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Abstract Experimental results on azimuthal correlations
in high energy nuclear collisions (nucleus–nucleus, proton–
nucleus, and proton–proton) seem to be well described by
viscous hydrodynamics. It is often argued that this agree-
ment implies either local thermal equilibrium or at least local
isotropy. In this note, I present arguments why this is not the
case. Neither local near-equilibrium nor near-isotropy are
required in order for hydrodynamics to offer a successful
and accurate description of experimental results. However,
I predict the breakdown of hydrodynamics at momenta of
order seven times the temperature, corresponding to a small-
est possible QCD liquid drop size of 0.15 fm.

Contents

1 Preface . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Introduction . . . . . . . . . . . . . . . . . . . . . 1
3 A historical perspective . . . . . . . . . . . . . . . 2
4 Hydrodynamization or the onset of hydrodynamic

applicability . . . . . . . . . . . . . . . . . . . . . 3
5 Hydrodynamic versus non-hydrodynamic modes . . 3
6 Breakdown of hydrodynamics and tests . . . . . . . 7
7 Concluding remarks . . . . . . . . . . . . . . . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Preface

The intention of this note is to provide an impulse to the
nuclear collisions community which in my opinion is trying
to reconcile the traditional paradigm of hydrodynamic appli-
cability with the unreasonable success of hydrodynamics at
seemingly describing ever smaller systems. In an attempt of
“out-of-the-box” thinking, my hope is to start a discussion

a e-mail: paul.romatschke@colorado.edu

as regards to the interpretation of this hydrodynamic success
that challenges the traditional paradigm of local equilibra-
tion. Aiming at challenging the traditional, I found it very
hard to conform to the standard manuscript style, which led
to this informal note.

It should be pointed out that many of my main points
have been made by others before me. All I have done is col-
lect the available information and, based on this information,
offer my own interpretations, conclusions, and predictions.
I expect that these conclusions may appear obvious to some
readers and contentious to others. I invite readers who do not
agree with my statements to engage in a constructive dialog,
which I hope could help us make progress.

2 Introduction

If nuclear collision experiments do not probe
near-equilibrium matter, then this may have a number of
consequences which to my knowledge have not been appre-
ciated before, providing the motivation for this note. Firstly,
it would imply that the nuclear experiments do not (directly)
probe equilibrium QCD properties as those calculated in
first-principle lattice QCD calculations. Depending on the
degree of non-equilibrium, experiments may be closer to or
farther away from the QCD phase diagram plane spanned
by temperature and baryon chemical potential. While for
hydrodynamics, a projection from non-equilibrium space
to the equilibrium plane is provided by e.g. the Landau
matching condition, for other observables such a projec-
tion is not explicitly known. For instance, it is possible
that the phenomenon of critical fluctuations associated with
the experimental search for a QCD critical point would
get modified when experiments probe QCD away from
equilibrium.

The understanding that the matter created in high energy
nuclear collisions does not need to equilibrate or isotropize

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193359913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4567-x&domain=pdf
mailto:paul.romatschke@colorado.edu


21 Page 2 of 11 Eur. Phys. J. C (2017) 77 :21

locally in order for hydrodynamics to be quantitatively appli-
cable would imply that the “early thermalization puzzle” is to
some extent not a genuine puzzle (see more details about this
below). On the other hand, having experimental access to a
non-equilibrium quantum system could lead to new direc-
tions in the field such as, e.g. observing non-equilibrium
entropy production, properties of non-thermal fixed points
or off-equilibrium photo-production.

Finally, if systems created in nuclear collisions do not
equilibrate this could naturally explain why proton–proton
collision data on azimuthal correlations appears to be so
similar to data obtained in nucleus-nucleus collisions. Once
small gradients or near-equilibrium is no longer a require-
ment, hydrodynamics will generically convert initial state
geometry and fluctuations into correlations, thus making
large and small systems look alike in their azimuthal correla-
tion signals. Pushing this idea even further would imply that
any lump of sufficiently high energy density could expand
according to the laws of hydrodynamics (with one impor-
tant caveat which will be discussed below). A natural conse-
quence of this would be the presence of exponentially falling
(thermal) spectra as well as potential azimuthal correlations
in e++e− collisions.

3 A historical perspective

In recent years, it has been demonstrated that experimen-
tal results obtained in relativistic nuclear collisions are
well described by hydrodynamic simulations. Based on the
paradigm that hydrodynamics requires near-equilibrium in
order to be applicable, this successful hydrodynamic descrip-
tion has been interpreted as evidence for a locally equili-
brated state of matter (dubbed the quark–gluon plasma) in
high energy nuclear collisions.

The question on how the system created in high energy
nuclear collisions reaches or at least comes close to equilib-
rium subsequently has led to a number of developments. In
particular, it was realized that because of the expansion of
the matter into the vacuum following the nuclear collision,
the system would cool and thus freeze into a hadronic gas
quickly, at which point the type of correlations observed in
experiment could not longer be built up. Thus, it became
apparent that a fluid dynamic approximation to the system
dynamics had to start early, on a time scale of τ ∼ 1 fm/c or
less [1–4].

In a seminal article entitled Bottom-up Thermalization
[5], Baier, Mueller, Schiff and Son calculated the time when
gluons at weak coupling αs � 1 reached thermal equilibrium
in a heavy-ion collision, finding [6]

τ ≥ 1.5α
−13/5
s Q−1

s , (1)

which leads to τ � 6.9 fm/c for Qs ∼ 1 GeV and αs ∼ 0.3.
Clearly, this result seemed to be in tension with the starting
time required from the agreement between hydrodynamics
and experimental data.

Arnold et al. [7] pointed out that a possible way out
of the dilemma was that full thermalization was actually
not required for a hydrodynamic description, and that local
(near-) isotropy of the pressure tensor was sufficient. Thus,
the attention of the field shifted toward finding a mechanism
to quickly achieve local isotropy (isotropization) rather than
full thermalization in high energy nuclear collisions.

One such possible mechanism was that of non-abelian
plasma instabilities, specifically the non-abelian Weibel
instability, which had been extensively studied by Mrowczyn-
ski since the 1980s [8,9]. In a series of numerical studies
by a number of groups the growth and saturation of these
plasma instabilities was determined for non-expanding sys-
tems [10–14], see Refs. [15,16] for a review. While cor-
roborating the initial exponential approach toward isotropy,
these numerical studies suggested the system to stall at large
pressure anisotropies once the plasma instabilities reached
the non-perturbative non-abelian scale and could no longer
grow exponentially. Even worse, later studies in expanding
systems aiming at more realistically describing experimental
nuclear collisions indicated that the effect of plasma insta-
bilities was delayed/diminished to an extent that they could
not lead to local pressure isotropy in a time scale relevant for
nuclear collisions at RHIC and the LHC [17–20].

While full isotropization seemed difficult to achieve
within a weak-coupling QCD based framework, it appeared
to be reachable much faster in gravitational duals of gauge
theories in the limit of infinite coupling. For instance, Chesler
and Yaffe [21] report isotropization to occur at τ ∼ 0.7/T
for a non-expanding system, roughly translating to τ � 0.35
fm/c when assuming T ∼ 0.4 GeV. However, similar to the
case of plasma instabilities, isotropization does take more
time when considering the case of expanding systems such
as those in nuclear collisions, because expansion constantly
tries to drive the system away from local isotropy. This is the
reason why in newer studies including expansion [22,23],
the isotropization time gets delayed. In particular, it eventu-
ally became clear that even for systems at infinite coupling
strength the system does not isotropize early. Rather, even at
infinite coupling, the pressure anisotropy exceeds 10 percent
for all times τ � 10 fm/c [24].

For completeness, it should be noted that when including
inelastic processes in a weak-coupling based descriptions,
recent studies [25,26] have demonstrated the approach to
isotropy, albeit at times later than those found for infinitely
strongly coupled gauge theories. (This would better be the
case). Thus, the approach to isotropization in expanding
gauge theories is now understood both at weak and strong
coupling, and indicates long times.
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Despite the impressive progress made, I believe it is a
correct statement to say that at phenomenologically relevant
times of τ ∼ 1 fm/c following a nuclear collision, no theo-
retical approach (be it weakly coupled or strongly coupled)
finds the longitudinal and transverse pressure to agree with
each other to better than a factor of two. Obviously, a pressure
anisotropy of 50 percent is not close to an isotropic system,
let alone a system in thermal equilibrium. By the criterion of
Arnold, Lenaghan, Moore and Yaffe, hydrodynamics should
not apply.

But it does.

4 Hydrodynamization or the onset of hydrodynamic
applicability

• Q: How do you people know hydrodynamics applies for
pressure anisotropies of 50 percent or larger?

• A: We checked.

Let us consider the following numerical experiment. Take
matter described by gauge/gravity duality at infinite cou-
pling or alternatively described by kinetic theory at some
finite (constant) value of the coupling. Let the matter be ini-
tially at rest in equilibrium with some temperature Ti in flat
Minkowski space. Then, at a time t ∼ 0, the spacetime sud-
denly starts to expand in one dimension so that it effectively
mimics the effects of so-called Bjorken flow [27]. The sym-
bols in Fig. 1 show the response of the matter (at various
values of the coupling λ) in terms of the ratio of longitudinal
to transverse pressure as a function of time. The matter is ini-
tially in equilibrium so PT = PL (zero pressure anisotropy)
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Fig. 1 Pressure anisotropy versus time for matter undergoing Bjorken-
like expansion. Shown are exact results for matter with different cou-
pling constant λ (symbols, calculated using AdS/CFT and kinetic the-
ory), as well as hydrodynamics in first- and second-order gradient
expansion (‘NS’ and ‘BRSSS’, respectively). Note that PL/PT = 1
would correspond to isotropy (ideal hydrodynamics). Figure adapted
from Ref. [24]

and also tends to equilibrium at late times when the expansion
becomes very slow. However, for t � 0 when the expansion
is most rapid, the matter is clearly not locally isotropic, and
deviations from local isotropy become larger as the coupling
is decreased.

Also shown in Fig. 1 are results from a hydrodynamic
gradient expansion to first and second order in gradients,
respectively. One observes that hydrodynamics quantita-
tively matches the exact results whenever the pressure
anisotropy is 50 percent or smaller.

This ‘unreasonable success’ of hydrodynamics in describ-
ing systems with pressure anisotropies of order unity is nei-
ther limited to this one example nor to AdS/CFT dynamics,
nor exclusively to previous work by the present author, cf.
Refs. [23,28–32].

While of course no general proof, the above numerical
experiment indicates that hydrodynamics is able to give quan-
titatively accurate descriptions even when the matter not
locally isotropic. The time scale at which hydrodynamics first
is able to closely approximate the subsequent dynamics of the
exact underlying microscopic theory has been dubbed hydro-
dynamization time [33]. At the hydrodynamization time, the
matter is typically not locally isotropic. So what sets the time
scale for the onset of the applicability of hydrodynamics?

5 Hydrodynamic versus non-hydrodynamic modes

What is hydrodynamics? The equations of hydrodynamics
can be derived using a multitude of approaches. Some assume
the system to be close to thermal equilibrium, others assume a
weakly coupled microscopic particle description (kinetic the-
ory). In my opinion, the most general derivation of hydrody-
namics follows the approach of effective field theory (EFT).

According to this viewpoint, hydrodynamics is the EFT of
long-lived, long-wavelength excitations consistent with the
basic symmetries of the underlying system. The fundamental
variables of the EFT are that of a fluid: pressure P, (energy)
density ε, and fluid velocity ua . To lowest (leading) order
in the EFT, only algebraic combinations of these quantities
will enter the description.1 Corrections can then be systemat-
ically obtained by considering gradients of the fundamental
variables.

Applying this EFT approach to the energy-momentum
tensor for a relativistic system in three dimensions leads to
the well-known expansion

T ab = (ε + P)uaub + Pgab − 2η∇〈aub〉 + · · · , (2)

1 As one important qualifier, let me point out that a necessary condition
for this to work is the presence of a local rest frame, cf. the discussion
in Ref. [34]. Without a local rest frame, the local energy density cannot
be defined, and a fluid EFT approach is not applicable.

123



21 Page 4 of 11 Eur. Phys. J. C (2017) 77 :21

where gab denotes the spacetime metric, η is the shear viscos-
ity coefficient and the symbols <> denote a particular sym-
metric projector that dedicated readers can look up, e.g. in
Ref. [35]. With Eq. (2), conservation of energy and momen-
tum ∇aT ab = 0 then are the relativistic Navier–Stokes equa-
tions. Many articles have been written about non-causality of
the relativistic Navier–Stokes equations; I will simply ignore
this issue here because it is somewhat tangential to the fol-
lowing discussion.

The above EFT derivation does at no point invoke the
presence of an underlying particle-based, kinetic description
of the matter. However, given the requirement of the small
gradients, it does seem to require the system to be close to
isotropy. So what if gradients were not small in a particu-
lar situation of interest? Obviously, stopping at first order in
a gradient expansion would not be a good approximation.
However, one could try to include higher-order gradient cor-
rections to obtain a good approximation. I will try to elucidate
what happens in this case through a particular example.

For pedagogical purposes, let me pick the example of
N = 4 SYM at infinite coupling undergoing Bjorken expan-
sion that has been worked through in a tour-de-force paper
by Heller, Janik and Witaszczyk [36]. In this case one has a
high degree of symmetry, and the only relevant gradient is
∇ ·u = 1

τ
. The equations of motion then lead to a solution for

the temperature T as a function of τ which may be system-
atically calculated for small gradients (or equivalently large
τ ). (Note that the actual dimensionless expansion parameter
is 1

τT which scales as τ−2/3 in the hydrodynamic limit). Cal-
culating the temperature T (τ ) in a hydrodynamic gradient
expansion to order 240 leads to a series of the form [36]

T (τ ) = τ̂−1/3

(
1 +

240∑
n=1

αn τ̂
−2n/3

)
, (3)

where τ̂ = τ
τ0

, αn constant, and τ0 setting the initial time (or
equivalently temperature) scale.

If the gradient expansion was convergent, then we would
have succeeded in a (high-order) theory of hydrodynamics
that was unconditionally applicable also when the gradients
are large. Given that for this theory a very large number of
coefficients αn had to be calculated, it would be cumbersome
if not impossible to generalize this approach to situations with
a much lower degree of symmetry (e.g. nuclear collisions),
but at least in principle, it would work!

Unfortunately, there is mounting evidence that the hydro-
dynamic gradient expansion generally is not a convergent
series. In the cases that have been examined in detail (N =
4 and N = 2∗ SYM at infinite coupling, weakly cou-
pled kinetic theory in the relaxation time approximation
and Müller–Israel–Stewart (MIS) theory) it was found that

αn ∝ n! for large n, thus making the gradient expansion a
divergent series [36–40].

However, not all is lost. It turns out that when inspecting
the analytic structure of gradient expansions at high orders, it
is possible to use a generalized Borel resummation to rewrite
the above series for the case of N = 4 SYM as

T (τ ) = Thydro(τ ) + γ exp

[
−i

∫
dτ̂

(
ω̂Borelτ̂

−1/3

+
∑
n=1

ω̂n τ̂
−(2n+1)/3

])
+ · · · , (4)

where Thydro(τ ) is well approximated by the first few orders
in (3) as long as τ̂ is not too small. In the above expression,
ω̂Borel � ±3.1193 − 2.7471i , and both γ, ω1 have been cal-
culated in Ref. [36].

There are two things to note about the resummed result
(4). First, the exponential multiplying the coefficient γ in
(4) cannot be recast in terms of the hydrodynamic gradient
expansion. It is a truly non-hydrodynamic mode, and its pres-
ence explains why the naive hydrodynamic gradient series is
divergent.

Second, the numerical value of ω̂Borel is not an arbi-
trary number. It happens to be consistent with the first
non-hydrodynamic quasinormal mode frequency of a near-
equilibrium 5d Schwarzschild–AdS black hole

ω̂
(1)
QNM = ±3.119452 − 2.746676i, (5)

calculated by Starinets in Ref. [41]. A quasinormal mode
corresponds to a pole of a two-point function in the com-
plex frequency plane located at ω = 2πT ω̂QNM. Linear
response then implies the presence of a contribution of the
form eiωτ = ei2πω̂T τ to the one-point function which upon
using the leading-order expression in (3) for T (τ ) then leads
to a result e∼iω̂τ̂ 2/3

consistent with (4), cf. [42]. While only
the first non-hydrodynamic quasinormal mode ω̂

(1)
QNM has

been identified in the Borel transform of the gradient expan-
sion, it is likely that all higher non-hydrodynamic modes
also will contribute likewise to T (τ ), which has been antici-
pated through the ellipses in (4). In fact, Buchel, Heller and
Noronha were able to show that for the case ofN = 2∗ SYM
the first 10 quasinormal modes could be obtained from the
relevant Borel transform [38].

Thus, the following picture emerges: a naive hydrody-
namic gradient expansion of the energy-momentum ten-
sor is divergent because of the presence of other, non-
hydrodynamic degrees of freedom. However, the contribu-
tion from these non-hydrodynamic modes may be either
resummed via a generalized Borel transform, or anticipated
through explicitly calculating the non-hydrodynamic mode
structure of the energy-momentum tensor for the theory
under consideration:
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T ab = T ab
hydro + T ab

non-hydro. (6)

The term Thydro(τ ) in (4) is a “generalized” hydrody-
namic piece has been dubbed “hydrodynamic attractor” or
“all-order hydrodynamics” by various authors [37,43]. As
remarked above, it is well approximated by a low-order gra-
dient expansion approximation even in regime when gradi-
ents are moderately strong (see e.g. Ref. [37]). Thus, even
though different in principle, it is entirely conceivable that,
for many applications involving gradient terms of order unity,
T ab

hydro will quantitatively be well approximated by the naive,
low-order gradient expansion (2) because the divergence of
the gradient approximation only becomes apparent when
including higher orders. High-temperature perturbation the-
ory in QCD exhibits a similar feature where the leading-
order (g2) correction to the free energy offers a quantitatively
reasonable description of lattice QCD data even for g � 1
[44], while the inclusion of higher-order corrections clearly
exhibits the divergent series nature of a naive perturbative
expansion.

Contrary to the hydrodynamic contribution, the non-
hydrodynamic contribution T ab

non-hydro will in general not have
a universal form, but rather be dependent on the particu-
lar underlying microscopic description under consideration
(“microscopic” in the sense of QCD, not in the sense of quasi-
particles).

This is most easily elucidated when considering the small
amplitude (but arbitrary gradient) linear response of the
energy-momentum tensor to an initial source Scd(x),

δT ab(t, x) =
∫

dωd3ke−iωt+ik·xGab,cd
R (ω,k)Scd(k), (7)

where Gab,cd
R (ω,k) is the retarded two-point function of the

energy-momentum tensor (cf. [45]).
For instance, in the case of N = 4 SYM at infinite

coupling, G00,00(ω,k) possesses only poles in the complex
plane. Two of these poles may be uniquely identified as

hydrodynamic sound poles, located at ωh = ±cs |k|− 2iη|k|2
3s

when |k| � 1. In addition to the hydrodynamic poles, there is
an infinite number of (pairs) of non-hydrodynamic quasinor-
mal modes located at ω = ω

(1)
nh , ω

(2)
nh , . . . [47]. Performing

the frequency integration in (7) will pick up contributions at
all of these poles, immediately leading to

δT 00(t, x) =
∫

d3keik·x
[

e−iωh t ah(k)+
∞∑
n=1

e−iω(n)
nh t an(k)

]

= δT 00
hydro + δT 00

non-hydro, (8)

where the coefficient functions ah(k), an(k) depend on the
residues from the integration as well as the source function
S(k). The integral in (8) cleanly separates into a hydrody-
namic piece governed by the sound mode dispersion ωh(k)
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and an infinite sum over non-hydrodynamic contributions
with dispersion ω

(n)
nh (k).

More important than the realization that the energy-
momentum tensor can be split into a hydrodynamic and a
non-hydrodynamic piece is the fact that the hydrodynamic
poles cease to exist at some value of k when the coupling is
finite [48]. This implies that, for |k| larger than some critical
value of |k|c (dependent on the coupling), the hydrodynamic
component vanishes from the spectrum and is replaced by
purely non-hydrodynamic behavior. At least for |k| > |k|c,
hydrodynamics has broken down.

One may criticize that N = 4 SYM is a very spe-
cial microscopic theory, and worry about drawing general
conclusions based exclusively on N = 4 SYM. However,
it turns out that when calculating Gab,cd

R (ω,k) in kinetic
theory in the relaxation time approximation [46], similar
conclusions apply. In kinetic theory, G00,00

R (ω,k) generally
has two hydrodynamic poles which are located at ωh =
±cs |k|− 2iη|k|2

3s when |k| � 1. In addition to these hydrody-

namic poles, G00,00
R (ω,k) exhibits a logarithmic branch cut

which may be taken to run from −|k|− i
τR

to |k|− i
τR

where
τR = 5 η

sT is the relaxation time in kinetic theory. It is inter-
esting to note that when increasing |k| beyond some critical
value |k|c, the hydrodynamic poles pass through the logarith-
mic cut onto the next Riemann sheet, and effectively cease
to exist (see Fig. 2). Only the non-hydrodynamic branch cut
remains, implying that, for |k| > |k|c, hydrodynamics has
broken down.

I will summarize the above observations in the form of a

Lemma Given the existence of a local rest frame, hydrody-
namics offers a valid and quantitatively reliable description
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of the energy-momentum tensor even in non-equilibrium situ-
ations as long as the contribution from all non-hydrodynamic
modes can be neglected.

Proof Consider matter possessing a local rest frame every-
where in the spacetime patch of interest, such that the local
energy density is non-negative in any frame. Pick a con-
venient global frame (“laboratory frame”) and consider the
Fourier decomposition of the energy-momentum tensor in
this frame. Now consider real time perturbations δT ab(t,k)

around the Fourier zero mode T ab
background in the laboratory

frame. At some initial time t0, the difference between the
local energy-momentum tensor and the background can be
viewed as an initial perturbation Sab(t0,k). In the limit of
small perturbation amplitude |Sab| → 0, linear response the-
ory applies, cf. Eq. (7). Furthermore, the retarded two-point
function GR is well known to be given by Navier–Stokes
hydrodynamics [45] in the small wave-number limit k → 0.
The two-point correlator in Navier–Stokes hydrodynamics
possesses hydrodynamic poles (shear and sound poles) in the
complex frequency plane. Contour integration as in Eq. (7)
will pick up these poles and lead to a hydrodynamic contribu-
tion to δT ab. As k is increased, the location of the hydrody-
namic poles may shift, and they may even disappear from the
spectrum completely at some critical wave-number. In addi-
tion to the hydrodynamic poles, new, non-hydrodynamic sin-
gularities may appear in the complex frequency plane. These
non-hydrodynamic singularities, upon contour integration in
Eq. (7) will lead to a non-hydrodynamic contribution that
has to be added to the hydrodynamic part of δT ab as in the
example given in Eq. (8). As the amplitude Sab is increased,
other, non-linear structures will contribute to δT ab which
can be expressed as a sum over integrals of n-point functions
with the appropriate powers of the source Sab. In the limit
of small wave-number, these non-linear corrections to the
hydrodynamic part will, upon resummation, shift the hydro-
dynamic poles locally, and in addition contribute new struc-
tures familiar from the hydrodynamic gradient expansion,
cf. Eq. (2). Away from k = 0 the non-linear hydrodynamic
part of δT ab is analytically connected to this familiar struc-
ture, giving rise to the generalized hydrodynamic attractor
form, until some critical wave-number k = kc is reached. In
addition to the hydrodynamic part, there will be non-linear
corrections to the non-hydrodynamic contribution of δT ab.
Thus, the global energy-momentum tensor can be written
as T ab = T ab

background + δT ab = T ab
hydro + T ab

non-hydro. If the
non-hydrodynamic contribution can be neglected, the lemma
follows trivially.

(Mathematicians probably would want to see a more for-
mal proof than this, so the above lemma should probably be
called a conjecture).

The above lemma may seem trivial: once
non-hydrodynamic modes are absent, how can the energy-
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Fig. 3 A non-artist’s calculation of possible RHIC trajectories for
Au+Au collisions at various collision energies

√
s = 39,64,200 GeV.

Rather than displaying the common projections in the temperature–
baryon chemical potential (T, μ) plane, trajectories explored by exper-
iment are more likely to explore at least a third non-equilibrium direc-
tion (symbols). Projections of the trajectories to the T, μ and T, ξ

planes are indicated as gray dashed lines. A minimum of ξ � 0.2
is achieved for

√
s = 200 GeV at T � 0.17 MeV, which corresponds

to PL/PT � 0.86. For reference, the deconfinement cross-over transi-
tion (blue dotted line) and the liquid–gas first-order transition (full black
line) have been indicated. Note that as the collision energy is lowered,
one moves further away from equilibrium

momentum tensor be described by anything else but hydro-
dynamics? However, when phrased in this fashion, hydro-
dynamics neither requires equilibrium, nor isotropy, nor
infinitesimally small gradients. (It does require the presence
of a local rest frame, though [34]). The applicability of hydro-
dynamics is exclusively determined by the relative impor-
tance of non-hydrodynamic modes.

As it stands, the above lemma has at least one potentially
important consequence, which is phrased as follows.

Dilemma The phenomenological success of hydrodynamics
in describing experimental data from high energy nuclear
collisions does not imply near-equilibrium behavior of the
matter. Experiments do not directly probe the equilibrium
QCD phase diagram at finite T, μ, but explore trajectories
in a space with at least onemore (non-equilibrium) direction.

Incomplete equilibration in nuclear collisions is a fact well
known to all heavy-ion hydro practitioners in the field and
has been pointed out more than a decade ago by Bhalerao,
Blaizot, Borghini and Ollitrault in Ref. [49]. The above
lemma allows me to go one step further since not even near-
equilibrium is required for hydrodynamics. The second part
of the dilemma is a direct consequence of the first, yet it
probably is not as widely appreciated. I have tried to visu-
alize the last point of the dilemma in Fig. 3. To generate
the hypothetical trajectories I have matched the pressure
anisotropy PL/PT to the momentum anisotropy parameter
ξ , first defined in Ref. [50]. I use ξ ∈ [0,∞) to express the
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degree of non-equilibrium (“non-equilibriumness”), where
ξ = 0 corresponds to the case of local equilibrium. There is
an extensive literature in anisotropic hydrodynamics which
makes the connection between PL/PT and ξ precise (see
e.g. the instructive lecture notes by Strickland, Ref. [51,
Eq. (3.19)]). For the pressure anisotropy itself, I used Navier–
Stokes hydrodynamics in Bjorken expansion (cf. [24]) and
a viscosity that is given by η

s = 1
4π

for T > 0.17 GeV and
rises linearly as the temperature is lowered to reach η

s = 1
at T = 0.1 GeV (cf. [52,53]). The temperature and chemi-
cal potential dependence result from a drastically simplified
version of Hung and Shuryak, Ref. [54], with just one mas-
sive degree of freedom in the hadron gas phase, and assum-
ing constant baryon density to entropy ratio. Trajectories are
started at τ = 1 fm/c with multiplicities representative of
experimental measurements [55] converted to temperature
values T (τ = 1 fm/c) as in Ref. [56]. Clearly, none of these
choices do justice to the much more accurate descriptions
that are currently available. However, I expect the sketch in
Fig. 3 to be qualitatively reliable.

6 Breakdown of hydrodynamics and tests

According to the central lemma in the previous section,
hydrodynamics can be used to describe a system if a local
rest frame exists and non-hydrodynamic modes are sub-
dominant. I have nothing new to say about how to test for
the presence of a local rest frame, so I will simply follow
everyone else’s approach and assume that a local rest frame
exists. (This is very likely wrong [34] and actually should
be thought about more, but I leave this task to dedicated
readers.)

Contrary to the existence of local rest frames, quite a
bit of knowledge now exists on those non-hydrodynamic
modes. For the case of kinetic theory with relaxation time
τR , we know the analytic structure of non-hydrodynamic
modes in the two-point function of the energy-momentum
tensor, and we know that hydrodynamic modes completely
vanish from the spectrum at |k|cτR � 4.5 [46]. Using
τR = 5η

sT and η
s � 5

g4 for N = 3 color QCD [57], one

finds |k|c � 0.02λ2T in terms of the ’t Hooft coupling
λ ≡ g2N . From gauge–gravity duals at large but finite λ,
non-hydrodynamic modes imply the breakdown of hydrody-

namics at |k|c � πT
4 ln

(
6.65λ3/2

1+105λ−3/2

)
(see Fig. 4 for exact

numerical results from Ref. [48]). These kinetic theory and
gauge–gravity results for the hydrodynamic breakdown scale
kc are compared in Fig. 4. It is curious to note that – despite
the difference of the kinetic theory and gauge–gravity dual-
ity approaches – the results for kc turns out to be quanti-
tatively similar in both approaches for moderate values of
λ � 10 − 20.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  10  20  30  40  50  60  70

k c
/T

λ

Hydrodynamic Breakdown Scale
Gauge-Gravity (numeric)
Gauge-Gravity (approx)

Kinetic Theory

Fig. 4 Results for the hydrodynamic breakdown scale kc from weak
coupling (‘kinetic theory’ [46]) and strong coupling (‘gauge–gravity’
[48]) frameworks (the curve labeled ‘approx’ is a fit to the exact numer-
ical values from Ref. [48], see text). The regime of applicability for
kinetic theory is λ � 1, while for gauge–gravity duality λ � 1 is
required. Note that despite the difference in weak-coupling and strong-
coupling frameworks, the resulting hydrodynamic breakdown scale is
quantitatively similar for moderately strong couplings λ � 10 − 20

Naively applying the results for kc to QCD with αs ≡
g2

4π
� 0.5 leads to kc(λ�19)

T = 4 − 7, where the higher value
is actually coming from the kinetic theory result. Let us be
optimistic and take |k|c � 7T . Thus, I claim that no hydro-
dynamic description is possible for QCD systems smaller
than k−1

c � 0.15 fm at a typical QCD-scale temperature
of T � 200 MeV. The prediction that hydrodynamics must
break down for |k|−1 < 0.15 fm is most likely somewhat
useless, because it is very hard to falsify experimentally in
nuclear collisions given that the mean proton radius is 0.86
fm. However, the limit of 0.15 fm at least constitutes an actual
numerical conjecture for the lower bound of the smallest pos-
sible droplet of QCD liquid.

It should be pointed out that the results |k|c � 4.5
τR

and the
numerical gauge–gravity results shown in Fig. 4 are quanti-
tative upper bounds on the domain of hydrodynamic appli-
cability in weak- and strong-coupling scenarios. However,
it is likely that hydrodynamics breaks down before reach-
ing these values of |k|. One reason why hydrodynamics may
break down earlier would be that while hydrodynamic modes
do not vanish for |k| < |k|c, they may become subdominant
to certain non-hydrodynamic modes, namely those which
happen to be closer to the origin of the complex ω plane. For
N = 4 SYM at λ → ∞, this seems to happen at around
|k| � 2πT , which is at around the same value as kc obtained
at finite λ. Yet another reason why hydrodynamics may break
down at scales below |k|c could be non-linear effects. For a
particular initial condition, numerical studies of N = 4 at
λ → ∞ including full non-linear effects by Chesler [58]
seem to indicate a breakdown of hydrodynamics at a scale
|k| � T . These results are fully consistent with the “most
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Fig. 5 Experimental data for flow coefficients vn as a function of par-
ticle pT for Pb+Pb collisions at

√
s = 5.02 TeV (ALICE [59]). No

hydrodynamic curves are shown, but it is well known that hydrody-
namics well describes the experimental data in the regime indicated as

‘hydro’ in the plot [60], possibly extending up to pT � 3 GeV. By
contrast, for pT � 4 GeV, the experimental data seems to deviate sys-
tematically from the low-momentum behavior, and I have labeled this
region ‘non-hydro’

optimistic” result kc � 7T and the resulting hard upper
bound for the hydrodynamic breakdown scale, but clearly
leave room for sharpening the prediction for |k|c.

A much more direct route to experimentally constrain kc
could be provided by high-momentum data on flow coeffi-
cients, see Fig. 5. Experimental data for collective flow har-
monics in Pb+Pb collisions suggests a change in behavior
in the regime between pT = 3 GeV to pT = 4 GeV. The
low-momentum region is well described by hydrodynamics
[60]. Assuming that measured particles originated from a
constant-temperature freeze-out surface at T = 0.17 GeV,
this would indicate a breakdown of hydrodynamic behavior
at pT

T = 18 − 23. In order to relate this scale to the hydrody-
namic breakdown scale kc � 7T , quantitative calculations
of the location of non-hydrodynamic modes in an expanding
system are needed.

In the hadronic phase, kinetic theory would predict hydro-
dynamic modes to dominate for k < kc ∝ 1

τR
, while non-

hydrodynamic (particle) modes dominate for k > kc. As
the temperature is lowered, τR ∝ η

sT increases strongly [52]
until kc falls below the typical system wave-number. From
this point onward, most of the system dynamics proceeds
according to the non-hydrodynamic particle kinetics, provid-
ing a qualitative understanding of the transition from hydro-
dynamic to particle cascade dynamics (“freeze-out”).

The above statements involve hard lower bounds on the
smallest scales at which hydrodynamics applies, and a qual-
itative understanding of the freeze-out transition. However,
a quantitative test of the applicability of hydrodynamics, e.g.
through testing sensitivity of results with respect to non-
hydrodynamic modes, is desirable in the case of nuclear
collisions. Fortunately, the workhorse of relativistic vis-
cous hydrodynamics simulations, “causal relativistic viscous
hydrodynamics” (which goes by many names and acronyms
but is usually associated with the work of Müller, Israel and

Stewart [61,62]) does contain a non-hydrodynamic mode
buried within, which may be exploited for testing purposes.
Specifically, besides the usual hydrodynamic modes, the
energy-momentum tensor two-point function contains a pole
located at ωnh = − i

τπ
, where τπ is the “viscous relaxation

time” that also controls the size of the second-order gradient
term in the one-point function of T ab. Any current numeri-
cal hydrodynamics simulation of the matter produced after a
relativistic nuclear collision needs a specific value for τπ as
an input. Simulators choose values of τπ as they see fit, given
that the “correct” value for τπ for QCD is not known, and
that primary interest is in extracting information as regards
η
s ,

ζ
s , not some obscure second-order transport coefficient.
However, varying τπ around some “fiducial” value does

vary the decay time of the non-hydrodynamic mode inher-
ent to causal relativistic hydrodynamics, thus offering a
direct handle on the sensitivity of final results on the non-
hydrodynamic mode. This can be implemented in practice
in relativistic viscous hydrodynamic simulations by running
simulations at multiple values of τπ and expressing final
results in terms of a mean value and a systematic error bar
covering the variations of final results from changing τπ .
Examples are shown in Fig. 6 for the case of central p+Au col-
lisions at various values of

√
s and p+p collisions at

√
s = 7

TeV. While the sensitivity on non-hydrodynamic modes is
not vanishingly small, the error bars do seem to signal the
applicability of hydrodynamics to both p+Au and p+p col-
lisions in general. However, in the case of p+p collisions
and dN

dY < 2, the error bars become large, signaling strong
sensitivity of the result to non-hydrodynamic modes. This
empirical result seems to indicate that hydrodynamics breaks
down in p+p collisions for dN

dY < 2. This multiplicity value of
the hydrodynamic breakdown corresponds well to the results
derived by Spalinski [63]. It would be interesting to repeat
these sensitivity tests for hydrodynamics with a different non-
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Figures based on results from Ref. [65] and from Ref. [66], respectively

hydrodynamic mode structure, for instance along the lines
suggested in Ref. [64].

7 Concluding remarks

1. I would argue that there is hard experimental evidence,
e.g. through the phenomenon of jet modifications, for the
presence of strongly interacting QCD matter created in
nuclear collisions. As argued in this note, I am doubtful
about the hard evidence for this matter to be equilibrated.

2. The physics of non-hydrodynamic modes is a rich and
a barely studied subject. Given that non-hydrodynamic
modes play an important role in the applicability and
breakdown of a hydrodynamic descriptions, I believe
those non-hydro modes should receive more attention,
from theorists and experimentalists alike.

3. The central lemma in Sect. 5 also applies to the case
of diffusion, not only momentum transport. In particu-
lar, this implies that a constitutive equation of the form
J = σ E could hold in the early-time, out-of-equilibrium
regime following a nuclear collision, if non-hydro modes
are subdominant. This could potentially explain a longer-
than-expected life-time of the magnetic field which is
critical to experimental detection of the Chiral Magnetic
Effect [67] (see also Ref. [68]).

4. As outlined in the central dilemma in Sect. 5, the exper-
imental search for the QCD critical point will necessar-
ily explore trajectories in some non-equilibrium space
(cf. Fig. 3). This implies that the standard equilibrium
theory of critical fluctuations strictly speaking does not
apply, and one should try to understand non-equilibrium
effects (see e.g. Ref. [69]) in order to correctly interpret
the experimental data.

5. In view of the ‘QGP drop size lower bound’ of 0.15 fm,
it is maybe not surprising that the matter created in p+p

collisions would behave hydrodynamically. At this scale,
however, p+p collisions may not be the ultimate drop size
test. QCD-QED couplings allow fluctuations of electrons
to, e.g. quark pairs, thus opening up the possibility of local
energy deposition reminiscent of p+p collisions occur-
ring in e+–e− collisions (cf. Refs. [70–72]). Data on e+–
e− collisions taken at, e.g. LEP should be re-analyzed
with modern tools in order to find (or rule out) hydrody-
namic behavior in these systems.

6. The fact that experimental data shows a qualitative
change in trend from hydrodynamic behavior at low
momenta to non-hydrodynamic behavior at high momenta
suggests a potential experimental handle on the hydrody-
namic breakdown scale kc in QCD. This potential con-
nection should be made quantitative in further studies.

7. The entire discussion in this note ignores the presence
of hydrodynamic thermal fluctuations, which arise in
SU (N ) gauge theories at any finite number N . The sub-
field of relativistic hydrodynamics with thermal fluctua-
tions is still in its infancy, but potentially can have impor-
tant phenomenological consequences [45,73–80].

8. A recurring problem of non-standard cosmology (so-
called “viscous cosmology”, cf. [81,82]) seems to be
that “interesting” deviations from standard cosmology
occur when gradient corrections become order unity. In
the “old-fashioned” picture of hydrodynamics, this was
not acceptable since order unity corrections heralded the
breakdown of applicability of the theory. In view of the
central lemma in Sect. 5, it could be interesting to deter-
mine the relevant non-hydrodynamic modes in cosmol-
ogy and re-evaluate the regime of applicability of viscous
cosmologies.
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