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Abstract. Neuroevolution has come a long way over the last decade.
Lots of interesting and successful new methods and algorithms have
been presented, with great improvements that make the field become
very promising. Concretely, HyperNEAT has shown a great potential
for evolving large scale neural networks, by discovering geometric reg-
ularities, thus being suitable for evolving complex controllers. However,
once training phase has finished, evolved neural networks stay fixed and
learning/adaptation does not happen anymore. A few methods have been
proposed to address this concern, mainly using Hebbian plasticity and/or
Compositional Pattern Producing Networks (CPPNs) like in Adaptive
HyperNEAT. This methods have been tested in simple environments to
isolate the effectiveness of adaptation from the Neuroevolution. In spite
of this being quite convenient, more research is needed to better un-
derstand online adaptation in more complex environments. This paper
shows a new proposal for online weight adaptation in neuroevolved ar-
tificial neural networks, and presents the results of several experiments
carried out in a race simulation environment.
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1 Introduction

Artificial Intelligence is always seeking to mimic human brain processes in one
way or another. The more powerful and developed computers and algorithms
are, the more we appreciate the intrinsic complexity and inherent generality
of the human brain and its learning capabilities. Attempting to replicate the
unique capabilities of the brains into software algorithms, the field of Artificial
Neural Networks (ANNs) [13] came into live. The initial euphoria about what
ANNs would be able to do soon vanished as the intrinsic complexities of neurons
came along. Training ANNs is a difficult task, but even more difficult is finding
effective and efficient topologies.

Neuroevolution [12][7] (i.e. the use of evolutive algorithms to search for ANNs
topologies and weights) is one of the best known ways to generate and train
complex, recurrent ANNs. One of the most prominent Neuroevolutive (NE) algo-
rithms of the past decade was Neuroevolution of Augmenting Topologies (NEAT)
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[9][7][10]which proposed a way of minimizing the problem of Competing Con-
ventions and the use of complexification to traverse the search space looking for
effective and efficient ANNs topologies. Yet, it remained very difficult to find
and train large scale topologies of ANNs, which are believed to be necessary
for complex tasks. Then Compositional Pattern Producing Networks (CPPNs)
and Hyper-cube Based NEAT (HyperNEAT) [8][1][5] discovered a way to use
NEAT as a form of indirect encoding for producing large scale ANNs with topo-
logical regularities (as in the human brain). Then on, HyperNEAT has shown
great ability to produce large scale Neural Networks able to perform efficiently
in complex domains where an intelligent controller is required.

However, as ANNs increase in complexity and capabilities, an important
subject remains unsolved. Neuroevolution algorithms have shown as a great way
to discover topologies and weight sets that exhibit complex behaviours but,
once the training phase is over, the produced ANNs stay fixed from then on.
This greatly limits the use of resulting ANNs to static domains or domains
where variance is not a problem. In contrast, our brains show what is called
Neural Plasticity, which enables them to learn and adapt constantly to changing
situations. This means that further research on online learning and adaptation
for ANNs is required, to let us develop systems able to perform well on changing
domains. In this sense, adaptive Evolving-Substrate HyperNEAT (Adaptive ES-
HyperNEAT) [6][5] has done a first step by adding Hebbian ABC Plasticity [3]
as patterns of local rules to ANNs, and also using CPPNs to continuously adapt
weights over time. Nevertheless, there is no theoretical or empirical evidence
about the performance of these approaches in complex environments.

Our contribution in this paper is focused on two points: presenting a new
proposal for online adaptation of previously evolved ANNs, and giving some
empirical evidence on how these approaches perform in a complex environment.
In section 2, a succinct background on previous developments that conform the
base for our contribution is presented. Section 3 describes our proposal for online
adaptation and its motivation. Experimental results are shown in section 4,
along with a description of the simulation environment used. Finally, section 5
summarizes our conclusions and further work.

2 Background

Our contribution represents one more step in the way that has been followed by
lots of researches previous to us. Next we describe some previous work on which
our contribution is based.

2.1 Neuroevolution of Augmenting Topologies (NEAT)

NEAT is a direct-encoding neuroevolution algorithm with speciation that evolves
populations of ANNs starting from the most simple possible topologies and in-
creasingly complexifying them. This way of traversing the search space is aimed



at getting the simplest possible ANNs that solve a given task (i.e. the topolo-
gies with least possible hidden neurons). It does so by adding new neurons and
links by means of mutation and protecting innovations through speciation (i.e.
different species have their own evolutive niche, not competing with each other).
The key concept that makes NEAT a powerful algorithm is innovations tracking.
The algorithm maintains a registry of all the innovations that have happened
across all the populations of the different epochs. Each new link or neuron that
appears in a new position is given a registration Id. and, from then on, each
individual that gets a neuron in the same position is referred with the same
Id. This mechanism effectively tracks innovations and permits the creation of
an effective crossover operator that overcomes part of the consequences of the
Competing Conventions problem.

Although NEAT represented a great breakthrough, it suffered from the same
problem that all direct-encoding algorithms suffer: they are inherently not scal-
able and not modular. For instance, closely observing the human brain, there
are lots of regularities and patterns that repeat everywhere. If a direct encod-
ing was to discover that topology, it should repeatedly discover each one of the
regularities again and again. Direct Encoding has no mechanism for replicating
structures or patterns of structures across the phenotype, because it is a direct
low-level map between genes and neurons/links.

2.2 Compositional Pattern Producing Networks (CPPN)

Compositional Pattern Producing Networks (CPPNs) [11] were created as an
indirect encoding scheme to overcome the impossibility of modularization and
pattern repetition that NEAT had due to its direct encoding. CPPNs are a
kind of networks similar to ANNs, but with an important difference: each node,
instead of being a neuron, represents a mathematical function (e.g. sine, cosine,
gaussian...). Therefore, a CPPN is a composition of functions that can produce
outputs full of symmetries, patterns and regularities.

Describing this composition of functions as a network instead of a formal
math composition, the model can profit from existing neuroevolutive algorithms
to produce CPPNs. In particular, a modification of NEAT, called CPPN-NEAT
can evolve increasingly complex CPPNs that are suitable for indirectly encoding
links and weights of ANNs.

2.3 Hypercube-based NeuroEvolution of Augmenting Topologies

HyperNEAT[1] takes NEAT and CPPNs as indirect encoding scheme and pro-
duces large scale ANNs with regularities, patterns and symmetries. HyperNEAT
takes a population of CPPNs as genotypes of the final large-scale ANNs, and
uses CPPN-NEAT to evolve these genotypes. For a CPPN to produce an ANN,
a geometric substrate is required. A substrate is a collection of nodes (i.e. neu-
rons) placed in a N-dimensional space, thus having a vector of coordinates
xi = (xi
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i
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i
n) for each node i. Typically, in a 2D-space neurons would

be scattered in [−1, 1] × [−1, 1]. Once a substrate is defined, the next step is



to add links and weights between neurons. This is done iteratively querying the
CPPN with the coordinates of each possible pair of neurons (xi,xj)∀i, j, where
the output value from the CPPN represents the weight of the link from xi to xj.

Taking into account that links and their weights are produced as a function of
the relative location of neurons in space, it follows that the resulting topology of
the ANN is related to the actual geometry of the substrate. This is an interesting
characteristic of HyperNEAT, because it can produce ANNs with the ability
of understanding geometry relations in their inputs. For instance, if we think
of a chess controller with 64 inputs (one for each square of the board), the
CPPNs will produce ANNs with intrinsic knowledge of the board structure.
This characteristic is not present in traditional ANNs, which have to discover
this information by themselves during training phase.

2.4 Adaptive, Evolvable-Substrate HyperNEAT

The two most recent improvements on HyperNEAT address two important is-
sues. On the one hand, HyperNEAT requires the user to design an a priori
substrate. While this could be very interesting in some problem domains, it nor-
mally is a matter of concern. Most of the time there are no clues on how to design
the substrate, how many neurons to use, how to distribute them, etc. For this
issue, Evolvable Substrate HyperNEAT (ES-HyperNEAT) [5][6] has developed
a way to automatically configure a suitable substrate. The main idea behind is
to measure variance in the function that the CPPN encodes: spatial areas of
high variance in the function are considered to encode more information and,
therefore, to require more density of nodes. On the other hand, HyperNEAT pro-
duces trained ANNs that, like almost any other neuroevolution algorithm, do not
learn and/or adapt outside the evolution phase. Therefore, produced ANNs have
a sort of fixed, hardcoded behaviour that will not change even if it is required. In
order to address this issue, weight adaptation has been added to HyperNEAT,
encoded as a pattern of local rules that modulate each weight. Concretely, three
alternatives have been explored in [4]: Hebbian plasticity, Hebbian ABC plastic-
ity and a modification of CPPN to make them able to update weights at each
iteration. These three approaches were tested in a T-Maze where there were two
rewards that switched position sometimes. Two different experiments were set
up: in the first one, there was one big reward and a small one that sometimes
switched positions. In the second one, rewards were relative to a color graduation
scheme, which was designed explicitly to be non linearly-separable. Simulated
agents were required to traverse the T-Maze and find the best reward repeatedly,
thus requiring online adaptation to the different reward schemes and changes.
They found that standard Hebbian Plasticity was not able to adapt, whereas
there was a trade-off between the other two alternatives, considering bests re-
sults for the modification of CPPNs but with higher computational costs, as
CPPNs needed to be queried every time-step for each weight.



3 Proposed method for online weight adaptation

The approaches for ANNs online weight adaptation proposed by [4] are quite
interesting and open up a new field for discussion. Results shown up to date
encouraged us to further test with these approaches but in a more complex
scenario, where online adaptation and learning is required. For our experiments
we used a modification of The Open Racing Car Simulator (TORCS) game, as
in the annual car racing competition [2]. The experimental setup and results are
discussed in section 4.

The results in [4] have shown that the most promising approach seams to
be the modification of CPPNs to accept pre and post synaptic activation in-
formation in order to output a new weight at each time-step. Thinking of this
approach, it seams a reasonable hypothesis that good weight adaptation comes
from non-linear functions (and, most probably, from continuous and derivable
ones). However, thinking of the human brain, it is also reasonable to think that
delays between activations, frequency and strength seam to be the most impor-
tant factors in the modulation of neural connections. Therefore, adding up all
these ideas, we hypothesized and constructed a new prospective model for weight
adaptation. Our model considers that the updated weight of a link connecting
neuron i to neuron j depends on the activations of i and j on the n previous
time-steps. From these n previous time-steps we will consider the post-synaptic
activity O of i and j (namely Oi and Oj) and the pre-synaptic activity I of
j (Ij). The updated weight is the result of a relation between all these values
at the n-th step (the latest one) and the mean of their previous values, pre-
processed by three modulation functions ψm,m ∈ {1, 2, 3} and post-processed
by the update-strength function ζ. This relation is expressed in equation 1.

wij = ζn(
(n− 1)ψ1(Oi

n)ψ2(Ijn)ψ3(Oj
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j
k)
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This equation is the same for each link, with the exception of the param-
eter n, the modulation functions ψm and the update-strength function ζ. All
this functions will be created by the CPPN as a weighted average of a pre-
defined subset of the functions that the CPPN uses as internal nodes Ω =
{Fi}, at the time the phenotype is created. For this approach to work properly,
CPPNs have been modified to include 4M new outputs, being M = |Ω|. Each
Mk = {mk1,mk2, ...mkM} set of parameters is used as coefficients to construct
a weighted function, as in equation 2.

ψk(x) =

∑M
q=1mkqFq(x)∑M

q=1mkq

(2)

4 Experimentation and results

One of our main aims in this work was to do empirical tests in complex environ-
ments in order to give more evidence on the previously existing methods, and



have initial measures and evidence to give us a hint on what to expect from our
hypothesis (i.e. whether it has a probability of being good or it is plainly wrong).
As we stated before, we have used a modification on the TORCS racing game as
environment (see figure 1). We have set up a population of 200 individuals and
have trained them to be able to drive alone in the circuit ”CG Speedway number
1”, which comes with the original game package. Drivers are evolved to drive
alone until they drive fine enough to finish the track, and then no more evolution
is carried and they enter the adaptive test phase. In this second phase, drivers
are asked to drive the same circuit but with lots of opponents and starting from
the last position. The problem requires the drivers to be able to adapt not to
crash against opponents, just by using the local weight adaptation rules.

Fig. 1. A screenshot during a test of a previously trained driver. The driver receives
180.000 inputs (600× 300) one from each pixel from the viewport in front.

Standard HyperNEAT was the algorithm chosen to evolve the ANNs, and
a virtual first person camera, with a resolution of 600 × 300 pixels and 32 bits
of color per pixel, was used as main input. The ANNs also had as input a
status vector with this information: amount of damage done, current gear, cur-
rent RPM, speed in x and y axis, and the 4 wheel rotation speeds. ANNs were
required to output the values of acceleration, brake, gear up/down, and steer
left/right. Therefore, the substrate was configured with 180.009 input neurons
and 4 outputs. Based on experimental research, we set up 540.000 hidden nodes
with recurrent connections enabled for CPPNs, and sine, gaussian, sigmoid, ab-
solute value and linear as available activation functions. Neuron output range
was set to [−1, 1] and a CPPN output value less than 0.2 was considered 0 (no
link). The functions contained in the Ω set where sine, gaussian and sigmoid.
The compatibility threshold was set to 5.5, and the compatibility modifier to
0.3. Survival threshold within species was set to 20%, whereas drop-off age was
set to 18 and target number of species to 7. There was a 4% chance of adding
either a node or a link, and links had 50% chance of mutation.

After approximately 2500 epochs of evolution, drivers were able to satisfac-
tory drive their cars to the finish line (just 1 lap) when asking them to drive



alone. From then on, evolution was finished and drivers were put in the same
track, but together with 37 other drivers (standard fuzzy logic drivers coming
with the TORCS package). Each driver was repeatedly tested 1500 times with
each online adaptation method and population averages were taken (see figure
2). Final results depicted in figure 2 show that our proposal has a decent level

Fig. 2. Comparison of average results over 1500 runs of the track against 37 opponents.
100 points mark means that the driver arrived to the finish line in 70 seconds, more
than 100 points means the driver arrived earlier.

of adaptation, whereas CPPN shows the greatest performance. Interestingly,
Hebbian approaches show some kind of linear improvements, what seems quite
unnatural. We tested both Hebbian approaches with more than 1500 repetitions
of the track, (actually, up to 3500 repetitions) and both of them reached a top in
the intervals [47.54, 56.5] for standard Hebbian and [69.9, 75.6] for ABC Hebbian.

Despite the fact that CPPN clearly outperforms our approach in learning
results, our approach has the advantage of being much more efficient computa-
tionally. For each single decision, CPPN has to query the entire network, whereas
our method only has to do a simplified math calculation. Measured in CPU cycles
of a Intel Core i7 920, CPPN takes a mean of 2.22Mpf (Million cycles per frame),
whereas our approach takes only 1.25Mpf, which represents a 44% improvement.

5 Conclusions and Futher Work

In this paper we have considered Neuroevolution and HyperNEAT algorithms for
Machine Learning and, in concrete, we have focused on the addition of different
kinds of local adaptation rules (sometimes called neuro-plasticity) to enable the
evolved individuals to continue learning online after training.

We also have presented a new proposal for online learning based on a combi-
nation of continuous and derivable functions to update weights each time-step.
Our approach shows interesting results, as it shows some nice level of adapta-
tion. Despite not achieving the same level of performance than CPPN-based
approach, our approach is less computationally expensive, as it does not require
to query the CPPN for each link at each time-step.



The first most interesting question to continue this research would be why
our approach seams to reach a top so fast. It is our belief that more work on
this approach could offer more interesting results, as there is still much room
for new approaches on online learning through weight updating or even cre-
ation/destruction of neurons and links.
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