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1. Introduction

It is well known that the angular distribution of the radiated
power from an antenna array depends on the geometry and
the excitation of the elements [1]. In a coupled active antenna
oscillator linear array consisting of identical and parallel
elements, the pattern is expressed in the following form:

F(θ) =
N∑

k=1

(
Ṽk
)
fk(θ)e j(2π/λ)zk cos(θ),

Vk =
∣∣Ṽk

∣∣,

φk = ∠Ṽk,

(1)

where the excitation Ṽk is the complex voltage of the
oscillator output, (Vk = |Ṽk| amplitude and φk = ∠Ṽk the
respective phase), fk(θ) is the pattern, and zk is the abscissa
of the kth element, respectively. λ is the free-space wavelength
at the operating frequency.

The two key sets of parameters that are important in
the design are the boxed terms of (1). The antenna array
synthesis mainly focuses on the excitation [2–4], while efforts
aiming at extracting the positions of the array elements

are scarce [5]. In our present study, we cope either with
one of the above or with both sets simultaneously. A
perturbation method that provides iteratively the excitation
and the placement of the elements in a quest of matching the
resulting far—field with the desired one is applied. The whole
synthesis is formulated as an optimization problem over a
vector containing the excitation and the element positions.
The cost function is the mean square error between the
desired and the attained pattern.

Apart from attaining the necessary parameters of the
antenna array, it is of equal importance the problem of
feeding the array by a proper network. In the literature,
one can find several approaches to the feeding networks
[1], containing corporate feeds and feeding matrices [6].
Apart from passive networks, there are others that utilize
active circuitry. Among them, the active feeding networks
consisting of coupled oscillator arrays [7] are of specific
interest. It has been found that such devices allow for the
manipulation of the phase distribution without additional
phase-shifting circuitry, suggesting a potential for low-cost
beam-scanning systems. In the past, most of the studies
on coupled oscillator arrays analyze the problem of beam
steering [8–10] and of null control of the pattern, [11–13]. In
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Figure 1: The equivalent circuit of the oscillator in the current-sum
form.

the current work, we extend the functionality of the coupled
oscillator arrays to more general pattern synthesis problems.

It is noticed that there are cases where a uniform
excitation of a linear phased array and a nonuniform
placement is enough to solve the synthesis problem. In
this case, constraining the oscillators’ output voltage to
a common value reduces the nonlinear dynamics of the
system. Alternatively, one can keep the phases equal and seek
a design for different amplitudes. The required excitation
distribution for all the simplifying cases, and for the general
one (see the design examples), can be readily implemented
with proper tune of control parameters, such as the varactor
capacitance and the PIN conductance of the oscillators. The
relative closed-form formulas are presented for the case of
the mutually synchronized coupled oscillator array.

The paper is organized as follows. In Section 2, the
coupled oscillator array (COA) theory is reviewed, and the
key aspects related to the present study are underlined. The
system that contains both, the antenna and the oscillators,
is presented in Section 3, where closed-form formulas are
derived to design the mutually synchronized oscillator array.
The formulation and the solution of the radiation pattern
shaping optimization problem for the above active antenna
array are given in Section 4. In Section 5, design examples
that verify the effectiveness of the method follow. Finally,
some concluding remarks are given in Section 6.

2. The Coupled Oscillator Array

2.1. Single Oscillator Description. A model that has been
widely used for microwave oscillator circuits is the canonical
oscillator model in a parallel current-sum form which leads
to the Van der Pol equation for certain nonlinearities [14,
15]. The equivalent circuit of the oscillator can be extracted
from measurements [16] or from simulation [17], and is
given in Figure 1.

The oscillator is assembled by three distinct parts: the
active device, the tuning tank, and the resonator tank.
The active device provides the nonlinear voltage dependent
negative conductance. The tuning tank is responsible for the
adjustment of the tuning parameters in order to feed the
attached antenna element with the proper excitation. Last,

the resonator tank includes the parallel resonance circuit of
the oscillator and the antenna elements.

In detail, the active device is represented as a negative
conductance as follows:

GD(|V |) = −a + b|V |2, (2)

where |V | is the amplitude of the output voltage, and a, b
are constants characterizing the nonlinear device.

The voltage-dependent susceptance of the nonlinear
device is denoted by BD(|V |). Usually, the susceptance
is independent on the device characteristics and can be
neglected. In this case, which is the one that we follow, the
current of the nonlinear device obeys

iD(t) = Y ·V(t) = GD ·V(t) = (− a + b ·V 2(t)
) ·V(t).

(3)

The reactive energy of the circuit is stored into the LC
parallel circuit giving a free-running circular frequency of

ωo,k = 1√
LrCo,k

= 1√
Lr
(
Cr + Co,t

) (4)

for the kth oscillator.
In our case, the capacitance Ct would be a varactor that

is controlled by a voltage. This voltage will be the tuning
parameter which for the kth oscillator is Vt

k. The varactor
capacitance follows the well-known equation [18]:

Ct,k = 2Co,t
(
1 +Vt

k/Vo
)Γ , (5)

where Vo = 1.2 V (for a GaAs device), Co,t = 1 pF
is the capacitance for Vo tuning voltage, and Γ is the
varactor exponent (usually taken equal to unity, a choice
also followed here). Alternatively, other types of voltage
controlled capacitors [19, 20] or even voltage controlled
inductors [21] can be used instead.

The conductance Gt represents additional losses in the
oscillator circuit. This would be the second (together with
the Ct,k(Vt

k)) tuning parameter. In our case, the conductance
Gt would be a PIN diode variable resistor controlled by its
forward current Itk. The PIN conductance follows the well-
known equation [22, 23]:

Gt,k = vo
Itk
. (6)

Here, we use vo = 20 mV. Alternatively, other types of
variable resistors can be used instead [24].

To find the total conductance, one should add to Gt the
input conductance GA of the radiating element of the array.

Let us now compute the total admittance Y of the circuit:

i(t) =

⎛
⎜⎜⎝ YD︸︷︷︸
=−GD

+ YC︸︷︷︸
= j(Ct+Cr )ω

+ YL︸︷︷︸
=1/ jLrω

+ YGt + YGA

⎞
⎟⎟⎠V(t)

=⇒ Y = −(GD(|V |)−Gt −GA
)

+ j
(
Ct + Cr

)ω2 − ω2
o

ω
.

(7)
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We assume that the resonant circuit of the oscillator is of
high Q. Thus, the output voltage follows, nearly, a sinusoidal
waveform with the following phasor representation:

V(t) = V0(t) cos(ωt + φ(t))

= Re
{
V0(t)e jφ(t)e jωt

}

= Re
{
Ṽ(t) · e jωt}.

(8)

2.2. Coupled Oscillator Array Description. To complete the
analysis, we suppose (see Figure 2) that we have N oscillators
which are joined together using a linear coupling network
[25].

The governing equation reads

Yi · Ṽi +
N∑

j=1

Yij · Ṽ j = 0, (9)

where Yi is given by (7), and Ṽi is defined in (8) as the
complex output voltage of the ith oscillator. Also,

Yij = Gij + jBi j (10)

is the mutual admittance between the output nodes of the ith
and jth oscillators. Using the above, it can be shown [16–27]
for the voltage amplitude Vk of the kth oscillator that

dVk

dt
+
ωo,k

2Qk
Vk

[
1−

(− ak + bkV
2
k

)

Gt,k +GA

]

= 1
2Ck

⎛
⎝

N∑

l=1

Vl
[
Glk cos

(
φl − φk

)−Blk sin
(
φl − φk

)]
⎞
⎠ ,

(11)

where

Qk = ωo,kCk(
Gt,k +GA

) , (12)

with Ck = Ct,k + Cr .
Often the following substitution is made:

1−
(− ak + bkV

2
k

)

Gt,k +GA
≈ μk

(
a2
o,k − |Vk|2

)
,

ao,k =
√
ak +Gt,k +GA

bk
,

μk = bk
Gt,k +GA

,

(13)

where μk is a parameter that characterizes the oscillator, while
αo is the free-running amplitude of the output voltage. This
weak quadratic nonlinearity is the simplest nonlinearity that
approximates the behavior of a wide range of active devices.

Apart from the time evolution of the voltage amplitudes
given in (11) for the phase, we have

dφk
dt

= −ω + ωo,k +
1

2VkCk

×
( N∑

l=1

Vl
[
Glk sin

(
φl − φk

)
+ Blk cos

(
φl − φk

)]
)
.

(14)

Equation (11) in conjunction with (14) fully describes
the coupled oscillator array. The above should provide a
framework for the design of an antenna oscillator array.

3. Design of the Mutually Synchronized Array

In Figure 3 [28], an antenna array with the corresponding
oscillators is presented. In this mutually synchronized array,
each oscillator is bilaterally coupled to the neighboring array
elements. The configuration of Figure 3was first proposed
by Stephan [8, 15] and named as “interinjection-locked”
oscillators. Mutual coherence is achieved via the injection-
locking process. The steady-state phase relationships of each
oscillator depend on its neighbors’ amplitude and phase.
A nonlinear system of simultaneous equations must be
solved to determine the self-consistent amplitude and phase
relationships [26]. In such systems, (11) and (14) take the
form

dVk

dt
= Vk

2Ck

[
Gt,k +GA + ak − bkV 2

k

]

+
1

2Ck

N∑

l=1

[
Vlκlk · cos

(
φl − φk +Φlk

)]

dφk
dt

= −ω + ωo,k +
1

2Ck

N∑

l=1

[
Vl

Vk
κlk · sin

(
φl − φk +Φlk

)
]

,

(15)

where κlk are different from zero only when |l − k| ≤ 1 since
only the nearest neighbor coupling is assumed. There are
various sets of parameters in (15). Those are the oscillator
detuning, (ω − ωo,k), the un-normalized coupling strengths,
(κlk = |Glk + jBlk|), and the coupling phases, (Φlk = ∠(Glk +
jBlk)). There are also the capacitance and the conductance of
each one of the oscillators. Since our aim is to manipulate the
amplitude and the phase distribution of the active antenna
array, any set of parameters could be used for control. Here,
we eliminate the coupling phases and we use the conductance
of the PIN diodes and the capacitance of the varactors to
control the steady state of the amplitudes and phases.

Before we present the followed procedure, some issues
relative to the coupling network should be addressed. To
couple the oscillators, we use resistively loaded lines [29],
whose characteristic impedance Z0 and phase Φ of the
electrical length are

Zo = R, Φ = 2π. (16)

For such lines, it is

Yij =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ni
2R

, i = j,

− 1
2R

, |i− j| = 1,

0, otherwise,

(17)

where ni = 2 except for the edge elements where it is equal to
one.

Using this coupling network, closed-form expressions for
the tuning parameters can be derived. So, for Yij given in
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(17), (15), for the steady state, where the time derivatives
vanish, reads

Vk
[
Gt,k +GA + ak − bkV 2

k

]

= −1
2R

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 −V2 cos
(
φ2 − φ1

)
, k = 1,

−Vk−1 cos
(
φk−1 − φk

)
+ 2Vk

−Vk+1 cos
(
φk+1 − φk

)
, k /= k,N ,

VN −VN−1 cos
(
φN−1 − φN

)
, k = N ,

(
ω − 1√

LrCk

)
4RCk

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
(
φ2 − φ1)V2,
V1

, i = 1,

+
sin

(
φk−1 − φk

)
Vk−1

Vk

− sin
(
φk+1 − φk

)
Vk+1,

Vk
, k /= k,N ,

− sin
(
φN−1 − φN

)
VN−1

VN
, i = N.

(18)

Using

Sk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− cos
(
φ2 − φ1

)
(
V2

V1

)
, k = 1,

− cos
(
φk−1 − φk

)
(
Vk−1

Vk

)
+ 2

− cos
(
φk+1 − φk

)
(
Vk+1

Vk

)
, k /= 1,N ,

1− cos
(
φN−1 − φN

)
(
VN−1

VN

)
, k = N ,

Uk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
(
φ2 − φ1

)
(
V2

V1

)
, i = 1,

+ sin
(
φk−1 − φk

)
(
Vk−1

Vk

)

− sin
(
φk+1 − φk

)
(
Vk+1

Vk

)
, k /= k,N ,

− sin
(
φN−1 − φN

)
(
VN−1

VN

)
, i = N ,

(19)

the solution for the tuning parameters, Ct,k(Vt
k) and Gt,k(Itk),

in terms of Vk, φk is

Ck = Co,k

⎛
⎜⎝

1
2

⎡
⎢⎣1±

√√√√1 +
Uk

R

√
Lr
Co,k

⎤
⎥⎦

⎞
⎟⎠

2

,

Ct,k = Ck − Cr,

N-port
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Figure 2: The coupled oscillator array.

Vt
k = Vo

⎡
⎣
(

Co,k(
Ck − Cr

)
)1/Γ

− 1

⎤
⎦ ,

Gt,k = −Sk
2R

− ak + bkV
2
k −GA,

Itk =
vo
Gt,k

.

(20)

Before closing the section, the design procedure and
check of the stability of the solution for the coupled oscillator
array are listed. So, to design the mutually synchronized
oscillator array in order to produce a given output voltage
distribution (amplitudes and phases), the following steps are
implemented.

(i) The given output amplitudes and phases, Vk, φk,
are inserted into (19) to produce the intermediate
parameters Sk and Uk.

(ii) In turn, Sk and Uk are inserted into (3). This results
in computing the tuning parameters Ct,k(Vt

k) and
Gt,k(Itk).

(iii) Inserting Gt,k and Ct,k into the differential equations
(15) provides the evolution of the amplitudes and
phases with time.

The key step of computing the properVk, φk is addressed
next.

4. The Synthesis Method

The system of Figure 3 with the restriction of nonvarying
interelement distance, (Δz = zk − zk−1 = const), has been
used to control linear phased arrays in the limited cases of
beam steering and pattern null in certain directions [8–13].
In the current study, we attempt a more general (not limited
in certain cases) pattern synthesis. The system is designed by
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Figure 3: Bilateral injection-locking or mutual synchronization coupled oscillator’s array.

providing the proper values for the positions of the radiators
and for the voltage outputs of the oscillators. It is obvious
that the proposed design offers specific advantages due to the
degrees of freedom that make use.

To start the design of the array, we derive the cost
function C of the following form:

C = ∥∥Fd − F∥∥2
, (21)

where

∥∥Fd − F∥∥2 =
∫ π

0

∣∣Fd(θ)− F(θ)
∣∣2

sin(θ)dθ. (22)

We define

A ◦ B =
∫ π

θ=0
A(θ) · B∗(θ) · sin(θ)dθ. (23)

From (23), (22) becomes

∥∥Fd − F∥∥2 = (Fd − F) ◦ (Fd − F), (24)

where Fd(θ) is the desired pattern, F(θ) is the resulting

pattern, and ‖Fd − F‖2
is the mean square error. By taking

into account the output voltage of the coupled oscillators, the
resulting pattern can be expressed as

F(θ) =
N∑

k=1

[
Vke

jφk
]

︸ ︷︷ ︸
Fk, (25)

where Fk = fk(θ)e j(2π/λ)zk cos(θ).
We suppose a perturbation of the excitation of the

oscillator outputs and of the position of the elements of the
array. Due to the perturbation of the excitation, the new
output of the kth oscillator becomesVk+ΔVk; φk+Δφk. Also

the new position of the kth element is zk + Δzk. The pattern
of the array results in

F(θ) = F0(θ) + δF(θ)

≈
N∑

k=1

FkVke
jφk +

N∑

k=1

Fke
jφk · ΔVk

+ j
N∑

k=1

FkVke
jφk · Δφk +

N∑

k=1

∂Fk
∂zk

·Vke
jφk · Δzk,

(26)

where F0(θ) is the initial pattern of the array.
It is shown in the Appendix that after assembling the

perturbed values of the output voltage, (ΔVk,Δφk), of
the oscillators and the position, (Δzk), of the elements in
an unknown vector [Δ], the solution of the optimization
problem leads to

[Δ] = [B]−1[A], (27)

where [A] and [B] are proper matrices that include infor-
mation relative to the specific problem. Expression (27)
gives the appropriate perturbed values of the output voltage
of the oscillators and the position of the elements. It is
supposed that the desired pattern is not much different
than the resulting one. In this case, the perturbation will
produce the necessary changes in the excitation and the

position of the elements. If ‖Fd − F‖2
is large, then the

perturbation technique is applied iteratively until the mean
square error becomes less than a given threshold. For further
details on the functionality and the problems relative to the
convergence of the proposed iterative method, the reader is
referred to [5].

5. Design Examples

In the design examples that follow, the array can be derived
by varying the excitation (amplitude and phase) simulta-
neously with the element positions. The desired far-field
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Table 1: Van der Pol parameters of the employed oscillators.

Osc. # I (∼1 GHz) II (∼4.4 GHz) III (∼10 GHz)

Reference [18] [26] [15]

a 20.9657 0.0232 0.0036

b 34.8669 0.0382 0.01

Lr 0.214 pH 0.24 nH 10 pH

Cr 105 nF 5.45 pF 23 pF

RA = 1/GA 50Ω 58Ω 32Ω

0 20 40 60 80 100 120 140 160 180

Angle (degrees)

−30

−25

−20

−15

−10

−5

0

A
F

(d
B

)

Figure 4: The attained pattern for the general design case.

pattern is a Chebyshev one with HPBW = 15 degrees and SLL
=−25 dB. We start from an array of 9 elements with uniform
initial excitation and 0.45 λ interelement distance. We apply
the synthesis method for three different cases. In case A, the
excitations and the positions are to be derived. In case B, the
phase of the excitations is set equal to zero, and in case C, the
amplitude of the excitation is equal to unit.

For each one of the cases A, B, C, three different
oscillators are employed to produce the respective far-field.
The Van der Pol parameters of those oscillators are taken
from published data (see Table 1).

The parameters of the coupling network are the same for
all the examples as follows:

Zo = R = 270Ω. (28)

5.1. General Design Example. In this first example, both the
element placement and the excitation are allowed to vary.
After 20 iterations, the designed antenna array produces a
pattern that is given in Figure 4.

The respective element placement and the excitations are
given in Table 2.

The tuning parameters, Vt
k and Itk, of the oscillators are

computed after inserting the last two columns of Table 2
into (19)-(3). For the present case, the relative results are
presented in Table 3.

Table 2: Details on the general design case.

Element
number

Element
position
(λ): zk

Relative
excitation
amplitude:
Vk

Excitation
phase
(degrees):
φk

1 −1.78 0.534 0.034

2 −1.17 0.842 −0.806

3 −0.73 0.628 −0.515

4 −0.36 1 0.516

5 0 0.624 0.724

6 0.36 1 0.516

7 0.73 0.628 −0.515

8 1.17 0.842 −0.806

9 1.78 0.534 0.034

The evolutions of Vk(t) and φk(t) versus t are produced
after inserting into (15):

(1) the parameters of Table 1 and (28),

(2) the tuning parameter values, Ct,k(Vt
k) and Gt,k(Itk),

and

(3) the initial, at t = 0, amplitudes and phases:

Vk(t = 0) = random number uniformly distributed
into 10−2 + (0, 1) · 10−3 V,

φk(t = 0) = random number uniformly distributed
into (0, 2π) · 10−3.

In Figure 5, it is demonstrated that the designed coupled
oscillator array can produce the necessary solution (see
Table 2 and Figure 4) and furthermore, this solution is
stable. In Figure 5(a), the voltage amplitudes of the nine
oscillators versus time are given. Also, in Figure 5(b), the
time evolution of the successive phase differences (output
voltage phase of the kth oscillator minus the output oscillator
phase of the (k − 1)th oscillator) are given. It is clear that
the amplitudes and phases converge to the correct values
(continuous horizontal lines).

5.2. Placement and Amplitude Design Example-Constant
Phases. From Table 2, it is shown that the phase of the
elements is close to zero. Also, the final array is nonuniform
in the excitation and the geometry. Namely, our solution
is more complicated than the classical one for Chebyshev
patterns [1, 2]. Since we try to have a technically simple
feeding network, we will solve the same problem with no
phase difference between the elements and with only three
different excitations. In Table 4, the final placement and the
excitation of the elements, after 20 iterations, are given.

Also in Figure 6, the pattern of the array is presented.
In the pattern, a difference of less than 0.5 dB between the
desired and the resulting one is observed.

Comparing Table 2 with Table 4, one can see that the
second solution gives simpler results.

For the present case, the tuning parameters are given in
Table 5.
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Table 3: The tuning parameters for the general design case.

Element number
OSC. I (1.06 GHz) OSC. II (4.21 GHz) OSC. III (10.38 GHz)

Vt
k (mV) Itk (mA) Vt

k (mV) Itk (mA) Vt
k (mV) Itk (mA)

1, 9 1231.20 314 1207.79 0.440 1203.15 0.200

2, 8 1182.68 1402 1195.61 2.216 1198.22 1.455

3, 7 1171.23 593 1192.68 0.920 1197.03 0.547

4, 6 1212.10 2148 1203.04 3.460 1201.23 2.342

5 1215.63 581 1203.92 0.910 1201.59 0.542
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×10−8Time (s)
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Figure 5: The coupled oscillator array response evolution with time
for the general design case. (a) The evolution of the amplitudes. (b)
The evolution of the phases.

In Figure 7, the time evolution curves for the amplitudes
show the stability of the solution.

Note that comparing Figure 7 with Figure 5(a), different
converging times are observed. In general, this fact is to
be expected since the converging times, apart from the
initial conditions Vk(t = 0), φk(t = 0), depend on the

Table 4: Details on the constant phase design case.

Element
number

Element
position
(λ): zk

Relative
excitation
amplitude:
Vk

Excitation
phase
(degrees):
φk

1 −1.779 0.4 0

2 −1.386 0.4 0

3 −0.961 0.8 0

4 −0.464 1 0

5 0 1 0

6 0.464 1 0

7 0.961 0.8 0

8 1.386 0.4 0

9 1.779 0.4 0
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Figure 6: The attained pattern for the constant phase design case.

tuning parameter values that are different for the two design
examples.

5.3. Placement and Phase Design Example-Constant Ampli-
tudes. In this last case, we provide a design where the
amplitudes are equal. The attained solution is given in
Table 6.

The produced far-field pattern is given in Figure 8.
It is noted that in this case, the SLL criterion of −25 dB

is not fulfilled, (SLL = −21.5 dB). The above shows that the
phases of the elements are not enough to solve the problem.
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Table 5: The tuning parameters for the constant phase design case.

Element number
OSC. I (1.06 GHz) OSC. II (4.21 GHz) OSC. III (10.38 GHz)

Vt
k (mV) Itk (mA) Vt

k (mV) Itk (mA) Vt
k (mV) Itk (mA)

1, 9 1200 314.1 1200 0.445 1200 0.203

2, 8 1200 313.4 1200 0.483 1200 0.240

3, 7 1200 2515 1200 4.196 1200 2.892

4, 6 1200 4166 1200 7.019 1200 4.918

5 1200 4166 1200 7.028 1200 4.924
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Figure 7: The coupled oscillator array response evolution with time
for the constant phase design case. The evolution of the amplitudes.
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Figure 8: The attained pattern for the constant amplitude design
case.

For the present case, the tuning parameters are given in
Table 7.

For the resulting pattern, the respective evolution curves
are given in Figure 9.

Table 6: Details on the constant amplitude design case.

Element
number

Element
position
(λ): zk

Relative
excitation
amplitude:
Vk

Excitation
phase
(degrees):
φk

1 −1.59 1 −0.043

2 −0.98 1 −4.121

3 −0.70 1 +4.909

4 −0.26 1 −6.975

5 0 1 −5.936

6 0.26 1 −6.975

7 0.70 1 +4.909

8 0.98 1 −4.121

9 1.59 1 −0.043
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Figure 9: The coupled oscillator array response evolution with time
for the constant amplitude design case. The evolution of the phases.

It is obvious that in the array synthesis, one must tradeoff
the simplicity of networks, the size of the array, and the
number and type of the different excitations. From the
presented cases, it is assessed that the general one is rather
complex, while the constant amplitude case fails to comply
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Table 7: The tuning parameters for the constant amplitude design case.

Element number
OSC. I (1.06 GHz) OSC. II (4.21 GHz) OSC. III (10.38 GHz)

Vt
k (mV) Itk (mA) Vt

k (mV) Itk (mA) Vt
k (mV) Itk (mA)

1, 9 1298.56 314.0 1224.13 0.401 1209.73 0.203

2, 8 930.27 314.0 1125.81 0.401 1169.32 0.203

3, 7 1805.51 314.0 1328.56 0.400 1250.49 0.202

4, 6 934.48 314.0 1127.07 0.400 1169.85 0.203

5 1249.32 314.0 1212.25 0.401 1204.95 0.203

0 10 20 30 40 50 60 70 80 90

Angle (degrees)

−30

−27.5

−25

−22.5

−20

−17.5

−15

−12.5

−10

−7.5

−5

−2.5

0

A
F

(d
B

)

Figure 10: The attained amplitude sensitivity pattern for the
general design case.

with the desired pattern. It seems that the constant phase
case presents a better compromise between complexity and
performance of the device under study.

Before closing the section, to evaluate the validity of
the presented method and the viability of the listed results,
some comments are in order. Both phase and amplitude
control should be implemented with a relatively easy way.
Varactor and PIN diodes are simple electronic elements
that should be used. That is because varactor diodes are
extensively used as tuning elements in conventional VCOs,
and also PIN diodes are employed as variable resistors for
vector modulator circuits. The issue that raises concern is
the imprecise setting of the values of the tuning parameters
and the effect that manufacturing tolerances will have on
the overall performance of the system. Fabrication and
tuning inconsistencies among individual oscillators in an
array lead to differences in the free-running frequencies and
amplitudes. This randomness causes phase and amplitude
errors that are expected to result in pattern deformation
manifested in beam-pointing and SLL errors [1, 30].

To provide understanding of the relationships among
random tuning error distribution and pattern deformation,
a statistical study, focused on the sensitivity analysis, is
provided through Monte Carlo simulation. The element
placement, the tuning voltage, and the tuning current are
treated as random vectors following normal probability
distribution with means given by the previous analysis

and varying values of variance. In each statistical experi-
ment, after choosing the placement and tuning parameters,
Ct,k(Vt

k) and Gt,k(Itk) are used to extract the time evolution of
Vk(t) and φk(t). At the steady state, the far field of the array
is computed. The results show that when only Itk is varied
and if two or three dBs degradation on SLL performance
are acceptable, then the variance should be no more than
10% of the parameters nominal value. This is shown in
Figure 10 when all the patterns resulted from a 100-run
relative Monte Carlo experiment are depicted. Nearly, for
one and two orders of magnitude, less variation is needed
for attaining the same results when position and phase are
varied, respectively. This means that position and amplitudes
setting problems are expected to be less harsh compared to
the problems that have already encountered in setting the
phase [31], in conventional VCOs. If the previously-stated
performance degradation is unacceptable, properly chosen
calibration procedure should be considered [32, 33].

6. Conclusion

A design procedure for the synthesis of active antenna arrays
is presented. Those arrays are sets of radiator oscillator
couples with each element connecting through a coupling
network to the others. Such a system presents the designer
with two sets of parameters: the radiators’ positions and the
oscillators’ outputs, the second used to excite the first.

The procedure designs simultaneously both the antenna
and the attached coupled oscillator array providing viable
solutions. In this way, the current work demonstrates
how to control the dynamics of coupled oscillator arrays
in order to achieve pattern shaping. Whereas previous
work has been almost exclusively devoted to beam steering
and null formation, this technique extends the versatil-
ity of coupled oscillator arrays through manipulation of
the aperture amplitude and phase distribution. Further-
more, simultaneously an amplitude space taper distribu-
tion, (Δz /= 0), is attained to produce the desired far-field
pattern.

The implementability of our method is based first on the
actually monitoring of the time evolution of the oscillators’
outputs (27). Afterward, the existence of the proper varactors
and PINs by using (3) is addressed. It is obvious that the
limited range of their values should set some constraints on
the resultant pattern. So, in some cases, a proper iterative
combination between the capacitance and conductance and
the desired pattern is important.
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For all design cases, and independently on the complexity
of the specific problem, the required excitation distribution
can be readily implemented with proper tune of control
parameters, such as the varactor capacitance and the PIN
conductance of the oscillators. The relative closed-form for-
mulas are presented for the case of the mutually synchronized
coupled oscillator array.

Appendix

Following (25) and (26), the matrix form the initial pattern
and its first variation can be written as

F0(θ)

= [F]T
[
Ṽ
] = [Ṽ]T[F],

δF(θ)

= diag

([
Ṽ
]

[V]

)
[F]T[ΔV]

+ j diag
([
Ṽ
])

[F]T[Δφ] + diag
([
Ṽ
])[ •

F
]T

[Δz]

=
[

diag

([
Ṽ
]

[V]

)
[F]T j diag

([
Ṽ
])

[F]T diag
([
Ṽ
])[ •

F
]T
]

×
⎡
⎢⎣

[ΔV]
[Δφ]
[Δz]

⎤
⎥⎦ ,

(A.1)

where

[F] = [F1 · · · Fk · · · FN
]T

,
[
Ṽ
] = [V1e jφ1 · · · Vke jφk · · · VNejφN

]T
,

[1] = [1 · · · 1 · · · 1
]T

,

[ΔV] = [ΔV1 · · · ΔVk · · · ΔVN
]T

,

[Δφ] = [Δφ1 · · · Δφk · · · ΔφN
]T

,

[Δz] = [Δz1 · · · Δzk · · · ΔzN
]T

,

(A.2)

where [·]T stands for the transpose operation. Following
(A.1) and (A.2), the new pattern is written as

F(θ) = F0(θ) + δF(θ)

= diag
([
Ṽ
])

[F]T[1] + diag

([
Ṽ
]

[V]

)
[F]T[ΔV]

+ j diag
([
Ṽ
])

[F]T[Δφ] + diag
([
Ṽ
])[ •

F
]T

[Δz].
(A.3)

Inserting (A.3) into (24), after defining a vector Δ as

[Δ]T = [[ΔV]T [Δφ]T [Δz]T
]
, (A.4)

we have
∥∥Fd − F∥∥2 = ∥∥Fd − F0

∥∥2 − [Δ]T[A]− [A]T[Δ]

+ [Δ]T[B][Δ].
(A.5)

In (A.5), it is

A =

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

diag

([
Ṽ
]

[V]

)
[F]

j diag
([
Ṽ
])

[F]

diag
([
Ṽ
])

[
•
F]

⎤
⎥⎥⎥⎥⎦
◦ (Fd − F0

)

⎞
⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

diag

([
Ṽ
]

[V]

)
[F]

j diag
([
Ṽ
])

[F]

diag
([
Ṽ
])

[
•
F]

⎤
⎥⎥⎥⎥⎥⎥⎦
◦

⎡
⎢⎢⎢⎢⎢⎢⎣

diag

([
Ṽ
]

[V]

)
[F]

j diag
([
Ṽ
])

[F]

diag
([
Ṽ
])

[
•
F]

⎤
⎥⎥⎥⎥⎥⎥⎦

T⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.6)

By zeroing the first variation of ‖Fd − F‖2
with respect the

[Δ]T , we have

δ
∥∥Fd − F∥∥2

δ[Δ]T
= −[A] + [B][Δ] = 0. (A.7)

The above gives the vector [Δ]:

[Δ] = [B]−1[A]. (A.8)
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