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A time domain method to precisely estimate the sinusoidal model parameters of cochannel speech is presented. The method does
not require the calculation of the Fourier transform nor the multiplication by a window function. It incorporates a least-squares
estimator and an iterative technique to model and separate the cochannel speech into its individual speakers. The application
of this method on speech data demonstrates the effectiveness of this method in separating cochannel speech signals in different
target-to-interference ratios. This method is capable of producing accurate and robust parameter estimation in low signal-to-noise
ratio situations compared to other existing algorithms.
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1. INTRODUCTION

Separation of mixed speech signals is still one of the major
challenges in speech processing. This problem is commonly
referred to as co-channel speech separation. The main goal of
co-channel speech separation is to automatically process the
mixed signal in order to recover each talker’s original speech.
Minimizing artifacts in the processed speech is a key concern,
especially if the final goal is to use the recovered speech in
machine-based applications such as automatic speech recog-
nition and speaker identification systems.

Several previous studies have developed signal processing
algorithms for modeling and separating co-channel speech.
The primary approaches have taken the harmonic structure
of voiced speech as the basis for separation and have used
either frequency-domain spectral analysis and reconstruc-
tion [1–3] or time-domain filtering [4]. One promising ap-
proach to address co-channel speech separation is to exploit
a speech analysis/synthesis system based on sinusoidal mod-
eling of speech. For example, in [1, 2] a voiced segment of
co-channel speech is modeled as the sum of harmonically re-
lated sine waves with constant amplitudes, frequencies, and
phases. In the sinusoidal modeling approach, the speech pa-
rameters of individual talkers are estimated by applying a
high-resolution short-time Fourier transform (STFT) to the

windowed speech waveform. The frequencies of underlying
sine waves are assumed to be known a priori from the indi-
vidual speech waveforms, or they are determined by using a
simple frequency domain peak-picking algorithm. The am-
plitudes and phases of the component waves are then esti-
mated at these frequencies by performing a least-squares (LS)
algorithm. This technique has the following drawbacks:

(1) the accuracy of the estimate is limited by the frequency
resolution of the STFT;

(2) error is introduced due to edge effects of the window
function used for the STFT.

This paper presents a time domain method to precisely esti-
mate the sinusoidal model parameters of co-channel speech.
The method does not require the calculation of the STFT
nor the multiplication by a window function. It incorpo-
rates a time-domain least-squares estimator and an adaptive
technique to model and separate the co-channel speech into
its individual speakers. The performance of the proposed
method is evaluated using a database consisting of a wide
variety of mixed male and female speech signals at different
target-to-interference ratios (TIRs).

This paper is organized as follows. In Section 2, the si-
nusoidal model of co-channel speech consisting of K speak-
ers is presented. The proposed time-domain method for
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estimating the sinusoidal model parameters is discussed in
Section 3. In Section 4, experimental results and compar-
isons with other techniques are reported and discussed. Fi-
nally, the results are summarized and conclusions given in
Section 5.

2. SINUSOIDAL MODELING OF CO-CHANNEL SPEECH

According to the speech analysis/synthesis approach based
on the sinusoidal model [1], a short segment of co-channel
speech (about 20 to 30 milliseconds) can be represented as
the sum of harmonically related sinusoidal waves with con-
stant amplitudes, frequencies, and phases as follows:

x(n) =
K∑

k=1

Lk∑

�=1

c(k)
� cos

(
�ωkn− φ(k)

�

)
(1)

=
K∑

k=1

Lk∑

�=1

[
a(k)
� cos

(
�ωkn

)
+ b(k)

� sin
(
�ωkn

)]
, (2)

where n = 0, . . . ,N − 1 is the discrete time index, ωk is the
fundamental frequency for that segment of the kth talker,

and c(k)
� , �ωk , and φ(k)

� denote the amplitude, frequency, and
phase, respectively, of the �th harmonic of the kth talker. The
total number of harmonics in each talker’s model is given as

Lk for k = 1, . . . ,K . The quadrature amplitudes a(k)
� and b(k)

�

in (2) are related to c(k)
� and φ(k)

� in (1) as follows [1]:
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A precise estimate of the sinusoidal-model parameters is es-
sential for separating the co-channel speech into its individ-
ual components. The basic problem addressed in this paper
can be stated as follows. Given the real observed N samples
of the co-channel speech sequence x(n), find the parameters

L̂k, ω̂k, {â(k)
� }

L̂k

�=1, and {b̂(k)
� }

L̂k

�=1 that form the sequence,

x̂(n) =
K∑

k=1

L̂k∑

�=1

[
â(k)
� cos

(
�ω̂kn

)
+ b̂(k)

� sin
(
�ω̂kn

)]
, (4)

that best fits x(n) by minimizing the mean-squared error
(MSE)

E = 1
N

N−1∑

n=0

[
x(n)− x̂(n)

]2
. (5)

In the following sections, we will consider the case of two
talkers (K = 2) to represent the co-channel speech without
loss of generality.

3. TIME-DOMAIN ESTIMATION OF
MODEL PARAMETERS

3.1. Estimation setup

In a matrix notation, we may write (4) as

x̂ = Qh, (6)

where x̂ is the vector

x̂ = [x̂(0), x̂(1), . . . , x̂(N − 1)
]T

, (7)

and h is given as

h =
[

h(1)

h(2)

]
, (8)

with

h(k) =
[
â(k)

1 , â(k)
2 , . . . , â(k)

L̂k
, b̂(k)

1 , b̂(k)
2 , . . . , b̂(k)

L̂k

]T
. (9)

Q is a matrix of the form

Q = [ Q(1) Q(2) ], (10)

where the matrix elements are given as

Q(k)
i j =

⎧
⎨
⎩

cos
(
i jω̂k

)
for j = 1, 2, . . . , L̂k,

sin
(
i
(
j − L̂k

)
ω̂k
)

for j = L̂k + 1, . . . , 2L̂k,
(11)

with i = 0, 1, . . . ,N−1 and k = 1, 2. The MSE in (5) can now
be written as

E = ∥∥x − x̂
∥∥2

2 = xTx + x̂T x̂ − 2x̂Tx, (12)

where

x = [x(0), x(1), . . . , x(N − 1)
]T
. (13)

Substituting (6) into (12) gives

E = xTx + hTQTQh− 2hTQTx. (14)

The estimation criteria are to seek the minimization of (14)

over the parameters L̂k, ω̂k, {â(k)
� }

L̂k

�=1, and {b̂(k)
� }

L̂k

�=1.
The most important and difficult part in the estimation

process is to estimate the fundamental frequencies {ωk}k=1,2.
Unfortunately, without a priori knowledge of the frequency
parameters, direct minimization of (14) is a highly nonlin-
ear problem that is very difficult to solve. If these frequencies
were known a priori or can be estimated precisely, one can
easily find the optimum values of the other parameters ac-
cordingly.

3.2. Estimating the number of harmonics

If the fundamental frequencies ω̂k are assumed to be known,
the total number of harmonics in each signal can be esti-
mated simply as

L̂k =
⌊
π

ω̂k

⌋
. (15)

Practically, L̂k is chosen much smaller than the value calcu-
lated by (15) since most of the energy of voiced speech is
concentrated below 2 kHz. Using this assumption can reduce
dramatically the computational complexity of the system.
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Figure 1: An example of MSE surface for a single-talker: (a) 30-millisecond single voiced speech segment in the time domain, (b) MSE
performance versus fundamental frequency based on (18).

3.3. Estimating the amplitude parameters

The optimum values of the quadrature parameters {a(k)
� }

Lk

�=1

and {b(k)
� }

Lk

�=1 can be estimated directly (assuming the avail-
ability of the fundamental frequencies) by finding the stan-
dard linear LS solution to (14) as follows [5]:

hopt =
(

QTQ
)−1

QTx = R−1P, (16)

where

R = QTQ, P = QTx. (17)

The minimum MSE corresponding to hopt is given by substi-
tuting (16) into (14) to give

Emin = xTx − PTR−1P. (18)

3.4. Estimating the fundamental frequencies

Since in practical applications, the fundamental frequencies
of the individual speech waveforms are not known a priori,
they must be estimated from the mixed data. A direct ap-
proach to solve this problem is to search the K-dimensional
MSE surface for its minimum with respect to the fundamen-
tal frequencies. The initial estimate can be determined either
from the previous frame or by applying a simple rough mul-
tipitch estimation method such as the one proposed in [6],
which is a time-domain method that depends on the average
magnitude difference function. After finding an initial guess
for the ω̂k, the optimum fundamental frequencies can be es-
timated by searching the MSE surface of (18) by the method
of steepest descent [7]. Using a weight vector w = [ω̂1, ω̂2]T ,
we describe the steepest descent algorithm by

w(i + 1) = w(i)− 1
2
μ∇E(i), (19)

where

−∇E(i) =
⎡
⎣−∇E(1)(i)

−∇E(2)(i)

⎤
⎦ , (20)

and μ is a positive scalar that controls both the stability and
the speed of convergence. The gradient of the MSE is calcu-
lated by differentiating (18) with respect to each fundamental
frequency as follows:

−∇E(k) = −∂Emin

∂ω̂k

= xTQ̇hopt − hToptṘhopt + hToptQ̇
Tx,

(21)

where

Q̇ = ∂Q
∂ω̂k

, Ṙ = ∂R
∂ω̂k

. (22)

Differentiating (10) and substituting into (21) give

−∇E(k) = 2
(

x −Qhopt
)T

Q̇(k)h(k)
opt. (23)

The fundamental frequencies are updated iteratively using
(19). After each iteration, the optimum amplitude param-
eters corresponding to the estimated frequencies are calcu-
lated using (16). Note that even by using (19), final estimates
of fundamental frequencies may still have small inaccura-
cies because frequencies may vary slightly within the speech
frame. The use of exact gradient to update the fundamen-
tal frequencies in (19) gives an advantage compared to [1],
where an approximation of the gradient is used. Gradient cal-
culation is an integrated process in the time-domain method
since the components on the right-hand side of (23) are al-
ready part of the previous steps in the algorithm.

An example of the MSE surface obtained for the sin-
gle talker (K = 1) case is shown in Figure 1. Figure 1(a)
shows a 30-millisecond speech frame for a single talker, while
Figure 1(b) shows the corresponding MSE surface using (18)
as the cost function. From Figure 1(b), the optimal fun-
damental frequency is approximately 165 Hz. For the two-
talker case (K = 2), the MSE surface would instead be two-
dimensional.

3.5. The ill-conditioned estimation problem

In some instances, the harmonics of the two speakers can be
very close to each other. When the harmonics overlap, the
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Figure 2: SDR results; SDR-TD1 and SDR-TD2 for the pro-
posed time-domain method, and SDR-FD1 and SDR-FD2 for the
frequency-domain method [1], with precise and initial frequency
estimates of {ωk}k=1,2, respectively.

matrix R in (17) will be singular, and the parameter estima-
tion process in (16) becomes ill-conditioned. To handle this
problem, the spacing between adjacent harmonics is contin-
uously calculated. If two adjacent harmonics are found to be
closely spaced, that is, less than 25 Hz apart, only one sinu-
soid is used to represent these two harmonics. The amplitude
parameters of this single component are then estimated and
shared equally between the two speakers [1].

4. SIMULATION RESULTS

The performance of the proposed method is evaluated using
a speech database consisting of 200 frames of mixed speech.
All-voiced speech segments of length 30 milliseconds were
randomly chosen from the TIMIT dataset [8] for male and
female speakers and mixed at different TIRs. The speech data
were sampled at a rate of 16 kHz.

Two sets of simulations were conducted to compare the
performance of the proposed method with the frequency
sampling approach presented in [1]. As suggested by the au-
thors, a Hann window and a high-resolution STFT of length
M = 4096 were used in the frequency-domain technique.
To avoid errors due to the multipitch detection algorithm,
the initial guess of the fundamental frequency of each talker
was calculated directly from the original speech frames be-
fore mixing, using a simple autocorrelation method.

In the first set of simulations, the comparison was car-
ried out in terms of the signal-to-distortion ratio (SDR) ver-
sus TIR as shown in Figure 2 for TIRs ranging from −5 to
+15 dB. The SDR measure is defined as [9]

SDRdB = 10 log10

∑
ns(n)2

∑
n

[
s(n)− ŝ(n)

]2 , (24)

where s(n) is the original target signal before mixing, and
ŝ(n) is the reconstructed signal after separation from the mix-
ture x(n). Each point in the plot of Figure 2 presents the en-
semble average of the SDRs over all 200 test frames. Two cases
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Figure 3: MSE results for AWGN for both the proposed time-
domain technique compared with the standard frequency-domain
method [1].

are considered for each algorithm. In case 1, precise estima-
tion of the fundamental frequencies is done using (19), and
in case 2 only the initial guess of the fundamental frequen-
cies is used. Plots SDR-TD1 and SDR-TD2 are the results for
the proposed time-domain algorithm in case 1 and case 2,
respectively, while the plots SDR-FD1 and SDR-FD2 depict
the results for the frequency-domain method. As can be seen
from Figure 2, the SDR increases monotonically for both al-
gorithms with an increase of the TIR in all cases.

More importantly, we see from Figure 2 that the pro-
posed technique outperforms the frequency-domain tech-
niques in both case 1 and case 2. At TIR = −5 dB, SDR-TD1
and SDR-TD2 are greater than SDR-FD1 and SDR-FD2 by
about 2 and 1 dB, respectively. This difference is greater for
larger TIR. As suggested in Section 1, analysis of the result-
ing estimates using voiced speech segments has revealed that
the discrepancies are due to the limited frequency resolution
of the STFT (even with M = 4096) and due to the choice of
window function and resulting edge effects. Other window
functions such as rectangular and Hamming windows had
similar discrepancies when tested.

The robustness against background noise was examined
in a second set of simulations using MSE versus signal-to-
noise ratio (SNR). Speech segments were corrupted by ad-
ditive white Gaussian noise (AWGN) with SNR varied from
0 to 15 dB. The results are presented in Figure 3. As shown
in the figure, the proposed algorithm has a superior perfor-
mance in low SNR compared to the frequency-domain tech-
nique. The AWGN causes additional frequency resolution
problems after even a high-resolution STFT. If the proposed
time-domain estimation approach is used instead, then the
effect of the AWGN is not as severe.

5. CONCLUSIONS

A time-domain method to precisely estimate the sinu-
soidal model parameters of co-channel speech is presented.
The method does not require calculation of the STFT nor
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multiplication by a window for the primary model parame-
ters. The proposed method incorporates a least-squares esti-
mator and an adaptive technique to model and separate the
co-channel speech into its individual speakers, all in the time
domain.

The application of this time-domain method on real data
demonstrates the effectiveness of this method in separating
co-channel speech signals at different TIRs. Overall, an im-
provement of 1–3 dB in SDR is obtained over the frequency-
domain method, dependent on the accuracy of the funda-
mental frequency estimates of the talkers in the tested two-
talker scenario. Note that these time-domain results are com-
pared with the frequency-domain approach with an M =
4096-point STFT. Changes in M would affect the precision
in the estimates of the frequency-domain technique.

We also note that the time-domain method is not as sen-
sitive to additive white Gaussian noise as is the frequency-
domain method for sinusoidal modeling. This result is par-
ticularly true for lower-SNR situations.
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