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Abstract A D-dimensional gravitational model with a
Gauss–Bonnet term and the cosmological term � is consid-
ered. By assuming diagonal cosmological metrics, we find,
for a certain fine-tuned �, a class of solutions with exponen-
tial time dependence of two scale factors, governed by two
Hubble-like parameters H > 0 and h < 0, corresponding to
factor spaces of dimensions m > 3 and l > 1, respectively,
with (m, l) �= (6, 6), (7, 4), (9, 3) and D = 1+m+l. Any of
these solutions describes an exponential expansion of three-
dimensional subspace with Hubble parameter H and zero
variation of the effective gravitational constant G. We prove
the stability of these solutions in a class of cosmological
solutions with diagonal metrics.

1 Introduction

In this paper we consider a D-dimensional gravitational
model with Gauss–Bonnet term and the cosmological term
�. The so-called Gauss–Bonnet term appeared in string the-
ory as a correction to the (Fradkin–Tseytlin) effective action
[1–5].

We note that at present the Einstein–Gauss–Bonnet (EGB)
gravitational model and its modifications, see [6–27] and the
references therein, are intensively studied in cosmology, e.g.
for possible explanation of the accelerating expansion of the
Universe which follows from supernovae (type Ia) observa-
tional data [28–30].

Here we deal with the cosmological solutions with diago-
nal metrics governed by n > 3 scale factors depending upon
one variable, which is the synchronous time variable. We
restrict ourselves by the solutions with exponential depen-
dence of scale factors and present a class of such solu-
tions with two scale factors, governed by two Hubble-like
parameters H > 0 and h < 0, which correspond to factor
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spaces of dimensions m > 3 and l > 1, respectively, with
D = 1+m+l and (m, l) �= (6, 6), (7, 4), (9, 3). Any of these
solutions describes an exponential expansion of 3d subspace
with Hubble parameters H > 0 [31] and has a constant vol-
ume factor of (m − 3 + l)-dimensional internal space, which
implies zero variation of the effective gravitational constant
G either in a Jordan or an Einstein frame [32,33]; see also
[34–36] and the references therein. These solutions satisfy
the most severe restrictions on variation of G [37].

We study the stability of these solutions in a class of cos-
mological solutions with diagonal metrics by using results of
Refs. [25,26] (see also approach of Ref. [23]) and show that
all solutions, presented here, are stable. It should be noted
that two special solutions for D = 22, 28 and � = 0 were
found earlier in Ref. [22]. In Ref. [25] it was proved that
these solutions are stable. Another set of six stable exponen-
tial solutions, five in dimensions D = 7, 8, 9, 13 and two for
D = 14, were considered recently in [27].

2 The cosmological model

The action of the model reads

S =
∫
M
dDz

√|g|{α1(R[g] − 2�) + α2L2[g]}, (2.1)

where g = gMNdzM ⊗ dzN is the metric defined on the
manifold M , dim M = D, |g| = | det(gMN )|, � is the cos-
mological term, R[g] is the curvature scalar,

L2[g] = RMN PQ RMN PQ − 4RMN RMN + R2

is the standard Gauss–Bonnet term, and α1, α2 are nonzero
constants.

We consider the manifold

M = R × M1 × · · · × Mn (2.2)
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with the metric

g = −dt ⊗ dt +
n∑

i=1

Bie
2vi tdyi ⊗ dyi , (2.3)

where Bi > 0 are arbitrary constants, i = 1, . . . , n, and
M1, . . . , Mn are one-dimensional manifolds (either R or S1)
and n > 3.

The equations of motion for the action (2.1) give us the
set of polynomial equations [25]

Gi jv
iv j + 2� − αGi jklv

iv jvkvl = 0,[
2Gi jv

j − 4

3
αGi jklv

jvkvl
] n∑

i=1

vi − 2

3
Gi jv

iv j + 8

3
� = 0,

(2.4)

i = 1, . . . , n, where α = α2/α1. Here

Gi j = δi j − 1, Gi jkl = Gi jGikGilG jkG jlGkl (2.5)

are, respectively, the components of two metrics on R
n

[17,18]. The first one is a 2-metric and the second one is
a Finslerian 4-metric. For n > 3 we get a set of fourth-order
polynomial equations.

We note that for � = 0 and n > 3 the set of equations
(2.4) and (2.5) has an isotropic solution v1 = · · · = vn = H
only if α < 0 [17,18]. This solution was generalized in [20]
to the case � �= 0.

It was shown in [17,18] that there are no more than three
different numbers among v1, . . . , vn when � = 0. This is
valid also for � �= 0 if

∑n
i=1 vi �= 0 [26].

3 Solutions with constant G

In this section we present a class of solutions to the set of
Eqs. (2.4), (2.5) of the following form:

v = ( H, H, H︸ ︷︷ ︸
“our ′′ space

,

m−3︷ ︸︸ ︷
H, . . . , H ,

l︷ ︸︸ ︷
h, . . . , h︸ ︷︷ ︸

internal space

). (3.1)

Here H is the Hubble-like parameter corresponding to an m-
dimensional factor space withm > 3 and h is the Hubble-like
parameter corresponding to an l-dimensional factor space,
l > 1. We split them-dimensional factor space into a product
of two subspaces of dimensions 3 andm−3, respectively. The
first one is identified with “our” 3d space, while the second
one is considered as a subspace of (m − 3 + l)-dimensional
internal space.

We set

H > 0 (3.2)

for a description of an accelerated expansion of a three-
dimensional subspace (which may describe our Universe)
and also put

(m − 3)H + lh = 0 (3.3)

for a description of a zero variation of the effective gravita-
tional constant G.

We remind the reader that the effective gravitational con-
stant G = Geff in the Brans–Dicke–Jordan (or simply Jor-
dan) frame [32] (see also [33]) is proportional to the inverse
volume scale factor of the internal space; see [34,36] and the
references therein.

Remark Due to the ansatz (3.1) “our” 3d space expands
(isotropically) with Hubble parameter H and the (m − 3)-
dimensional part of internal space expands (isotropically)
with the same Hubble parameter H too. To avoid possible
puzzles with the separation of these two subspaces, we con-
sider for physical applications (in our epoch) the internal
space to be compact, i.e. we put in (2.2) M4 = · · · = Mn =
S1. We also set the internal scale factors corresponding to the
present time t0: a j (t0) = B1/2

j exp(v j t0), j = 4, . . . , n, [see
(2.3)] to be small enough in comparison with the scale factor
of “our” space for t = t0: a(t0) = B1/2 exp(Ht0), where
B1 = B2 = B3 = B.

According to the ansatz (3.1), the m-dimensional factor
space is expanding with the Hubble parameter H > 0, while
the l-dimensional factor space is contracting with the Hubble-
like parameter h < 0.

It was shown in [26] (for a more general prescription
see also [21]) that if we consider the ansatz (3.1) with
two Hubble-like parameters H and h with two restrictions
imposed,

mH + lh �= 0, H �= h, (3.4)

then equations (2.4) and (2.5) may be reduced to the follow-
ing set of equations:

E = mH2 + lh2 − (mH + lh)2 + 2�

−α[m(m − 1)(m − 2)(m − 3)H4

+ 4m(m − 1)(m − 2)lH3h+6m(m − 1)l(l − 1)H2h2

+ 4ml(l − 1)(l − 2)Hh3 + l(l − 1)(l − 2)(l − 3)h4]
= 0, (3.5)

Q = (m − 1)(m − 2)H2 + 2(m − 1)(l − 1)Hh

+(l − 1)(l − 2)h2 = − 1

2α
. (3.6)

The restrictions (3.4) are satisfied for our ansatz (3.2) and
(3.3).

Using Eqs. (3.3) and (3.6) we get for m > 3 and l > 1

H = l(−2αP)−1/2, h = −(m − 3)H/ l < 0, (3.7)

where

P = P(m, l) = (l + m − 3)((5 − m)l + 2m − 6) �= 0 (3.8)
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Fig. 1 The domains with different signs of P = P(m, l) and α. Red
points correspond to P > 0 and α < 0, while blue points correspond
to P < 0 and α > 0

and

αP < 0. (3.9)

The substitution of equation (3.7) into (3.5) gives us

� = �(m, l) = l(−4αP)−1(M − (1/2)P−1R) (3.10)

where

M = M(m, l) = (9 − m)l − (m − 3)2 (3.11)

and

R = R(m, l) = −3m(m − 1)(m − 2)(m − 3)l3

+6m(m − 1)(m − 3)2l2(l − 1)

−4m(m − 3)3l(l − 1)(l − 2)

+(m − 3)4(l − 1)(l − 2)(l − 3). (3.12)

It may be verified that the equality P(m, l) = 0 occurs
for (m, l) = (9, 3), (7, 4), (6, 6).

The domains with different signs of P = P(m, l) and α

are depicted in Fig. 1, where we enlarged our setup by adding
the case m = 3, which gives a solution with h = 0. For a
more general solution with m ≥ 3 and h = 0 see also [26].

The equation P(m, l) > 0, or α < 0, holds in the follow-
ing cases:

(m ≥ 3; l = 2), (m = 3, 4, 5; l ≥ 3),

(m = 6, 7, 8; l = 3), (m = 6; l = 4, 5). (3.13)

The equation P(m, l) < 0, or α > 0, is valid in the
following cases:

(m ≥ 10; l ≥ 3), (m = 8, 9; l ≥ 4),

(m = 7; l ≥ 5), (m = 6; l ≥ 7). (3.14)

The domains with different signs of � = �(m, l) are
depicted in Fig. 2.

For fixed l > 2 we get the asymptotic relation

�(m, l) ∼ l

8α(l − 2)
(3.15)

as m → +∞.
For fixed m ≥ 3, m �= 5, and m �= 9, we obtain

�(m, l) ∼ (m − 9)(m + 1)

8α(m − 5)2 (3.16)

as l → +∞, while

�(5, l) ∼ − 3l2

16α
→ +∞ (3.17)

and

�(9, l) ∼ − 9

4αl
→ 0, (3.18)

as l → +∞.
For m = 11, l = 16, and α = 1 we get � = 0, H = 1√

15

and h = − 1
2
√

15
. This solution was found in [25]. For m =

15, l = 6, and α = 1 we are led to another solution from
[22] with � = 0, H = 1

6 and h = − 1
3 . It was proved in [25]

that these two solutions are stable.

4 Stability analysis

Here, as in [25,26], we deal with exponential solutions (2.3)
with a non-static volume factor, which is proportional to
exp(

∑n
i=1 vi t), i.e. we put

K = K (v) =
n∑

i=1

vi �= 0. (4.1)

We set the following restriction:

(R) det(Li j (v)) �= 0 (4.2)

on the matrix

L = (Li j (v)) = (2Gi j − 4αGi jksv
kvs). (4.3)

For a general cosmological setup with the metric

g = −dt ⊗ dt +
n∑

i=1

e2βi (t)dyi ⊗ dyi , (4.4)
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Fig. 2 The domains with different signs of � = �(m, l). Green points correspond to � > 0 and brown points indicate � < 0

we have the (mixed) set of algebraic and differential equa-
tions [17,18]

E = Gi j h
i h j + 2� − αGi jklh

i h j hkhl = 0, (4.5)

Yi = dLi

dt
+

⎛
⎝ n∑

j=1

h j

⎞
⎠ Li − 2

3
(Gsj h

sh j − 4�) = 0, (4.6)

where hi = β̇ i ,

Li = Li (h) = 2Gi j h
j − 4

3
αGi jklh

j hkhl , (4.7)

i = 1, . . . , n.
It was proved in [26] that a fixed point solution (hi (t)) =

(vi ) (i = 1, . . . , n; n > 3) to Eqs. (4.5) and (4.6) obeying
the restrictions (4.1) and (4.2) is stable under perturbations

hi (t) = vi + δhi (t), (4.8)

i = 1, . . . , n (as t → +∞), if

K (v) =
n∑

k=1

vk > 0, (4.9)

and it is unstable (as t → +∞) if K (v) = ∑n
k=1 vk < 0.

We remind the reader that the perturbations δhi obey (in
linear approximation) the following set of equations [25,26]:

Ci (v)δhi = 0, (4.10)

Li j (v)δḣ j = Bi j (v)δh j , (4.11)

where

Ci (v) = 2vi − 4αGi jksv
jvkvs, (4.12)

Li j (v) = 2Gi j − 4αGi jksv
kvs, (4.13)

Bi j (v) = −
(

n∑
k=1

vk

)
Li j (v) − Li (v) + 4

3
v j , (4.14)
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vi = Gi jv
j , Li (v) = 2vi − 4

3αGi jksv
jvkvs and i, j, k, s =

1, . . . , n.
It was proved in Ref. [26] that the set of linear equations

on perturbations (4.10) and (4.11) has the following solution:

δhi = Ai exp(−K (v)t), (4.15)
n∑

i=1

Ci (v)Ai = 0, (4.16)

i = 1, . . . , n, when the restrictions (4.1) and (4.2) are
imposed.

It was shown in [26] that for the vector v from (3.1), obey-
ing Eq. (3.4), the matrix L has a block-diagonal form,

(Li j ) = diag(Lμν, Lαβ), (4.17)

where

Lμν = Gμν(2 + 4αSHH ), (4.18)

Lαβ = Gαβ(2 + 4αShh), (4.19)

and

SHH = (m − 2)(m − 3)H2 + 2(m − 2)lHh + l(l − 1)h2,

(4.20)

Shh = m(m − 1)H2 + 2m(l − 2)Hh + (l − 2)(l − 3)h2.

(4.21)

The matrix (4.17) is invertible if and only if m > 1, l > 1,
and

SHH �= − 1

2α
, (4.22)

Shh �= − 1

2α
, (4.23)

since the matrices (Gμν) = (δμν −1) and (Gαβ) = (δαβ −1)

are invertible only if m > 1 and l > 1.
The first condition (4.9) is obeyed for the solutions under

consideration since due to (3.3) we get K (v) = 3H > 0
[26].

Now, let us prove that inequalities (4.22) and (4.23) are
satisfied.

Let us suppose that (4.22) is not satisfied, i.e. SHH = − 1
2α

.
Then using (3.6) we get

SHH − Q = −2(H − h)((m − 2)H + (l − 1)h) = 0,

(4.24)

which implies, due to H − h �= 0 [see (3.7)],

(m − 2)H + (l − 1)h = 0. (4.25)

The substitution of h = −(m − 3)H/ l into (4.25) gives
us (l + m − 3)H = 0, which is in contradiction with the
inequalities m > 3, l > 1 and H > 0. This contradiction
proves the inequality (4.22).

Now we suppose that (4.23) is not valid, i.e. Shh = − 1
2α

.
Then using (3.6) we get

Shh − Q = −2(h − H)((l − 2)h + (m − 1)H) = 0, (4.26)

which implies due to H − h �= 0

(l − 2)h + (m − 1)H = 0. (4.27)

Substituting h = −(m−3)H/ l into (4.27) implies the equa-
tion 2(l + m − 3)H = 0, which contradicts the equations
m > 3, l > 1, and H > 0. The contradiction proves the
inequality (4.23).

Thus, we proved that Eqs. (4.22) and (4.23) are valid,
hence the restrictions (4.2) are satisfied for our solutions.
This completes the proof of the stability of the solutions under
consideration.

5 Conclusions

We have considered the D-dimensional Einstein–Gauss–
Bonnet (EGB) model with the �-term and two constants
α1 and α2. By using the ansatz with diagonal cosmologi-
cal metrics, we have found, for certain � = �(m, l) and
α = α2/α1, a class of solutions with exponential time depen-
dence of two scale factors, governed by two Hubble-like
parameters H > 0 and h < 0, corresponding to subman-
ifolds of dimensions m > 3 and l > 1, respectively, with
(m, l) �= (6, 6), (7, 4), (9, 3) and D = 1 + m + l. Here
m > 3 is the dimension of the expanding subspace and l > 1
is the dimension of the contracting one.

Any of these solutions describes an exponential expan-
sion of “our” three-dimensional subspace with the Hubble
parameter H > 0 and anisotropic behavior of (m − 3 + l)-
dimensional internal space: expanding in (m−3) dimensions
(with Hubble-like parameter H ) and contracting in l dimen-
sions (with Hubble-like parameter h < 0). Each solution
has a constant volume factor of internal space and hence it
describes a zero variation of the effective gravitational con-
stant G. By using the results of Ref. [26] we have proved that
all these solutions are stable as t → +∞.
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