
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

RESILIENT AUTHENTICATION SERVICE

Oleksandr Malichevskyy

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/19337465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

RESILIENT AUTHENTICATION SERVICE

Oleksandr Malichevskyy

DISSERTAÇÃO

Projecto orientado pelo Prof. Doutor Alysson Neves Bessani
e co-orientado pelo Prof. Doutor Marcelo Pasin

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

2013

Acknowledgments

Initially, I would like to thank my advisers, Professors Marcelo Pasin and Alysson
Bessani, for all lessons given to me day after day.

I also thanks to my colleagues in the Navigators research group and the LaSIGE,
and to all my professors from master and undergraduate courses by all the teaching on
computer science and regarding life. Special thanks to Diego Kreutz that during this
work was always presents to help and advice. So I can say he was my third supervisor.

Last but not least, I would like thank all my family by their unconditional support,
patience and encouragement even I being physically away most of the time.

Finally, I would like to thank João Sousa for help in use of BFT-SMaRt library and
Typhon.

This work is partially supported by the European Commission through the project Sec-
FuNet (STREP 288349, FP7-ICT-2011-EU-Brazil) and FCT through multiyear programs
(LaSIGE) and CMUPORTUGAL and CloudFIT (PTDC/EIACCO/108299/2008).

iii

Dedico este trabalho aos Navigators.

Resumo

A grande maioria dos sistemas on-line dependem dos serviços básicos de autenticação
e autorização. Estes são responsáveis por prover os recursos necessários para evitar aces-
sos indevidos ou não autorizados a aplicações, dados ou redes. Para aceder aos recursos
por norma os utilizadores usam um nome de utilizador e uma prova, que geralmente é
uma senha, ou seja, uma informação teoricamente conhecida unicamente pelo respectivo
utilizador.

Nos últimos anos o uso de redes sem fios sofreu um grande aumento. A maioria destes
serviços necessitam de algum tipo de autenticação e mecanismos de autorização para dar
ou não o acesso ao serviço e verificar os direitos e permissões dos utilizadores. Para isso
o utilizador tem de se autenticar perante o serviço.

É comum os utilizadores terem um par de nome de utilizador/palavra chave para cada
serviço que usam. Isso traz problemas de gestão tanto para os utilizadores, que têm de
memorizar as suas credenciais, como para os administradores, que têm de gerir um grande
número de utilizadores. O utilizador não só tem de memorizar as credenciais para os
serviços que usa como também passa a ter varias identidades, uma vez que identidades
não são partilhadas entre serviços. Para resolver o problema de múltiplas identidades
apareceu o modelo de identidade federada. As contas de utilizadores são agregados num
único provedor de identidade, a escolha de cada utilizador. Assim os utilizadores têm os
seus dados num só local em que eles confiam e só tem de memorizar uma credencial. Isso
permite usar as suas credenciais para acesso a vários serviços. Como exemplo podemos
dar a rede sem fios eduroam.

Esta dissertação vai se focar nos serviços de autenticação para redes sem fios com
grande numero de utilizadores. Com as identidades federadas os utilizadores podem ace-
der aos serviços de rede usando as suas credenciais a partir de qualquer local. No caso
de serviço eduroam, um utilizador tendo credencias de uma instituição de ensino pode
deslocar-se a outra instituição da federação em qualquer parte do mundo e ter acesso a
rede usando as credenciais da sua instituição. Para isso os pontos de acesso usam um ser-
vidor de autenticação AAA (authenticação, autorizaçao e responsabilidade), que no caso
de eduroam é RADIUS.

AAA é uma arquitectura que permite uso de protocolos de authenticação dos utiliza-
dores nas redes de grande porte e é baseada em três componentes base, suplicante, NAS

(e.g., router Wi-Fi) e o servidor de autenticação. Quando suplicante quer aceder a rede, ele
manda as suas credenciais ao NAS e este usa o servidor de autenticação para valida-las.

A longo da existencia de arquitectura AAA foi dado mais enfase a segurança dos
protocolos de autenticação do que a resiliencia das componentes, tais como o NAS e o
servidor de autenticação. No caso de falha do NAS o suplicante pode escolher outro e
voltar tentar autenticar. Se o servidor de autenticação falhar, sofrer um ataque ou mesmo
uma intrusão o atacante consegue negar acesso a rede aos utilizadores legitimos, ou roubar
as credenciais dos mesmos e fazer um ataque a rede. No caso de uma federação, em que
os utilizadores usam uma credencial para aceder a vários serviços, esse problema torna-se
ainda mais grave, visto que o atacante consegue atacar não só um servidor de autenticação
como toda a federação e os serviços prestados na rede da mesma.

O grande objectivo desta dissertação é desenvolver um servidor de autenticação para
redes sem fios resiliente, tolerante a faltas e as intrusões. Para cumprir estes objectivos foi
escolhido o protocolo RADIUS devido a seu alargado uso (e.g., eduroam, provedores de
Internet) e a sua simplicidade. As garantias de tolerância a faltas e a intrusões foram con-
seguidas através do uso de replicação activa, com máquinas de estados em conjunto com
uma componente segura. A replicação de um serviço, por norma, obriga a um mudança
de cliente, neste caso seria o NAS, de modo a suportar a replicação. Duarante o dese-
nho de arquitectura teve-se o cudado de evitar a mudança nas componetes mais proximas
do supplicante, de modo a possibilitar a integração de novo serviço resiliente nas redes
actuais.

O protocolo RADIUS suporta, na sua definição base, mecanismos de autenticação
fracos baseados em nome de utilizador/password, porque foi projectado para redes com
fios. Em redes sem fios, geralmente é mais fácil escutar a comunicação e, assim, roubar
credenciais dos utilizadores. A solução para este problema foi a adição de suporte de
métodos de autenticação EAP (Extensible Authentication Protocol). Com a utilização de
EAP, podemos adicionar métodos de autenticação fortes a fim de conseguir as proprieda-
des de segurança durante a autenticação. A principal razão para usar EAP é eliminar a
necessidade de mudar as componentes intermédios da rede, tais como NAS. Precisamos
mudar apenas o suplicante e o servidor de autenticação. Os pacotes EAP são transportados
através dos componentes de rede do suplicante para o servidor de autenticação através de,
por exemplo, o protocolo 802.1X entre suplicante e NAS e RADIUS entre NAS e servidor
de autenticação.

O método de autenticação EAP escolhido foi EAP-TLS visto que é um padrão aberto
e um dos mais robustos protocolos de autenticação. Permite uma autenticação fim-a-
fim e a geração de chaves simétricas entre o suplicante e o servidor de autenticação de
forma secreta. Apesar de ser um sistema de autenticação forte existe uma dificuldade em
distribuição de credenciais. Ao contrario das credenciais baseadas em nome de utiliza-
dor/palavra chave, este metodo necessita de geração de um certificado para cada servidor

de autenticação e para cada utilizador do sistema.
O sistema desenhado e desenvolvido é composto por quatro componentes: suplicante

(pede acesso a rede), NAS (no nosso caso é um router de rede sem fios), gateway (elimina
a necessidade de alterarmos os clientes RADIUS existentes e funciona como cliente do
nosso servidor de autenticação replicado) e servidor de autenticação RADIUS replicado
(um serviço replicado tolerante a faltas bizantina e a intrusões). Para implementação
do servidor de autenticação replicado e do seu cliente (gateway) foi usada biblioteca de
replicação BFT-SMaRt. Cada servidor de autenticação tem a sua componete segura, que
providencia a tolerancia a intrusão escondendo os dados senciveis do servidor, tais como
seu certificado e chaves partilhadas com o NAS. Se o servidor necessitar de usar esses
dados a componente segura providencia um interface que permite o servidor executar
todas as operações necessarias que envolvem esses dados.

Para validar o desempenho do sistema foram feitos vários testes de latência e de debito
comparando o prototipo concretizado a uma implementação bastante popular de FreeRA-
DIUS. Notaram-se algumas diferenças em termos de desempenho de serviço de RADIUS
replicado em relação ao FreeRADIUS. Os testes mostraram que o RADIUS replicado tem
uma latência superior e o débito inferior ou de FreeRADIUS. Isso deve-se, em especial,
pelo facto do primeiro ser um sistema replicado e necessitar uma maior troca de mensa-
gens devido aos protocolos BFT e replicação de máquina de estados. Apesar do RADIUS
replicado ser um sistema replicado, consegue mostrar uma latência razoável e aceitável
em ambientes de redes locais.

Palavras-chave: tolerancia a faltas distribuidas, resiliência, serviços de autenticação,
RADIUS, EAP-TLS.

Abstract

The increasing use of the wireless networks in the last years has created the demand
for authentication and authorization for these networks. The basic model usually requires
a user, to access the network, authenticate itself before the authentication server using its
credentials. Authentication and authorization in networks with the large number of users
is usually achieved using the WPA-Enterprise mode. WPA-Enterprise allows the use of
the external authentication server to validate user credentials and determinate his rights.

Most common and widely used protocol for WPA-Enterprise is RADIUS, which fol-
lows AAA architecture. Normally RADIUS servers are running in a single machine and
in a single process. If RADIUS server stops users are unable to authenticate and access
the network. To solve this problem, most RADIUS servers are replicated for redundancy
and load management. AAA architecture and RADIUS protocol fail completely in case
of server Byzantine behavior, i.e., if a failure makes the system present arbitrary behavior.
In case of intrusion on authentication server, the attacker is able to access user credentials
and other sensible data, such as server certificates.

The major focus of this work is to develop a resilient, fault- and intrusion-tolerant
authentication server for WPA-Enterprise wireless networks, without changing existent
systems. To meet these objectives we implemented a replicated RADIUS-compliant pro-
tocol, which uses EAP-TLS as its authentication method. Fault and intrusion tolerance
is ensured using state machine replication, together with a tamper-proof component used
for storing cryptographic keys related with user credentials.

The service was evaluated and compared with a popular non-fault-tolerant solution,
which is used in the eduroam network, FreeRADIUS. Initial results demonstrate the ap-
plicability of the proposed solution.

Keywords: Byzantine fault tolerance, intrusion tolerance, authentication, RADIUS,
EAP-TLS.

Contents

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Structure of the document . 3

2 Background 5
2.1 Authentication Schemes . 5

2.2 Authentication, Authorization and Accounting 6

2.2.1 The AAA architecture . 7

2.2.2 AAA protocols . 8

2.3 EAP . 14

2.3.1 Authentication Methods . 14

2.3.2 EAP over RADIUS . 19

2.4 Fault and intrusion tolerance . 21

2.4.1 Byzantine Fault Tolerance . 22

2.4.2 State Machine Replication . 22

2.5 Related work . 23

2.5.1 Kerberos . 23

2.5.2 Grid of smart cards as RADIUS back-end 25

3 System design 27
3.1 Overview . 27

3.2 Components . 28

3.3 System Model . 29

3.4 Protocols . 31

xiii

4 Implementation 33
4.1 System overview . 33
4.2 Components . 34

4.2.1 Client . 34
4.2.2 Untrusted Gateway . 35
4.2.3 Replicated RADIUS server . 37
4.2.4 Trusted component . 37

4.3 Protocols . 39

5 Experimental Results 43
5.1 Environment . 43
5.2 Latency . 43
5.3 Throughput . 44
5.4 Attacks . 45

5.4.1 One faulty replica . 46
5.4.2 Two faulty replicas . 47

6 Conclusion and future work 49

Bibliography 56

xiv

xvi

List of Figures

2.1 Authentication, authorization and accounting infrastructures. 6
2.2 Federation identity management. 8
2.3 RADIUS authentication. 10
2.4 RADIUS packet. 11
2.5 EAP-TLS Authentication (EAP-TLS Start) 15
2.6 EAP-TLS Authentication (Server Authentication) 16
2.7 EAP-TLS Authentication (Client Authentication) 17
2.8 EAP Authentication . 20

3.1 AAA architecture with back-ends . 27
3.2 Resilient AAA architecture. 28
3.3 Resilient AAA architecture and communication. 30

4.1 Architecture and protocol implementation. 33
4.2 Untrusted Gateway communication. 35
4.3 BFT-SMaRt communications [60] . 36
4.4 Trusted Component interaction during RADIUS/EAP-TLS authentication 38

5.1 Authentication latency . 44
5.2 Throughput . 45

xvii

List of Tables

2.1 AAA protocols. 14
2.2 EAP authentication methods. 19

4.1 Packet commutator - packet codes. 36
4.2 Trusted component interface . 39

5.1 Attack results for one faulty replica . 46
5.2 Attack results for two faulty replicas . 47

xix

Chapter 1

Introduction

In this chapter we present the motivation for this thesis and most significant achievements.
In the end of the chapter we describe contribution of this work and also present structure
of the document.

1.1 Motivation

The last years have seen a significant increase in the use of wireless networks, not only in
home environment, but also in business and educational infrastructures. For private usage
we use a secret key to have access to the wireless network. This key not only protects
access to the network, but also is used as a key to protect communication between user
and wireless access point, because we use open air space. In business and education
environments, with large number of users, we have a need to generate a secret key to
every user that wish to access the network. If we use same shared key for every user it is
possible to intersect the user communication by the malicious agent.

WPA-Enterprise, normally, requires some authentication server that will authenticate
and authorise user access to the network. Authentication server can control network ac-
cess in institutions with large number of access points and shared resources, like printers,
internal sites, etc. With this each user must have a unique identity (e.g., username) and
his identity prove (e.g., password). Before access the network user needs to authenticate
himself before the authentication server. After authentication server validates user cre-
dentials, and authorise access to the network, it generates a unique secret key that will be
used to protect user communication.

Among the last years it was given more emphasis to security of the protocols and
authentication methods than the resilience of the components. Current protocols are only
able to verify packet correctness and component availability, such as the access point
and the authentication server. In case of Byzantine behaviour or an intrusion architecture
components are unable to detect it.

Trust and resilience of the authentication servers is a critical issue in enterprise envi-

1

Chapter 1. Introduction 2

ronment. In case of federated identity, a single local attack to an authentication service
could lead to the large-scale problems. First of all, the users could be denied to access any
service of the federation. Second, the attacker could make bad use of all user’s identities
in the compromised domain. An example could be the attacker using user’s credentials to
access services or attack other service and identity providers in the federation.

In order to address this problems, we replicated the architecture components for tol-
erate Byzantine behaviour. An intrusion tolerance is achieved through trusted component
and strong end-to-end authentication protocol. Additionally, to provide intrusion toler-
ance, a tamper-proof component is used, to store security-sensitive data. Trusted compo-
nent provides interface that allows authentication server performs needed operations that
involve stored data.

This thesis proposes the design of a new fault- and intrusion-tolerant architecture for
WPA-Enterprise wireless networks, compatible with existent network architecture com-
ponents. Compatibility with the current architecture is achieved through the introduction
of a new component called ”Untrusted Gateway”. This new component is stateless and
hides authentication server replication, passing packets from access point to replicated
authentication server and back.

1.2 Objectives

The main objective of this work is to develop a resilient AAA server. In this work, a
RADIUS service is replicated in order to render it fault- and intrusion-tolerant.

The specific objectives of this work are:

• Design a resilient architecture for WPA-Enterprise like environments;

• Design a resilient, fault- and intrusion-tolerant AAA server;

• Design a trusted component that can be used to store cryptographic material. This
trusted component provide an interface with all necessary cryptographic methods
without expose sensitive cryptographic material;

• Provide end-to-end security (EAP-TLS => modify EAP-TLS process to support
replication), using server and client certificates;

• Avoid changes on existing environment. In general, clients of replicated services
must be modified in order to communicate with several replicas. We use smart
combination of components in order to keep RADIUS client as they are today.

Chapter 1. Introduction 3

1.3 Contributions

• Design and implementation of a fault- and intrusion-tolerant authentication service
based on RADIUS protocol with EAP-TLS, which can be used in normal environ-
ments without requiring modifications on existing systems.

• Comparison of a prototype with a popular RADIUS implementation authentication
service called FreeRADIUS.

• A preliminary version of the work in this thesis was published in the paper ”O vigia
dos vigias: um serviço RADIUS resiliênte”, that appeared on INFORUM’ 12.

• Also, developed prototype going to be used as demonstration in SecFuNet - Security
for Future Networks project http://www.secfunet.eu/ and as a use case to
resilient authentication service.

1.4 Structure of the document

This document is organized as follows:

• Chapter 2 - Background, describes existent authentication schemas, AAA architec-
ture, AAA authentication protocols and most relevant related work. This chapter
also discusses existent problems with current architectures and provides some the-
oretical background about techniques that can be used to overcome problems.

• Chapter 3 - System design, is described designed solution and how it can be inte-
grated with existent AAA systems without changing them.

• Chapter 4 - Implementation, presents how the prototype was implemented. In this
chapter is described also how each component was implemented.

• Chapter 5 - Evaluation, in which experimental results are presented. The tests and
the evaluations that made to compare the prototype’s performance with existing
implementation of FreeRADIUS 1. Also simulated attacks were performed in order
to verify system properties and functionalities.

• Chapter 6 - Conclusion and future work, summarize the achievements of this work
and suggests possibilities of future development.

1http://freeradius.org/

http://www.secfunet.eu/

Chapter 1. Introduction 4

Chapter 2

Background

This chapter presents the theoretical background, protocols, most common threats and
attacks to existent AAA architecture. In the end we also present the most significant
related work.

2.1 Authentication Schemes

Authentication is the action of uniquely identifying a user to grant him (or her) access
to the different types of services. The authentication process is started with the user
providing a unique identity. Usually, this step is accomplished with the user typing a
unique name and an access credential such as password, which is known only by the user.
There are many different types of credentials, which can include things like certificates,
one-time-passwords, fingerprints, smart cards and tokens.

Each authentication scheme has its own purposes, pros and cons, depending on the
deployment environment. Existing authentication schemes can be divided in four archi-
tectures: conventional, centralized, federated and user-centered.

In conventional authentication scheme, a user creates his digital identity for each ser-
vice provider with which user interacts. The user’s unique identifier, also known as ID,
is not shared among the applications, services and identity providers. Even in a single
domain, you can have different user information bases. Thus, this approach tends to be
discontinued by the service providers since it is not practical both for providers and users.

Centralized authentication schemes are composed of two basic components, the iden-
tity provider (IdP) and the service providers (SPs). All user IDs are kept within the central-
ized IdP and are used by SPs. In centralized authentication schemas all user credentials,
during the authentication session, can be used all the services. Service providers have a
relationship of trust with the identity providers. This architecture was created to solve
the conventional authentication problems of having to manage multiple users. However,
identity providers are still the single points of failure, and have total control and access to
the user’s private information.

5

Chapter 2. Background 6

The idea behind the federated authentication scheme is to distribute the identification
and authentication process among multiple identity providers. In this sense, it extends the
centralized authentication model. The federated schema is based on a trusted relationship
among all identity and service providers. Each identity provider and service provider may
belong to a different administrative domain, and users are allowed to choose their identity
provider. Once registered within one identity provider, user is able to access any service
in the federation.

A user-centered scheme is based on the autonomy of the end-user to control their per-
sonal identities and personal information. The essential debate about the loss of privacy
revolves around the trust. The personal information should not be revealed to anyone, but
only for those who need it for official business and for legal purposes [8]. The fact that
the information is protected and available only to authorized people for legal purpose, is
the essence of privacy.

2.2 Authentication, Authorization and Accounting

Authentication, authorization and accounting (AAA) [3, 49] is a set of network security
services that provide a primary architectural framework, through which we can configure
the access control to a router or to an access server. These protocols are defined consid-
ering three key elements, supplicant (client wanting to access the network), NAS [33, 44]
(e.g., wireless router) and AAA server as presented on Figure 2.1.

AAA serverNASSupplicant

Figure 2.1: Authentication, authorization and accounting infrastructures.

Authentication is a process in which the user identity is verified. This is typically
done by providing evidence that the user holds a specific entity such as identifiers and
credentials. Authentication is the way a user is identified prior to being allowed access to
the network and its services.

Authorization is used to determine what actions an entity can perform after a success-
ful authentication process. Authorization works by assigning a set of permissions that
describe what the entity can perform.

Accounting provides methods for collecting data about the network or service usage.
The collected data can be used for billing, reporting, traffic accounting, among other
things. Additionally, accounting mechanisms can be used to register authentication and

Chapter 2. Background 7

authorization failures, including auditing features, for checking the correctness of proce-
dures performed based on accounting data.

2.2.1 The AAA architecture

To better understand the AAA architecture, we will use, as an example, a user trying to
access a wireless network using a Wi-Fi router as a NAS.

1. The supplicant associates with Wi-Fi router and try to access the network;

2. NAS have two logical entrances, one that is pass-through to the AAA server with
no access control and other to the network with controlled access, for authenticated
and authorized supplicants. NAS request supplicant for it credentials, and sends
them to the AAA server;

3. If the AAA server accepts supplicant credentials and authorize him to access the
network, the NAS will allow the supplicant to access the network. After the AAA
server accepts user credentials, it generates a unique secret key that is used to en-
sure security of communication between the supplicant and the NAS. This secret
key will be used to cipher all communication with NAS in the case of the Wi-Fi
communication;

4. Then access is accounted.

As we can see from this example all the authentication part of the access control to
wireless network is made in the AAA server. If the AAA server suffers an intrusion, an
attacker can steal server cryptographic material and users data. Also, the attacker can
create new user(s) or give higher permissions to some user that it controls.

Federated identity based on AAAs

Federation identity management is simplified with the use of the AAA architecture; be-
cause the most used AAA protocols have a proxy feature. Proxy feature allows AAA
server to pass request to the other AAA server. If the local server does not know user, it
can send users credentials to the server where the user has the account.

Let’s look for a simple example of authentication using federated identity in an AAA
architecture. When a supplicant wants to access the network it must first authenticate
before the AAA server using his credentials with its identity, that can be something like
username@domain. When local server looks for received supplicant credentials and in
case of user identity is not from local server it sends a request to the respective domain
server. After the server responsible for the user identity makes a decision about presented
credentials he responds to the local server. Depending on the server decision, the local
server allows or not the supplicant to access the network.

Chapter 2. Background 8

Confederation top-level
RADIUS-server

Federation top-level
RADIUS-servers

Institutional level
RADIUS-servers

.DE .PT

Inst-1 Inst-2 Inst-3 Inst-4

NAS NAS

RADIUSAAA Server

Confederation top-level
AAA-server

Federation top-level
AAA-servers

Institutional level
AAA-servers

Figure 2.2: Federation identity management.

In a federated schema the authentication servers must have a trust relationship be-
tween them. This can be achieved using an hierarchical AAA architecture such as used
in eduroam1, as shown on Figure 2.2. In this architecture, if Inst-1 wish to authenticate a
user that have his identity in Inst-4 it sends a request to his superior, .DE server and so on
until reach the top-level server. The .DE server knows how to reach the .PT server, and
the .PT server knows how to reach Inst-4 server. When the Inst-4 server decides about
supplicant credentials, it sends a response back to the Inst-1 using the inverse path.

Eduroam is primarily intended to provide the European academic community ser-
vice mobility between university campuses. This project is working on Europe, America,
Canada and Asia. Eduroam initiative aims to bring together all the different networks
of higher education institutions, thus creating a global academic network. The interest
in extending the eduroam to other communities outside the European borders has been
increasingly evident. As a result of this growing interest eduroam was deployed in Aus-
tralia, Japan and Latin America.

Access to the eduroam network requires a user to obtain a credentials on his academic
institution. When users have his credentials (certificate or username/password) he can
access eduroam any access point of the network all over the world.

2.2.2 AAA protocols

This section describes relevant and widely used AAA protocols. Some protocols are
described in further detail because they are used in the development of experimental pro-
totype.

1Education Roaming - http://eduroam.org/

http://eduroam.org/

Chapter 2. Background 9

RADIUS

The Remote Authentication Dial-In User Service, also known as RADIUS [53] is AAA
protocol used to provide authentication in a different networks, such as dial-up, VPNs
(Virtual Private Network) and wireless networks.

RADIUS uses a client-server model, where the client is the NAS. It receives connec-
tion requests from its own clients, called supplicants, passing along the corresponding
AAA information to the RADIUS server. The RADIUS server is responsible for receiv-
ing connection requests, authenticating the user and send necessary information to NAS
so it can grant access to the network to the user. In addition, a RADIUS server can also
function as a proxy to other RADIUS servers.

In a network that uses RADIUS a supplicant that wishes to access it need to authen-
ticate towards the authentication server. In case a RADIUS server can authenticate the
user, it determines if the authenticated user is authorized to access the requested network,
and his access is accounted. Transactions between the NAS and the RADIUS server are
authenticated through the use of a shared secret, which is never sent over the network.
The shared secret is used to provide integrity and authenticity of packets. Packet integrity
can also be granted by a user-password which is ciphered using shared secret, to eliminate
eavesdropping. When user password is present in the RADIUS packet, it is hidden using a
method based on the RSA Message Digest Algorithm MD5 [54]. As request authenticator
is random number, password is used to verify integrity of a packet.

The RADIUS server can support a variety of authentication methods. When using au-
thentication based on username/password, RADIUS most basic configuration, it can deal
with password authentication protocol (PAP) [32], challenge protocol (CHAP), and UNIX
login. As RADIUS is used not only in wired networks, but also in wireless networks,
we cannot use username/password authentication, because PAP sends user credentials in
clear text and CHAP is a weak authentication protocol [13]. RADIUS also allows the use
of protocol security extensions such as Extensible Authentication Protocol (EAP), which
will be described later.

RADIUS can use different back-ends, examples are SQL database, Kerberos, LDAP,
Active Directory or even other AAA server to store a user credentials. When a RADIUS
server receives user credentials it send credentials to some back-end to validate them.
RADIUS back-ends also can be used for authorization and to store accounting data.

RADIUS protocol make, for authentication and authorization, uses 4 types of packets
Access-Request, Access-Challenge, Access-Reject and Access-Ac-

cept to provide authentication as presented on Figure 2.3.
Access-Request is used by the NAS to send to the RADIUS server supplicant

credentials. If legacy authentication protocol such as PAP (Password Authentication Pro-
tocol) is used only Access-Request and Access-Reject or Access-Accept
are needed.

Chapter 2. Background 10

RADIUS
server

NAS

Access-Request (code: 1, id: i)

Access-Challenge (code: 2, id i)

Access-Request (code: 11, id: i + 1)

Access-Reject (code 3, id i)

Access-Accept (code 2, id i)

Figure 2.3: RADIUS authentication.

Figure 2.3 shows as that Access-Reject or Access-Accept packet identifier
(id) must be the same, so NAS could make a much between request and response. When
supplicant uses complex authentication methods like CHAP or EAP is used one more
packet from RADIUS protocol called Access-Challenge. When this packet is sent
Identifier field must match request Identifier field. This packet is used to chal-
lenge supplicant in case of CHAP or as a response packet from RADIUS server to NAS
in case of EAP. Challenge is resent to supplicant in order to supplicant answer it. When
NAS receives a response from supplicant creates new Access-Request message with
supplicant answer using different Identifier.

In case of successful user authentication and authorization the Access-Accept

packet is sent with list of configuration values for the NAS. These two messages, Ac-
cess-Accept and Access-Reject, can transport some user-friendly message to
supplicant, for example hello message or to supplicant understand why his authentication
failed. When NAS receives Access-Accept it receives in the packet a key that will be
used during communication between the supplicant and the NAS.

Packet

Figure 2.4 represents an overview of a RADIUS packet. It consists in five main fields:
Code, Identifier, Length, Authenticator and Attributes. Each of them
has a specific rule in the RADIUS protocol.

Code Size: one octet. Represents type of packet. Existing codes: 1 - Access-Request,
2 - Access-Accept, 3 - Access-Reject, 4 - Accounting-Request, 5 - Accounting-Response
and 11 - Access-Challenge.

Chapter 2. Background 11

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Code | Identifier | Length |

+-+

| |

| Authenticator |

| |

| |

+-+

| Attributes …

+-+-+-+-+-+-+-+-+-+-+-+-+-

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-

| Type | Length | Value …

+-

Figure 2.4: RADIUS packet.

Identifier Size: one octet. Uniquely identifies a packet. When NAS sends a request to
RADIUS server it responds using the same Identifier. Identifier is different for
each request/response message pair. If some NAS sends a packet with the same identifier,
from same NAS IP and same NAS port in short amount of time this packet is discarded.
This happens to avoid replay attack.

Length Size: two octets. Represent length of whole packet. As packet length have only
two octets, packet max length is limited, in some cases, for example when EAP is used,
packet fields must be fragmented to transport all needed data.

Authenticator Size: 16 octets. Is used to ensure integrity and authenticity of a packet,
and user-password hiding, if present. In case of a client request, this authenticator is
a random number called Request Authenticator. This value must be unique to each
identifier. All response packets coming with Response Authenticator, which are
generated using Request Authenticator, all packet data and shared secret between NAS
and authentication server. That is, ResponseAuth = HMACMD5(Code+Identifier+

Length+RequestAuth+ Attributes+ Secret) where + denotes concatenation.
As in the request packet Authenticator is a random number we can use Mes-

sage-Authenticator attribute, which is similar to Authenticator field, but pro-
vide packet integrity and authenticity to request and response packets.

Attribute Is a field variable in length. It contains the list of attributes that are requires
by the service. Each attribute is composed by Type, Length and Value fields.

Chapter 2. Background 12

• Type is one octet field that represents the type of an attribute;

• Length is one octet field that represents length of entire attribute, including Type,
Length and Value;

• Value is variable in length and contains attribute data.

Some of attribute types are used by RADIUS service, but we can create a new one if
it necessary. New RADIUS attribute must be recognized by NAS and RADIUS server. If
type is unknown, RADIUS server or NAS may ignore it, or ignore a whole packet. End
of attributes is defined by RADIUS packet Length field.

Diameter

After IETF RADIUS working group decided that it had concluded its work, a new IETF
group called AAA working group started its work on finding the successor to RADIUS,
which would become Diameter [1].

Diameter is a protocol based on RADIUS, which tries to fix the deficiencies present
in its predecessor. This new protocol proposes some changes in RADIUS, and tries to
absorb their best features to meet the recent demands for more efficient and resilient AAA
services. Among the new features, we can cite TCP usage. Hop-to-hop and end-to-
end packet protection, RADIUS has only hop-to-hop packet protection. Field size has
incised, compared to RADIUS packet, so we can transport more data without fragment
it. Diameter protects entire packet, leaving only a header unencrypted for hop-to-hop
communication instead use a authenticator as RADIUS.

Diameter name comes from a play of its predecessor RADIUS, because diameter is
twice the radius. The new protocol is not fully compatible with RADIUS, but has many
similarities with regard to its functionality. Diameter uses UDP, TCP and STCP and re-
quires more messages and, on the contrary of RADIUS, it responds to every message that
are sent by the NAS. Instead of using the client-server model, as happen on RADIUS, Di-
ameter uses the peer-to-peer communication model. Use of peer-to-peer model allows as,
for example, to disconnect a connected supplicant, or to divide the three AAA function-
alities of the protocol in three different servers. Every Diameter component is considered
an independent application.

Authentication servers based on Diameter, dealing with NAS, are considered as a
separate application named NASREQ. It means that NAS specification is described in a
separate document. As all nodes have their own specification we can assume that not
every Diameter node will support all the Diameter applications. So before Diameter ap-
plications establish communication, they need to verify their capabilities [1, 49].

Chapter 2. Background 13

TACACS+

Terminal Access Controller Access Control System Plus (TACACS+) [20] developed by
Cisco Systems, is a network access technique in which users are connected with a central-
ized server that contains a unique database of authorized accounts. It is an authentication
protocol used to communicate with remote authentication servers, usually on UNIX-based
operating systems.

After authenticating the individual using the access server, it forwards the information
to the server log data requested by the individual who uses it. TACACS+ allows a remote
access server to communicate with an authentication server to verify that the user has
access to the network. The NAS collects the username and password and then sends a
query to a TACACS+ authentication server, sometimes called a TACACS+ daemon or
simply TACACSD. Based on the answer to this query, the user access and released or not.

RADIUS only encrypts the password in the request packet while response packet con-
tains only hash to validate packet integrity and authenticity. Other packet information can
be captured by the third party. TACACS+ encrypt the entire body, but leaves a standard
TACACS+ header similar what happens on the Diameter protocol.

TACACS+ separate all three AAA functionalities, so we can use every functionality
in separate way. For example, it’s possible to use Kerberos authentication and TACACS+
authorization and accounting. If during a session additional authorization checking is
needed, the NAS can check with the TACACS+ server in order to determinate if the user
can perform the specific command.

AAA protocols comparison

As we can see on Table 2.1, RADIUS is a protocol that requires lowest hardware speci-
fication. Compared with others, RADIUS protocol has some security problems, because
his packet protection is only granted between hops. Plus only the password attribute is
ciphered. RADIUS is most used nowadays, and we can conclude it because TACACS and
TACACS+ are proprietary protocols and are mostly used by Cisco. In case of Diameter it
is not yet commonly used.

Diameter was developed as a RADIUS successor. TACACS+, also as Diameter, de-
fine commands instead of ”message types” specified in RADIUS. To improve RADIUS
protocol EAP support was added, which extends RADIUS adding support for more secure
authentication methods. In conclusion, Diameter and TACACS+ are better, more secure
and resilient protocols when compared with RADIUS, however, the later continue to be
the most used AAA protocol.

Chapter 2. Background 14

Characteristic RADIUS Diameter TACACS+
Transport proto-
col

UDP UDP, TCP, STCP TCP

Authentication
and Authoriza-
tion

Combined Separated Separated

Encryption Passwords only Packet payload Packet payload
Extension sup-
port

EAP EAP No

Multiprotocol
Support

IP IP IP, Apple, NetBIOS,
Novell, X.25

Hardware Re-
quirements

Low HW specifica-
tion

Low HW specifica-
tion. More effort
than RADIUS be-
cause of TCP usage.

Similar effort com-
pared to Diameter.
Low support out of
Cisco products

Usage Most used Low usage Used in Cisco prod-
ucts.

Security Hop-to-Hop Hop-to-Hop, End-
to-End

End-to-End

Table 2.1: AAA protocols.

2.3 EAP

The Extensible Authentication Protocol (EAP) [2, 33, 44] is an authentication framework
used primarily in point-to-point connections and wireless networks. It was initially de-
veloped for networks where Internet Protocol (IP) is not available, and subsequently was
applied to wired and wireless networks. The main objective of the EAP protocol is to
allow two parties to combine an authentication method to use before their authentication
process.

EAP supports multiple authentication methods, and provides trading functions for au-
thentication method combination. Among these methods, we can mention the EAP-MD5
[44], EAP-TLS [32] and EAP-TTLS [44]. The last one can support multiple authenti-
cation mechanisms, such as token cards, smart cards, certificates, one-time passwords or
even PAP or CHAP, through encapsulation.

2.3.1 Authentication Methods

In this section we describe some of the most used EAP authentication methods.

EAP-MD5 (Message Digest) is a challenge-based EAP authentication type that pro-
vides a basic level of EAP support. MD5 stands for Message Digest 5 [63], and was
developed by RSA. EAP-MD5 uses a 128-bit generated number string, or hash, to verify

Chapter 2. Background 15

the authenticity of a peer. This method uses a three-way handshake in order to authenti-
cate the user.

EAP-MD5 uses MD5 as the hash function to hide the secret or password required for
authentication. This is the first problem of this method, since MD5 considered insecure
[6]. Moreover, user’s password is stored in a way that enables the authentication server
to get the original plain text password. Additionally, EAP-MD5 does not support mu-
tual authentication. Finally, unlike other authentication methods described below such as
EAP-TLS, EAP-MD5 does not provide the means to derive a session key immediately
after authentication phase. Session key must be generated by the authentication server
and can be compromised in case of malicious authentication server.

EAP-TLS (Transport Layer Security) provides one of the most secure certificate-based
mutual authentication available for RADIUS [4, 6]. TLS (based on Netscape’s SSL v3.x)
requires a public key infrastructure (PKI) to authenticate both clients and servers.

The supplicant and the authentication server have their certificates to perform mutual
authentication and can dynamically generate user-based and session-based keys [44] to
secure subsequent communications between the supplicant and NAS. Authentication is
performed end-to-end, between the supplicant and the authentication server, and a session
key is generated using the TLS sub-protocol.

The EAP-TLS authentication method is used when we need strong user identity proof,
for example when the user must request certificate in person or certificate can be stored
on user identity smart card. Compared to username/password authentication, EAP-TLS
hides user private data such as its private key, in the supplicant.

We can separate TLS hand-shake in five logical parts: TLS start, server authentication,
client authentication, specification change and connection start.

Supplicant

EAPOL Start

Identity Request

Identity (NAI)

EAP-TLS Start

Identity Response (NAI)

AAANAS

Figure 2.5: EAP-TLS Authentication (EAP-TLS Start)

Figure 2.5 presents beginning of supplicant authentication. Authentication server
sends EAP-TLS/Start encapsulated in Access-Challenge packet to the NAS

Chapter 2. Background 16

containing State attribute that will be maintained until the end of the authentication pro-
cess and will be used to uniquely identify the authentication process. EAP-TLS/Start
packet indicates to supplicant that the EAP-TLS protocol was started.

Supplicant

Client Hello

Server Hello

Certificate

Server Key Exchange

Server Request

Server Hello Complete

AAANAS

Figure 2.6: EAP-TLS Authentication (Server Authentication)

After supplicant receives confirmation that EAP-TLS method will be used, it sends
the TLS Client Hello message described in RFC 4346. This message presented in
Figure 2.6, is used to indicate beginning of the TLS connection containing:

• client random is used for a master secret generation;

• suggested cipher suites are cipher suites supported by the supplicant;

• suggested compression methods ordered by the client preferences, TLS 1.0 RFC
define only NULL compression method as mandatory.

Messages that follow are for the server authentication, Figure 2.6. In first the server
message, Server Hello, described in RFC 2246 [62] is sent:

• server random, as the client random is used to generate the master secret;

• cipher suite that will be used, server is mandatory. Server looks for the suppli-
cant suggested cipher suites and cipher suites which server supports and choose the
strongest one.

In the next message, Certificate presented on Figure 2.6, server sends it certifi-
cate. Server Key Exchange message transports values that are needed to generate
the master key. In this implementation as RSA key exchange is used and this message
goes empty, because all needed information for the key generation is generated by the
supplicant. Server Request message is used to request a client certificate. And then
server sends Server-Complete message to complete his authentication part.

Chapter 2. Background 17

After the server authentication, supplicant verifies server certificate and only then it
continue with his authentication. As we use the RSA key generation, client generates
premaster secret, which is 48 bytes random number, and then generates the master key.

Supplicant

Certificate

Client Key Exchange

Certificate Verify

Change Cipher Spec

Complete

Derive
Session Key

AAANAS

Figure 2.7: EAP-TLS Authentication (Client Authentication)

Similarly to the server authentication, client sends his certificate, as shown on Figure
2.7 first message. Client Key Exchange message contains the premaster secret
ciphered with the server public key, so server can generate the master key. Next message
indicates to the server that his certificate was successfully verified.

After client authentication it sends Handshake Finish message. This message
ensures the integrity of the all exchanged messages and proves master key knowledge.
After receive Handshake Finish the server sends his Change Cipher Spec and
Handshake Finish message. Handshake Finish is defined in [39].

EAP-TTLS (Tunneled Transport Layer Security) was developed by Funk Software and
Certicom, as an extension of EAP-TLS. This security method provides certificate-based
authentication of client and network through an encrypted channel [4, 6] (or tunnel), as
well as a means to derive dynamic, per user, per session, keys [44]. Unlike EAP-TLS,
EAP-TTLS requires only server side certificates avoiding the use of PKI in the client side.
That significantly reduces the overall implementation cost and eases network management
and administration issues.

A client’s identity is verified using a second authentication method, called inner au-
thentication, through the symmetric encryption tunnel for the actual authentication used
within the tunnel, which could be an EAP type (often MD5) or a legacy method such as
PAP or CHAP. EAP-TTLS allow mutual authentication in the first phase of the authenti-
cation. In case of the mutual authentication, second phase may be skipped.

PEAP Protected Extensible Authentication Protocol [4, 16, 44] provides a method for
securely transport of the authentication data, including legacy password-based protocols,

Chapter 2. Background 18

via 802.1X wireless networks. Like the competing standard TTLS (Tunneled Transport
Layer Security), PEAP authenticates the wireless LAN clients using only a certificate on
the server side, thus simplifying the implementation and management of a secure wireless
networks. The only limitation compared with the TTLS is that the inner authentication
methods must be an EAP.

LEAP (Lightweight Extensible Authentication Protocol) [22, 44], also called Cisco
LEAP, is an EAP authentication method used primarily in Cisco Aironet WLANs. It
encrypts data transmissions using a dynamically generated WEP2 keys. LEAP is a two-
way challenge-response protocol and, it is modified version of MS-CHAP [44] to support
the mutual authentication. Security of the protocol is based on the shared key between the
supplicant and the authentication server.

Probably the biggest advantage of the EAP-LEAP is the low overhead associated with
the particular EAP method. The biggest disadvantage of this method is that it is the pro-
priety protocol, so we do not know how some parts of it are implemented. For example,
session key is never sent through the network, and it is computed based on a some nonce
value, but this procedure is not published.

EAP-FAST (Flexible Authentication via Secure Tunneling) [22, 44] was developed by
the Cisco. It is a hybrid authentication method, like TTLS and PEAP. While the TTLS and
PEAP require digital certificate for server authentication, the use of the server certificate is
optional in EAP-FAST. The goal of the EAP-FAST is to provide a higher level of security
than was achieved by EAP-LEAP, while still maintaining the low overhead associated
with the EAP-LEAP.

Mutual authentication is achieved by a PAC (Protected Access Credential) which can
be managed dynamically by the authentication server. The PAC can be provided (dis-
tributed one time) to the client, either manually or automatically. The security provided
by the FAST basically depends on its implementation. If it is poorly implemented, the
security level provided by FAST could be comparable to LEAP or even EAP-MD5.

Authentication method comparison The Table 2.2 presents comparison between the
most used EAP authentication methods.

Despite being difficult to distribute as we can see on the Table 2.2, EAP-TLS is a
strongest EAP authentication method. The biggest strength of this method lies in a user
and a server authentication credentials. Both have a certificate with a public and private
key, that are protected by the password. The password is only known by the holders of
the certificates.

2WEP - wired equivalent privacy

Chapter 2. Background 19

EAP Types MD5 TLS TTLS PEAP LEAP FAST
Client-side
certificate

No Yes No No No No (PAC)

Server-side
certificate

No Yes No Yes No No (PAC)

Key manage-
ment

No Yes Yes Yes Yes Yes

Rogue AP de-
tection

No No No No Yes Yes

Authentication
attributes

One
way

Mutual Mutual Mutual Mutual Mutual

Difficulty of
distribution

Easy Hard Moderated Moderated Moderated Moderated

Security Bad Very
High

High High High High

Table 2.2: EAP authentication methods.

2.3.2 EAP over RADIUS

The EAP over RADIUS [13] is not an EAP method, but is the passing of EAP packets of
any type by the NAS to the RADIUS server for authentication and back. The EAP packets
are sent between the NAS and the authentication server in the format of RADIUS attribute,
called EAP-Message. The NAS becomes a device to pass EAP messages between the
supplicant and the RADIUS server. The EAP messages are processed in the supplicant
and in the RADIUS server, not on the NAS.

The advantage of using EAP over RADIUS is that EAP authentication methods do not
have to be understood by the NAS, but only by the supplicant and by the RADIUS server,
which allows to add the new authentication methods without changing the existent com-
ponents. However, the NAS must support EAP negotiation as an authentication protocol
and pass the EAP messages to the RADIUS server and back.

In a typical use, the NAS is configured to use EAP and to use the RADIUS as the
authentication provider. When we try to connect, the supplicant negotiates the use of EAP
with the NAS. The RADIUS server processes the EAP message and sends a RADIUS-
formatted EAP message back to the NAS, which then forwards the EAP message to the
supplicant. EAP packets are transported between supplicant and NAS using EAP over
802.1X protocol.

In the RADIUS protocol EAP support is provided by RADIUS protocol shuttling EAP
packet in Access-Request and Access-Challenge packets using EAP-Message
attribute. Access-Request packet is used to transport data from NAS to authenti-
cation server and Access-Challenge is used to transport data from authentication
server to NAS.

To use EAP, supplicant must negotiate it usage with NAS, Figure 2.8. After EAP

Chapter 2. Background 20

EAP

WEP/TKIP
802 Frames

SK

MK

WEP/TKIP
802 Frames

MK

EAP EAP EAP

RADIUS RADIUS

UDP/IP UDP/IP

Wireless Cell IP Network

Traffic Filtering

Suplicant
Authenticator
(Access Point)

Authentication
Server (RADIUS)

Figure 2.8: EAP Authentication

negotiation protocol continue as follows:

1. NAS send initial EAP-Request/Identity packet;

2. Supplicant responds with EAP-Response/Identity packet. This identity could
be used to determinate witch EAP method to use with this supplicant and as unique
identifier to accounting;

3. NAS sends EAP-Request/Identity packet received from supplicant to RA-
DIUS server encapsulated in Access-Request RADIUS packet. After RA-
DIUS server receives thus packet it creates State attribute, which is unique iden-
tifier for authentication process, and will be maintained until the end of the authen-
tication;

4. RADIUS server can reject EAP authentication, if it don’t support EAP, sending
Access-Reject, otherwise it sends EAP-Request encapsulated in challenge
RADIUS packet. In alternative if RADIUS server wants to change EAP authentica-
tion method it can send a request to change authentication method or simply reject
supplicant access.

In case of RADIUS server doesn’t know witch EAP method to use, it choose
the most basic (e.g., EAP-MD5). Supplicant or RADIUS server can change EAP
method sending Nak packet.

5. if it’s needed supplicant respond with EAP-Response and NAS encapsulate it in
the Access-Request packet and sends it to RADIUS server. Access-Request
and Access-Challenge are used as request/response packets until authentica-
tion is complete;

Chapter 2. Background 21

6. in case of RADIUS server accepts user credentials, it sends EAP-Success, oth-
erwise EAP-Failure is sent;

7. some of EAP methods, like EAP-TLS, allows to supplicant and RADIUS server to
derive session key. If supplicant used EAP method that do not permit session key
derivation, like EAP-MD5, RADIUS server sends session key in EAP-Success
packet containing EAP-Key packet to supplicant. NAS receives generated key in
Access-Accept packet.

With use of EAP over RADIUS it’s mandatory by RFC to use additional authenticator
called Message-Authenticator and it’s described in RFC 3579 [13], because RA-
DIUS authenticator field only protect response messages and those that have password
attribute in request messages.

2.4 Fault and intrusion tolerance

The Fault-tolerant protocols are critical in the design of reliable distributed systems. In
a dynamic distributed system [12], where nodes can enter and leave the network at any
time, the challenge of providing reliable services is even greater. Additionally, due to
the wide range of participants and the common use of wireless communication, it is not
possible to provide an overview of the processes of all the network. So, each node has
partial knowledge of the composition of the system.

Security is a major concern in wireless networks, since the dynamics population of the
nodes of the network facilitates the action of malicious nodes on the system. The Byzan-
tine fault model handles malicious attacks through the explicit assumption of existence of
corrupted processes, which can behave arbitrarily in an attempt to prevent the system to
work properly. The system maintains its proper operation despite the malicious behavior
of some of its processes.

During the existence of the AAA architecture, was given more emphasis to the se-
curity of authentication protocols and authentication methods than to the architecture
resilience. Even with strong authentication protocols and authentication methods, we
cannot ensure that component behavior is correct.

As was said before, the AAA architecture can tolerate fail-stops and congestion, repli-
cating components for redundancy. But these replicated components are unable to detect
arbitrary behavior of the architecture components. It means, if we have some faulty au-
thentication server, because of an error, attack or intrusion, it can deny access to the
legitimate user or allow access to a user who have no credentials on the server, or do not
have rights to access this service.

Chapter 2. Background 22

2.4.1 Byzantine Fault Tolerance

The Byzantine fault model [42] assumes that processes can fail arbitrarily, even mali-
ciously. This assumption is quite realistic in practice, given the security problems faced
in distributed systems and computer networks in general. Situations that can make hosts
behave arbitrarily include the action of successful attackers, the corruption of a program
or unintended situations.

The first BFT model was presented in [43], which describes a solution for agreement
problems in synchronous system functions in a reliable multicast. The following assump-
tions are made about inter-process communication:

• Each correct message sent by a correct process to a correct process is delivered.
This leads to the assumption of reliable or secure routing layer;

• The receiver knows the sender of the message. The medium itself can meet this
requirement, otherwise mechanisms can be used for message authentication [55];

• The absence of a message can be detected by correct processes. In partially syn-
chronous systems [23], such service is not easy to implement, and in fact discussed
below as one of the types of failures that must be addressed when you want to deal
with Byzantine failures.

There is a work [40] that describes two ways of dealing with malicious processes: the
redundancy of information and use of digital not-forged signatures. Both models seek to
provide the correct processes a coherent picture of process messages. These techniques,
however, do not guarantee that messages sent by faulty processes are consistent with
the requirements. One way to handle this situation is adding additional information to
the messages in the form of certificates that can be used to validate the content being
transmitted.

2.4.2 State Machine Replication

Service replication is one of the most common ways for improving fault tolerance. Due to
the necessity of agreement protocols, a state machine replicated services can with 3f + 1

replicas tolerate up to f faults.
On one hand we have stateless services that are easier to replicate because they don’t

deal with data management avoiding consistency problems. On the other hand, we have
the state-full services, which need to maintain the same state (information) and the same
order of execution, where all operations have to be executed exactly in the same order. To
ensure statefull systems functionality three properties must to be assured [17]:

• Initial state. All correct replicas start in the same state;

Chapter 2. Background 23

• Determinism. Two or more machines in the same state when executing the same
instructions will reach the same state and this new state is valid;

• Coordination. All replicas that are considered correct receive and execute the same
sequence of requests.

It is simple to ensure the first property. For the 2nd property, all valid replicas have
to behave in a deterministic way, for example, we cannot generate a different random
number in each replica.

To ensure the third property it is necessary for a client to send its messages to all the
replicas in a same order, ensuring that all replicas receive same sequence of messages.
Message order can be ensured using a leader replica, which order messages and send this
order to other replicas. If leader replica do not send message order for some specific time,
other replicas can suspect it and start leader election protocol.

State machine replication naturally imposes some performance limitations. There is
an induced overhead due the total order broadcast among the service replicas. Thus, the
performance of the system may not necessarily decrease with the addition of more repli-
cas. The main target of the state machine replication is to increase the service availability
and correctness. Beside that, recent work show the overhead is quite affordable [17].

2.5 Related work

In this section we present the most relevant related work.

2.5.1 Kerberos

The primary goal of Kerberos [41, 50] is to eliminate the transmission of unencrypted
passwords over the network. It is a strong network authentication protocol for client-
server applications based on secret-key cryptography. The protocol provides strong cryp-
tography, so that a client can prove its identity to a server and server to the client using an
open and insecure network connection. After client and server used Kerberos, to prove
their identity, they can also encrypt all of their communications to assure privacy and data
integrity.

Kerberos works without relying on operating system assertions or trusted host ad-
dresses, and without requiring physical security of all network hosts. Packets can be read,
modified and inserted back to the network, or even be reused. Each entity (client or server)
shares a key with Kerberos, which is used to encrypt data and to prove the identity.

Kerberos uses symmetric encryption and a trusted third party key distribution center
or KDC component to authenticate and grant user access to a set of network services.
The user authentication is done with the KDC instead of the service. The KDC gives a
granting ticket to the user, which is valid for a limited period of time, called session. All

Chapter 2. Background 24

Kerberos-based services look for the user ticket and not for the login and password, as it
happens on other traditional authentication schemes, but in some cases secret key between
user and Kerberos can be generated based on username/password pair.

As explained in [50], Kerberos norm specifies two logical components, authentication
service (AS) and ticket granting service (TGS). First allow entity authentication before
Kerberos service. Second is intended to mediate authentication between two entities,
after both authenticated before the Kerberos (AS). Note that although the AS and TGS
are different logical components, does not mean that they are necessarily reside on the
different machines. They are typically implemented within the same application.

EAP-Kerberos

An EAP-Kerberos [38] method is not supported nowadays, but was studied as an alterna-
tive solution to this work. The main reason this method is not used is because we need to
modify existent equipment to support it.

As was said before EAP protocol is used over RADIUS to eliminate the need to mod-
ify NAS. We just need to modify end point, supplicant and authentication server, in some
cases. This allows us to increase the lifetime of equipment. To use this specific EAP
method we need not only modify supplicant and authentication server, but also modify
NAS.

Authentication is proceeds with supplicant send KRB-AS-REQ containing client ID
to the NAS. As we use EAP method NAS will create RADIUS packet containing EAP
packet and send it to authentication server. If authentication is completed with success,
authentication server sends KRB-AS-REP containing session key and service ticket. Than
this message is resend to the supplicant.

To have network access supplicant send KRB-AS-REQ message, containing a ticket,
to the NAS. After sending this message supplicant is authenticated and authorized. As
we know Kerberos authentication server must have shared key with client and with the
service. In this implementation client shared key is derived using client password and
shared key with the service is a key that is used between NAS and authentication service.

Typhon

Usually, Kerberos is implemented using a centralized service, which resides in a sin-
gle process within a server machine. If such process or machine fail, the authentication
service becomes unavailable (fail-stop) or erratic [43] (arbitrary fail or Byzantine). The
failure of the authentication service can force the whole system that depends on it to stop.

Typhon [11, 37] is an authentication and authorization service that follows the Ker-
beros v5 specification and yet is not a point of failure [19]. It increases the robustness of
Kerberos safety properties.

Chapter 2. Background 25

The challenge of the Typhon service it is make more robust the four safety properties
of Kerberos v5:

• Authenticity - those who use the system can prove its identity;

• Integrity - the system and communication data is protected against corruption;

• Confidentiality - system and communication data is protected from the not autho-
rized access;

• Availability - the extent to which the system is being protected from attacks aimed
at disrupting its execution.

An authenticity is already offered by Kerberos, since its purpose is to guarantee the
authenticity of the users and services that use it. To ensure the other tree safety properties,
Typhon was designed to use state machine replication technique combined with a local
secure component.

State machine replication is used to provide arbitrary fault tolerance, while the secure
components ensure that clients and services keys are kept secret even in the presence
of intrusions. This way, secure components allow for confidentiality as they store all
sensitive data (i.e., the keys). Also these delegate operations that process the data. The
idea is to store sensitive data on the component and to perform operations on them without
having them exposed to the rest of the system.

Usually when we replicate a service, it takes longer to perform an operation since
the client must wait for responses from more than one server. When using state machine
replication the servers themselves need to communicate to reach a consensus. Perfor-
mance tests conducted to compare Typhon with other similar services revealed that a
replicated service can have similar performance figure to other services of the same type.

2.5.2 Grid of smart cards as RADIUS back-end

AAA infrastructures are important in Telecom companies and eduroam, using RADIUS
servers as basic security element. Normally critical information, such as server keys and
cryptographic material, are stored in the server. Any system administrator could have
access to them. Server keys may be easily stolen, changed or eavesdropped by those who
hold the proper rights on the server. Therefore it is necessary to create an infrastructure
that can be trusted even in the presence of malicious administrators.

One way of achieving more security within RADIUS servers is through the use of
back-ends secure micro-controllers as authentication servers [68]. Such authentication
servers can be implemented using smart cards, making all necessary processing [18]. The
RADIUS server receives a request for network access, which is a packet EAP-TLS over
RADIUS, removes RADIUS headers and sends the remaining EAP-TLS packet to the
smart card, which plays the role of a proxy for subsequent communication.

Chapter 2. Background 26

A smart card [57] contains an embedded computer chip-either a memory or a micro-
processor type-that stores and transacts data, used for phone calls, e-cash payment, access
credentials, and other applications.

An authentication server that runs on a normal physical machine can authenticate
multiple users simultaneously without a great effort, for example using EAP-TLS over
RADIUS. But if the server is a smart card that has very limited processing power and
very limited resources, performance became an issue. The price of smart cards is low, so
it is possible to use several smart cards simultaneously in a grid [66]. Each smart card
runs its own server for EAP-TLS with his own TLS certificate.

Chapter 3

System design

This chapter covers design of our system architecture and shows how designed system can
be integrated with the existent AAA architecture. In the end of the chapter it is discussed
how the new AAA architecture can tolerate faults and attacks.

3.1 Overview

AAA architecture is composed by the three base components, supplicant, NAS and au-
thentication server. Usually, AAA server uses some back-end to verify supplicant creden-
tials, rights, and to provide accounting, as presented on Figure 3.1. Normally both the
NAS and the AAA server have some shared secret, that is never sent over the network,
and it is used to ensure a packet authenticity and integrity. When the AAA server receives
supplicant credentials, it sends them to a distinguished back-end to be validated.

Supplicant NAS AAA

Shared Key
SQL

LDAP

AAA

Figure 3.1: AAA architecture with back-ends

When designing our architecture we had special concern to not modify the existent
network components closer to the supplicant user. On the Figure 3.2 it is presented a
resilient and replicated AAA architecture. This architecture introduces new component
called Untrusted Gateway or simply gateway, used to hide the AAA server replication.

27

Chapter 3. System design 28

On the original AAA architecture gateway is an AAA server and replicated AAA server
is a back-end.

Replicated
AAA server

GatewayNASSupplicant

Symmetric Key

Figure 3.2: Resilient AAA architecture.

In AAA architecture NAS have some shared data with the AAA server to provide
integrity and authenticity of the sent packets. All shared data in our implementation is
shared between the NAS and the replicated AAA server. With this we can guarantee
that the attacker cannot steal any sensible data from the gateway. It means, if a gateway
suffer an intrusion attacker can only drop packets or try to modify them. As gateway has
no knowledge about shared data between the NAS and replicated AAA server, it cannot
generate legitimate packets. If attacker changes the packet it will be discarded.

3.2 Components

In this section we explain each of the components depicted in Figure 3.2.

Supplicant and NAS The supplicant and the NAS are two components of our architec-
ture that will not suffer any modification. It means that every WPA-Enterprise-capable
supplicant may access our network and any AAA-capable access point can use our au-
thentication server.

Untrusted Gateway The Untrusted Gateway is a component that eliminates the need
to change existing NAS and allows us to communicate with the replicated AAA service.
This component only forwards packets from the NAS to the replicated AAA server and
back.

Replicated AAA server Our server is a replicated fault- and intrusion-tolerant AAA
server. Each replica of the server has its own trusted component containing all sensible
server data. The trusted component, explained in section 4.2.4, provide function that use
sensible server data and guarantee server intrusion tolerance.

Chapter 3. System design 29

3.3 System Model

This section will present system, communication and fault system model.

Network model We assume that all NAS are visible to the supplicants and are con-
nected to at least one gateway using the AAA protocol. The supplicant is able to connect
to the NAS using the Wi-Fi protocol and its Wi-Fi driver can provide the needed authen-
tication mechanisms. The gateway is able to communicate with the authentication server
replicas using a BFT protocol.

In this work will be used one of the most used AAA protocols, RADIUS, and one of
the strongest authentication methods for the WPA-Enterprise networks, EAP-TLS. Au-
thentication server replicas must be able to communicate between them using the TCP/IP
communication model.

Synchrony model System has partial synchrony [24], that allows the execution of a
consensus protocol, used for state machine replication.

Fault model The proposed authentication service tolerates Byzantine faults and intru-
sions as presented in Figure 3.3. In this case we use 3f + 1 replicas for authentication
server, tolerating f faults without affect system correct operation. Byzantine fault toler-
ance is achieved because the gateway expects at least 2f + 1 equal answers from replicas
before responding to the NAS. If such quorum of the requests is not achieved the gateway
ignores replicas answer and do not respond to the NAS, which will provoke packet to be
resent.

The NAS and gateway are stateless components and are assumed fail-stop errors and
some Byzantine faults detectable by the respective protocols. In general we assume a
basic architecture is composed by fN + 1 NAS, fG + 1 gateways and 3f + 1 replicas
of authentication server, where fN , fG and f are the number of tolerated faults on the
different components.

Using the presented architecture in case the NAS fails, the supplicant can choose
another one. A gateway is connected to the replicated authentication service. As we have
3f + 1 replicas of AAA server, if f servers fail or become Byzantine the system will
continue to work normally. If more than f replicas fail, the system stops.

We cannot detect NAS arbitrary behaviour. If the supplicant fails to authenticate, it
can choose another NAS and try again.

NAS has a configured timeout for a packet response time and number of retries. If
timeout expires and the number of retries is reached the NAS will choose another gateway
from the list.

The authentication server is replicated using state machine replication technique and
a BFT protocol is used between the gateway and replicas. Before replicas respond to

Chapter 3. System design 30

RADIUS802.1X BFT-SMaRt
protocol

AAA serverGatewayNASSupplicant

TLS

BFT
Agreement

BFT
Agreement

Figure 3.3: Resilient AAA architecture and communication.

Chapter 3. System design 31

the gateway, they must reach consensus to not only verify their correctness, but also to
guarantee correct response.

During consensus phase replicas exchange series of messages between them to verify
who is lying. In every phase of consensus each replica receives messages from all other
replicas and compare all of them with its message. With BFT agreement we can guarantee
that at lest 2f + 1 replicas are correct, and client message was processed correctly.

3.4 Protocols

Communication between supplicant and NAS is provided using a 802.1X protocol with
the WPA-Enterprise authentication mode. The NAS communicates with the gateway
using the RADIUS protocol. The gateway communicates with the authentication server
replicas using a BFT protocol.

Supplicant authentication is performed using the EAP-TLS protocol. EAP-TLS is
shuttled between the supplicant and the NAS by a 802.1X protocol and by RADIUS
between the NAS and the gateway. When the gateway receives a RADIUS packet, it sends
it to the replicas and waits for replicas to answers. When replicas send their response to
the gateway, it waits until it receives at least 2f + 1 equal responses, and then sends a
response back to the NAS. If the quorum of 2f + 1 is not achieved, gateway does not
respond to the NAS.

Chapter 3. System design 32

Chapter 4

Implementation

This chapter describes a prototype implementation of the resilient RADIUS architecture.
First, we start with the system components and used protocols between them. After,
implementation of the communication protocols used among the components are detailed.

4.1 System overview

Our prototype implementation of the architecture is composed by a supplicant, f + 1

NAS, f +1 gateway, and 3f +1 AAA service replicas, as can be seen in Figure 4.1. Each
service replica has a trusted component, used to store and secure sensitive cryptographic
material. To simplify the system implementation, supplicant and NAS were implemented
as a single component, but they can be used separately. This is only possible because we
do not modify them.

Replicated RADIUS
server (3f + 1)

Gateway (fG + 1)NAS (fN + 1)Supplicant

Symmetric Key

802.1X/EAP-TLS RADIUS/EAP-TLS

K

K

K

K

BFT-SMaRt/
RADIUS/EAP-

TLS

Figure 4.1: Architecture and protocol implementation.

33

Chapter 4. Implementation 34

A supplicant needs to use 802.1X protocol combined with WPA-Enterprise mode and
EAP-TLS authentication method. 802.1X is required to communicate with the NAS,
while EAP-TLS is used to provide end-to-end secure authentication and communication
between the supplicant and the authentication service.

BFT-SMaRt [9] library was chosen to provide the BFT protocol between the gateway
and replicated authentication servers. It provides two interfaces, one for the client side and
another one for the server side. The client interface allows an application to communicate
with a replicated service using the BFT protocol based on Paxos [42]. On the other
hand, the server side interface allows one to build a replicated services without having
to implement protocols such as leader election and total ordering. To mask Byzantine
faults, the client interface verifies for a majority (2f + 1) of correct (equal) responses
from replicas. Requests with less than 2f + 1 correct answers are simply discharged.

EAP-TLS allows a strong end-to-end authentication. After authentication, replicas
send a master key to the NAS. It is ciphered with the shared secret used between NAS
and AAA replicas. Master key is used to cipher communication between supplicant and
NAS.

The EAP-TLS handshake process requires a random number generation at the server
side. This is not a problem on a standalone service. However, it is a problem on a
replicated service, when different replicas will execute the same instructions and have to
give an equal answer (same response). Thus, a deterministic random generator is required
among replicas. The implemented solution, using a pseudo-random number generator,
will be explained later.

4.2 Components

4.2.1 Client

The client represents two system components, supplicant and NAS. It was developed as
an authentication module and test tool for RADIUS servers with EAP-TLS support.

The client shares a secret with AAA replicas, as it happens in a normal RADIUS
architecture, where NAS and AAA server have a shared secret to secure their commu-
nication. Further, the client’s NAS part contains a list of authentication servers. In a
traditional architecture each authentication server would be an independent AAA service
or a simple backup-based replica. However, in our architecture the authentication server
configured in the NAS is represented by the gateway. Several gateways can be used to
provide availability, throughput and fault tolerance.

Chapter 4. Implementation 35

4.2.2 Untrusted Gateway

The gateway has two interfaces, one to communicate with NAS (RADIUS) components
and a second one for active replication (to integrate with BFT-SMaRt). User requests
arrive at the NAS interface and are forwarded to the BFT-SMaRt interface. Gateway is
implemented in three layers AAA, packet commutator and BFT. AAA layer is responsible
for communication with NAS and AAA packet interpretation. Packet commutator stores
packet header data and is responsible to identify to which NAS response packet must be
sent. BFT layer is used to communicate with the replicated AAA service.

U
n

tr
as

te
d

 G
at

ew
ay AAA interface

NAS

BFT protocol

Service ProxyAAA protocol
interpreter

Packet commutator

AAAAAA
AAA

AAA

Figure 4.2: Untrusted Gateway communication.

Figure 4.2 illustrates the gateway’s communication stack. Packets received from NAS
are interpreted and forwarded to the service proxy. For each RADIUS incoming packet
from NAS the gateway stores header data, including NAS IP address, NAS port and packet
identifier for EAP-IDENTITY packet and STATE attribute for the rest of the packets. These
information is used to know where to send back the authentication replica responses.
Finally, RADIUS packets are sent to the replicas without any modification.

As soon as the gateway receives 2f + 1 correct responses from AAA replicas, the
stored packet information is retrieved to send it back to the respective NAS as the authen-
tication service response. The gateway uses the packet Identifier or State attribute
to recover the corresponding NAS (origin) information.

Inside the gateway there are also complementary functions, such as detect and avoid
to forward malformed packets. Each received packet, from both interfaces, is verified
against a structure template. All packets with correct structure will be forwarded. How-
ever, all malformed packets are dropped. Verification functionally comes for free with

Chapter 4. Implementation 36

packet interpretation, used to identify the NAS that will receive response from replicas.
The gateway packet commutator is implemented using RADIUS packet header and

attributes such as CODE, IDENTIFIER fields and STATE attribute. Using CODE field we
can identify where the packet must be sent, to NAS or replicas. Table 4.1 presents how
gateway identifies to which side packet must be sent.

Code Name Side
1 Access-Request AAA replicas
2 Access-Challenge NAS
3 Access-Reject NAS
4 Access-Accept NAS

Table 4.1: Packet commutator - packet codes.

Gateway cannot use the Identifier alone to identify a packet because it has only
two octets. This limits the range of possible values from 1 to 255. For example, if we
have two NAS who sent sequentially a packet with the same Identifier, packet com-
mutator will overwrite header data of first NAS. On the other hand, the State attribute
(16 octets) is a unique value, generated by the authentication server, which can be used as
an unique identifier for the subsequent packets of the authentication process. The State
attribute is maintained until the end of the authentication process and identifies authenti-
cation process on the authentication server.

Figure 4.3: BFT-SMaRt communications [60]

Figure 4.3 show the communication between gateway and replicas using BFT-SMaRt
library. BFT-SMaRt client (c) sends the same request to all replicas (s1, ..., s4). In this
example we assume that first replica (s1) is a leader. After BFT consensus (i.e., propose,
weak and strong phases) each replica sends its reply to the client (i.e., gateway). The
client proxy will look for 2f + 1 correct answers. If found, the packet will be commuted
(forwarded) to the corresponding requester NAS.

Chapter 4. Implementation 37

4.2.3 Replicated RADIUS server

The replicated RADIUS server implements RADIUS and EAP-TLS protocols. The ser-
vice replication is implemented using BFT-SMaRt’s server side interface.

Packets received from the gateway are processed in three different layers, RADIUS,
EAP and TLS. Each layer is responsible to validate, process and create a respective re-
sponse packet to each request.

The first verification is at the RADIUS layer. If the packet contains an EAP-Message
attribute, then it is passed to the EAP layer. If the TLS method is supported, then the EAP
layer will forward the EAP data to the next layer. Otherwise, the packet is dropped. Once
on the TLS layer, the authentication will start.

The first EAP packet send by a client is the EAP-Response/Identity. When
replicas receive this packet, they create a new State attribute and a new TLS stack. This
stack is stored in a hash map using the State attribute as the key. The TLS stack is
implemented using a light weight library called Bouncy Castle1.

Usually, the RADIUS authentication server discovers the shared key to use with a
specific NAS through its IP address. In our implementation, NAS’s IP is hidden from the
authentication server, since the gateway is the communication point with NAS compo-
nents. Thus, we use RADIUS NAS-Identifier attribute to transport a NAS identifier
to the replicas. For compatibility reasons, we put the NAS IP address in this attribute.

4.2.4 Trusted component

Some considerations are necessary for a trusted component implementation. The amount
of code and interfaces must be small. It has to be easy to assure correctness or detect
errors. In some cases, number of accesses to the trusted component has to be limited,
because accessing component may be slow. For example, in our implementation each
call to the trusted component will trigger a BFT protocol between them, which requires
message exchange between them during BFT consensus.

The trusted component was designed and implemented to provide all, yet minimal,
necessary cryptographic mechanisms for the execution of RADIUS and EAP-TLS pro-
tocols. Figure 4.4 shows the interaction with both protocols. First three messages client
random, server random and premaster contain a necessary information for master secret
generation. Client and server random message are sent in clear text and premaster is
ciphered with server public key. When server receives a first message it stores client
random number on he trusted component and then trusted component generates server
random number. After supplicant receives server random number it will generate pre-
master and cipher using server public key. As premaster is ciphered server will give it to
the trusted component. Trusted component have access to the server private key and can

1Official site - http://www.bouncycastle.org/

http://www.bouncycastle.org/

Chapter 4. Implementation 38

Supplicant Trusted Component

Client Random

- add random
- generate random using PRF

Server Random

- generate premaster
premaster ciphered

with server public key

- generate master key

- decipher premaster
- generate master key
- generate MS-Key and cipher

Secure data:
- shared key
- private server key
- server certificate
- premaster
- master

Figure 4.4: Trusted Component interaction during RADIUS/EAP-TLS authentication

decipher premaster and generates master key.
After TLS handshake is complete trusted component generate MS-Key that will be

used to protect communication between the supplicant and NAS. MS-Key is ciphered
using shared secret between the NAS and authentication server, in our case with trusted
component.

Even with use of the state machine replication and BFT protocol we cannot ensure
total intrusion-tolerance of the system. If attacker invades one of the authentication server
replicas and one gateway he can ask trusted component to provide needed operations and
generate legitimate packet. To overcame the BFT protocol attacker can modify gateway
to only accept packets from the corrupted replica. Using this strategy attacker can deny a
legitimate user to be authenticated.

Solution to the described problem is to confirm execution of every operation of the
trusted component with other trusted components using BFT protocol. In other words,
every time server asks trusted component to perform some operation, it will be preformed
in at least 2f + 1 trusted components of other replicas with the same final result. So,
attacker can only use trusted component if he have at least 2f + 1 replicas under his
control.

Interface

Table 4.2 presents critical functions from the trusted component interface. HMACMD5
function makes HMAC-MD5 of data using shared key between NAS and authentication
server. createResponseAuthenticator used in the RADIUS protocol and creates response
authenticator based on the packet data and the request authenticator. generateSecureRan-
dom function is used when server needs to generate a random number. Generated ran-
dom number can vary in size and will be the same in all replicas. Random number
generation will be explained later. Size of the random number depends of the need,
for example State attribute is 16 bytes long and server random, from TLS handshake,

Chapter 4. Implementation 39

is 48 bytes long. updateSecret reads received RADIUS packet and looks for the NAS
shared secret based on the NAS IP address. RADIUS packet contains NAS IP on the
NAS-Identifier attribute. readPreMaster decipher premaster key sent by the suppli-
cant using server private key and stores it. generateMaster function generates TLS master
secret using client random, server random and stored premaster.

Method Parameters Return
HMACMD5 data HMACMD5 of data using

current client shared key
createResponseAuthenti-
cator

packet, packet length,
attributes, request au-
thenticator

Response authenticator based
on request authenticator.

generateSecureRandom size Random number with size
bytes.

updateSecret RADIUS packet Nothing.
readPreMaster premaster Nothing.
generateMaster Nothing. Nothing.

Table 4.2: Trusted component interface

Random number generation

One of the functions inside a trusted component is a pseudo random number genera-
tor. The random numbers are required to RADIUS (State attribute) and TLS (server
random) protocols. Thus, the main challenge is to have a deterministic random number
generation in a replicated system.

The solution was to use a PRF (pseudo-random number function) with a progres-
sive seed. We used the same PRF of TLS protocol. The key was to define and setup a
progressive and deterministic seed. This was accomplished by a HMAC-MD5 and the
shared secret between NAS and authentication service. The seed evolution is defined as
seed = HMAC −MD5(secret, seed). This progressive seed ensures a secure random
number generation. If attacker wishes to guess the next random number or the current
seed, he will need to know the initial seed (hard-coded inside the trusted component), all
shared keys so far used, and the exact sequence order of the shared keys used for the seed
evolution.

4.3 Protocols

Here we explain how EAP-TLS, explained in section 2.3.1, was implemented and adapted
for a replicated architecture. In our implementation, all replicas have the same crypto-
graphic material, including the same shared keys with NAS, same certificates and same
CA public key. The server sensitive data is stored and secured in the trusted component.

Chapter 4. Implementation 40

To generate client and server certificates we used openssl. Client and authentication
server certificates were generated as follows:

1. Creating new CA certificate;

2. Generate client and server certificates;

3. The client and the server certificate are signed using same CA certificate generated
in the point one;

4. Each client and server is configured with their respective certificates and CA cer-
tificate with CA public key.

This certificates are used as a credentials. During TLS handshake the authentication server
and supplicant authenticate mutually using those certificates. CA certificate with the pub-
lic key is used to verify server and supplicant certificate signature.

We implement only the mandatory TLS protocol, cipher suite and compression method.
Mandatory TLS protocol version is TLS 1.0 and mandatory cipher suite, defined in RFC
5216, is TLS RSA WITH 3DES EDE CBC SHA. Where:

• TLS RSA means that we will use TLS with RSA key exchange;

• 3DES EDE means 3DES in Encrypt-Decrypt-Encrypt (EDE) symmetric encryption
mode;

• CBC SHA means CBC-mode encryption and SHA hash algorithm.

The base TLS 1.0 RFC defines only NULL compression method (i.e., no compression).
Premaster is a 48 bytes secret, used to generate master secret, is generated by the

supplicant because we use RSA premaster secret generation. Master secret is generated
using client random, server random and premaster using pseudo-random function (PRF)
defined in Algorithm 1. This function is also used for random number generation between
replicas.

Algorithm 1 PRF definition
1: function PRF(secret, asciiLabel, seed, size)
2: label← getBytes(asciiLabel) . Transforms asciiLabel into byte array
3: s1, s2← devide(secret) . Divide secret in two half parts
4: ls← concat(label, seed)
5: buf ← HMAC MD5(s1, ls)
6: prf ← HMAC SHA1(s2, ls)
7: return XOR(buf, prf)
8: end function

Algorithm 1 uses a secret, ASCII label and seed to generate pseudo-random num-
bers. This algorithm divide secret in two half and them using two hash functions, MD5

Chapter 4. Implementation 41

and SHA1, generates two parts of the random number. It perform two hashes because
separately they are weak. And then, PRF XORes result of two hashes.

Chapter 4. Implementation 42

Chapter 5

Experimental Results

This chapter describes the environment and experimental results of the resilient archi-
tecture evaluation. We measured latency and throughput and evaluated the architecture
behaviour under crash and Byzantine faults on different components. The results of our
solution are compared with results from FreeRADIUS1, one of the most widely used
RADIUS server implementation.

5.1 Environment

The testing environment was composed of machines with Quad-core Intel Xeon E5520
processors, 32 GB (8x4GB) of RAM, and Broadcom NetXtreme II BCM5716 Gigabit
Ethernet network cards. All machines are interconnected through two Dell PowerConnect
5448 switches with 48 Gigabit Ethernet ports each.

We used 7 machines for the replicated RADIUS and 3 machines for the Free-

RADIUS. Our solution uses one client (supplicant + NAS), two gateways, and four RA-
DIUS replicas, while the FreeRADIUS environment uses one client (supplicant + NAS)
and two server replicas. This means that FreeRADIUS is able to tolerate up to one single
crash-like fault on the RADIUS server without compromising the system operation.

The evaluation has two main goals: (1) evaluate and compare the system latency and
throughput when tolerating Byzantine faults; and (2) analyse the system behaviour under
Byzantine faults or attacks. Next sections present the experimental evaluation results for
each goal.

5.2 Latency

To measure the system latency we used 2 to 10 supplicants doing 10.000 EAP-TLS au-
thentications each. Resulting measurements represent an average of sets of 500 authen-
tications. Authentications were separated in sets to verify system consistency during the

1http://freeradius.org/

43

http://freeradius.org/

Chapter 5. Experimental Results 44

whole performance test.
The authentication latency calculation required two values (timestamps) stored the

each client: one when the authentication starts and a second when the accepts packet is
received. The difference between those two timestamps represents the time required to
achieve a successful authentication, i.e. authentication latency.

Figure 5.1 presents the latency results. As can be observed, the latency remains nearly
constant for the both systems, up to 10 simultaneous clients. However, the replicated
RADIUS service adds some extra latency cost to the original architecture. One resilient
RADIUS authentication takes 0.2 seconds, while a normal one takes only around 0.1
seconds. Nevertheless, 0.2 seconds is still fast enough. A normal user will not even
notice the difference between resilient and non-resilient authentications.

The main problem of the latency lies on the gateway and trusted component, because
of it implementation. Gateway was implemented to process only one packet at a time. It
send packet to the replicas and only when replicas respond, it process next NAS request.
Other problem that affects latency is a trusted component. Each trusted component access
will trigger the execution of the BFT consensus protocol between trusted components of
the system. The BFT consensus is needed to provide intrusion tolerance to the system
described in 4.2.4.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

Number of clients

Se
co

nd
s

Replicated RADIUS server FreeRADIUS

Figure 5.1: Authentication latency

5.3 Throughput

The throughput of the system was measured for 2 to 20 simultaneous supplicants. Each
client was configured to execute 10.000 sequential authentications using same credentials.
Thus, the average throughput is calculated based on the number of clients multiplied by
ten thousand and divided by the time spent to process all authentications.

The throughput measurement was made using a program written in C, which measures
the number of packets cached by the tcpdump. This program was made to simplify a

Chapter 5. Experimental Results 45

throughput measurement, because we have many clients which authenticate simultane-
ously and they are not synchronised. Each authentication have exactly ten packets, so we
can calculate number of performed authentications.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

Number of clients

A
ut

h.
pe

rs
ec

on
d

Replicated RADIUS server FreeRADIUS

Figure 5.2: Throughput

Figure 5.2 shows the throughput results for both systems. The throughput remains
almost stable for the replicated RADIUS. On the other hand, it varies for FreeRADIUS.
This variation is due to the dynamic pool of threads, which automatically increases the
number of working threads based on the number of authentication request. Thus, it causes
a slightly decrease in performance from 4 to 10 simultaneous clients. After, by activating
new threads, the system’s performance goes up again. FreeRADIUSwas configures with
a minimum of 3 active threads and a maximum of 30 threads.

The constance of the replicated RADIUS can be attributed to the gateway through-
put and server replication. Gateway receives packet from the NAS, stores needed data,
sends it to the replicas and waits for replicas to respond. Only when replicas respond and
gateway sends response to the NAS it will process next NAS request. A solution similar
to the FreeRADIUS (thread pool) could be attempted on the gateway, since a possibil-
ity to maintain determinism in replicated RADIUS calls, which has not yet been solved.
RADIUS server replication also decrease it throughput.

5.4 Attacks

The main idea of this section is to provide some insights and analysis of systems’ be-
haviour under different conditions. We start with one and two faulty replicas, with both
crash and Byzantine faults simulation. Further, we evaluate the replicated architecture
with one faulty gateway.

Both FreeRADIUS and replicated RADIUS are submitted to the exact same tests,
such as delay attack and a Byzantine components. To execute those tests the NAS was

Chapter 5. Experimental Results 46

configured with a timeout of 3 seconds and 3 times to retry for each authentication server.
NAS configuration is a usual configuration used in the real world.

5.4.1 One faulty replica

Attack FreeRADIUS Replicated RADIUS
Fail-stop Authenticated with 9

seconds delay.
Authenticated with no delay
and with 9 seconds delay with
faulty gateway.

Byzantine Authenticated with
max 9 seconds delay.

Authenticated with no delay.
In case of faulty gateway max
delay of 9 seconds.

Table 5.1: Attack results for one faulty replica

Fail-stop. To crush a replica we simply killed process of the authentication server. With
only one crashed authentication replica, as presented on the Table 5.1, both FreeRADIUS
and replicated RADIUS still provide user authentication through the working replicas.
Nevertheless, a user may experience a 9 seconds delay due to NAS retry mechanism con-
figuration.

During fail-stop of one replica supplicant will retry to connect. This will provoke
NAS to send another request to the authentication server and increase number of retries
of the NAS. When number of retries is achieved, NAS will choose another server.

Byzantine. The system replicas were changed to introduce Byzantine behavior. Two
kinds of faults have been introduced, malformed packets and communication delays. Each
kind of fault represents one attack test.

To induce Byzantine faults on the replicas we have changed their source code to pro-
duce errors on the packets (malformed packets) and to produce delays in the communica-
tion. For the malformed packet attack we changed packet codes variables for the invalid
ones (e.g., for Access-Challenge we changed for code 99 instead of code 2). Also, we
changed authenticator field calculation adding some zeros in the end of the packet before
authenticator is calculated.

The delay attack consisted in observe system operation despite the presence of a faulty
replica, delaying packet delivery. If the server response takes longer than NAS’s timeout,
NAS will re-send the authentication request. In both cases, FreeRADIUS and repli-
cated RADIUS, users could be successfully authenticated with the presence of one faulty
replica. During the delay attack the supplicant may retry to authenticate, causing the
number of NAS attempts is reached more quickly.

Chapter 5. Experimental Results 47

To simulate the second kind of attack we used malformed packets with wrong Code
and Authenticator fields. The replicated RADIUS works well with malformed pack-
ets because it does a majority voting. Thus, one faulty replica will be masked. In other
words, the gateway will discharge up to f malformed packets (of a single authentica-
tion process), since the system is designed to tolerate f faults. On the other hand, the
FreeRADIUS NAS is forced to change to the another replica when it receives a mal-
formed response. This adds extra communication delays for an user authentication pro-
cess.

In the case of FreeRADIUS, a compromised replica may also leak a derived TLS
master key. This would allow an attacker to intersect the communication between a sup-
plicant and the NAS. Even worse, a Byzantine FreeRADIUS server may deny access to
the legitimate user. A compromised replica of replicated RADIUS would not compro-
mise TLS master secrets or any other sensitive cryptographic material because a trusted
component is used to assure the security of those kind of material.

If gateway is Byzantine, it can only discard packets that pass through. In case gateway
tries to change a packet, NAS and authentication server will notice it, because to gener-
ate legitimate packet gateway must know shared secret between NAS and authentication
server.

5.4.2 Two faulty replicas

Attack FreeRADIUS Replicated RADIUS
Fail-stop Fail to authenticate

with 9 seconds delay.
Fail to authenticate with no
delay and with 18 seconds de-
lay with faulty gateway.

Byzantine Fail to authenticate
with small delay.

Fail to authenticate with no
delay. Fail to authenticate
with 18 seconds delay with
faulty gateway.

Table 5.2: Attack results for two faulty replicas

Fail-stop. With two faulty replicas both systems stopped to work, Table 5.2. Free-
RADIUS had only two replicas, which means that all available replicas have failed. De-
spite having four replicas, replicated RADIUS was ready to tolerate only one fault (f =

1). Consequently, two faults exceeded the system fault threshold.

Byzantine. Under delay attack, as presented on Table 5.2, with delays lower than the
NAS timeout, both systems could still successfully authenticate users. However, if the
communication delay is greater than the NAS timeout, authentications will fail.

Chapter 5. Experimental Results 48

Two replicas generating malformed packets will cause a system failure, since there
are not enough correct resources to proceed one complete and successful authentication.
Even if the NAS tries another replica (or gateway), the system will still not be able to
finish one correct authentication process.

With malformed packets, the difference resides on the overall system behavior. In the
FreeRADIUS architecture malformed packets will be sent to NAS. It means that only the
NAS will detect the packet formation problem. On the replicated RADIUS architecture
this detection is accomplished much earlier, right away on the gateway. This reduces the
”try another replica” delay of the NAS. Nevertheless, user will still not authenticate with
two faulty replicas, unless f is set to 2 (i.e., system is supporting up to two faults).

Chapter 6

Conclusion and future work

The continues growth of enterprise wireless networks brought more attention to authen-
tication services, such as those provides by AAA servers. One AAA service, such as
RADIUS, is usually locally bounded. This means that a user needs one par of id and
credentials for each domain. To reduce the multiple identity hassle solution like federated
identity providers have been developed. Besides providing inter-domain authentication,
making users’ life easier, federated identity providers brought a new kind of security
treats. One single compromised authentication server can now be used to get access to
resources of multiple domains.

RADIUS is an AAA protocol widely used in enterprise networks. One example of
a federated RADIUS architecture is eduroam. It provides easy user mobility among
several universities and institutions in different countries. Thus, any compromised RA-
DIUS service (e.g., RADIUS server of university A) could be used to get access to the
network and services of all other federated institutions. An university B is not capable to
identify valid or invalid users of university A, for instance. University B trusts on users
authenticated by university A.

To avoid the problems that could be caused by compromised local AAA services,
we presented a replicated and resilient RADIUS architecture. The architecture is capa-
ble of masking up to f Byzantine faults. This means that events such as an attack can
compromise up to f system replicas without compromising the overall system liveness
and safety. The main building blocks to guarantee these properties are a state machine
replication library and a trusted component.

A prototype of the architecture was implemented as a proof of concept. The im-
plementation is based on Java and makes use of BFT-SMaRt [9] library. It follow the
standard RADIUS specification, without requiring any system modification for deploying
it in real world RADIUS-based identity provider infrastructures. This compatibility is
accomplished through a new component called gateway. It is located between the NAS
and the traditional RADIUS authentication service.

Further, user authentication is ensured and secured by an end-to-end EAP-TLS secure

49

Chapter 6. Conclusion and future work 50

channel. Thus, eavesdrop at any point between the end user and the authentication service
is not possible without breaking the TLS security. Nevertheless, implement a replicated
TLS process was one of the main challenges of the work. The replicated TLS authenti-
cation was achieved through a combination of a pseudo random generator, cryptographic
keys and synchronized seeds among replicas.

Finally, the prototype was evaluated and compared to FreeRADIUS, one of the
most popular RADIUS implementations. Both authentication latency and throughput are
slightly higher in the replicated RADIUS architecture. However, they do not affect the
system operations and end users will not even perceive the difference. For instance, the
authentication latency is around 200 ms, which is not enough to cause a significant delay
noticeable by the end user. Thus, the results demonstrate the applicability and feasibility
of the proposed solution. Nevertheless, there is still room for improvements in terms of
performance and intrusion tolerance. Latency and throughput can be improved by intro-
ducing multi-thread mechanisms in the architecture. Intrusion tolerance can be improved
with the support of diversity and proactive recovery mechanisms.

Bibliography

[1] Diameter Base Protocol. 2003.

[2] B Aboba, L Blunk, J Vollbrecht, J Carlson, and H Levkowetz. RFC 3748: Extensible
Authentication Protocol (EAP). Request for Comments, 2004.

[3] B Aboba and J Wood. RFC 3539: Authentication, Authorization and Accounting
(AAA) Transport Profile. Request for Comments, 2003.

[4] Monis Akhlaq, Baber Aslam, Muzammil A. Khan, John Mellor, M. Noman Jafri,
and Irfan Awan. Performance evaluation of IEEE 802.1x authentication methods
and recommended usage. WTOC, 7:133–143, March 2008.

[5] Ai Al-Alawi and Ma Al-Amer. Young generation attitudes and awareness towards
the implementation of smart card in Bahrain: an exploratory study. Journal of Com-
puter Science, 2(5):441–446, 2006.

[6] Khidir M. Ali and Ali Al-Khlifa. A Comparative Study of Authentication Methods
for Wi-Fi Networks. In Proceedings of the 2011 Third International Conference on
Computational Intelligence, Communication Systems and Networks, CICSYN ’11,
pages 190–194, Washington, DC, USA, 2011. IEEE Computer Society.

[7] Jon Allen and Jeff Wilson. Securing a wireless network. In Proceedings of the
30th annual ACM SIGUCCS conference on User services, SIGUCCS ’02, pages
213–215, New York, NY, USA, 2002. ACM.

[8] Smart Card Alliance. Identity Management Systems Smart Cards and Privacy:
Frequently Asked Questions. http://www.smartcardalliance.org/

resources/pdf/identity_faq.pdf.

[9] João Sousa Alysson Bessani and Marcel Santos. BFT-SMaRt - High-performance
Byzantine Fault-Tolerant State Machine Replication. http://code.google.

com/p/bft-smart/.

[10] S. Ansari, S.G. Rajeev, and H.S. Chandrashekar. Packet sniffing: a brief introduc-
tion. Potentials, IEEE, 21(5):17 – 19, 2002/jan 2002.

51

http://www.smartcardalliance.org/resources/pdf/identity_faq.pdf
http://www.smartcardalliance.org/resources/pdf/identity_faq.pdf
http://code.google.com/p/bft-smart/
http://code.google.com/p/bft-smart/

Bibliography 52

[11] Jo ao Sousa. Typhon: Um servico de autenticacão e autorizacão tolerante a intrusões.
Master’s thesis, University of Lisbon, 2010.

[12] Algirdas Avižienis. Design of fault-tolerant computers. In Proceedings of the
November 14-16, 1967, fall joint computer conference, AFIPS ’67 (Fall), pages
733–743, New York, NY, USA, 1967. ACM.

[13] P. Calhoun B. Aboba, Microsoft and Airespace. RFC 3579: RADIUS (Remote Au-
thentication Dial In User Service) Support For Extensible Authentication Protocol
(EAP). Request for Comments, 2003.

[14] W. Simpson B. Lloyd, L&A and Daydreamer. Rfc 1334 - ppp authentication proto-
cols. 1992, 1992.

[15] G. R. Blakley. Safeguarding cryptographic keys. Managing Requirements Knowl-
edge, International Workshop on, 0:313–317, 1979.

[16] Steven K. Brawn, R. Mark Koan, and Kelly Caye. Staying secure in an insecure
world: 802.1x secure wireless computer connectivity for students, faculty, and staff
to the campus network. In Proceedings of the 32nd annual ACM SIGUCCS fall
conference, SIGUCCS ’04, pages 273–277, New York, NY, USA, 2004. ACM.

[17] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20:398–461, November 2002.

[18] Serge Chaumette, Pascal Grange, Achraf Karray, Damien Sauveron, and Pierre
Vignéras. Secure distributed computing on a Java Card; Grid.

[19] Miguel Correia, Paulo Verı́ssimo, and Nuno Ferreira Neves. The design of a COTS
real-time distributed security kernel. In In Proceedings of the Fourth European
Dependable Computing Conference, pages 234–252, 2002.

[20] Lol Grant D. Carrel and Cisco Systems. The TACACS+ Protocol. Network Working
Group, 1997(01/10), 1997.

[21] R. Hurst D. Simon, B. Aboba and Microsoft Corporation. RFC 5216: The EAP-TLS
Authentication Protocol. Request for Comments, 2008.

[22] Ram Dantu, Gabriel Clothier, and Anuj Atri. EAP methods for wireless networks.
Comput. Stand. Interfaces, 29:289–301, March 2007.

[23] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, December
2004.

Bibliography 53

[24] Cyntia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the Presence
of Partial Synchrony. J. ACM, 35(2):288–322, 1988.

[25] Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full key-recovery at-
tacks on HMAC/NMAC-MD4 and NMAC-MD5. In Proceedings of the 27th annual
international cryptology conference on Advances in cryptology, CRYPTO’07, pages
13–30, Berlin, Heidelberg, 2007. Springer-Verlag.

[26] Y Frankel and Y G Desmedt. Parallel reliable threshold multisignature. Security,
1992.

[27] C Gahlin. Secure ad hoc networking. Master’s thesis, University of Umeå, 2004.

[28] S.B. Guthery. Java card: Internet computing on a smart card. Internet Computing,
IEEE, 1(1):57 –59, jan/feb 1997.

[29] Peter Gutmann. Everything you Never Wanted to Know about PKI but were Forced
to Find Out What is Public Key Infrastructure Certificate History (ctd) Original
paper on public-key encryption proposed the. Computer, 2005.

[30] J. Salowey H. Haverinen, Nokia and Cisco. EAP SIM Authentication, draft-
haverinenpppext-eap-sim-12. Request for Comments, 2004(01/10), 2003.

[31] H. Haverinen and J. Salowey. EAP AKA Authentication, draft-arkko-pppexteap-
aka-12. Request for Comments, 2004(01/10), 2004.

[32] Lianfen Huang, Ying Huang, Zhibin Gao, Jianan Lin, and Xueyuan Jiang. Per-
formance of Authentication Protocols in LTE Environments. 2009 International
Conference on Computational Intelligence and Security, 2:293–297, 2009.

[33] Antonio Izquierdo, Nada Golmie, Katrin Hoeper, and Lidong Chen. Using the EAP
framework for fast media independent handover authentication. In Proceedings of
the 4th Annual International Conference on Wireless Internet, WICON ’08, pages
42:1–42:8, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[34] H. Haverinen J. Arkko, Ericsson and Nokia. RFC 4187 - Remote Authentication
Dial In User Service (RADIUS). Request for Comments, 2006(01/10), 2006.

[35] P. Krumviede J. Klensin, R. Catoe and MCI. RFC 2195: IMAP/POP AUTHorize
Extension for Simple Challenge/Response. Request for Comments, 1997.

[36] K Jiejun and Z Petros. Providing robust and ubiquitous security support for mobile
ad-hoc networks. Proceedings Ninth International Conference on Network Proto-
cols ICNP 2001, pages 251–260, 2001.

Bibliography 54

[37] Alysson Bessani João Sousa and Paulo Sousa. Typhon : Um servico de autenticacão
e autorização tolerante a intrusões. Security, 2011.

[38] Mohamed Kâafar, Lamia Benazzouz, Farouk Kamoun, and Davor Males. A
kerberos-based authentication architecture for wireless lans. In Nikolas Mitrou,
Kimon Kontovasilis, George Rouskas, Ilias Iliadis, and Lazaros Merakos, editors,
NETWORKING 2004. Networking Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mobile and Wireless Commu-
nications, volume 3042 of Lecture Notes in Computer Science, pages 1344–1353.
Springer Berlin / Heidelberg, 2004.

[39] C. Kaufman, R. Perlman, and M. Speciner. Network security: private communica-
tion in a public world. Prentice Hall series in computer networking and distributed
systems. Prentice Hall PTR, 2002.

[40] Kim Potter Kihlstrom, Louise E. Moser, and P. M . Melliar-Smith. Byzantine Fault
Detectors for Solving Consensus. The Computer Journal, 46:2003, 2003.

[41] John T Kohl, B Clifford Neuman, and Theodore Y Ts’o. The Evolution of the
Kerberos Authentication Service. Society, 1991.

[42] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[43] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Prob-
lem. ACM Trans. Program. Lang. Syst., 4:382–401, July 1982.

[44] David Q. Liu and Mark Coslow. Extensible authentication protocols for IEEE stan-
dards 802.11 and 802.16. In Proceedings of the International Conference on Mobile
Technology, Applications, and Systems, Mobility ’08, pages 47:1–47:9, New York,
NY, USA, 2008. ACM.

[45] Yue Ma and Xiuying Cao. HOW TO USE EAP-TLS AUTHENTICATION IN
PWLAN ENVIRONMENT. In Neural Networks and Signal Processing. IEEE,
2003.

[46] Ueli M. Maurer and Pierre E. Schmid. A Calculus for Secure Channel Establish-
ment in Open Networks. In Proceedings of the Third European Symposium on Re-
search in Computer Security, ESORICS ’94, pages 175–192, London, UK, UK,
1994. Springer-Verlag.

[47] Microsoft. Choosing EAP-TLS or MS-CHAP v2 for User-Level Authentication.
http://technet.microsoft.com/en-us/library/cc739638(WS.

10).aspx, March 2003.

http://technet.microsoft.com/en-us/library/cc739638(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc739638(WS.10).aspx

Bibliography 55

[48] Hassnaa Moustafa, Gilles Bourdon, and Yvon Gourhant. Authentication, authoriza-
tion and accounting (AAA) in hybrid ad hoc hotspot’s environments. In Proceedings
of the 4th international workshop on Wireless mobile applications and services on
WLAN hotspots, WMASH ’06, pages 37–46, New York, NY, USA, 2006. ACM.

[49] Madjid Nakhjiri and Mahsa Nakhjiri. AAA and Network Security for Mobile Access:
Radius, Diameter, EAP, PKI and IP Mobility. John Wiley and Sons, Ltd, 2006.

[50] B.C. Neuman and T. Ts’o. Kerberos: an authentication service for computer net-
works. Communications Magazine, IEEE, 32(9):33 –38, sep 1994.

[51] N.F. Neves, M. Correia, and P. Verissimo. Solving vector consensus with a worm-
hole. Parallel and Distributed Systems, IEEE Transactions on, 16(12):1120 – 1131,
dec. 2005.

[52] W. Rankl and W. Effing. Smart card handbook. Wiley, 2003.

[53] C Rigney, S Willens, A Rubens, and W Simpson. RFC 2865 - Remote Authentica-
tion Dial In User Service (RADIUS). Request for Comments, 2007(01/10), 2000.

[54] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Request for Comments,
1992.

[55] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21:120–126, February 1978.

[56] Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A secure and
efficient authenticated Diffie-Hellman protocol. In Proceedings of the 6th European
conference on Public key infrastructures, services and applications, EuroPKI’09,
pages 83–98, Berlin, Heidelberg, 2010. Springer-Verlag.

[57] Robbie Schaefer, Wolfgang Mueller, Andres Marán López, and Daniel Dı́az
Sánchez. Using smart cards for secure and device independent user interfaces. In
Proceedings of the 4th international conference on mobile technology, applications,
and systems and the 1st international symposium on Computer human interaction in
mobile technology, Mobility ’07, pages 743–750, New York, NY, USA, 2007. ACM.

[58] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[59] William Allen Simpson. PPP Challenge Handshake Authentication Protocol
(CHAP). Internet RFC 1994, August 1996.

Bibliography 56

[60] Joao Sousa and Alysson Bessani. From Byzantine Consensus to BFT State Ma-
chine Replication: A Latency-Optimal Transformation. In Dependable Computing
Conference (EDCC), 2012 Ninth European, pages 37 –48, may 2012.

[61] Martin Sutter. Realization of a Vision: Authentication and Authorization Infrastruc-
ture for the Swiss Higher Education Community. EDUCAUSE Annual Conferences.

[62] Certicom T. Dierks and C. Allen. RFC 2246: The TLS Protocol Version 1.0. Request
for Comments, 1999.

[63] Chad Teat and Svetlana Peltsverger. The security of cryptographic hashes. In Pro-
ceedings of the 49th Annual Southeast Regional Conference, ACM-SE ’11, pages
103–108, New York, NY, USA, 2011. ACM.

[64] Michael Treaster. A Survey of Fault-Tolerance and Fault-Recovery Techniques in
Parallel Systems. CoRR, abs/cs/0501002, 2005.

[65] Yuh-Min Tseng. USIM-based EAP-TLS authentication protocol for wireless local
area networks. Computer Standards Interfaces, 31(1):128–136, 2009.

[66] P. Urien and M. Dandjinou. Introducing Smartcard Enabled RADIUS Server. In
Collaborative Technologies and Systems, 2006. CTS 2006. International Symposium
on, pages 74 – 80, may 2006.

[67] Pascal Urien, Estelle Marie, and Christophe Kiennert. An Innovative Solution for
Cloud Computing Authentication: Grids of EAP-TLS Smart Cards. 2010 Fifth In-
ternational Conference on Digital Telecommunications, pages 22–27, 2010.

[68] Pascal Urien and Guy Pujolle. TEAPM, Trusted EAP modules. In e-Smart2006,
September 2005.

[69] Pascal Urien and Guy Pujolle. Security and privacy for the next wireless generation.
Int. J. Netw. Manag., 18:129–145, March 2008.

[70] Eun-Jun Yoon, Wan-Soo Lee, and Kee-Young Yoo. Secure PAP-Based RADIUS
Protocol in Wireless Networks. In De-Shuang Huang, Laurent Heutte, and Marco
Loog, editors, Advanced Intelligent Computing Theories and Applications. With As-
pects of Contemporary Intelligent Computing Techniques, volume 2 of Communi-
cations in Computer and Information Science, pages 689–694. Springer Berlin Hei-
delberg, 2007.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the document

	Background
	Authentication Schemes
	Authentication, Authorization and Accounting
	The AAA architecture
	AAA protocols

	EAP
	Authentication Methods
	EAP over RADIUS

	Fault and intrusion tolerance
	Byzantine Fault Tolerance
	State Machine Replication

	Related work
	Kerberos
	Grid of smart cards as RADIUS back-end

	System design
	Overview
	Components
	System Model
	Protocols

	Implementation
	System overview
	Components
	Client
	Untrusted Gateway
	Replicated RADIUS server
	Trusted component

	Protocols

	Experimental Results
	Environment
	Latency
	Throughput
	Attacks
	One faulty replica
	Two faulty replicas

	Conclusion and future work
	Bibliography

