
CASTRO-ORGAZ, O., and CHANSON, H. (2014). "Depth-Averaged Specific Energy in Open-Channel 
Flow and Analytical Solution for Critical Irrotational Flow over Weirs." Journal of Irrigation and Drainage 
Engineering, ASCE, Vol. 140, No. 1, Paper 04013006, 8 pages (DOI: 10.1061/(ASCE)IR.1943-
4774.0000666) (ISSN 0733-9437 [Print]; ISSN: 1943-4774 [online]). 
 

 1

Depth-Averaged Specific Energy in Open Channel Flow and Analytical 

Solution for Critical Irrotational Flow Over Weirs 

 

Oscar Castro-Orgaz1 and Hubert Chanson2 

 

Abstract:  

Free surface flow in open channel transitions is characterized by distributions of velocity and 
pressure that deviate from uniform and hydrostatic conditions respectively. Under such 
circumstances the widely used expressions in textbooks [e.g. E=h+U2/(2g) and hc=(q2/g)1/3] are not 
valid to investigate the changes in velocity and depth. A depth-averaged form of the Bernoulli 
equation for ideal fluid flows introduces correction coefficients to account for the real velocity and 
pressure distributions into the specific energy equation. The behavior of these coefficients in 
curvilinear motion at and in the neighbourhood of control sections was not documented in the 
literature. Herein detailed two-dimensional ideal fluid flow computations are used to characterize 
the entire velocity and pressure fields in typical channel controls involving transcritical flow, 
namely the round-crested weir, the transition from mild to steep slope and the free overfall. The 
detailed two-dimensional ideal fluid flow solution is used to study the behavior of the depth-
averaged coefficients, and a novel generalized specific energy diagram is introduced using universal 
coordinates. The development is used to pursue a simplified critical flow theory for curved flow, 
relevant to water discharge measurements with circular weirs. 
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Introduction 

Transcritical flow in open channels involves distributions of velocity and pressure that 

deviates from uniform and hydrostatic conditions, respectively (Montes 1998, Chanson 2006). 

Typical cases are the flow over a round-crested weir or a free overfall, where the flow curvature 

induces centrifugal force effects that results in a non-hydrostatic pressure and non-uniform velocity 

(Jaeger 1956, Vallentine 1969). The 'specific energy equation' (Bakhmeteff 1932a) is a widely used 

tool in hydraulic engineering, although it is based on the assumptions of a uniform velocity and 

hydrostatic pressure distributions: 
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            (1) 

 

where E=specific energy, h=flow depth, U=mean flow velocity=q/h, q= discharge per unit width 

and g=gravity acceleration. The underlying assumptions behind Equation (1) imply that the 'specific 

energy equation' [Eq. (1)] is not valid to study the flow in open channel transitions. However, the 

'specific energy equation' is commonly used to explain, qualitatively, the changes of flow depth and 

velocity in smooth transitions where friction can be neglected. For example, Henderson (1966) used 

a differential form of Equation (1) to explain the flow over the round-crested weir, and Rouse 

(1938) used Equation (1) to describe changes in velocity and depth in a channel step. This is a 

contradiction, because of in both flow problems the pressure is not hydrostatic, the velocity non-

uniform and Equation (1) can not yield any realistic prediction of velocity or depth. Rouse (1932) 

made a worthy documentation of the two-dimensional flow behavior of channel flow in short 

transitions using model testing, i.e. the transition from mild to steep slope and the free overfall. It 

appears, therefore, that either model testing or full two dimensional (2D) ideal fluid flow 

simulations (Vallentine 1969) are required to obtain the accurate picture of flow in a channel 
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transition. Jaeger (1956) advocated the introduction of velocity and pressure correction coefficients 

in the one dimensional specific energy equation to extend its use to general flows in channel 

transitions. However, general analytical results were neither presented nor specific evaluation of the 

correction coefficients using detailed 2D ideal fluid flow computations. 

A depth-averaged form of the Bernoulli equation for ideal fluid flows introduces in the specific 

energy correction coefficients to account for the actual velocity and pressure distributions (Liggett 

1993, Chanson 2006). This higher order equation can be used to describe the actual flow changes of 

velocity and depth with generality. The first objective of this contribution is to study the behavior of 

the depth-averaged coefficients in curvilinear motion at and in the neighborhood of control section 

using detailed two-dimensional ideal fluid flow computations. This will not provide a catalogue of 

depth-averaged coeffcients than can be read and then applied to all transitional flow cases. Instead, 

this will reveal how the general energy equation behaves at channel controls using selected test 

cases. Thus, the 2D model will permit a generalized view of the 1D flow model in channel 

transitions This important theoretical information will provide insights that can be used to find 

simplified forms of the energy equation for practical applications. A new generalized specific 

energy diagram is introduced using universal coordinates, where the flow in channel transitions can 

be depicted with complete generality. The contribution presents for the first time the depth-averaged 

form of two-dimensional fluid flows at channel controls. A simplified critical flow theory for 

curved flow is proposed, based on the depth-averaged results, for water discharge measurement 

purposes with circular weirs. 

 

Depth-averaged open channel flow diagram 

In open channels flows with arbitrary distributions of velocity and pressure, the depth averaged 

specific energy is defined as (Rouse 1932, Liggett 1993, Montes 1998, Chanson 2006) 

 



CASTRO-ORGAZ, O., and CHANSON, H. (2014). "Depth-Averaged Specific Energy in Open-Channel 
Flow and Analytical Solution for Critical Irrotational Flow over Weirs." Journal of Irrigation and Drainage 
Engineering, ASCE, Vol. 140, No. 1, Paper 04013006, 8 pages (DOI: 10.1061/(ASCE)IR.1943-
4774.0000666) (ISSN 0733-9437 [Print]; ISSN: 1943-4774 [online]). 
 

 4

2 2 2

20

1
d

2 2

h p u v q
E y y h

h g gh



 

      
 

      (2) 

 

where p=pressure, =g=specific weight of water, y=elevation, u=horizontal velocity in the x-

direction and v=vertical velocity in the y-direction; and the depth-averaged correction coefficients  

and  are respectively 
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where Λ=piezometric pressure correction coefficient and β=kinetic energy correction coefficient. 

Equation (2) expresses a depth-averaged specific energy, calculated between streamlines for an 

incompressible and inviscid fluid (Rouse 1938, Vallentine 1969, Montes 1998). 

At spillway crest or a free overfall (Fig. 1), the discharge may be expressed as a function of the 

upstream head above crest as  

 

 1 23
mindq C gE          (4) 

 

where Cd=discharge coefficient and Emin=upstream head above crest (or minimum specific energy). 

The upstream head above crest corresponds to the minimum specific energy for a frictionless fluid. 

Introducing Equation (4) into Equation (1), it becomes 
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Equation (5) is a generalized channel flow relationship at an arbitrary section in curvilinear flow. At 

a section of minimum specific energy E=Emin, Equation (5) reduces to the equation developed by 

Chanson (2006). Equation (5) is plotted in Figure 2, where it can be observed the effect of the ratio 

Emin/E. Figure 2 shows the relations between water depth and discharge for a given specific energy 

when the flow is curvilinear. This type of relationship was first proposed by Bakhmeteff (1932a) for 

hydrostatic pressure and uniform velocity distributions. 

Using Figure 2 the behaviour of curvilinear flows involving minimum specific energy conditions in 

any part of the flow domain can be investigated if the depth-averaged coefficients are determined. 

With this information, it is possible to obtain a one-dimensional interpretation of the flow near 

critical flow sections. To the authors’ knowledge, this information has so far not been presented in 

the literature. Thus, in the next section a full two-dimensional ideal fluid flow numerical solution 

for flows with minimum specific energy is developed. The depth-averaged coefficients will be 

determined numerically and the one-dimensional characteristics of the flow investigated. 

 

Numerical solution of two-dimensional ideal fluid flow 

Method of solution 

The estimate of the correction coefficients Λ and β requires a detailed 2D description of the velocity 

field (u, v) at any point (x, y) in order to evaluate numerically the integrals given by Equations (3a) 

and (3b). The computation of the 2D flow field was done solving the equations for an inviscid and 

irrotational flow. The numerical model is based on a semi-inverse mapping of Laplace equation, 

described in detail by Montes (1994) and Castro-Orgaz (2013). The semi-inverse mapping or x-ψ 

method (Montes 1992, 1994) is adequate for open channel flow, where ψ=stream function. Montes 
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proposed to solve the Laplacian for y as a function of the pair of variables (, x). The Laplacian of 

this semi-inverse transformation y=y(x, ψ) is 

 

2 22 2 2

2 2
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x x x x   
                           

    (6) 

 

This must be solved subject to suitable boundary conditions. The computation directly yields the 

equation for each streamline y=y(x, ψ=const), from which the velocity components of the potential 

flow are obtained. The boundary sections up- and downstream are selected where streamlines are 

parallel to the channel bottom. Equation (6) was discretized using first order central derivatives and 

details of the numerical solution can be found elsewhere (Thom and Apelt 1961, Montes 1992, 

Montes 1994, Castro-Orgaz 2013). Once the velocity profiles are computed from the numerical 

solution of Equation (6), the pressure distribution is deduced from the Bernoulli equation. 

 

Flow over a round-crested weir 

The experimental data of Sivakumaran et al. (1983) for a symmetrical hump of profile 

y=20exp[−0.5(x/24)2] (cm) is plotted in Figure 3a. The computed water surface and bed pressure 

profiles obtained from the 2D ideal fluid flow solution shows excellent agreement with the 

experimental data, indicating the accuracy of the 2D ideal fluid flow numerical model. The velocity 

and pressure profiles at 3 representative sections are plotted in Figure 3b. At section x/hc=−2 the 

pressure distribution is hydrostatic, as indicated by the coincidence of free surface and bottom 

pressure profiles in Figure 3a. The u velocity profile is non-uniform, however, and the vertical 

pressure v is clearly non-zero, as inferred from the notable slope of the weir surface at this section. 

At the crest section, where E=Emin, the pressure distribution is below hydrostatic and the velocity 

components (u, v) are non-uniform, with typical shapes observed previously (Fawer 1937, Vo 
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1992). At the section x/hc=+4 the profiles (u, v) are essentially constant, but the pressure distribution 

is markedly higher than hydrostatic, given the centrifugal effect on the supercritical flow in the 

tailwater weir face. The profiles (u, v, p) were generated in the mathematical model at 180 sections 

with a vertical division given by 20 streamlines. The integrals given by Equations (3a) and (3b) 

were determined numerically and the results are plotted in Figure 3c. The streamwise evolution of β 

shows values slightly above unity until the spillway crest. However, it grows rapidly in the 

supercritical portion of the weir. The maximum value is 1.3 at x/hc=2.2. Such a relatively high value 

is associated with the notable vertical velocity component v in the supercritical flow portion. This 

can be seen in Figure 3c by comparing the results with the momentum correction coefficient βx (i.e. 

Boussinesq coefficient) defined as 

 

2
2 0

1
d

h

x u y
U h

            (7) 

 

The Boussinesq coefficient is close to unity along the whole computational domain, whereas β is 

especially high for x/hc>0. The coefficient Λ decreases from unity (hydrostatic pressure) as the weir 

crest is approached, reaching a minimum value of 0.77 at x/hc=1.1 (Fig. 3c). From that section the 

coefficient increases given the reverse trend in centrifugal effects, reaching a maximum value of 

1.33 at x/hc=4.4. As the tailwater horizontal section of the weir is approached, both β and Λ tend to 

unity. 

The data presented in Figure 3 permits a computation for every channel section x/hc of the 

corresponding depth-averaged coordinates of the flow (Λh/Emin, 1/2βCd
2Λ2). Equation (5) is plotted 

in Figure 4 as a function of Emin/E, where the data corresponding to Figure 3 are reported. The crest 

point perfectly lies on the lower branch of the diagram for Emin=E, thereby confirming by two 

dimensional ideal fluid flow computations that critical flow conditions takes place at this section. 
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The sections −6<x/hc<0 correspond to subcritical flow motion; shortly before the crest every section 

lies in the upper part of the diagram corresponding to the particular ratio Emin/E. Supercritical flow 

sections in the domain 0<x/hc<6 are seen in the lower part of the depth-averaged diagram for a 

particular value of Emin/E. The points plotted in Figure 4 from the 2D ideal fluid flow data present a 

complete transcritical flow motion across a control section in curvilinear flow. 

 

Flow in transition from mild to steep slope 

Figure 5a presents the experimental data of Hasumi (1931) for a slope transition composed by a 

horizontal reach followed by a circular-shaped transition profile of R=0.1 m that finishes in a steep 

slope reach of 45º inclination. The upstream and downstream boundary sections were located at 

x/hc=±3. For frictionless flow E=Emin=1.5hc is seen for x/hc<0. The computed water surface and bed 

pressure profiles obtained by ideal fluid flow computations are compared in Figure 5a with the 

experimental data, indicating in a good agreement. The velocity and pressure profiles at three 

representative sections are plotted in Figure 5b. At section x/hc=−1 the pressure distribution is close 

to hydrostatic. At the brink section the pressure distribution is considerably below the hydrostatic 

line and the velocity components (u, v) are highly non-uniform, in agreement with Montes (1994). 

At the section x/hc=+1 the vertical velocity magnitude of v is large and of the same order as u. The 

pressure distribution is close to zero in the major part of this section. The integrals given by 

Equations (3a) and (3b) were evaluated from the ideal fluid flow data and the numerical results are 

plotted in Figure 5c. The variation of β shows values slightly above unity until the brink section. 

For comparison, the variation of the Boussinesq coefficient βx shows that it is close to unity along 

the whole computational domain. It may be then concluded that the effect of v in the computation of 

β is small for the horizontal channel reach. This supports the recent computations of Felder and 

Chanson (2012), who investigated the velocity and pressure coefficients in horizontal broad-crested 

weirs. However, there is a sharp increase of β in the chute portion, not investigated by Felder and 
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Chanson (2012). This effect is due to the vertical velocity component v in the steep channel, linked 

with the definition of the y-coordinate and the chute bed slope. Note that U=q/h is the average 

velocity in the x-direction, not parallel to the chute bed (Montes 1994). As previously indicated the 

magnitude of v is similar to u at section x/hc=+1, for example. Near x/hc=3 results β≈2βx≈2, 

originating from u≈v and βx≈1. The maximum value of β is 2.17 at x/hc=1.6. This high value is 

associated with the notable non-uniform vertical velocity component v in the supercritical flow 

portion. The coefficient Λ decrease from unity (hydrostatic pressure) as the brink section is 

approached, reaching a minimum value of 0.177 at x/hc=0.6. From that section the coefficient 

increases given the partial recovery of pressure, but in the tailwater portion it remains close to 0.75 

due to the bottom slope effect.  

The data presented in Figure 5 was used to obtain the corresponding depth-averaged coordinates of 

the flow (Λh/Emin, 1/2βCd
2Λ2). The 2D data is plotted in depth-averaged coordinates in Figure 6. 

The whole flow profile in the horizontal slope reach is a critical flow, in agreement with the 

physical study of Felder and Chanson (2012). The brink section is a particular critical flow section 

where the effects of flow curvature are most pronounced. The flow in the supercritical steep chute 

follows a similar trend to that observed in the tailwater portion of the weir in Figure 3. 

 

Flow in horizontal free overfall 

The numerical model was used to solve the 2D problem of a free overfall in a horizontal smooth 

channel. The ideal fluid flow results are compared with the measurements by Rouse (1932) in 

Figure 7a, resulting a good agreement. The velocity and pressure profiles at 3 representative 

sections are plotted in Figure 7b, and are in agreement with previous results by Montes (1992). The 

depth-averaged coefficients are depicted in Figure 7c, showing a similar behaviour to the mild to 

steep transition flow. A particular issue is that the pressure inside the jet (x/hc>0) is close to zero 

shortly after the brink section, resulting in an asymptotic value for Λ in the jet of 0.5. The 2D ideal 
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fluid flow data is plotted in depth-averaged form in Figure 8. The flow motion is similar to the slope 

break flow. The horizontal reach flow is a critical flow motion, whereas the free jet behaves 

essentially as a variable-slope steep chute with zero bottom pressure. The high values of β are 

associated with the notable vertical velocity component v in the (vertical) y-direction as compared 

to the depth-averaged velocity U in the x-direction. 

 

Critical depth in curvilinear overflows 

Analytical development 

In the previous section a full 2D model was applied to channel transitions. It was found that both β 

and Λ deviates from the standard hydraulic values β=1 and Λ=1. These effects need to be accounted 

for in practical applications. In irrotational flow the local energy head is a constant for all the 

streamlines of an ideal fluid flow (Rouse 1938, Vallentine 1969). In this case, the value of E given 

by Equation (2) may be evaluated by the specific energy of the free surface streamline. This idea 

was pursued by Bakhmeteff (1932b), who assumed that, at the section of Emin in flow over a 

spillway crest, the velocity distribution follows a free vortex law. Using this simple approximation, 

the mathematical expression for β is determined and Λ follows from Bernoulli's relation. The 

analytical expression for E is (Bakhmeteff 1932b) 

 

2 2
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q q
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            (8) 

 

where the curvature correction coefficient Ω is  
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and κ=1/R is the crest curvature and R is the crest radius. Note that this simple approximation 

permits to reduce the general form of the energy equation with undetermined (general) coefficients 

[(Eq.(2)], to a simplified equation that is a function of the local water depth [(Eq.(8)]. This step is of 

great service for practical purposes, as given R the function E only depends on h, thereby allowing 

1D critical flow computations. Dressler (1978) developed curved flow equations accounting for bed 

curvature by perturbations. Dressler equations for steady flow reduce to the free vortex velocity 

distribution, and, the steady specific energy equation used by Sivakumaran et al. (1981, 1983) is 

Equation (8), originally proposed by Bakhmeteff (1932b). Ramamurthy and Vo (1993a) used 

Dressler vortex flow velocity distribution to find an analytical function for the discharge coefficient 

Cd in weir flow. This function depends upon the value of Emin, hcrest (crest overflow depth) and the 

crest bottom pressure. Thus, an evaluation of Cd using this proposal requires estimation of these 

parameters. Bakhmeteff (1932b) suggested to impose critical flow conditions to Equation (8). As 

demonstrated with the aid of the depth-averaged diagram using 2D ideal fluid flow computations 

the specific energy reaches a minimum value at an overflow crest. Thus it is fully justified to use 

Equation (8) to find an analytical relationship for the critical depth following Bakhmeteff (1932b). 

The mathematical condition of an extreme in the specific energy forces E to satisfy the identity 

 

2 2
2

2 2

d d d
0

d d 2 d 2

E q q
h h

h h gh h gh


   
        

   
     (10) 

 

Equation (10) can be used to find analytically the relationship between the flow at the weir crest, 

hcrest, and the minimum specific energy Emin. Developing the last identity of Equation (10) results  
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and, using Equation (9) for find dΩ/dh,  
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Equation (12) is the analytical solution for critical curvilinear flow. Introducing Equation (12) into 

Equation (8) one obtains the value of Emin as 
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        (13) 

 

The combination of Equations (4) and (13) give the analytical function for Cd based upon critical 

vortex flow as 

 

3 23 2 22
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2
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d
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h hE
C
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      (14) 

 

The procedure to establish the head-discharge relationship of a weir crest is as follows: (a) select a 

value of hcrest/R; (b) compute hcrest/hc from Equation (12); (c) compute Emin/hc from Equation (13); 

(d) calculate Cd from Equation (14); (e) find the quotient hcrest/Emin dividing Equations (12) and 

(13); (f) compute Emin/R from the result of step (d) using the value of hcrest/R. 
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Application to flow measurement above circular weirs 

Water discharge measurement in open channel systems can be done using weirs (Bos 1976). A 

particular type of weir of wide interest is the circular weir (Fig. 9a) (Chanson and Montes 1998, 

Ramamurthy et al. 1992, Ramamurthy and Vo 1993b), where the flow can be considered inviscid 

and irrotational (Ramamurthy et al. 1994), provided that certain minimum dimensions on R prevail 

to avoid scale effects (Matthew 1963, 1991). An advantage of the irrotational critical flow theory 

advocated by Bakhmeteff (1932b) is that Cd depends only of Emin/R, such that, for a given R, a 

unique measurement of Emin yields a prediction of the discharge. This is different from the 

application of the Dressler equations (e.g. Ramamurthy and Vo 1993a) in which no critical flow 

condition was invoked to the flow equation. The critical vortex flow theory in circular weirs 

deserves attention, therefore. A number of experimental data were re-analysed. The results in terms 

of Cd are plotted in Figure 9b and the curvilinear critical flow depth data in Figure 9c. The 

predictions of Cd and hcrest/hc using the critical vortex flow theory are depicted in Figure 9. It can be 

seen that the agreement with experimental data is good up to Emin/R=0.7, while the theory could be 

considered acceptable up to Emin/R=1.5, beyond which a free vortex law for the velocity profile 

ceases to be valid (Ramamurthy and Vo 1993a).  

 

Discussion 

The present work extends the use of the classical specific energy equation to study the flow in open 

channel transitions by introducing a generalized depth-averaged diagram where the pressure is not 

hydrostatic and the velocity non-uniform. This diagram is based on a depth-averaged form of the 

Bernoulli equation at any arbitrary section of the channel transition. The development is a 

generalization of the equation proposed by Chanson (2006) for the minimum specific energy 

section. The depth-averaged coefficients β and Λ are general definitions for 2D flow and were 

evaluated for selected test cases. 
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The characterization of the free surface flow in frictionless open channel transitions requires the 

determination of the depth-averaged velocity and pressure coefficients, a task so far not done in the 

literature. Detailed two-dimensional ideal fluid flow computations were used to obtain this 

information that was introduced in the generalized depth-averaged diagram. The transcritical flow 

behaviour is first presented rigorously in depth-averaged form using two-dimensional ideal fluid 

flow data. It is confirmed that critical flow conditions takes place at the overflow section, while 

subcritical and supercritical flow portions are clearly highlighted. The purpose of this contribution 

is not to provide an output in the form of depth-averaged coefficients applicable to all flow cases in 

channel transitions. Rather than this, the purpose of this contribution is to analyze how the general 

energy equation accounting for non-uniform velocity and non-hydrostatic pressure distributions 

behaves at channel controls. For this task selected flow cases were solved. 

The detailed depth-averaged study supports the assumption of critical flow conditions at an 

overflow crest (Chanson 2006) and on the horizontal reach preceding a steep chute (Felder and 

Chanson 2012). The study outcomes are relevant to water discharge measurements in free surface 

systems, usually conducted by installing weirs of various shapes. In practice, a particular weir 

design is the circular weir. If scale effects are avoided, the flow above the rounded weir can be 

simulated using the equations of an inviscid and irrotational flow. Bakhmeteff (1932a) proposed the 

specific energy equation for hydrostatic pressure and uniform velocity, assumptions that are not 

accurate at an overflow crest. The generalization to curvilinear flow theory is based upon a free 

vortex velocity law (Bakhmeteff 1932b) and the results yield the critical flow conditions for 

curvilinear motion. The analytical development based on this concept was pursued and applied to 

water discharge measurement using detailed test data. 

The present development differ from the works of Sivakumaran et al. (1981, 1983) and 

Ramamurthy and Vo (1993a), in which the Dressler model was applied for steady-state conditions 

without resorting to a critical flow theory. Alternatively, critical irrotational flow theory at an 
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overflow crest can be developed using Boussinesq equations (Matthew 1991, Montes 1998). The 

mathematical apparatus for using Boussinesq equations is however computationally intensive 

compared to the simple vortex flow theory. 

 

Conclusion 

The 'classical' specific energy equation E=h+U2/(2g) cannot be used to describe the changes of 

velocity and depth along short channel transitions, despite its use in textbooks based on the so-

called specific energy diagram. A generalized depth-averaged diagram is introduced for flows with 

arbitrary distributions of velocity and pressure, that can be used to properly describe the flow in 

channel transitions. It is shown that any two-dimensional ideal fluid flow can be depicted in such 

system of coordinates with generality. For this task a detailed two-dimensional ideal fluid flow 

solution of typical channel transitions was developed. From the computational data, a detailed 

description of the depth-averaged channel corrections coefficients, so far not available in the 

literature, was presented. The ideal fluid flow data was used to present a rigorous picture of the 

depth-averaged curvilinear flow motion in open channel transitions. The depth-averaged analysis of 

the motion confirms that critical curvilinear flow conditions take place at an overflow crest and at a 

horizontal reach preceding a steep chute. The finding was used to pursue a simplified critical 

irrotational flow theory at overflow sections. From the analytical development, it is proposed an 

equation for the discharge coefficient of a weir, that is demonstrated to provide accurate water 

discharge estimates up to Emin/R=0.7, and may be considered acceptable up to 1.5. 
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Notation 

Cd = discharge coefficient (-) 

E = specific energy head (m) 

Emin = minimum specific energy head (m) 

g = acceleration of gravity (m/s2) 

H = total energy head (m) 

h = flow depth measured vertically (m) 

hcrest = crest flow depth (m) 

hc = critical depth for parallel-streamlined flow (m) = (q2/g)1/3 

p = pressure (N/m2) 

q = unit discharge (m2/s) 

R = radius of circular-arc (m) 

u = velocity in x-direction (m/s) 

U = mean flow velocity (m/s) = q/h 

v = velocity in y-direction (m/s) 

x = horizontal distance (m) 

y = vertical elevation (m) 

 = water density (kg/m3) 

η = vertical coordinate above channel bottom (m) 

γ = specific weight of water (N/m3) 

ψ = stream function (m2/s) 

κ = bottom curvature (m−1) 

βx = momentum correction coefficient or Boussinesq coefficient (-) 

β = kinetic energy correction coefficient (-) 

Λ = piezometric pressure correction coefficient (-) 



CASTRO-ORGAZ, O., and CHANSON, H. (2014). "Depth-Averaged Specific Energy in Open-Channel 
Flow and Analytical Solution for Critical Irrotational Flow over Weirs." Journal of Irrigation and Drainage 
Engineering, ASCE, Vol. 140, No. 1, Paper 04013006, 8 pages (DOI: 10.1061/(ASCE)IR.1943-
4774.0000666) (ISSN 0733-9437 [Print]; ISSN: 1943-4774 [online]). 
 

 17

Ω = curvature coefficient (-) 
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