View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Queensland eSpace

CHANSON, H. (2013). "Propagation of surge waves in channels with large-scale bank roughness." Journal
of Hydraulic Research, IAHR, Vol. 51, No. 6, pp. 740-742 (DOI: 10.1080/00221686.2013.863229) (ISSN
0022-1686).

Propagation of Surge Waves in Channels with Large-Scale Bank Roughness.

Discussion

Hubert CHANSON (IAHR Member), School of Civil Engineering, The University of Queensland, Brisbane,

Australia

Email: h.chanson@ug.edu.au (Corresponding Author)

Full correspondence details:

The University of Queensland, School of Civil Engineering,
Brisbane QLD 4072, Australia

Tel.: (61 7) 3365 3516 - Fax: (61 7) 3365 45 99,

Email: h.chanson@ug.edu.au


https://core.ac.uk/display/19335976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CHANSON, H. (2013). "Propagation of surge waves in channels with large-scale bank roughness." Journal
of Hydraulic Research, IAHR, Vol. 51, No. 6, pp. 740-742 (DOI: 10.1080/00221686.2013.863229) (ISSN
0022-1686).

Propagation of Surge Waves in Channels with Large-Scale Bank Roughness.

Discussion

In open channels, a sudden rise in water elevation generates a positive surge. Positive surges are commonly
observed in man-made channels (Bazin 1865, Treske 1994) and a natural occurrence is the tidal bore in
macro-tidal estuaries (Tricker 1965, Chanson 2011a). The positive surge may propagate upstream or
downstream (Fig. 1). It is a rapidly-varied flow and the flow properties immediately upstream and
downstream of the front must satisfy the continuity and momentum principles (Rouse 1938, Liggett 1994).
The authors investigated positive surge waves in a long channel with a range of sidewall configuration. Their
configuration corresponded to a downstream surge configuration (Fig. 1, Right). The contribution is a
welcome addition to the literature on rapidly-varied unsteady open channel flows. In this discussion, it is
shown that the effects of boundary friction were previously documented, and a recent investigation provided
some insight into the energy dissipation induced by large-scale sidewall roughness.

The shape of a positive surge is closely linked with its Froude number Fs, defined as: F¢ =
(Vu+U1)/(ghy)Y? and F = (V-U,)/(ghy)"? for a surge propagating upstream and downstream respectively in a
rectangular prismatic channel, where V,, is the surge celerity, U, is the initial flow velocity, g is the gravity
acceleration and h is the initial flow depth (Henderson 1966, Liggett 1994). When the surge Froude number
is between unity and 1.4 to 1.6, the surge front is smooth and followed by a train of secondary undulations:
that is the undular surge (Treske 1994). For larger Froude numbers, a breaking bore is observed with a
marked roller extending across the whole channel width (Koch and Chanson 2009). The effects of boundary
roughness on positive surges were tested in laboratory channels (Chanson 2010, Docherty and Chanson
2012). The undular surge data exhibited some wave amplitude attenuation trend close the theoretical
development of Ippen and Kulin (1957), while the wave period and wave length data compared favourably
with the wave dispersion theory for gravity waves un intermediate water depths (Dingemans 1997). Detailed
velocity measurements showed the significant impact of bed roughness on the unsteady flow motion
(Chanson 2010, Docherty and Chanson 2012). The bed roughness induced an attenuation of the undular free-
surface effect on the velocity field in an undular surge. In a breaking surge, the bottom rugosity enhanced the
transient recirculation motion next to the bed beneath and behind the roller during the front passage.

The effect of sidewall macro-roughness was tested on undular surges with a rapid constriction and
expansion (4B/B = 0.235, L/B = 1.52) (Chanson 2011b). The undular surge lost up to one third of its
potential energy per unit area as the result of form drag generated by the constriction/expansion, including
the generation of large scale surface scars after the sidewall expansion (Fig. 2). Figure 2 illustrates some
surface scars associated with the propagation of a positive surge past an abrupt expansion. The regular
sidewall macro-roughness investigated by the authors may be regarded as a succession of rapid
constriction/expansion, and the above observations would predict a decay in wave height with increasing
distance consistent with the authors' report. Detailed velocity measurements (Chanson 2011b) showed

further the existence of energetic turbulent events behind the surge after it passed the constriction/expansion
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section. These events appeared to be some kind of macro-turbulence advected behind the surge front. Recent
CFD modelling showed indeed the production of large-scale vortices beneath a positive surge front and their
upstream advection (Furuyama and Chanson 2010, Lubin et al. 2010). Evidences of advected macro-
turbulence were also reported in natural channels (Chen 2003, Wolanski et al. 2004, Chanson et al. 2011).

In summary there is some existing literature on the effects of boundary friction and sidewall macro-
roughness on positive surges, including in terms of the instantaneous velocity field. It is hoped that the
present discussion will guide future researchers to the fairly broad range of relevant studies. Some more
detailed comparative analyses between the literature and the authors' results would be some useful addition

to the research literature on positive surge waves.

Notation

B = channel width [m] between constriction

h = water depth [m]

Fs = surge Froude number

g = gravity acceleration [m/s?]
L. = constriction length [m]

Q = volume discharge [m?/s]
V., = surge celerity [m/s]

U = flow velocity [m/s]

4B = channel width enlargement [m] on each side
Indices

b = base flow

1 = initial flow conditions

2 = flow conditions immediately after the surge front
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Figure 1 Definition sketch of positive surges induced by gate operation: upstream surge propagation (Left)

and downstream surge propagation (Right)

Surface turbulence Surface scars in the wake
induced by reflection of sidewall expansion Surge Ifrom

Figure 2 Undular positive surge propagating upstream through a constriction/expansion: the leading edge of
the surge just passed the sudden expansion (surge propagation from left to right) - Flow conditions: Qp, =
0.0232 m%s, h; = 0.1552 m, V,, = 1.15 m/s, undular surge (Fs = 1.15) (Chanson 2011b) - Note the surface

scars induced by the surge propagation past the sidewall expansion



