 2]
and the important measurements performed by van Loon
et al. [15, Figure 6] showing velocity distribution on the post-
mail-sequence stars in ω Centauri. Finally, the paper ends
by presenting several concluding remarks in Section 5 where
some other approaches to the subject (namely, self-consistent
Hartree calculations, incomplete relaxation in low-density
tail, canonical ensemble treatment of virialization, occur-
rence of a stellar mass spectrum in real gravitating systems,
etc.) are also mentioned.
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Some related aspects of algebraic interest are reported
in two useful appendices. Careful study of Sections 2 and
3 will reveal that quantum mechanical discretization of the
single-particle levels is very convenient for setting up the
combinatorial entropy and in finding the cutoff number;
hence for the sake of ready reference we collect in Appendix A
several known formulae concerning semiclassical one-body
spectrum as well as the energy cell occupation number ν.
Also, a detailed treatment of our variational conditions in
Section 4 requires that ν! be replaced by Γ(ν + 1) everywhere
(even for ν � 1); hence Appendix B tells why derivatives of
factorials or gamma functions can be readily taken even in
the cells of small occupation numbers.

2. Difficulties with the MB Distribution

2.1. Preliminaries

This section begins by quickly recalling a standard deriva-
tion of the famous Maxwell-Boltzmann distribution f B in
equilibrium statistical mechanics. Particles are assumed to
be moving in D spatial dimensions at temperature T under
the influence of a mean field potential energy W(r). The
one-body energy spectrum is divided into J cells, particles
are distributed at random over these, those in the jth cell
are regarded as mutually identical, and the simple-minded
Boltzmann-Shannon entropy functional

SB = −k
J∑

j=1

gj
{
f Bj ln f Bj − f Bj

}

+ kα

( J∑

j=1

gj f
B
j −N

)
− kβ

( J∑

j=1

gj f
B
j ε j − E

) (1)

is set up. Here k is the Boltzmann constant, gi the cell degen-
eracy, N the total number of particles, E the total energy, and
α and β are Lagrange multipliers (see Appendix A for precise
definitions of various symbols). Next, one maximizes SB with
respect to f Bj , α, and β to arrive at the MB solution

f B = eα−βε; νB = g f B: ε0 ≤ ε ≤ ∞, (2)

where the index j has been dropped in the quasicontinuum
limit, ε0 is the ground level, and the upper end of the simple-
particle energy spectrum has been extended to +∞ both for
confining as well as nonconfining potentials W(r). Although
(2) has been widely applied [1, 2] to gases/liquids kept in the
laboratory, yet its application to open astronomical systems
leads to the following serious conceptual puzzles.

2.1.1. Entropy

In the case of gravitational systems, one always looks for the
local (not global) maxima of the entropy functional. The
MB solution (2) does this job exactly for the Boltzmann-
Shannon entropy defined by (1), but only approximately for
the more sophisticated combinatorial entropy defined by
(10) later. It will be shown in Section 3 that the tail of the MB
solution becomes illogical in the energy cells of small occupation
numbers.

2.1.2. Density

If (2) is inserted back into the general expression (A.7)
of Appendix A for the mass density ρ(r), one obtains the
famous Boltzmann barometric formula

ρB(r) ∝ exp
{
− W(r)

kT

}
: r0 ≤ r ≤ ∞. (3)

The attractive short-distance behaviour of W(r) cannot pose
a real problem because the size r0 of the quantum ground
level ε0 is finite [6]. But the long-distance behaviour of W(r)
is problematical as regards astrophysics inD = 3 dimensions.
Indeed, for a dilute gaseous star [2, page 114] without the
Poisson equation constraint, one finds asymptotically

W(r) ∼
r→∞ −0; ρB(r) ∼

r→∞ constant : Gaseous. (4)

Also, for the isothermal Emden sphere [3, 8] subject to the
Poisson equation constraint, one knows that

W(r) ∼
r→∞ ln

(
r2

a2

)
; ρB(r) ∼

r→∞ r
−2 : Emden (5)

with a being the isothermal length scale. Clearly, as r → ∞,
the nil/slow decrease of ρB in (4) and (5) and the logarithmic
increase of W in (5) are unphysical.

2.1.3. Radius

From the MB density (3), one computes the mean size 〈r〉B
of the system via

〈r〉B =
∫∞

0 ∂rr
3ρB∫∞

0 ∂rr2ρB
= ∞ (6)

which diverges both for gaseous stars (4) and Emden spheres
(5).

2.1.4. Mass

The total mass of the MB system is calculated from

MB = 4π
∫∞

0
∂rr2ρB(r) = ∞ (7)

which also diverges for the two cases mentioned above. Thus,
in the Boltzmann-Shannon view, the most likely state of an
isotropic stellar system has infinite mass.

2.1.5. Evaporation

Since all regions of the phase space up to r = ∞ are allowed
an open MB system, for example, the dilute gaseous star
goes on evaporating with time, producing as a thereby a
net outgoing flux φB of particles [2, page 114] at every positive
thermodynamic temperature T:

ϕB > 0. (8)

Of course, the isothermal sphere can be stable against
evaporation [9] but its mean field growing like ln(r2/a2) up
to r = ∞ is unphysical.
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King-Like Lowered Isothermal Models

In the conventional literature, the above difficulties are
usually circumvented by enclosing the system within a
hypothetical box of some radius Rbox [7], or by modifying the
original distribution heuristically into non-Maxwellian form
f Low such as

f Low ∝ exp
(
− ε

kT

)
− 1,

∝ exp
(
− ε

kT

)
+

ε

kT
− 1,

(9)

and so forth, holding in the range ε < 0 and vanishing
elsewhere [4, 8, 16–19]. In particular, King [4] and Wilson
[19] appealed to the tidal force field of the galaxy for
physically setting its outer boundary and assumed the
velocity distribution of stars to be cut off at the local escape
velocity. Lowered isothermal prescriptions such as (9) are
often employed by astronomers to fit data.

Physical Motivation for f Low

If one takes a stellar cluster in an original Liouville
collisionless state then the cluster will start evolving in
space-time through trajectory mixing and stellar encounters
which are most frequent in the core region. Mathemati-
cally, the complicated dynamics of such a nonequilibrium
system is governed by the coupled Fokker-Planck and
Poisson equations [17]. Physically, this evolution will involve
momentum/mass/heat flow, tide generation, and entropy
production. At equilibrium, the macroscopic flows will
stop, tides will stabilize, and the entropy would become
maximum. Naturally, von Hoerner [20] and King [14]
realized that a finite boundary to the star cluster is set up
by the tidal force of the galaxy, that is, the cutoff tail in
the essentially classical stellar systems can be ascribed to
the physical outcome of the boundary conditions and/or
constraints (independent of the Plank constant).

3. Our Most Probable Distribution (MPD)

3.1. Preliminaries

We adopt the view that the above-mentioned King models
can be refined further by utilizing the following facts.
(i) At equilibrium, the entropy of a multiparticle thermal
system should become a (local) maximum. Of course, the
Boltzmann-Shannon definition of SB in (1) will not serve the
purpose due to the difficulties of the Maxwellian; we shall
show in (11) and (12) below that a more suitable candidate
is the so-called combinatorial entropy S that counts the
number of microstates in energy cells corresponding to
specified total particle number N and total energy E. (ii) The
resulting most probable distribution f should develop a tail
which is automatically truncated at a finite energy εK . This
is because a star moving in the mean potential field W(r)
will have a farthest turning at distance rK satisfying W(rK ) =
εK , where rK may now be identified with the classical King

radius of the galaxy. (iii) By Bohr’s correspondence principle,
classical motion is the limiting case of quantum motion in
states of very large quantum numbers. The cutoff quantum
number K and cutoff energy εK should be determinable
from the variational constraint equations of our MPD theory
provided that h is brought into the picture explicitly. (iv)
Our MPD solution for f should be able to provide a
theoretical justification (or better characterization) of the
lowered isothermal Maxwellian models (9). Now we shall
demonstrate how such a task is accomplished in practice.

Gibbs Combinatorial Entropy

We follow the basic theme of Huang [1, page 182], and a
preliminary investigation by Menon and Agrawal [12] as
well as by Menon et al. [13]. The single-particle spectrum is
divided into J cells into which the particles are distributed at
random such that the jth cell has central energy εj , width
Δ j , degeneracy gj , occupation number ν j , and occupation
probability per state f j = ν j /g j defined by Appendix A. Next,
treating the particle in the jth cell as indistinguishable, a
Gibbs combinatorial entropy functional S is constructed via

S = k ln

{ J∏

j=1

g
ν j
j

ν j !

}
. (10)

Gamma Function Form

We deliberately rewrite (10) in the equivalent form

S = k
J∑

j=1

{
ν j ln gj − lnΓ(ν j + 1)

}
. (11)

The replacement of factorials by gammas has several alge-
braic advantages. (i) The equality ν j ! = Γ(ν j + 1) is exact at
the integer values ν j = 0, 1, 2, 3, . . . ,∞. (ii) The asymptotic

behaviour, namely, (2π)1/2νν+1/2e−ν of both ν! and Γ(ν + 1)
are the same as ν → ∞. (iii) Hence, by a theorem due to
Carlson [21, 22], Γ(ν + 1) provides the most economical,
essentially unique continuation of ν! to all continuous values
throughout the range 0 ≤ ν ≤ ∞. (iv) While setting up
the variational conditions, later we shall need to replace the
derivative ∂ lnΓ(ν j + 1)/∂ν j evaluated at integer values by
the digamma function ψ(ν + 1) [23] computed at general
continuous values. This problem of integer programming is
handled in Appendix B by using an efficient finite-difference
package for all natural numbers up to 4. (v) Appendix B also
shows that the numerical differentiation of lnΓ(ν + 1) can be
readily done even at small values ν = 0.2, 0.4, and so forth,
giving results in good agreement with ψ(ν + 1).

Exact Variational Conditions

Next, we consider the following objective functional to be
maximized:

S∗ = S + kα

(
∑

j

ν j −N
)
− kβ

(
∑

j

ν j ε j − E
)

, (12)
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where α and β are unknown Lagrange multipliers. Equating
to zero, the partial derivatives ∂S∗/∂ν j , ∂S∗/∂α, and ∂S∗/∂β
lead to the following set of exact variational conditions still
using the discrete index j [12]:

ψ(ν j + 1) = ln gj + α− βεj : 1 ≤ j ≤ J , (13a)
∑

j

ν j = N ;
∑

j

ν j ε j = E. (13b)

Comments

Without making any assumption concerning the largeness or
smallness of ν j , we can rewrite (13a) in the compact form

ψ(ν j + 1) =
exact

ln νBj ; νBj ≡
def
gje

α−βεj , (14a)

where the symbol νBj was already encountered earlier in
(2). In principle, (14a) can be solved for the desired cell
occupation numbers ν j in terms of α, β, εj . Thereafter, the
Lagrange multipliers α and β can be determined from the
constraints (13b). Equivalently, the chemical potential μ and
thermodynamic temperature T may be introduced via

kα = μ

T
= −∂S∗

∂N
; kβ = 1

T
≡ ∂S∗

∂E
. (14b)

Finally, if the total number J of levels is very large, we
are permitted to take the quasilimit (A.4) leading to a
continuous distribution for ν versus ε by dropping the index
j and converting sums into integrals. Let us derive several
interesting properties of our most probable distribution
(MPD) defined by (13a), (13b) and (14a), (14b) with the
suffix j omitted.

Location of the Peak

Differentiating (14a) with respect to ε, we get

∂ψ(ν + 1)
∂ν

·∂ν

∂ε
= 1

νB
·∂νB

∂ε
. (15)

Clearly, the MPD occupancy ν and MB occupancy νB are both
peaked at a common energy εp which satisfies

ν̇(εp) = 0; ν̇B(εp) = 0,

ġ(εp)

g(εp)
− β = 0,

(16)

where the dot stands for derivative with respect to ε. Typical
algebraic estimates of εp for the soluble potential models will
be reported later in (28).

Large ν Region

In the so-called head region of the continuous distribution,
the cells have large occupancy ν � 1 so that the Stirling’s
approximation ψ(ν + 1) ≈ ln ν + O(1/ν) holds in the

fundamental equation (14a). Hence the MB solution is roughly
retrieved, namely,

ν ≈ νB � 1; f ≈ eα−βε: Large ν, (17)

but it must be violated in the cells where the occupancy becomes
comparable to, or less than, unity.

The Tail Region

On the other extreme lies the tail region of the continuous
distribution where the cell occupancy becomes small, that
is, ν � 1. Then the digamma function possesses a Taylor
expansion

ψ(ν + 1) ≈
ν�1

ψ(1) + ζ(2)ν +O(ν2): Tail, (18)

where ψ(1) = −0.577 is the negative of Euler’s constant and
ζ(2) = π2/6 is a Riemann zeta value. Substitution of the
expansion (18) into the fundamental equation (13a) leads to
the following three surprising yet important observations.

(i) The tail of the distribution intersects the energy axis at
a cutoff point εK such that

νK = 0; ψ(1) = ln νBK ≡ ln gK + α− βεK , (19)

where the suffix K refers to energy εK .

(ii) The said intersection happens linearly because, in its
neighbourhood, the occupancy

ν ≈ (εK − ε)
ζ(2)

{
β − ġK

gK

}
: Tail, (20)

where ġK stands for ∂g/∂ε evaluated at εK .

(iii) Extension of the graph of ν versus ε beyond the cutoff
point is not allowed because that would tend to make ν
negative in (13a), that is,

ν j ≡ 0; f (ε) ≡ 0: j ≥ K , ε ≥ εK , (21)

implying that the original occupied spectrum (A.2) has shrunk
below J or εJ due to strict entropy maximization under
stable equilibrium. (The possibility K > J , εK > εJ would
correspond to unstable equilibrium, that is, continuous
evaporation of the system.) Schematic plots of f B and f
versus ε are shown in Figure 1. Typical algebraic estimates of
the cutoff energy εK and quantum number K for the solvable
models will be reported later in (28).

Compact Solution for ν(ε)

Our equation (14a) is a transcendental equation in ν and
its precise analytical solution in closed form is not known.
Fortunately, there exists an ansatz

ψ(ν + 1) =
ansatz

ln{ν + θ}; θ ≡ eψ(1) = 0.562, (22)

which works excellently throughout 0 ≤ ν ≤ ∞ as shown
graphically in Figure 2. Combining (14a) and (22), we obtain
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Figure 1: Schematic plots (not to scale) of the distribution
functions in the MB approach (cf. (2)) and MPD theory (cf. (23)).
(Plot of the occupancy function would have shown a peak in both
cases.)

a very compact, quite accurate, MPD solution valid in all
energy cells of relevance as

ν = νB − θ; f = f B − θ

g
: ε1 ≤ ε ≤ εK . (23)

It is interesting to note that if g were replaced by a constant
in (23), our MPD solution f would agree with the first line
of (9) implying a sort of justification for the lowered isothermal
Maxwellian models. Actually, our numerically accurate solu-
tion (23) should be regarded as a better characterization since
the degeneracy function g(ε) is strongly energy-dependent.

Compact Number Condition

Combining the number constraint (13b) with the general
solution (23), we can define an effective numberN eff through

N eff ≡ N + Kθ =
K∑

j=1

(ν j + θ) =
K∑

j=1

νBj

=
∫ εK

ε0

∂ε

Δ
·geα−βε = eα·N∗.

(24a)

Here we have employed the quasicontinuum limit (A.4) and
introduced

N∗ ≡
∫ εK

ε0

∂εw(ε)e−βε; eα = N eff

N∗ . (24b)

This gives a formal expression for the Lagrange multiplier (or
reduced chemical potential) α provided that the underlying
mean field W or its reduced degeneracy function w = g/Δ is
known.

2

1.5

1

0.5

0

−0.5

−1

0 1 2 3 4 5

ν

ψ(ν + 1)
ln(ν + θ)

ln ν
ψ(1) + ζ(2)ν

Figure 2: The exact digamma function ψ(ν+1) and three numerical
approximations to thesame used in the context of (22), (17),
and (18). The values of three important constants are ψ(1) =
−0.577, θ = eψ(1) = 0.562, and σ(2) = π2/6 = 1.646.

Compact Cutoff Condition

Lastly, we convert the cutoff criterion (19) into

θ ≡ eψ(1) = νBK = gKe
α−βεK . (25a)

Eliminating eα with the help of (24b), we find

eβεK = N effgK
N∗θ

(25b)

which yields a formal expression for the cutoff energy εK = ε(K)
whose functional dependence can be inverted to specify also the
number K of levels. The sharply cutoff tail of (21) will play a
crucial role in the cosmological application to be discussed
later in Section 4.

Illustration for the (Truncated) Oscillator Well

The above methodology may be illustrated in the case of the
truncated harmonic oscillator potential listed in Table 1:

W(r) = −|W0|
{

1− r2

R2

}
·step(R− r). (26)

Before going ahead with the algebra, the following important
remarks should be kept in mind. (a) If the well was
untruncated, that is, the step function in (26) was absent then
all particles would remain truly confined, the Boltzmann
mass density (3) would vanish asymptotically, and the MB
distribution would not be problematical. (b) However, if the
well is truncated by the use of the step function in (26), then
the potential vanishes for r > R, particles can be ejected into
the continuum, the MB distribution becomes problematical,
and the MPD philosophy becomes very useful. (c) Near the
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origin the oscillator potential is rather flat, that is, smoothly
varying so that it can approximately mimic the realistic mean
field in the core region of astronomical galaxies. In sharp
contrast, the truncated-linear and Coulomb-like potentials
of Table 1 cannot do so since these vary rather quickly as
r → 0. (d) As they stand, the depth W0 and range R are only
illustrative parameters introduced in (26). However, when
we come to cosmological applications in Section 4 (especially
the Poisson equation), it will be found that these parameters
are directly related to the physical mass M and observed
radius rK of the galaxy. We are now ready to apply the MPD
program to (26).

The Tilde Nomenclature

First, we read off the symbols J , ε, Δ, B, and g from the
fourth column of Table 1. Next, for algebraic convenience,
the following dimensionless quantities are defined along with
the thermal de Broglie wavelength λ:

J̃ ≡ J

|βW0|1/2
= (m|W0|/2)1/2R/�

(β|W0|)1/2 = πR

λ
� 1,

λ = π�

(
2β
m

)1/2

; ε̃ ≡ β(ε−W0) = j

J̃
,

α̃ ≡ α− βW0, ε̃K ≡ β(εK −W0) = K

J̃
,

j = J̃ ε̃, g = (DBJ̃ D−1)ε̃ D−1,

νB = geα−βε = geα̃−ε̃,

Ñ ≡ eβW0N∗ ≡
∫ K

0
dj(DB jD−1)e− j/J̃

= DBJ̃ DγK , γK ≡ γ(D, ε̃ K ).

(27)

A few remarks are in order concerning these definitions.
The Planck constant h or thermal de Broglie wavelength
λ ≡ h/(2mkT)1/2 has appeared in the value of the symbol
J̃ and the inequality λ/R � 1 is essential for the validity
of classical motion (cf. (A.8)). The function ε̃ measures the
single-particle energy from the ground level in terms of kT .
The symbols α̃ and ε̃ K may be called the dimensionless chem-
ical potential and dimensionless cutoff energy, respectively,
whose fixation using MPD constraints is yet to be done. The
integral Ñ will play a crucial role below with γ being the
incomplete gamma function.

Use of MPD Conditions

Remembering the tilde quantities, we can readily evaluate
the conditions (16), (24b), and (25b). This yields the peak

location ε̃ p, peak height νBp , dimensionless chemical potential
α̃, and dimensionless cutoff energy ε̃ K through

ε̃ p = D − 1 ∼ 1; νBp = gpeα̃−ε̃ p ∼ N eff

J̃γK
,

eα̃ ∼ N eff

J̃ DγK
;

eε̃K

ε̃ D−1
K

∼ N eff

J̃γ K

N eff ≡ N + Kθ; D > 1,

(28)

where the wavy symbol ∼ implies the order of magnitude,
and the multiplicative factors of order unity have been
suppressed. We still have to show that the formal equations
(28) do admit valid, that is, self-consistent MPD solutions
under suitable restrictions. For this purpose, we consider
below two cases in which the parameter ε̃ K = K/J̃ has
markedly different behaviours.

Case 1 (well depth large compared to k times temperature).
For the truncated oscillator potential (26), we recall the tilde
notations (27) and impose the following inequalities:

ε̃ K = K

J̃
� 1; |βW0| = |W0|

kT
� 1,

J̃ ∼ R

λ
� 1; J̃ � N eff � J̃ D,

J = (β|W0|)1/2 J̃ > K � J̃ � 1.

(29)

The physical meaning of these restrictions is as follows. The
inequalities J � 1, K � 1, J̃ � 1 guarantee the validity of
classical dynamics in states of large quantum numbers, the
condition J > K ensures that the Kth level lies below the
ionization threshold for stable MPD, the assumption ε̃ K � 1
in Case 1 implies that the actual cutoff energy εK is several kT
above the ground level, |βW0| � 1 means that the well depth
is large compared to kT , the condition J̃ � N eff implies that
the effective number N eff/J̃ of particles grossly counted per
cell is much more than unity, and N eff � J̃ D means that
the system is dilute or nondegenerate (because the packing
fraction N eff/J̃ D ∼ N effλD/RD � 1, that is, the average
number of particles contained inside aD-dimensional sphere
of radius λ is small compared to unity). Then the incomplete
gamma function γK → Γ(D) and consistent handling of (28)
leads to the estimates

ε̃ p ∼ 1; νBp ∼
N eff

J̃
� 1,

α̃ ∼ ln
(
N eff

J̃ D

)
; ε̃ K ∼ ln

(
N eff

J̃

)
,

K ∼ J̃ ε̃K ∼
(
R

λ

)
ln
(
N effλ

R

)
.

(30)

The present case should apply to usual gases/liquids con-
tained in the laboratory and we have independently verified
that the functional forms of (29) and (30) are very rugged,
that is, they hold for all the soluble models reported in
Table 1.
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Table 1: Properties of one-body semiclassical spectrum labeled by the integer j for four solvable potentials W(r) in D dimensions. The
well-depth W0 ≡ −|W(0)| and the range R of the rectangular, linear, and oscillator wells are made finite using the unit step function. The
Coulomb well is left unrestricted over all r. For other notations, see Appendix A. (We do not tabulate the rigid box potential model which
has the upper end of the energy spectrum at εJ = E − (N − 1)W0 ≈ +∞. Such a model is of little interest in cosmology In usual physical
applications, one puts D = 3.)

Potential Rectangular Linear Oscillator Coulomb

Form W(r) = W0 step(R− r) W0

{
1− r

R

}
·step(R− r) W0

{
1− r2

R2

}
·step(R− r) C

r
= ε1r1

r
: 0 ≤ r ≤ ∞

Highest label J = (8m|W0|)1/2R

π�

4
3
· (2m|W0|)1/2R

π�

(
m|W0|

2

)1/2 R

�
∞

Ionization threshold εJ = 0 0 0 0 = ε∞

Spectrum εj = W0

{
1−

(
j

J

)2}
W0

{
1−

(
j

J

)2/3}
W0

{
1−

(
j

J

)} −mC2

2�2 j2
= ε1

j2

Turning point rj = R
(
j

J

)2/3

R
(
j

J

)1/2

R
2�2 j2

m|C| = r1 j2

Separation Δ = 2|W0| j
J2

2
3
· |W0| j−1/3

J2/3

|W0|
J

2|ε1|
j3

Geometrical coefficient B = πD

22D−2D2Γ2(D/2)
(3π/4)DΓ(D)

2D−1Γ(D/2)Γ(3D/2 + 1)
1

Γ(D + 1)
1

DΓ(D/2 + 1/2)

Accumulated states I j B jD B jD B jD B jD

Level degeneracy gj = DB jD−1 DB jD−1 DB jD−1 DB jD−1

Case 2 (well depth comparable to k times temperature).
Again we recall the tilde notations (27) and impose the orders
of magnitude

ε̃K = K

J̃
∼ 1;

∣∣∣∣
W0

kT

∣∣∣∣ ∼ 1. (31)

Then the incomplete gamma function γK ∼ 1 and (28) are
found to admit the self-consistent estimates

ε̃p ∼ 1; νBp ∼
N eff

J̃
∼ 1,

N eff ∼ N ∼ K ∼ J̃ ∼ R

λ
� 1,

α̃ ∼ ln
(

1

J̃ D−1

)
; ε̃K ∼ ln

(
N eff

J̃

)
∼ 1.

(32)

The physics of (31) and (32) is as follows. The statement
|W0/kT| ∼ 1 applies to gravitational systems obeying
virialization, N ∼ K tells that the total number of particles
is of the same order as the number of MPD cells, and νBp ∼ 1
signifies that the cell occupancies have become comparable
to unity with � again playing a role through the symbol J̃ .
The present case should correspond to open astronomical
systems and the ruggedness of the results (32) can be verified
also for the other solvable models in Table 1.

4. Conceptual Application of
MPD to Cosmology

We are now ready to resolve the conceptual difficulties
of the MB distribution mentioned already in Section 2 by
employing the MPD solution obtained in Section 3.

4.1. Entropy

The Boltzmann-Shannon entropy SB of (1) is simple-
minded, its maximization leads to the MB solution νB in
(2) with untruncated tail, and its generalization to quantum
statistics is difficult. In sharp contrast, the combinatorial
entropy S of (11) is sophisticated, its maximization leads to
our MPD solution ν in (23) with a truncated tail, and its
generalization to quantum statistics as straightforward.

4.2. Density

If the MPD information (21) is inserted back into the general
expression (A.7) for the local mass density ρ, based on the
transformation σ = ε −W(r), we obtain

ρ(r) ∝
∫ σK

0
∂σσD/2−1 f (ε); σK ≡ εK −W(r), (33)

where ρ surprisingly vanishes if W(r) equals εK . This is
explained by remembering that since no particle in MPD is
allowed to have an energy more than εK , there exists a largest
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classical turning point at rK beyond which the density must
become zero identically, that is,

W(rK ) = εK ; ρ(r) ≡ 0 for r ≥ rK , (34)

in sharp contrast to the MB density profiles (3)–(5). We can
also find the rate at which ρ(r) approaches zero as r tends
to rK . However, (20) has already told us that f (ε) ∝ εK −
ε ∝ σK − σ in the tail region. Hence, (33) yields the leading
behaviour

ρ(r) ∝
σK → 0

∫ σK

0
∂σσD/2−1·σ ∝

W(r)→ εK
{W(rK )−W(r)}D/2+1.

(35)

Since in a “good” MPD solution εK and rK are finite, our result
(35) tells that the mass density obeys a (rK − r)D/2+1 law near
the edge of the system.

4.3. Radius

Clearly, the distance rK in (34) is the upper bound on the size
of our galactic system and, for binding, we must have rK < rJ
with rJ being the turning point just before the continuum
starts. (In the soluble models of Table 1, this rJ was called
R). Since the density ρ vanishes beyond rK the MPD integral
defining the average size 〈r〉 will also converge, that is,

〈r〉 <∞, (36)

in sharp contrast to the MB mean radius (6).

4.4. Mass

By the same token, the MPD integral defining the total mass
of the stellar system also exists, that is,

M <∞, (37)

in sharp contrast to the MB mass (7).

4.5. Nonevaporation

As is well known if an attractive mean field W(r) vanishes
asymptotically, then the energy ε = 0 is called the ionization
threshold. Hence, our galaxy will be stable against evapora-
tion if the MPD cutoff energy εK happens to be negative at
the given thermodynamic temperature T . Consequently, for
εK < 0, there is no net outgoing particle flux, that is,

ϕ = 0, (38)

in sharp contrast to the MB result (8).

Comment

Of course, a galaxy which is observed experimentally to evap-
orate is not in true equilibrium. Then simplifying restrictions
like (31) may not hold, that is, the cutoff conditions (19) and
(32) will admit a positive root for εK .

Poisson Equation Implications

So far in our treatment, the detailed algebraic form of
the mean field W(r) was not required explicitly for self-
gravitating systems. Actually this is a tough problem the-
oretically/numerically because one must solve the coupled
equations for the distribution function f and mass density
ρ in accordance with the Poisson equation in 3 dimensions

∇2W ≡ 1
r2

∂

∂r

(
r2 ∂W

∂r

)
= 4πGmρ; D = 3, (39)

where G is the gravitational constant. Our limited aim in
the present paper will, however, be served by noting the
following features.

4.6. Features

(a) Since the density ρ(r) is sharply cutoff at rK , by Gauss
theorem, the exact potential energy and force at exterior
points become

W(r) = −GMm

r
; F(r) = −GMm

r2
: r ≥ rK . (40)

(b) At the edge rK itself, the potential energy becomes
equal to the cutoff energy, namely,

εK =W(rK ) = −GMm

rK
. (41)

(c) In the interior region, the mean field may get
smoothened so as to yield a finite depth

W0 ≡W(0) ∼ −kT (42)

by virtue of the gravitational virial theorem.
(d) At interior points, the exact profile of the mean field

is not known a priori since it has to be, in general, computed
numerically by solving (39). However, for the purposes of
illustration, we can represent it by an oscillator form W(r) =
W0(1 − r2/R2) if r ≤ rK with unknown phenomenological
constants W0 and R. The corresponding interior potential
energy and force at the system edge rK then become

W(rK ) =W0

(
1− r2

K

R2

)
; F(rK ) = 2W0rK

R2
. (43)

Matching these to the exterior values given by (40) at rK , we
identify

W0 = 3W(rK )
2

; R =
√

3rK . (44)

Thus, W0 is deeper than W(rK ) and R is larger than rK
(although orders of magnitude are the same).

Suggested Procedure for Cosmologists

Suppose a practical astronomical observation has been made
on a cluster of N ∼ 105 stars. For utilizing our MPD theory
with respect to his collected data, the cosmologist should
proceed through the following steps.
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Step 1 (characterization parameters). From the observed size
rK and the known mass M of the cluster, the MPD cutoff
energy εK is immediately given by (41) as εK = W(rK ) =
−GMm/rK . Next, the oscillator well-depth W0 and the range
parameter R for motion inside the cluster are set up from
(44) as W0 = 3W(rK )/2 and R = √

3rK . Next, according to
(32) applicable to cosmology, the MPD parameters have the
rough orders of magnitude

K ∼ N ∼ J̃ ∼ R

λ
∼ (m|W(rK )|)1/2rK

�
∼
(
GMm2rK

�2

)1/2

(45)

upon using the value of J̃ given by the first line of (27)
under virialization. Next, the cosmologist may treat (45) as
providing a new mass versus radius relationship M/rK ∼
Gm4/�2 for nondegenerate clusters whose experimental
status is, however, not yet studied. Finally, for an accurate
interlink among all MPD parameters, the astronomer may
like to solve the transcendental equations (27) numerically.

Step 2 (MPD density near the edge). Next, the astronomer
may look at (35) which gives the leading behaviour of the
stellar number density near the cluster’s boundary:

n(r) ∝
r→ rK

{W(rK )−W(r)}3/2+1 ∝
MPD

{
1
r
− 1
rK

}5/2

(46)

since the mean field W(r) becomes Newtonian near the
periphery. This can be cast into more convenient form by
defining the variable x = 1/r, choosing a normalization point
x1 = 1/r1, and working with the modified function

n̂2/5 ≡
def

{
n(r)
n(r1)

}2/5

= x − xK
x1 − xK

(47)

which becomes unity at x1 but vanishes at xK = 1/rK . To
test the validity of (47), the astronomer may, for example,
concentrate on the star counts made on photographs of
the cluster M 15 (see Figure 2 of King [14]) taken with
the 48-inch Schimdt camera in the Palomer observatory.
The results of n̂2/5 are plotted in Figure 3. Clearly, there is
quite good agreement between experimental observation and
MPD prediction, although a slight curvature in the data
trend may imply the presence of additional weak nonlinear
terms on the RHS of (47).

Step 3 (comparison with King density). Next, it is worth-
while to consider the function n̂1/2 and expand its MPD
expression (47) around the matching point x1 binomially in
the form

n̂1/2 =
MPD

{1 + δ}5/4 =
x→ x1

1 +
5
4
δ +O(δ2); δ ≡ x − x1

x1 − xK
.

(48)

Dropping the δ2 term, the cosmologist retrieves the famous
formula proposed empirically by King, namely,

n̂1/2 =
King

x − xt
x1 − xt

; xt = 4xK + x1

5
, (49)

n
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Figure 3: Normalized stellar number density raised to 2/5 power,
that is, n̂2/5 ≡ {n(r)/n(r1)}2/5 near the edge of the cluster M 15.
The experimental data points are adapted from King [14, Figure 2].
The theoretical MPD prediction is computed from (47) with x1 =
0.202, xK = 0.008 .

whose square gives the King’s profile [14, equation (2)] near
the cluster’s periphery as

n(r) ∝
King

{
1
r
− 1
rt

}2

. (50)

It is well known that the phenomenological proposal (49)
has been extensively used in the past by astronomers.
For example, in context of M15 cluster Figure 4 shows
the plot of n̂1/2 near the cluster’s boundary. Clearly, the
agreement between experimental observation and King’s
parametrization is good, ignoring the slight curvature in the
data trend. Incidentally, the qualities of fit seen in Figures 3
and 4 are quite comparable implying that, with the present
accuracy of measuring n̂, it is not possible to say whether
MPD formula (47) or King recipe (49) is superior.

Step 4 (complete density profile). Finally, the astronomer
may like to have an expression for the number density n(r)
valid throughout the range 0 ≤ r ≤ rK . In principle, our
MPD distribution function f given by (23) yields the formal
expression

n(r) =
MPD

∫
∂D�p
hD

{
f B − θ

g

}
(51)

with the mean potential W(r) being approximately har-
monic oscillator in the interior and Newtonian near the
edge. Unfortunately, analytical evaluation of the phase space
integral (51) is somewhat tedious and will be dealt with in
a future communication. However, the cosmologist should
note that the integral (51) is the algebraic difference of
two terms which is very satisfying because the empirical full
density profile written by King [14, equation (14)] also contains
a difference of two terms.
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Step 5 (velocity distribution of stars). It is a standard
astronomical practice to measure the local radial velocity
distributions (along with other properties) of stars in a
globular cluster, for example, see the extensive photometric
study made by van Loon et al. [15] on the post-main-
sequence stars in ω Centauri (NGC 5139). The cosmologist
may ask how well our MPD distribution function f given by
(23) fits the observed data. Unfortunately, a straightforward
answer to this question is difficult because exact values of the
unknown parameters α and K must be obtained numerically
from the transcendental conditions (24b) and (25b). We plan
to accomplish this task in a future communication.

5. Concluding Remarks

The main results of the present work appear in the abstract
along with Sections 2–4 and are often emphasized by italics.
It is hoped that astronomers will benefit from the algebraic
properties of MPD derived in Section 3, its cosmological
implications mentioned in Section 4, numerical plots of
number density profiles in Figures 3 and 4, and a pointwise
comparison between the King model and MPD philosophy
made in Table 2. Clearly, both types of theories can be
applied to cosmology although our f may be regarded
as providing a better characterization from the conceptual
viewpoint.

The essence of our cosmological discussion in Section 4 is
the following. Suppose that an astronomer makes observations
on a (quantum mechanically nondegenerate) cluster having N
stars, total mass M, and radius rK . Then, its MPD solution
will be characterized by the cutoff energy εK = −GMm/rK and
cutoff quantum number K ∼ N . Before ending the paper, we
mention below briefly several important points not discussed
explicitly in the earlier sections.

(i) In the mean field description of a multiparticle system,
fluctuations arising from short-range pair correlations are
usually ignored. The effect of fluctuations is likely to be
stronger on the MB solution f B whose tail extends to ∞ in
(2). Such effect is likely to be weak on the MPD solution f
whose tail gets truncated at εK in (23).

(ii) One may argue that a sharp radius is also known
to arise in the method of self-consistent Hartree fields
applied to gravitational systems [17]. We stress, however,
that the Hartree method is done through a numerical
algorithm because the coupled equation for the mean field
and distribution function must be solved iteratively on
a computer. Therefore, our analytical maximum-entropy
treatment of Section 3 still retains its novelty.

(iii) One may also argue that it is not meaningful
to demand thermodynamic equilibration in the peripheral
region of the galaxy because, due to low densities, relaxation
may remain incomplete there. However, it must be kept
in mind that since gravitational forces are of long range,
the mechanism of collisionless relaxation [9] still operates.
Therefore, our assumption of equilibration even in the tail
region may remain justified.

(iv) Next, mention must be made of some recent investi-
gations [10, 11] carried out on the question of gravitational
galactic clustering, their virialization, and peculiar velocity

distribution superposed over the local Hubble flow. These
authors start from the N body cosmological canonical
partition function ZN in a box of large volume V , perform
the individual momentum integrals at the outset over the
infinite domain −∞ ≤ p ≤ ∞, write the entropy S as the
logarithm of a Gibbs integral over the density of states, and
minimize the Helmholtz free energy E − TS with respect to
the internal energy E. Of course, these investigations are very
different from our work because we do not need an enclosing
box, momentum integrations over infinite domain are never
performed, the entropy functional is combinatorial, and
maximization is done with respect to the cell occupation
numbers.

(v) Next, suppose that one considers a time span long
compared to the two-body relaxation time in a globular
stellar cluster. One may argue that a star having energy εe =
−0 (i.e., arbitrarily close to zero but still negative) will go
far away and yet come back. Since the corresponding turning
point re may be arbitrarily big, one expects a very small (but
not zero) possibility of the star’s existence even at a very large
radius. This logic apparently contradicts the MPD result (34)
which had claimed that there is no density outside a finite
distance rK .

Actually, the above logic has the following very subtle
fault. While doing pure dynamics, it is enough to find
trajectories and their turning points re; but while doing
statistical mechanics, it is essential also to calculate the
density profile ρe(r) and the related total mass Me. Now, in
direct analogy with (35) but with εe = −0, the density profile
at large distance and its associated Poisson equation become
(in D = 3 dimensions)

ρe(r) ∝
r→∞ {−We(r)}5/2 ∝ ∇2We(r);

∴ We(r) ∝ r−4/3.
(52)

This result is physically unacceptable because the gravi-
tational potential due to a finite mass object must fall
asymptotically like 1/r. Hence a logic based on εe = −0
will not work. In sharp contrast, if the globular cluster has
finite experimental mass M, then it can be easily described by
our MPD solution (34) characterized by bounded rK and finite
εK < −0.

(vi) Finally, a cosmologist may argue that since real
gravitating systems have a mass spectrum of stars, the
assumption of particles with the same mass m in MPD may
not be justified. We wish to point that some workers have
attempted to apply hydrodynamical equations to globular
clusters employing a phase space density involving the con-
tinuous mass [24] as an extra variable. Some other workers
have analyzed phenomenologically the mergence of clusters
such as Praesepe [25] employing four mass bins. Although, in
principle, a multicomponent combinatorial entropy will now
replace (10), yet the corresponding variational conditions
(13a) and (13b) will be hard to handle analytically because
different chemical potentials and different cutoff energies
may have to be assigned to various components present in the
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Table 2: Salient features of King-like lowered isothermal models f Low (cf. (9)) and our MPD distribution f (cf. (23)).

Feature f Low f

Physical motivation before equilibrium As a general stellar cluster evolves tides are
generated

As a general stellar cluster evolves entropy
is produced

Theoretical basis at equilibrium Tidal force of the galaxy Entropy maximization

Equation obeyed Simple, approximate, and nonunique in
(9)

Transcendental, exact, and unique in (23)

Role of Planck constant Not needed since the treatment is classical
Newtonian.

Needed explicitly to find the cell degener-
acy gj , the index J̃ of (27), and the huge
cutoff number K.

Upper energy cutoff in the spectrum Imposed by hand at ε = 0 in (9).
Predicted by theory to occur at εK < 0 in
(19).

Functional form For example, e−βε − 1 in which the sub-
traction term 1 is constant.

f B−θ/g in which the subtraction term θ/g
is strongly energy-dependent.

Mass and radius of the cluster Finite Finite

Number density profile near the edge n(r)∝King(1/r − 1/rt)
2 n(r)∝MPD(1/r − 1/rt)

5/2

Quality of fit to n1/2 and n2/5 Good in Figure 4 Good in Figure 3
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Figure 4: Normalized stellar number density raised to 1/2 power,
that is, n̂1/2 near the boundary of the M 15 cluster. The experimental
data points are read from King [14, Figure 2]. His model fit is given
by (49) with x1 = 0.202, xt = 0.047.

system. An easy approximation will be to still use the MPD
formalism of Section 3 based on the single particle average
mass

m =
∑

iNimi∑
iNi

, (53)

where the suffix i runs over different species and there are
Ni particles of the ith type. This prescription should be
reasonable for those clusters where the mass dispersion is
small (in units of the solar mass).

Appendices

A. One-Body Description Recapitulated

A.1. Preliminaries

This section will summarize our notations along with
several known formulae dealing with the semiclassical single-
particle spectrum/distribution without invoking entropy
constraints. Some of these formulae will be used explicitly
in Sections 3–5 of the text.

A.2. Assumptions and Notations

Consider the nonrelativistic localized motion of a particle
in D spatial dimensions under the influence of a smooth
attractive central field. Classically, the symbols

m, r, p,W(r), F(r) = −W ′(r), ε = p2

2m
+W(r),

(A.1)

respectively, denote the mass, distance, absolute momentum,
potential energy, applied force, and mechanical energy of
this particle. Quantum mechanically invokes the Planck
constant h ≡ 2π� and solves the Schrödinger equation for
determining the energy spectrum

ε0 < ε1 < ε2 < · · · < εJ , (A.2)

where ε0 is the ground level and εJ the highest bound
level supported. Of course, solution of the Schrödinger
equation for the exact eigenvalues, eigenfunctions, and their
degeneracy is generally tedious.

A.3. Sommerfeld Quantization

Perhaps the easiest semiclassical link between the descrip-
tions (A.1) and (A.2) is provided by Sommerfeld’s criterion
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[26] which says that the phase integral or action variable over
a complete oscillation should be an integer multiple of h.
Then a discrete level εj in (A.2) corresponds to the classical
turning point r j , local momentum variable p, principal
quantum number j, and level spacing Δ j given by

W(r j) = εj ; p = {2m(εj −W(r)}1/2,

j = 2
π�

∫ r j

0
∂r, p = 0, 1, 2, . . . ,

1
Δ j
= ∂ j

∂εj
= 2m
π�

∫ r j

0

∂r

p
.

(A.3)

Since the presence of zero point energy is of little conse-
quence here, hence the more sophisticated WKB quantiza-
tion [27] will not be needed for our purpose. Also, if the
number J of supported levels is very large compared to unity,
then the quasicontinuum limit can be taken by writing

J � 1; 0 ≤ j ≤ J ; ε = εj ,

Δ = Δ j ;
J∑

j=0

=
∫ εJ

ε0

∂ε

Δ
.

(A.4)

Gibbs’ Prescription

Further information is obtained by imagining a spherical
region of range R and remembering that several quantum
states of different orbital angular momenta and magnetic
projections may be nearly degenerate at a given energy level.
Then, the D-dimensional solid angle Ω, total volume V of
the region, useful geometrical factor A, Gibbs’ phase space
element ∂Ξ, accumulated number I j of quantum states below
εj , local number wj of states per unit energy interval, and the
degeneracy gj of the jth level itself are read off from

Ω = 2πD/2

Γ

(
D

2

)
; V = ΩRD

D
,

A = Ω2

hD
=
{

2D−2
�
DΓ2

(
D

2

)}−1

,

∂Ξ = ∂D�x∂D�p
hD

,

I j = I(ε) =
∫
∂Ξ step (ε−H) = AD−1

∫ r j

0
∂rrD−1pD,

wj = w(ε) = ∂I

∂ε
=
∫
∂Ξδ(ε−H) = mA

∫ r j

0
∂rrD−1pD−2,

gj = g(ε) = ∂I

∂ j
= wΔ.

(A.5)

Here H is the single-particle Hamiltonian, the quasicontin-
uum limit (A.4) is understood, Γ is the gamma function, step
the unit step function, and δ the delta function.

Solvable Potential Models

The methodology described by (A.3)–(A.5) is best illustrated
in the case of 4 soluble models, namely, the rectangu-
lar, truncated linear, truncated harmonic oscillator, and
Coulomb wells. The results are summarized in Table 1 and
the following features are worth noticing.

(i) In the case of the rectangular, linear, and oscillator
wells, the range R represents the distance beyond
which the particle goes into the continuum. By the
same token, the highest level J is fixed through the
requirement that εJ = 0.

(ii) For the Coulomb well, however, since the bound
orbits can have any size, one sets R = ∞. By the
same token, the ionization threshold appears at J =
∞, εJ = 0.

(iii) In every model of Table 1, the semiclassical energy ε
increases monotonically with the principal quantum
number j, but the trend of the level spacing Δ is not
uniform.

(iv) In every soluble model, the level degeneracy gj =
DB jD−1, where the geometrical factor B is of order
unity. Hence it is reasonable to expect that, for a more
general attractive central field in D = 3 dimensions,
g ∝ j2 at least for large j.

(v) Table 1 does not explicitly treat the infinite rectan-
gular well, that is, rigid box in which particles of
any momentum would remain confined. Then, the
highest kinematically allowed level would have εJ =
E− (N −1)ε0 using the many-body notation of (A.6)
below. Of course, the rigid box model is irrelevant in
cosmology.

Multiparticle, Statistical System

In the present paper, we shall not consider pure Bose/Fermi
many-body systems where the strict quantum mechanical
identity of all particles is crucial. Ours is the so-called
Boltzmann system where the one-body spectrum is obtained
from the Schrödinger equation/semiclassical quantization
but strict identity among all particles is not imposed except
within the same energy cell. The mean field W(r) of
(A.1) may be either externally applied or internally gen-
erated. Assuming spherical symmetry, independent-particle
motion, and ignoring short-range pair correlations, we let
the symbols

N ,E,n = N

V
,T , k,

β = 1
kT

, λ = h

(2mkT)1/2 = π�

(
2β
m

)1/2

,

(A.6)

respectively, denote the specified number of particles,
total energy, global average number density, global mean
thermodynamic temperature, Boltzmann constant, inverse
temperature parameter, and thermal de Broglie wavelength.
The one-body phase space may be imagined to be composed
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of the differential elements ∂Ξ (cf. (A.5)) or of J energy cells
of successive widths Δ j which are arranged in the sequence
(A.2). Then a useful transformation σ , single-particle energy
ε, one-body distribution function f j , cell occupancy ν j , local
number density n(r), local mass density ρ(r), total number
N, and total energy E are read off from

σ = p2

2m
≥ 0; ε = σ +W(r),

f j = f (ε); ν j = gj f j = w f Δ,

n(r) = ρ(r)
m

=
∫
∂D�p f
hD

= 1
Γ(D/2)

{
m

2π�2

}D/2∫ εJ−W(r)

0
∂σσD/2−1 f ,

N =
J∑

ν=0

ν j =
∫
∂Ξ f =

∫ εJ

ε0

∂εw f ,

E =
J∑

j=0

ν j ε j =
∫
∂Ξ f ·ε =

∫ εT

ε0

∂εw f ·ε.

(A.7)

Two crucial comments are in order at this stage. (i) The
functional form of f (ε) is left unspecified at the moment.
(ii) Convincing justifications are still needed for retaining
h ≡ 2π� in our mechanical as well as statistical expressions
(A.3)–(A.7) especially when application to classical galaxies
of enormous sizes is being envisaged.

Importance of Planck Constant

(a) By Bohr’s correspondence principle, the motion of a
quantum Schrödinger/Sommerfeld particle tends to become
classical in the states of large principal quantum numbers.
In the notation of (A.4), this requires J � 1 where J of
Table 1 contains � explicitly. (b) Strict Bose/Fermi statistical
systems tend to obey classical statistics at low density and
high temperature if nλD � 1 in the notation of (A.6). This
requires that the linear size of the system be large compared
to the thermal de Broglie wavelength, that is, R � λ. Hence
the �-dependent dual inequalities

J � 1; R� λ (A.8)

tell very precisely when a multiparticle system can be called
“classical.” Such a precision would be lacking if � were
dropped at the outset in cosmological applications. (c) While
the Sommerfeld quantum number j in (A.3) is very suitable
for labelling the distinct energy levels, the Gibbs degeneracy
g (derived from the phase-space element ∂D�x∂D�p/hD) in
Table 1 is equally convenient to count the precise number
of states in any cell. (d) The precise knowledge of a cutoff
quantum number K and energy εK will be shown to be
crucial to find the rigorous most probable distribution f in
Section 3 which job cannot be done in the cosmological context
of Section 4 if � is dropped at the outset (in the classical phase
space element ∂D�x∂D�p).

Table 3

ν j = 0 1 2 3 4

Γ(ν j + 1) = ν j ! = 1 1 2 6 24

lnΓ(ν j + 1) = 0 0 0.6932 1.7918 3.1781

Table 4

ν j ψnum ψexact ν ψnum ψexact

0 −0.563 −0.577 0.2 −0.278 −0.289

1 0.412 0.423 0.4 −0.057 −0.061

2 0.929 0.923 0.6 0.115 0.126

3 1.248 1.256 0.8 0.271 0.285

4 1.533 1.506 — — —

B. Extension from Integer to Continuous ν

In this appendix, we carefully examine the numerical jus-
tification of some algebraic manipulations done on the
combinatorial entropy S of (10), (11).

Factorials versus Gammas

As is well known, ν j ! identically equals Γ(ν j + 1) at all
nonnegative integers ν j = 0, 1, 2, 3, 4, . . . as seen from the
second line of the following brief table. Its third line records
the corresponding values of the natural logarithm lnΓ(ν j +1)
to be used as the input in Table 3.

B.1. Numerical Differentiation

Next, we address the subtle question of computing

ψnum(ν) ≡
[
∂ lnΓ(ν + 1)

∂ν

]

num
: 0 ≤ ν ≤ 4, (B.1)

where the suffix “num” stands for “numerically” and the
inequality 0 ≤ ν ≤ 4 implies that ν has become a continuous
variable over a test range [0, 4]. This is a problem of integer
programming and we tackle it by adopting the following
procedure.

(i) First, a finite-difference table was prepared using the
above-mentioned data on lnΓ(ν j + 1). (ii) Next, at several
chosen integral/fractional values of ν, (B.1) was computed
employing an efficient package based on Markoff ’s version
of Newton’s interpolation differentiated [23, page 883]. (iii)
Finally, comparison was made with the standard values of the
digamma function [23, pages 258, 267, 272] obtained from
the “exact” definition

ψexact(ν + 1) ≡ ∂ lnΓ(ν + 1)
∂ν

= 1
Γ(ν + 1)

∫∞

0
dt tνe−t ln t.

(B.2)

B.2. Results

The accompanying table shows that ψnum of (B.1) and ψexact

of (B.2) agree within 1% to 5% at the input integer values
ν = 0, 1, 2, 3, 4. We also see that their mutual agreement is
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good at the small fractional values of ν = 0.2, 0.4, 0.6, 0.8.
Therefore, taking derivatives of lnΓ(1 + ν) at all continuous
values of ν (including ν � 1) is mathematically justified in
(13a) and (14a) (see Table 4).
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