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Abstract 
 
We present a method, based on kinetic Monte Carlo (kMC), to determine the chemical potential, Helmholtz free 
energy and entropy of a fluid within the course of a simulation.  The procedure requires no recourse to auxiliary 
methods to determine the chemical potential, such as the implementation of a Widom scheme in Metropolis Monte 
Carlo simulations, as it is determined within the course of the simulation.  The equation for chemical potential is 
proved, for the first time in the literature, to have a direct connection with the inverse Widom potential theory in 
using the real molecules, rather than the ghost molecules.  We illustrate this new procedure by several examples, 
including: fluid argon and adsorption of argon as a non-uniform fluid on a graphite surface and in slit pores.   
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1. Introduction 
The Monte Carlo method, based on the Metropolis algorithm (M-MC) for importance sampling, 

has been widely applied to solve numerous equilibrium problems in physical chemistry and 

chemical engineering [1].  Recently we introduced a scheme based on kinetic Monte Carlo (kMC) 

as an alternative to M-MC, and have successfully applied it to describe vapour-liquid equilibria of 

fluids and adsorption on surfaces and in the confined spaces of pores [2-5].  The 2D-gas-solid, 

2D-gas-liquid and order-disorder transitions of argon adsorption on a surface have also been 

successfully studied using this method [3].  Knowledge of thermodynamic variables such as 

chemical potential, entropy, Helmholtz and Gibbs free energy is essential to a complete 

understanding of the equilibrium state of a system.  In M-MC in the canonical (NVT) or 

isothermal-isobaric (NPT) ensembles, the chemical potential is usually determined by the Widom 

method based on the potential distribution theory [6, 7].  The determination of the Helmholtz 

energy and entropy in M-MC however, has been a challenge in molecular simulation [1], and 

numerous methods have been proposed [8-11].  However, these are either theoretically complex 

or complicated to implement; readers are referred to Frenkel and Smit [1] for a review of this 

topic. 

 

In this paper, we develop a simple but effective kMC method to calculate the chemical potential, 

the Helmholtz free energy and the entropy during the course of a simulation without the need for 

any additional procedures.  We illustrate our scheme with simulations of fluid argon and argon 

adsorbed on a graphite surface and in slit pores.  Other complex fluids and mixtures can be 

handled in the same way, and will be the subject of future investigations. 

2. Theory 

2.1 Kinetic Monte Carlo 

 Details of our kMC method have been given in previous publications [2-4], where we have 

presented an equation for the chemical potential.  Before discussing the appropriate equations for 

the thermodynamic properties, we briefly review the kMC technique presented in earlier work.  

2.1.1Molecular energy 

The basic variable in the kMC method, is the molecular interaction energy.  In a canonical 

simulation the molecular energy of molecule i is the sum of pairwise interaction energies with all 

other molecules and with the surface, if present, and is given by: 
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where ϕi,j is the pairwise interaction energy between molecules i and j, and ϕi,S is the interaction 

energy of molecule i with the solid surfaces.  Here we use the symbols ϕ for the pairwise 

interactions to distinguish this interaction energy from u for the molecular energy.  The upper 

case U will denote the configurational energy of the system. 

2.1.2 Molecular mobility  

The mobility of a molecule with energy ui is calculated from: 

    exp iu
kT

ν  =  
 

     (2) 

therefore those molecules having larger values of ui will have higher mobilities, and a greater 

tendency to move.  For example, overlapping molecules having positive molecular energies will 

be more likely to move in order to break away from an overlapping configuration; on the other 

hand, molecules attracted to a solid surface or in the vicinity of other molecules at around the 

potential minimum separation, have negative molecular energies and will be less mobile.  To 

highlight the large range of possible mobilities, we consider two examples for argon (σ = 

0.3405nm and ε/k = 119.8K) at 87.3K: (1) a pair of overlapping molecules with separation 

0.785σ, for which ui/kT=100 and exp(ui/kT)=1043, and (2) a pair of argon atoms at the equilibrium 

separation of 21/6σ, where exp(ui/kT)=0.25.  

2.1.3 Duration of a given configuration 

Since each molecule in the simulation box has its own mobility, the sum of mobilities for N 

molecules is a measure of the energetic state of a given configuration: 

    
1 1

exp
N N

i
N i

i i

uR
kT

ν
= =

 = =  
 

∑ ∑     (3) 

This is a measure of the speed at which the system would evolve from its current configuration; 

the duration of this configuration is therefore given by [12]: 

     1 1ln
N

t
R p

 
∆ =  

 
    (4) 

where p is a random number (0 < p < 1), generated for this configuration, and ensures that 

configurations having the same total rate, RN, are generated according to the Poisson law of 

distribution.  
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Equations (3 and 4) mean that the duration is a measure of how mutually attractive or repulsive 

the system is.  The system is neutral when 0iu =  for all i  and hence the average duration is equal 

to 1/N.  If the duration is greater than 1/N, the system provides an attractive environment, while a 

value smaller than 1/N means that the system is repulsive.  This means is that the product of N 

and the average duration has a special significance as we shall show below when we discuss the 

chemical potential.  

2.1.4 Generation of a Configuration 

The kMC procedure involves only one move to generate a new configuration: the deletion of a 

randomly selected molecule from its current position and re-insertion of the molecule at a random 

position and orientation (i.e. uniform sampling) in the simulation box [2].  The kMC algorithm is 

therefore rejection-free.  The selection of a molecule is based on the Rosenbluth criterion; the k-th 

molecule being selected according to:  

     1k N kR pR R− ≤ <     (5) 

where p is a random number, RN is the total mobility (eq.3) and Rk is the partial sum of the 

molecular mobilities from molecule 1 to molecule k: 

     
1

k

k i
i

R ν
=

=∑      (6) 

2.1.5 Overlapping molecules 

Since molecular overlap can give very large positive values of energy, we replace the criterion in 

eq.(5) with its logarithm for the purpose of implementing the algorithm: 

    1 lnk N kX p X X− ≤ + <     (7) 

where lnX R= .     

 

The criteria of eq.(5) or (7) imply that molecules having large energies have a greater chance of 

being selected, but the chosen molecule is not necessarily the one having the largest molecular 

energy and therefore the stochastic nature of the process is maintained.   

 

To avoid infinitely large energies from molecular overlap, pairwise potential energies greater 

than a threshold value ϕ* (which is a large positive number), are assigned ϕ* as their pairwise 

potential energy.  When the threshold value is reached, the duration of the configuration would be 
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so small its contribution to the time averaging process would be infinitesimally small; hence, the 

results are insensitive to the selection of this value.  Further details can be found in ref [13]. 

 

2.1.6 Computational Considerations 

Rosenbluth criterion 

For the purpose of computation, the Rosenbluth selection can be made in a more efficient manner 

using a recurrence formula (Appendix 3).  For example, for a given configuration, the array Xk 

(k=1, 2, …, N) can be calculated from: 

   1 ln 1k kX X e∆
−  = + +    if ∆ < 0  (8a) 

   ( )/ ln 1k kX u kT e−∆ = + +    if ∆ > 0  (8b) 

where ( ) 1/k ku kT X −∆ = − .  The starting value is 1 1 /X u kT= .  Once this array, of dimension N, 

has been calculated, the duration of the current configuration is given by 

    ( ) ( )exp ln 1 /Nt X p∆ = −     (9) 

and the selection of the molecule to be moved in order to generate the next configuration is made 

with eq.(7). 

 

When a selected molecule is moved to a new position, it is necessary to re-compute the molecular 

energies of all molecules.  However, since the move only changes the pairwise interaction 

energies between the selected molecule and the rest, we only need to replace the “old” pairwise 

interaction energies with the “new” one (see Appendix 1 for details). 

2.2 Output from the kMC simulation 

2.2.1 Excess amount 

When the system is an adsorption system, the excess amount (i.e. the amount that is associated 

with adsorption) is defined as: 

     ex GN N Vρ= −     (10) 

where V is the volume accessible to the centre of mass of a molecule.  The gas density is 

calculated in a region far away from the surface where the solid-fluid interactions are negligible.  

When the adsorbent is a confined space the external gas space is connected to the confined space, 

and the simulation box is a combination of these two spaces [4]. 
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2.2.2 Chemical Potential 

The chemical potential is determined by using molecules moved in the simulation to probe the 

volume space uniformly, allowing us to scan the energy space; this is equivalent to the inverse 

potential theory of Widom [6, 7]; further details are given in Appendix 2. 

 

After M kMC simulation steps (usually of the order of 10 million) the chemical potential is 

obtained from the following equation (eq.A2.24 in Appendix 2) 

  
3 3

ln ln lnN NR RNkT kT kT
V V N

µ
 Λ   Λ

= = +    
    

  (11) 

The first term on the RHS is the chemical potential of an ideal gas and the second term is the 

excess chemical potential.  Here Λ is the thermal de Broglie wavelength, and NR  is the average 

total mobility, weighted by the duration of each configuration given by: 

 ( )
1

M

N N jj
j

R R α
=

= ∑ ;  
( )

( )

( ) ( )
( )

1

ln 1 /1 jj j
j M

M M N j
k

k

t t p
T T Rt

α

=

∆ ∆
= = =

∆∑
 (12a) 

where, from eq. (4), αj is the fraction of time for which the configuration j exists and TM is the 

simulation time after M steps.  Eq.(12a) can be simplified to give: 

    1
N

MM

MR
T T

= =      (12b) 

since, ( )ln 1 / 1j
j

p =∑ for a uniform distribution of random numbers. MT  is the average duration 

of a configuration. 

 

Thus the chemical potential in eq.(11) is: 

    
3 1ln ln

M

NkT kT
V NT

µ
 Λ  = +   

  
   (12c) 

For ideal gases, it follows from eq.(3) that 1 /MT N=
 
since ui=0 and therefore the chemical 

potential in eq.(12c) reduces to the ideal gas expression.  

 

Eq. (12c) corroborates our earlier remarks about the average duration of a configuration.  When 

the system is neutral, i.e. there is no attraction or repulsion (as in the ideal gas), the product MNT

is equal to unity, and the excess chemical potential is zero. On the other hand, in an attractive 

environment, such as a stable liquid or a real gas, MNT  is greater than unity, and the excess 
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chemical potential is negative; conversely the excess chemical potential is positive in a repulsive 

environment. 

 

2.2.3 Helmholtz free energy and entropy 

In a canonical ensemble at equilibrium the Helmholtz free energy is a minimum and 

     
,V T

F
N

µ∂  = ∂ 
     (13) 

Therefore, the Helmholtz free energy can be obtained by integration once µ(N) is known [5]: 

    ( )( ) ( )
G

N

G
N

F N F N N dNµ− = ∫    (14) 

where F(NG) is the Helmholtz free energy of an ideal gas of NG molecules and is given by  

    ( ) ( )G G G GF N N N N kTµ= −     (15) 

The integral molecular Helmholtz free energy is F(N)/N.  

 

The entropy of N molecules and the work done by the system can be calculated as 

    KF E U S T= + −     (16) 

    P V N Fµ= −      (17) 

where EK is the kinetic energy, (3 / 2)KE NkT=  for a monatomic gases, U  is the ensemble 

averaged configurational energy of N molecules and S is the entropy.  Eq. 17 allows us to 

determine the pressure of the system by the thermodynamic route.   

 

2.2.4 Virial pressure via the mechanical route and bulk gas density: 

The pressure can be calculated via the virial route by combining kMC with the bin-concept of Fan 

et al. [14].  A bulk gas volume, either isolated or connected to the adsorption system, is set up.  A 

molecule is selected according to the Rosenbluth algorithm from all the molecules in the 

adsorption volume and the gas volume; it is then placed at a random position in either the 

adsorption box or the gas box with a probability proportional to their respective volumes.   

 

The pressure of the gas in the bulk gas box can be calculated from: 
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13G B

AP k T
V

ρ= −     (18a) 

where A  is the time average of the virial A, which is defined as follows: 

   
1 1 1

1 1 1

1
, ,

, ,
1 , ,

1

( ) ( )1
2

N N N
i j i j

i j i j
i j V i V j Vi j i j

j i

d r d r
A r r

dr dr
ϕ ϕ−

= ∉ ∈ ∉
= +

= +∑ ∑ ∑∑    (18b) 

Here N1 is the number of molecules in the bulk gas volume V1, and rij is the distance between the 

centres of molecules i and j.  The density of the bulk gas can be calculated from: 

     ( )1, 1
1

/
M

G k k
k

N Vρ α
=

= ∑     (18c) 

where the subscript k denotes configuration and αk is calculated from eq.(12a). 

3. Results and Discussion 
To illustrate the calculation of chemical potential, Helmholtz free energy, pressure and entropy 

using kMC we chose the following systems, with argon as a model molecule: 

1. Uniform fluid  

1.1 At the sub-critical temperature 87K with densities covering the change from gas to 

liquid states passing through the unstable transition state. 

1.2 At the supercritical temperature 240K.  

2. Argon adsorbed at 87K on a graphite surface 

3. Argon adsorbed at 87K in slit pores of width 0.8nm and 1nm to study commensurate and 

incommensurate packings. 

 

3.1 Uniform fluid at 87.3K and 240K 

The simulation box was cubic with dimensions of 5σ×5σ×5σ, and 107 kMC steps were used for 

both the equilibration and sampling stages.  The energy limit uk/kT was set at 100. 

3.1.1 Average time per configuration 

The variables that are of interest in the calculation of the chemical potential are the average 

duration time, T , and the product NT  (see eq.12c).  They are shown in Figure 1 as a function of 

number of molecules.  The average times at different temperatures approach the asymptote to 1/N 

(dashed line in Fig.1) as predicted by the ideal gas condition (eq.12c), when the number of 

molecules becomes very small.  The average time at 240K reaches this asymptote at a higher 

density than at 87K, as would be expected at higher temperatures. 
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(a)      (b) 

Figure 1:  Plot of (a) the average time and (b) NT  versus number of molecules for bulk argon at 87K and 240K.  The 
density, ρ*=ρσ3, is N/(5×5×5).   
 

The product NT  (Fig.1b) for fluid argon is equal to unity in the ideal gas state at both 

temperatures, as required by the ideal gas condition.  At 87K, it first increases above unity as N is 

increased; as expected when there is net attraction between molecules.  NT reaches a maximum 

at N=85 which corresponds to a density, ρ* = ρσ3 = 0.68 or a molar density of 28.6kmol/m3.  

This density corresponds to the liquid spinodal point of LJ argon at 87K.  For densities greater 

than this the product NT  decreases, but remains above unity until the number of molecules 

exceeds 112 (corresponding to ρ*=ρσ3=0.9, or ρ= 37.7kmol/m3) when the system becomes 

repulsive.  

 

At 240K, NT starts from unity in the ideal gas state, increases only modestly with N, and reaches 

a maximum at N=40, corresponding to ρ*=0.32, beyond which it decreases and falls below unity 

at N=60 or ρ*=0.48.  This indicates that the system at 240K becomes repulsive at a rather 

moderate density because of the high kinetic energy that enables molecules to approach closer to 

each other and make frequent excursions into their repulsive cores.  Above a reduced density of 

0.48, the product NT  decreases very steeply, because of the significant contribution from 

repulsion under supercritical conditions, even at moderate densities.  The significance of 

repulsion under supercritical conditions has been discussed by Abdul Razak et al. [15]. 

 

3.1.2 Chemical Potential 
Figure 2 shows the reduced chemical potential, / kTµ , at 87K and 240K versus N, the ideal gas 

and excess contributions, and the time-averaged configurational energies.  At the sub-critical 

temperature of 87K, the ideal gas excess chemical potential is zero and the corresponding 
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reduced ideal gas chemical potential is -12.16.  The excess chemical potential becomes negative 

(attractive) as N is increased and reaches a minimum at the liquid spinodal density, after which it 

increases and becomes zero at a reduced density of 0.9.  Above this density, the excess chemical 

potential is positive; i.e. the system is repulsive as noted earlier for the product NT  in Figure.1.  

The total chemical potential (the sum of the excess and ideal gas chemical potentials) is sigmoid 

(a van der Waals curve) as expected for sub-critical conditions.   

 

At the supercritical temperature 240K, the total chemical potential increases continuously with 

density.  When N=60 (ρ*=0.48), the system switches from attractive to repulsive as evidenced by 

the positive excess chemical potential.  The configurational energies decrease with density at both 

temperatures; the decrease being faster at 87K. 

 
(a) 

 
(b) 

Figure 2:  Plots of chemical potential and configuration energy versus number for fluid argon at (a) 87K and (b) 
240K.  The configuration energy is shown as a dashed line with the axis on the RHS of the graphs.  The reduced 
density, ρ*=ρσ3, is N/(5×5×5).   
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The chemical potentials (kJ/mol) at 87K and 240K are shown in Figure 3 as a function of the 

number of molecules to illustrate their relative magnitudes.  For a given density the chemical 

potential at 87K is always higher, implying that it is always higher at lower temperatures.   

 

  
Figure 3:  Chemical potential (kJ/mol) of LJ fluid argon at 87K and 240K obtained with kMC.   
 

 

3.1.3 Molar Helmholtz Free Energy and Integral Molar Entropy 

The Helmholtz free energy can be calculated from eq.14 using the plots of chemical potential 

versus density.  Figure 4 shows the molar Helmholtz free energy and chemical potential of fluid 

argon at 87K and 240K; the results are in good agreement with the NIST data [16, 17].  At the 

supercritical temperature of 240K the chemical potential is always greater than the molar 

Helmholtz free energy.  Since the difference between the Gibbs free energy and the Helmholtz 

free energy is the thermodynamic work, this means that the work is positive for all densities, and 

therefore work must be applied on the system to maintain it at equilibrium.  At the subcritical 

temperature87K there is an intermediate region where the molar Helmholtz free energy is greater 

than the chemical potential, and the thermodynamic work is therefore negative.  It follows that 

the system has a tendency to evolve away from its current state, which is equivalent to saying that 

this region of intermediate densities is unstable at 87K (Figure 5).  For densities less than or 

greater than these, the chemical potential is greater than the Helmholtz free energy; in these 

regions the system is in a stable (or metastable) gaseous or liquid state.  
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(a)      (b) 

Figure 4: Integral molecular Helmholtz free energy and chemical potential as a function of number of particles for 
fluid argon at (a) 87K and (b) 240K 
 

  
Figure 5:  Integral molecular work as a function of number of particles for fluid argon at 87K and 240K 
 

Figure 6 shows the integral molar entropy of fluid argon at 87K and 240K.  At both temperatures 

the entropy decreases with density as the number of degrees of freedom decreases.  At a given 

density, the molar entropy is higher at the higher temperature, because of its higher kinetic 

energy. 

 
Figure 6:  Integral molecular entropy as a function of number of particles for fluid argon at 87K and 240K  
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3.2 Argon Adsorption on Graphite at 87K  

3.2.1 Average duration per configuration 

The simulation box consisted of a 10σ square graphite base with a height of 100nm terminated by 

a hard wall.  The height was large enough to ensure that the fluid in the top section of the box was 

essentially of uniform density, equivalent to that of the gas phase.  107 kMC steps were used for 

both the equilibration and sampling stages.  As in the previous calculations, the energy limit for 

overlapping of molecules, uk/kT, was set at 100.  The average duration of a configuration and the 

product NT  for argon adsorption on graphite at 87K are shown in Figure 7.    

  
(a)      (b) 

Figure 7:  Plot of (a) the average time and (b) NT  versus surface excess concentration for argon adsorption on 
graphite at 87K.   
 

Unlike the fluid of uniform density, where the average time, T , is unity at zero density, the 

average duration for argon adsorbed on graphite at 87.3K is 126  1, because of the strong 

attraction of the surface.  This average time could be interpreted as a residence time for a 

molecule on the surface and would be expected to increase with the affinity between the 

adsorbate and the surface.  The product NT  rises to a maximum as the first layer is completed 

and then decreases, but always remains above unity, indicating that the adsorbate is in an 

attractive environment.   

 

3.2.2 Chemical Potential and Molar Helmholtz Free Energy 

Figure 8 shows plots of the chemical potential and the molar Helmholtz free energy versus 

surface excess density for argon adsorption at 87K.   
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(a)      (b) 

Figure 8:  (a) Chemical potential versus the surface excess density and the contributions from excess and ideal gas; 
(b) plots of chemical potential and molar Helmholtz free energy versus surface excess density for argon adsorption 
on graphite at 87K; the molar work done by the system is shown in (b) as a dashed line and the axis is on the RHS.   
 

Again in contrast to the fluid of uniform density (Section 3.1) the excess chemical potential is 

negative not zero at low density because of the attraction between a molecule and the surface.  

 

As the surface loading is increased below the monolayer coverage (about 11µmol/m2), the excess 

chemical potential decreases due to the combination of the relatively constant solid-fluid 

interaction and increasing fluid-fluid interaction.  As density is increased beyond monolayer 

coverage, the excess chemical potential, µex, increases because of the reduction in the solid-fluid 

interaction for molecules further away from the surface, but remains negative because the system 

is overall attractive.  The chemical potential is greater than the molar Helmholtz free energy, 

indicating that the systems are stable.  The molar work (eq.(17), shown in Figure 8b, decreases 

with loading to a minimum in the sub-monolayer region, increases sharply to a maximum, and 

then decreases again as higher layers are formed.   

 

The plot of molar entropy versus loading at 87K is given in Figure 9.  In the sub-monolayer 

region (surface densities less than 11µmol/m2), the entropy decreases as the number of available 

configurations for monolayer molecules decreases, then increases again as molecules adsorb 

beyond a monolayer distance from the surface, and finally approaches the molar entropy of 

liquid-like argon as higher layers are built up.  This confirms an earlier conclusion [18] that 

adsorbed argon approaches the liquid state as adsorption increases, and shows that this state is 

reached in this system when approximately two statistical monolayers have been adsorbed.   
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Figure 9:  Integral molecular entropy versus surface excess density for argon adsorption on graphite at 87K.  
 

3.3 Argon Adsorption in Slit Pores at 87K  
The simulation box for studying the adsorption of argon in slit pores is shown in Figure 10: the 

slit pore (volume IIV ) is connected to gas reservoirs with volumes IV  and IIIV  at the two ends of 

the pore.  

 
Figure 10:  The schematic of the simulation box of adsorption in pores with kMC.  

 

We considered two pore widths: 0.8nm and 1.0nm, the lengths of the pore in the other directions 

are both 5nm.  The two gas reservoirs have dimensions: 5.0nm×10.0nm×10.0nm.  107 kMC steps 

were used in the equilibration and sampling stages.   

 

The adsorption isotherms at 87K for 0.8nm and 1.0nm pores are presented in Figure 11.  In the 

0.8nm pore, adsorption follows a filling mechanism, typical of ultra fine micropores, while the 

isotherm for 1.0nm pore, is sigmoid, which is typical of a first order transition in the canonical 

ensemble [19].  The position of the equilibrium transition can be obtained from the Maxwell 

equal area construction applied to the plot of chemical potential versus number of molecules.   
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Figure 11:  Plots of absolute pore density versus pressure for argon adsorption in slit pores with pore widths of 
0.8nm and 1.0nm at 87K.   
 

Figure 12 shows the average duration of a configuration and the product NT  as a function of 

absolute pore density.  There is a significant increase in average time in the smaller pore, 

compared to the 1.0nm pore, because of the deeper solid-fluid potential.  At very high loadings, 

the average time is greater in the 1.0nm pore because this pore can pack two commensurate 

layers of adsorbate and there are therefore more adsorbate-adsorbate contacts. 

 
(a)      (b) 

Figure 12:  Plot of (a) the average time and (b) NT  versus absolute pore density for argon adsorption in slit pores at 
87K.   
 
 

The plots of chemical potential and molar Helmholtz free energy versus pore density are shown 

in Figure 13.  The lower chemical potential in the 0.8nm pore over most of the density range, and 

the cross over at high loading can again be attributed to the stronger solid-fluid potential in the 

0.8nm pore and the increased number of adsorbate contacts in the 1.0nm pore at very high 

loading.  Like the mean residence time in Fig.12, The chemical potential for the 1.0nm pore has a 
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(horizontal) sigmoid shape, which is typical of a system undergoing a first order transition.  The 

work term calculated from eq. (17), shown in Figure 13c, is negative implying that the system is 

unstable as also noted for fluid argon at 87K.   

 
(a) 

  
(b)      (c) 

Figure 13:  (a) Chemical potential versus the pore density and the contribution from excess and ideal gas; (b) and (c) 
plots of chemical potential and molar Helmholtz free energy versus pore density for argon adsorption in 0.8nm and 
1.0nm pores at 87K, respectively.   

 

Figure 14 shows the integral molar entropy versus pore density which decreases with density 

because of the loss of degrees of freedom.  Interestingly, for a given density, the molar entropy in 

the 1.0nm pore is lower than in the 0.8nm pore because the packing is more efficient in the 

commensurate 1.0nm pore which can accommodate exactly two layers of argon; the 0.8nmpore is 

too large to accommodate one layer but too small to accommodate two layers, and therefore the 

packing is less efficient, resulting in a higher molar entropy. 

 

Pore density (Kmol/m3)

0 10 20 30 40 50 60

C
he

m
ic

al
 p

ot
en

tia
l (

kJ
/m

ol
)

-25

-20

-15

-10

-5

0

Excess-1nm

Ideal Gas-0.8nm

0.8nm

1nm

Excess-0.8nm

Ideal Gas-1nm

  

Pore density (Kmol/m3)

0 10 20 30 40 50 60

M
ol

ar
 E

ne
rg

y 
(k

J/
m

ol
)

-24

-22

-20

-18

-16

-14

-12

-10

-8

0.8nm Molar Helmholtz
0.8nm Chemical Potential

  

Pore density (Kmol/m3)

0 10 20 30 40 50 60

M
ol

ar
 E

ne
rg

y 
(k

J/
m

ol
)

-20

-18

-16

-14

-12

-10

1nm Molar Helmholtz
1nm Chemical Potential



18 
 

 

Figure 14:  Integral molecular entropy versus pore density for argon adsorption in slit pores at 87K  
 

 

4. Conclusions 
The kinetic Monte Carlo method has been used to study bulk fluid argon, and argon adsorbed on 

a graphite surface and in slit pores, at both sub- and super-critical temperatures. 

 

The method offers a distinct advantage over the conventional Metropolis scheme, in that 

chemical potential can be accurately and easily calculated at any density, in contrast to insertion 

methods that encounter well-known problems in high density regions. 

 

Once chemical potential is known, it is straightforward to calculate other thermodynamic 

properties including, free energies and entropies.  Implementation of the computational 

procedures is relatively simple compared to other approaches for obtaining these properties from 

simulation, and comparison with available data confirms that accurate results can be readily 

obtained.   

 

Application of the kMC method to bulk fluid argon and argon adsorption at various temperatures 

gives a number of interesting features.  The average kMC time for each configuration at zero 

loading increased with the strength of the adsorbent, suggesting a longer residence time of 

molecule spending on the surface.  The product of the number of molecule and the average kMC 

time is a measure of the status of the system; it is attractive if this product is greater than unity 

while it is repulsive if it is less than unity.  As a corollary, the excess chemical potential is 
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negative or positive for attractive or repulsive environment, respectively.  The molar work of the 

system defined as the difference between the Gibbs and Helmholtz free energies is negative for 

unstable system, such as the unstable bulk fluid argon at 87K or the unstable region in pores 

whose canonical isotherms show a sigmoidal shape.  The molar entropy is a measure of the 

degree of freedom.  It continually decreases with density for uniform fluids, and for confined 

space it is lower for pores whose packing is commensurate; for example the molar entropy in 

1nm pore is lower than that in 0.8nm pore because of the former can pack two integral layers of 

argon molecules. 
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Appendix 1:  Updating of Molecular Energy when a Molecule is moved 

After a molecule k has been moved to a new random position, the molecular interaction energies 

of all molecules are recalculated using eq. (1).  Since the move only involves the molecule k, the 

molecular interaction energies can be updated as follows: 

     ,
1

N
new new
k k i

i
i k

u ϕ
=
≠

=∑      (A1.1a) 

    ( ), ,
new old new old
i i i k i ku u ϕ ϕ= + − ; for i k≠    (A1.1b) 
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Appendix 2:  Chemical potential with potential distribution theory 

Molecular simulation of equilibrium systems requires the determination of chemical potential to 

ensure that true equilibrium is established, especially in systems involving more than one phase 

or in systems that have a non-uniform distribution of density, where care must be taken to ensure 

that the chemical potential is the same everywhere inside the system. 

 

In a Monte Carlo (MC) simulation with the Metropolis algorithm, the chemical potential is 

commonly calculated using the Widom method of test particle insertion or by the inverse Widom 

method of deleting a real particle from the simulation box (Widom, 1963, 1982).  The forward 

method is suitable for systems whose configurations are determined with the Metropolis 

algorithm because the energy of interaction between a test particle (being inserted in a random 

position inside the box) and real particles, sample the full range of interaction energy, while the 

inverse method fails because the position of the deleted particle is favoured energetically by the 

Metropolis algorithm and therefore its energy of interaction with the remaining real particles does 

not sample the complete range of energy.  However, the inverse Widom method is suitable for 

implementation in the kMC simulation because no position is favoured a priori.  For the sake of 

completeness, we briefly describe both the forward and inverse Widom methods below. 

 

Widom Forward method 

In the classical limit, the partition function QN+1 for a fluid of N+1 particles in a canonical 

ensemble is given by (Widom, 1963, 1982; Frenkel and Smit, 1996) 

( )
( )1 2 11

1 2 11 3( 1)

1

, , , ,1 exp
1 !

N NN
N NN N

V V V

N times

U r r r r
Q dr dr dr dr

N kT
++

++ +

+

 
= − Λ +  

∫ ∫ ∫


 



 (A2.1) 

which is the multiple volume integral of the Boltzmann factor of N+1 particles and kd r  is the 

volume element occupied by the kth particle.  The energy of interaction of N+1 particles can be 

calculated as the sum of all pairwise interaction energies, ϕi,j, and their interaction energies with 

the solid surfaces, ϕi,S: 

  ( )
1 1

1 2 11 , ,
1 1

, , , ,
N N N

N NN i j i S
i j i i

U r r r r ϕ ϕ
+ +

++
= > =

= +∑∑ ∑     (A2.2) 
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Let (N+1) be a particle in the population, we can write the above interaction energy as the sum of 

the interaction energy of this particle with all the others plus the energy of interaction of the 

remaining N particles as follows: 

 ( ) ( ) ( )1 2 1 1 2 1 2 11 1, , , , , , , , , , ,N N N N NN N NU r r r r U r r r u r r r r+ ++ += +     (A2.3) 

where UN is the energy of interaction among N particles, in which the (N+1)th particle is omitted: 

   ( )
1

1 2 , ,
1 1

, , ,
N N N

NN i j i S
i j i i

U r r r ϕ ϕ
−

= > =

= +∑∑ ∑     (A2.4) 

and  

   ( )1 2 11 1, 1,
1

, , , ,
N

N NN N i N S
i

u r r r r ϕ ϕ++ + +
=

= +∑     (A2.5) 

The partition function of a population of N particles, QN is given by 

 
( )

( )1 2
1 23

, , ,1 exp
!

NN
NN N

V V V

N times

U r r r
Q d r d r d r

N kT
 

= − Λ  
∫ ∫ ∫


 



   (A2.6) 

We would like to express the partition function of N+1 particles (eq. A1) and that of N particle 

(eq. A2.6).  First we rewrite the partition function QN+1 of eq. (A1) by making use of eq. (A2.3) 

as follows: 

( ) ( )
( )1 2 1

1 2 11 3 1

, , ,1 exp
1 !

N NN
N NN N

V V V

N times

U r r r r
Q dr dr dr dr

kTN
−

−+ +

 
   = Ψ −  

Λ +   
  

∫ ∫ ∫


 



 (A2.7a) 

where 

   ( )1 2 11
1

, , ,
exp N NN

N
V

u r r r r
dr

kT
++

+

 
Ψ = − 

 
∫

     (A2.7b) 

The multiple integral in eq. (A2.7a) can be integrated by Monte Carlo integration with N particles 

distributed in space according to the Metropolis scheme.  This integral is: 

  
( )1 2 1

1 2 1
, , ,

exp N NN
N N

V V V

N times

U r r r r
dr dr dr dr

kT
−

−

 
Ψ − 

 
∫ ∫ ∫


 



  (A2.8a) 

Combining this equation and eq. (A2.6), we get: 

    3 !N
NQ NΨ Λ        (A2.8b) 

where Ψ  is the average based on N real particles, and it is calculated from eq. (A2.7b): 
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( )1 2 11 , , ,

exp N NN

N

u r r r r
V

kT
++ 

Ψ = − 
 


    (A2.9) 

The subscript N on the ensemble average means that the average is carried out with N particles 

frozen in space. 

 

Combining eqs. (A2.7-9), we get: 

   
( )

1
1 3 exp

1
N

N N
N

uVQ Q
N kT

+
+

 = − Λ +  
    (A2.10) 

This canonical average can be computed by freezing N particles in space, and sampling the 

volume space by inserting the (N+1)th particle at a random position and determining the average 

according to the following equation: 

   1 1

1

1exp exp
M

N N

jV

u u
kT M kT

+ +

=

   − = −   
   

∑     (A2.11) 

where M is the number of insertions of the test particle, 1Nu +  is the energy of interaction of the 

test particle at the random position j with the frozen N particles in space (calculated fromeq. 

A2.5).   

 

If we defined the activity Z as follows: 

   
( )
( )3

1 1

1 /
exp /

N

N N N

N VQZ
Q u kT+ +

+
= =
Λ −

     (A2.12) 

this activity, in the limit of dilute system (N → 0), will become the density because the 

interaction energy of the (N+1)th  particle with the surrounding particles is zero.  The ratio of the 

two partition functions is equal to ( )exp / kTµ  [1], and therefore the activity is related to the 

chemical potential as follows: 

    3

1 expZ
kT
µ =  Λ  

      (A2.13) 

This allows us to write the chemical potential as: 

  ( )3 1ln 1 / ln exp N

N

ukT N V kT
kT

µ +
   = Λ + − −      

   (A2.14) 

The first term on the RHS is the ideal gas chemical potential and the second term is the excess 

chemical potential.  For the purpose of computation, the ensemble average in the second term of 

the above equation can be carried out as follows: 
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   ,1
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1exp exp
c tN N

i jN
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kT N N kT
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= =

  − = −  
   

∑∑     (A2.15) 

where Nt is the number of test particles inserted for each configuration of N particles and Nc is the 

number of configurations that N-particles are frozen for the test insertion. 

 

For polyatomic molecules, the test particle is given a random orientation for each insertion.  To 

calculate the chemical potential in a given region of the system, the chemical potential for that 

region can be calculated from eq. (A2.14) and the variables in this equation are replaced by 

corresponding variables for the local region. 

 

Real particle method of kMC: 

From the partition function for N-1 particles, as given in eq. (A2.6) with N replaced by N-1, the 

interaction energy UN-1  replaced in terms of UN and uN, we have: 
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   (A2.16) 

where N is an arbitrary particle.  Multiplying this equation by 

     
11 N

V

d r
V

= ∫       (A2.17) 

we get: 
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or 
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where 

    ( )1 2 1, , , ,
exp N NNu r r r r

kT
− 

Ω =  
 

     (A2.19) 

The multiple integral of eq. (A2.18) can be determined by Monte Carlo integration giving: 
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   (A2.20) 

The ensemble average is determined with N real particles.  Combining this with the partition for 

N particles (eq. A2.6), we get: 
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N N

u r r r rNQ Q
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−
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 Λ
=  

 


   (A2.21) 

The canonical average is for the N-particle system, and is suitable for the determination of the 

chemical potential in the kMC scheme. 

 

Thus, the activity is: 
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3 3
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 (A2.22) 

and this allows us to derive an equation for the chemical potential in the kMC scheme: 

   ( )3ln ln exp kukT kT
kT

µ ρ
  = Λ +      

   (A2.23a) 

where uk is the interaction energy of the real k-particle in the N-particle system, and  is the 

canonical average of the real particle in the N-particle system.  In the kMC scheme, this average 

is calculated as follows: 

  

,

1

1 exp
1exp
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k j
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N kTu R
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∑ ∑
∑

  (A2.23b) 

where ∆tj is the duration of the configuration j.  Combining eqs. (A2.23a) and (A2.23b), we get 

the required equation for the chemical potential: 

    
3

ln NkT R
V

µ
 Λ

=  
 

     (A2.24) 

Using real particles in calculating the chemical potential in the kMC scheme affords a great 

advantage over the traditional test particle method because (1) the energy of interaction of real 
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particle samples the whole energy space since the kMC, allows for overlap between molecules 

and (2) the enormous value of ( )exp /u kT  is compensated by the very small duration, ∆t, of that 

specific configuration.   

 

In systems with non-uniform density, such as adsorption systems or two-phase systems, we can 

calculate the chemical energies in various regions of the system.  Then the chemical potential for 

a particular region, say region Ω, is calculated from: 

   

,1 exp
exp

k j
j

j kk

j
j

u
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N kTu
kT t
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∑ ∑

∑
   (A2.25) 

where NΩ is the number of particles in that region and uk is the energy of interaction of the 

particle k in the same region. 
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Appendix 3:  Recurrence formula for X 
 

To obtain the total mobility, we consider its logarithm: 

     lnN NX R=      (A3.1) 

Combining this equation and eq. (3), we get: 

    
1

expN

N
X i

i

ue
kT=

 =  
 

∑      (A3.2) 

By splitting the last term from the RHS of the above equation, we have: 

   1

1
/ / /

1

N i N N N

N
X u kT u kT X u kT

i
e e e e e−

−

=

 = + = + 
 
∑    (A3.3a) 

or generally 

    1 /k k kX X u kTe e e−= +      (A3.3b) 

This is a recurrence formula for Xk (k = 1, 2, …, N), with the starting value 1 1 /X u kT= .  The 

recurrence formula of eq. (A3.3) can be computed as follows, depending on the sign of 

( ) 1/k ku kT X −∆ = − :  

  ( ) 1/
1 ln 1 k ku kT X

k kX X e −−
−

 = + +    if ∆ < 0  (A3.4a) 

  ( ) ( )1 // ln 1 k kX u kT
k kX u kT e − − = + +    if ∆ > 0  (A3.4b) 
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