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Abstract In this paper a generalisation of the Catani–
Seymour dipole subtraction method to next-to-leading order
electroweak calculations is presented. All singularities due
to photon and gluon radiation off both massless and massive
partons in the presence of both massless and massive spec-
tators are accounted for. Particular attention is paid to the
simultaneous subtraction of singularities of both QCD and
electroweak origin which are present in the next-to-leading
order corrections to processes with more than one pertur-
bative order contributing at Born level. Similarly, embed-
ding non-dipole-like photon splittings in the dipole subtrac-
tion scheme discussed. The implementation of the formu-
lated subtraction scheme in the framework of the SHERPA

Monte-Carlo event generator, including the restriction of the
dipole phase space through the α-parameters and expand-
ing its existing subtraction for NLO QCD calculations, is
detailed and numerous internal consistency checks validat-
ing the obtained results are presented.
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1 Introduction

As Run-I of the LHC has been successfully completed, cul-
minating in the celebrated experimental confirmation of the
existence of the Higgs boson, Run-II proceeds its data-taking
at the unprecedented centre-of-mass energy of 13 TeV. As
the much anticipated discovery of signals of beyond-the-
Standard-Model physics is still lacking, precision tests scru-
tinising the Standard Model are of prime importance, now
and in the foreseeable future. At the same time, new physics
searches are looking for increasingly small signals demand-
ing more precise estimates of the Standard Model back-
grounds. This expansion of sensitivity of both precision mea-
surements and new physics searches in the multi-TeV region
demand an immense improvement of theoretical predictions.

This precision can be achieved by the inclusion of next-to
and next-to-next-to-leading order (NLO and NNLO) correc-
tions in the strong coupling and next-to-leading order elec-
troweak (EW) corrections. Here it should be noted that both
NNLO QCD and NLO EW corrections are expected to be
of a similar magnitude for inclusive observables as numer-
ically α2

s ≈ α. On selected differential distributions, how-
ever, electroweak corrections can grow much larger. They
are dominated by photon emissions in the distributions of
final state leptons, for example. In invariant mass spectra of
lepton pairs below a resonance, for example, O(1) correc-
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tions can be present, in which case a proper resummation
should be included [1]. Similarly, looking at the (multi-)TeV
regime, the NLO EW corrections quickly grow considerably,
reducing cross sections by a few tens of percent, due to the
emergence of large electroweak Sudakov corrections arising
as the scattering energies Q2 � m2

W [2–17]. In this regime
they are larger than even the NLO QCD corrections in many
cases and their omission becomes the dominant uncertainty
in experimental studies and searches.

To this end, benefiting from the well-established tech-
niques developed for the automation of NLO QCD cor-
rections many NLO EW corrections have been calculated
recently [18–38]. To fully automate these computations at
NLO EW accuracy in a Monte-Carlo framework all infrared
divergences need to be regulated, where various incarnations
of subtraction methods have proven to be the methods of
choice for practical implementations [39–43]. Similar sub-
tractions have also been published for NLO EW calculations
using a dipole picture [1,44–46]. Contrary to the QCD case,
only the implementation of [46], restricted to photon emis-
sions of fermions, is publicly available though.

Besides the generalisation to all divergent splittings at
O(α), including photon splittings and photon emissions off
massive scalars and vector bosons, this publication addresses
the issue of automatically detecting simultaneously occur-
ring QCD and QED singularities and subtracting them
consistently. These occur as soon as the Born process is
defined at multiple orders O(αn

s α
N−n). In this case the

NLO EW correction to the O(αn
s α

N−n) process, being of
O(αn

s α
N−n+1), is at the same time the NLO QCD correction

to theO(αn−1
s αN−n+1)process and will in general exhibit the

corresponding infrared singularities. Further, matters of the
organisation of the contributing partonic processes and their
mapping to reduce the computational complexity along with
the provision of infrared safe phase space cuts are discussed.
The algorithm is implemented in the AMEGIC [47] matrix ele-
ment generator which is part of the SHERPA [48] Monte-Carlo
event generator framework. It bases on the automated sub-
traction of massless NLO QCD divergences therein [49,50].
The implementation presented in this publication has, in var-
ious preliminary forms, already been used to calculate elec-
troweak corrections to a multitude of important signal and
background processes [19,21,25,31,32,34,37,51–53], high-
lighting its versatility.

The present paper is structured as follows: first, in Sect. 2
the Catani–Seymour dipole subtraction method is reviewed
and the general modifications to its differential and integrated
subtraction terms are discussed. Section 3 then details its
automation in SHERPA’s matrix element generator AMEGIC,
highlighting the necessary changes and improvements with
respect to [49,50]. This section also discusses various options
implemented for the incorporation of photon splittings, gen-
eral infrared safe fiducial phase space definitions and flavour

scheme conversions. Essential cross checks validating the
presented implementation are then presented in Sect. 4 before
concluding in Sect. 5. Explicit formulae for all differential
and integrated dipoles are given in Appendix A–C.

2 Catani–Seymour subtraction at NLO EW

In order to be applicable to NLO EW calculations the well-
known Catani–Seymour dipole subtraction [40,41] needs to
be recast in a suitable form. To highlight the changes from the
original formulation for NLO QCD calculations the complete
structure of the formalism is reviewed. This subtraction for-
malism starts from the the expectation value of any infrared
safe observable O described at NLO accuracy through

〈O〉NLO =
∫

d�(4)
m B(�(4)

m ) O(�(4)
m )

+
[∫

d�(d)
m

[
V(�(d)

m ) + C(�(d)
m )
]
O(�(d)

m )

+
∫

d�
(d)
m+1 R(�

(d)
m+1) O(�

(d)
m+1)

]
ε=0

.

(2.1)

Therein, the Born term B consist of the squared matrix
element |Mm |2 = m〈s1, . . . , sm |s1, . . . , sm〉m with helic-
ity states sn and further includes all parton densities, parton
fluxes, symmetry and averaging factors. The virtual and real
corrections, V and R, as well as the collinear counter term,
C, are defined analogously. When regulating their respective
divergences through dimensional regularisation, they have to
be evaluated consistently in d = 4 − 2ε dimensions for all
singularities to cancel. Only after their summation can the
limit ε → 0 be taken. d�

(4)
n and d�

(d)
n are the four and d

dimensional phase space element. As V and C on the one
hand side and R on the other are defined on phase spaces
of different parton multiplicity, Eq. (2.1) cannot be used for
numerical evaluation straight forwardly and it is rewritten as

〈O〉NLO =
∫

d�(4)
m B(�(4)

m ) O(�(4)
m )

+
∫

d�(4)
m

[
V(�(d)

m ) + C(�(d)
m )

+
∫

d�
(d)
1 D(�(d)

m · �
(d)
1 )

]
ε=0

O(�(4)
m )

+
∫

d�
(4)
m+1

[
R(�

(4)
m+1) O(�

(4)
m+1)

−D(�(4)
m · �

(4)
1 ) O(�(4)

m )
]
, (2.2)

introducing the subtraction term D. For its construction it
is a mandatory requirement that D → R in all singular
limits, rendering the integral on the third line finite in four
dimensions. The divergences of the virtual correction and the
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Fig. 1 Classification of the four dipole types in Catani–Seymour-type dipole subtraction

collinear counterterm on the other side are cancelled sepa-
rately by the integral of the subtraction term over the one-
particle phase space, rendering the integrals of the second line
finite in four dimensions as well. Section 2.1 now describes
the construction of the differential subtraction term, D, used
to subtract all divergences from the real emission correc-
tion, while Sect. 2.2 presents the integrated subtraction terms,
ID = ∫ d�1 D, that subtracts all divergences from the virtual
corrections and the collinear counterterm in its explicit Lau-
rent expansion after being analytically integrated over the
factorised one-particle phase space.

All infrared divergences that occur at NLO EW are of
QED origin. No subtractions of potentially large, but finite,
corrections involving the emissions of real and virtual mas-
sive electroweak gauge bosons will be considered. The prac-
tical implementation described in Sect. 3 follows the general
lines of [49,50].

2.1 Differential subtraction terms

To describe all singular limits of a given real emission matrix
element R, related to the real emission term of Eq. (2.1) in
a similar fashion as the Born term, it is decomposed into a
sum over dipoles D [40,41] as

|Mn+1|2 = R → D =
∑
i, j

∑
k �=i, j

Di j,k +
∑
i, j

∑
a

Da
i j

+
∑
a, j

∑
k �= j

Da
j,k +

∑
a, j

∑
b �=a

Da,b
j . (2.3)

Therein, i is the emitter in the final state, j is the emittee, k
is the spectator in the final state, a and b are the initial state

partons. Each dipole thus encodes the singularity structure
caused by the emission of j in the presence of the charge of
the spectator. While the divergence associated with the soft
emission of j off the dipole ı̃j − k̃ is partially fractioned into
a piece associated with a splitting ı̃j → i + j in the presence
of spectator k and a piece where i and k swap their roles, the
divergence associated with the collinear emission of j off
ı̃j is recovered through charge conservation once all dipoles
having ı̃j as emitter are summed over.

All four dipole types are depicted in Fig. 1. The individual
dipoles take the form [40,41,54,55]

Di j,k = − 1

(pi + p j )2 − m2
ı̃j

Q2
ı̃j k̃ m〈. . . , ı̃j, . . . , k̃,

. . . |Vi j,k | . . . , ı̃j, . . . , k̃, . . .〉m �(α FF − yi j,k)

Da
i j = − 1

(pi + p j )2 − m2
ı̃j

1

xi j,a
Q2
ı̃j ã m〈. . . , ı̃j, . . . , ã,

. . . |Va
i j | . . . , ı̃j, . . . , ã, . . .〉m �(α FI − 1 + xi j,a)

Da
j,k = − 1

2pa p j

1

xaj,k
Q2
ãj k̃ m〈. . . , ãj, . . . , k̃,

. . . |Va
j,k | . . . , ãj, . . . , k̃, . . .〉m �(α IF − u j )

Da,b
j = − 1

2pa p j

1

xaj,b
Q2
ãj b̃ m〈. . . , ãj, . . . , b̃,

. . . |Va,b
j | . . . , ãj, . . . , b̃, . . .〉m �(α II − v j ). (2.4)

Therein, the charge-correlator is defined as [1,44,45]

Q2
ı̃j k̃

=
⎧⎨
⎩

Qı̃j Qk̃θı̃j θk̃
Q2
ı̃j

ı̃j �= γ

κı̃j k̃ ı̃j = γ
and

∑
k̃ �=ı̃j

κı̃j k̃ = −1 ∀ı̃j = γ.

(2.5)
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The Qı̃j and Qk̃ are the charges of the emitter and the spec-
tator and their θı̃j/k̃ are 1(−1), if they are in the final (initial)
state. Of course, Qk̃ = Qk and θk̃ = θk . In the case of
photon splittings no soft divergence is present. Thus, these
splittings have no dipole character. To include them in the
dipole-formalism nonetheless and to distribute the recoil in
splittings away from the collinear limit, spectator partons
need to be assigned. As their only role is to absorb transverse
momentum of the splitting process, any other particle may
be considered as spectator. Each thus assigned recoil partner
may be assigned a weight κı̃j k̃ , only their sum is constraint
by Eq. (2.5) in order to add up to the correct collinear limit.
Various options to assign recoil partners are implemented,
they are detailed in Sect. 3.2.

Since the QED charges are real numbers, the charge-
correlator simply multiplies the matrix element and only
leaves the spin-correlators Vi j,k , Va

i j , V
a
j,k and Va,b

j as inser-
tions in the spin-correlated underlying Born matrix elements.
The spin-correlators directly correspond to their QCD coun-
terparts and are detailed in Appendix A. It also defines the
initial state momentum rescaling parameters xi j,a , xaj,k and
xaj,b, as well as the splitting variables yi j,k , u j and v j . The
{αdip} = {α FF, α FI, α IF, α II} parameters serve to restrict the
phase space where the individual dipole terms are non-zero
and therefore need to be evaluated [54,55]. They are con-
structed such that for every αı̃j k̃ > 0 the singularity is fully
subtracted. The introduction of a parameter κ in dipoles
where a final state photon splits into a massive fermion pair
in the presence of a final state spectator similarly allows a
redistribution of finite terms, cf. Appendix A.

2.2 Integrated subtraction terms

By the above construction, the integral of the subtraction
terms D over the one-particle phase space possesses all the
necessary poles to render the second line in Eq. (2.2) finite as
ε → 0. This section now summarises the formulae and find-
ings of [40,41], translated to the QED case, and discusses
their important features. The integrated subtraction terms,
together with the collinear counterterm, are commonly reor-
ganised into I,K andP operators through the following iden-
tification

∑
a,b

∫
dηadηb

∫
d�(4)

m

[
Vab(�

(d)
m )

+ Cab(�
(d)
m ) +

∫
d�

(d)
1 Dab(�

(d)
m · �

(d)
1 )

]
ε=0

O(�(4)
m )

=
∑
a,b

∫
dηadηb

∫
d�(4)

m

{ [
Vab(�

(d)
m )

+ Bab(�
(d)
m ) · I(ε, μ2; κ, {αdip})

]
ε=0

+
∑
a′

∫
dxa Ba′b(�

(4)
m ) · [Kaa′(xa; {αdip})

+Paa′(xa;μ2
F )
]

+
∑
b′

∫
dxb Bab′(�(4)

m ) · [Kbb′(xb; {αdip})

+Pbb′(xb;μ2
F )
] }

O(�(4)
m ). (2.6)

The I operator contains the necessary infrared poles to cancel
all divergences of the virtual correction such that, after sum-
ming both, the limit ε → 0 can be taken and the integral can
be evaluated in four dimensions. The K and P operators are
infrared finite by construction and, thus, evaluation in four
dimension is unproblematic as well. Please note, that due to
the fact that, contrary to the colour correlator in QCD, the
charge correlator in QED is a simple real number and thus
the convolution of the Born matrix element with the respec-
tive insertion operators in QCD becomes a trivial product of
the Born matrix element and the operators in QED. The spin-
correlation that was still present in the real subtraction terms
has been integrated out in full analogy to the QCD case. In
the following, the structure of all three operators in the QED
case is discussed.
The I operator. The I operator contains all flavour-diagonal
endpoint contributions and cancels all divergences present in
the one-loop matrix elements. It takes the general form

I(ε, μ2; κ, {αdip}) = − α

2π

(4π)ε

�(1 − ε)

×
∑
i

∑
k �=i

Iik(ε, μ2; κ, {αdip}) (2.7)

and contains single and, in case of massless emitters, double
poles in ε. Due to the presence of such poles a dependence on
the regularisation scale μ2 enters. It is commonly identified
with the renormalisation scale μ2

R. The I operator is further
dependent on the choice of the {αdip} and κ parameters that
effect non-singular terms only. It is further decomposed into
dipoles [41]

Iik(ε, μ2; κ, {αdip})

= Q2
ik

[
Vik(ε, μ

2; κ) + �i (ε, μ
2) + γi

(
1 + ln

μ2

sik

)

+ Ki + AI
ik({αdip}) + O(ε)

]
, (2.8)

wherein i labels the emitter and k the spectator. The charge
insertion operator, which is a trivial real number in the QED
case, is defined in Eq. (2.5). The full crossing invariance of
the QCD I operator may be broken in the QED case in the
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presence of photon splittings as their recoil partner assign-
ment is arbitrary and may involve information on initial or
final state particles. Different possible choices are discussed
in Sect. 3.2, some of which may break this crossing invari-
ance.

The divergences of the I operator are encoded in the func-
tions Vik and �i . While the former contains all soft-(quasi-
)collinear divergences the latter contains the pure (quasi-)
collinear ones. They do not only differentiate whether the
emitter is a photon or not, but also between different spins
of the emitter. Their precise form as well as the the flavour
constants γi and Ki are given in Appendix B. AI

ik encodes the
dependence on the phase space restriction of the individual
dipoles {αdip}. Finite terms originating in dipoles involving
initial state legs, however, can be pushed into the K opera-
tor. Thus, AI

ik by convention only depends on α FF. Its precise
form is given in Appendix C.
The K and P operators. The K and P operators collect all
pieces of the integrated dipole terms that are not collected in
the I operator and combines them with the collinear coun-
terterms C to give a finite result as ε → 0. By construction
they contain only remainders of splittings where either the
emitter or the spectator is in the initial state. Thus, they are
comprised of terms arising due to the change of the flavour
or the partonic momentum fraction x of an initial state due
to a splitting.

The K-operator is given by [41]

Kaa′(x; {αdip})

= α

2π

{
Kaa′(x) − KFS(x) −

∑
i

Q2
ia′Ki,aa′(x)

−
∑
k

Q2
a′k K

t
aa′,k(x) − Q2

a′b K̃aa′(x) + AK
aa′({αdip})

}
.

(2.9)

It depends on the partonic x , and the flavour change from the
Born process initial state flavour a to a′ of the convolution
Eq. (2.6). Therein, the K collect universal terms present in
all splitting involving an initial state as either emitter or spec-
tator. Then, while K contains solely remaining terms from
final state splittings in the presence of initial state specta-
tors, the K t are their counterparts for initial state splittings
in the presence of a final state spectator, i and k running over
all final state partons in each case. K̃ contains solely related
correlations between both initial states, arising from dipoles
where both the emitter and the spectator are in the initial
state. The AK terms collect all finite terms arising when any
of α FI, α IF or α II is different from unity, thus restricting the
phase space of the respective dipoles. Again, the Q2

ik are the
charge correlators of Eq. (2.5). Finally, KFS contains the fac-
torisation scheme dependence. Currently, both only the MS
schemes is supported, setting these terms identically zero.

The P-operator now collects the remaining initial state
collinear singularity from all dipoles involving initial states
either as emitters or as spectators and cancels them against
the collinear counterterm. Through this counterterm a depen-
dence on the factorisation scale enters. The P operator is
given by [40,41]

Paa′(x, μ2
F )

= α

2π
Paa′

(x)

[∑
k

Q2
a′k log

μ2
F

xsak
+ Q2

a′b log
μ2

F

xsab

]
.

(2.10)

Only initial state splittings are present, either in the presence
of a spectator in the final state, which is encoded in the sum of
k, or with the opposite initial state b acting as the spectator.
It otherwise only depends on the Alterelli–Parisi splitting
function detailed in Appendix B.

3 Implementation

The implementation of the QED generalisation of the Catani–
Seymour dipole subtraction scheme in SHERPA’s matrix ele-
ment generator AMEGIC proceeds along the lines of [49]. As
in general real and virtual corrections of O(αn

s α
m) contain

divergences of both QCD and QED origin, both cases are
included in this section. In the following, the general struc-
ture of the implementation is reviewed.

3.1 Identification of dipoles

The starting point to construct the involved subtraction terms
in the Catani–Seymour subtraction formalism is a given
flavour configuration in the Born or the real emission phase
space and the perturbative orderO(αn

s αm) in accordance with
the respective virtual or real correction to be computed. For
all parts, on-the-fly variations of both the factorisation scale
μF and the renormalisation scale μR are available through
an extension of the algorithm detailed in [56].
Differential subtraction terms. A given real emission con-
figuration {ab} → {1, ..,m + 1} at order O(αn

s α
m) can in

general exhibit both QCD and QED divergences simultane-
ously. The following therefore describes the identification of
both types of dipoles. Thus, all triplets {i, j, k} that can be
built from the external particles of the process are tested for
the presence of an infrared divergence, QCD or QED, by
checking for the existence of a dipole subtraction term. In
these triplets i and k may be in the initial or final state while
j may be in the final state only. Likewise, i �= j , i �= k, j �= k
and triplets that only differ in a permutation of i and j are
considered identical. Then, the following steps are executed.
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1. Based on the quantum numbers and flavours of the triplet
it is decided whether a QCD, a QED or both splitting func-
tion can exist. A QCD splitting function can exist only if
i , j and k are colour charged, while a QED splitting func-
tion can exist only if the charge-correlator Q2

ı̃j k̃
does not

vanish. The dipole type is determined based on whether
i and k are in the initial or final state. A given triplet
{i, j, k} may exhibit both QCD and QED divergences,
and thus may form both a QCD and a QED dipole.

2. The flavours ı̃j and k̃ are determined for each possible
splitting function.

3. For each possible splitting function {ı̃j, k̃} → {i, j, k} the
underlying Born configuration and its order, O(αn−1

s αm)

in case of a QCD splitting function and O(αn
s α

m−1)

in case of a QED splitting function, are determined. If,
including the insertion of the appropriate colour-, charge-
and spin-correlations, such a process at this order exists,
a dipole subtraction term is built.

If the above steps do not lead to a valid dipole subtraction
term, no divergence can be present. The real emission, a
conventional tree-level process, is grouped together with all
its subtraction terms into one computational unit and their
respective cross sections and observable values, O(�m+1)

and all O(�mi ), are treated as correlated.
Integrated subtraction terms. Similar to the above dis-
cussed real emission corrections, the virtual correction con-
figurations {ab} → {1, . . . ,m} at order O(αn

s α
m) in general

exhibits poles due to both QCD and QED origins. To subtract
them, both QCD and QED integrated subtraction need to be
included. In fact, they naturally arise as counterparts to dif-
ferential subtraction terms constructed for the corresponding
real emission correction, as guaranteed by Bloch and Nord-
sieck [57] or Kinoshita–Lee–Nauenberg [58,59] theorem.
Consequently, QCD and QED I,K and P operators are con-
structed. While their QCD version are described in detail in
[49,50], their QED version of Eq. (2.6) are discussed below.

The I operator, on the one hand side, has the same initial
state flavours and momentum fractions as the virtual cor-
rection. The K and P operators on the other hand, resulting
from the combination of the integrated subtraction terms and
the collinear counterterms, involve a summation over possi-
ble initial state flavours and comprise the following general
structure in their dependence on the additional x integration
variable

[g(x)]+ + δ(1 − x)h(x) + k(x). (3.1)

Therein, both h(x) and k(x) are regular functions in x , while
the plus distribution of g(x) is defined as

1∫

0

dx f (x) [g(x)]+ =
1∫

0

dx [ f (x) − f (1)] g(x). (3.2)

Hence, the potentially computationally intensive matrix ele-
ments in B have to be calculated twice for every phase space
point in addition to the flavour summation. To remedy this,
the original expression of Eq. (2.6) is reformulated. Drop-
ping the dependence on the {αdip} parameters and explic-
itly stating the dependence of the underlying Born term on
the initial state momentum fractions and parton densities,
Bab = fa fb Bab, the K and P operators it can be recast to

∑
a,b

∫
dηadηb

∫
d�(4)

m

∑
a′

1∫

0

dxa Ba′b(xaηa, ηb;�(4)
m )

·
[
Kaa′(xa; {αdip}) + Paa′(xa;μ2

F )
]
O(�(4)

m )

=
∑
a,b

∫
dηadηb

∫
d�(4)

m

∑
a′

1∫

0

dxa

{
gaa

′
(xa)

×
[
Ba′b(xaηa, ηb;�(4)

m ) − Ba′b(ηa, ηb;�(4)
m )
]

+ kaa
′
(xa) Ba′b(xaηa, ηb;�(4)

m )

+ haa
′
(1) Ba′b(ηa, ηb;�(4)

m )

}
O(�(4)

m )

=
∑
a,b

∫
dηadηb

∫
d�(4)

m fb(ηb)Bab(�
(4)
m )

×
∑
a′

⎧⎨
⎩

1∫

ηa

dxa
[

1
xa

fa′
(

ηa
xa

) (
gaa

′
(xa) + kaa

′
(xa)

)

− fa′(ηa) g
aa′

(xa)
]

+ fa′(ηa)
(
haa

′ − Gaa′
(ηa)

)⎫⎬
⎭ O(�(4)

m ),

(3.3)

with fa(η) being the parton density of flavour a and momen-
tum fraction η in the proton, otherwise absorbed in the
Born term B. All PDFs are evaluated at the same scale μF.
Gab(η) = ∫ η

0 dx gab(x) are the analytically computed diver-
gence free parts of the integral of the functions under the plus
distribution. Its divergence at x = 1 is cancelled numerically
on the second last line. Effectively, this reformulation results
in a redefinition of the PDF for incoming parton a of Bab.
As the integrand of the remaining integral over xa is a simple
one-dimensional function without a pronounced structure, its
numerical evaluation is very stable and can be accomplished
by a single point for each summand per phase space point
d�

(4)
m . TheK andP operators for the second incoming parton

b are recast similarly.
The thus transformed form of the K and P operators

require only a single evaluation of the potentially costly
matrix elements in B while retaining the number of compu-
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tations of PDFs needed, speeding up the computation con-
siderably for involved processes. This allows to generate and
evaluate the underlying Born matrix element for both the I
operators and the K and P operators at the same time. In
fact, due to these three operators being simple multiplica-
tive scalars, the common underlying Born matrix element is
identical to the standard Born matrix element, allowing for
their simultaneous calculation at no extra cost. The opera-
tors themselves are then built from dipoles constructed from
all doublets {i, k}, i �= k, of external partons available in the
partonic process for which the charge-correlatorQ2

ik does not
vanish.

3.2 External photons

External photons can play different roles in a calculation:
they can either be resolved or unresolved. According to
this distinction they should be treated differently at NLO
EW [31,60]. Initial state photons are always unresolved
at a hadron collider. They thus should be treated in a
short-distance scheme, allowing them to split into mass-
less fermions, necessitating a proper subtraction of infrared
divergences. Final state photons on the other hand can play
both roles. If they are considered resolved, they should be
treated in an on-shell scheme and no explicit photon split-
ting is allowed. Concerning the dipole subtraction discussed
in this paper they are thus neutral particles and do not form
part of a dipole, except as possible recoil partner of another
unresolved photon. A final state unresolved photon, on the
other hand, again must be treated in a short-distance scheme,
necessitating their splittings to be subtracted.

As discussed in Sect. 2.1, the dipole picture is not neces-
sary to capture the divergences of photons splitting in pairs
of massless fermions, leptons and quarks, due to the absence
of soft divergences that necessitate the correlation with the
emissions off other partons of the event. Nonetheless, it offers
a possibility to assign one or more recoil partners to absorb
the transverse momentum of the splitting, thus fitting these
purely collinear splittings into the dipole picture. The choice
of spectator is essentially arbitrary, and all other partons of
the event offer being viable spectators. Only the following
condition has to hold

∑
k̃ �=ı̃j

κı̃j k̃ = −1 (3.4)

for every splitting photon ı̃j , cf. 2.5. Therein, the κı̃j k̃ are
arbitrary and possibly dynamic weights assigned to every
dipole with spectator k̃. In practise, for initial state as well as
final state splittings five choices cγ

k̃
have been implemented:

0. only allow initial state partons as spectators,
1. only allow final state partons as spectators,

2. only allow QED charged particles as spectators,
3. only allow QED neutral particles as spectators,
4. allow all particles as spectators.

The κı̃j k̃ are set to the phase space point independent value

−n−1
spec, with nspec the number of assigned spectators, thus

trivially fulfilling Eq. (3.4).

3.3 Process mappings

In general, physical cross sections include multiple different
partonic channels. However, many of these partonic channels
share identical squared matrix elements, potentially differing
by constant factors. They, thus, do not need to be recomputed
for every flavour channel but can be reused. As a typical
example, consider the production of a lepton pair in asso-
ciation with two jets. The process g d → e+e− g d shares
a common squared matrix element with g s → e+e− g s
and g b → e+e− g b on Born level at O(α2

s α
2). Hence, the

squared matrix elements of the latter two partonic processes
are mapped on the first, reusing its computed value. In this
way, of the 95 partonic channels of this process, only 30
have to be computed. Further mappings of individual graphs
and subgraphs are implemented but are not discussed in the
following, see [47,48].

In SHERPA’s matrix element generators various forms of
process mappings are implemented to reduce the computa-
tional complexity and memory footprint, both for the virtual
and real emission corrections, cf. [47–50]. However, while
for NLO QCD corrections to the leading order Born process
it is true that if the Born process is mappable onto another
existing process, then also both the virtual correction and the
insertion-operator-augmented colour-correlated underlying
Born process of the integrated subtraction term are mappable
to the same process. This is no longer true when considering
the NLO EW or NLO QCD corrections to subleading Born
processes.

In the present implementation of a full NLO QCD
and NLO EW subtraction in the matrix element generator
AMEGIC the following process mapping strategy is followed
for the real subtracted contributions:

• The real emission process and its associated dipole sub-
traction terms are grouped in one computational unit.
A given partonic channel of the real emission process
can be mapped onto another already existing one if both
processes consist of the same diagrams and all involved
(internal and external) particles have the same masses and
widths and the same underlying interaction (coupling fac-
tors may differ by a constant). Is this the case the whole
computational unit can be mapped and the result of the
mapped-to process can simply be reused.
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• Individual dipoles can be mapped if the emitter, emit-
tee and spectator indices are identical, and the underly-
ing Born process can be mapped according to the above
rules. In this case, the result of the mapped-to process can
simply be reused.

• Underlying Born matrix elements can be mapped if the
Born-level emitter ı̃j carries the same indices and the
underlying Born process itself can be mapped. The spin
correlation insertion operator, needed if parton ı̃j is either
a gluon or a photon and described in [49], is encoded
in the calculational routines and necessitates the above
restriction. Can the underlying Born process be mapped,
only the calculational routines can be shared, reducing
the memory footprint, but due to the potentially differing
underlying Born momenta its result has to be recomputed.

The strategy for the virtual subtracted contributions reads
as follows:

• The virtual correction process, interfaced from an exter-
nal virtual correction provider, as well as its associ-
ated integrated dipole subtraction terms and the collinear
counterterm, taken together and reformulated accord-
ing to Sect. 3.1, are grouped into one computational
unit. If the underlying Born processes of the integrated
subtraction contribution (in all orders required) can be
mapped according to the above rules and the virtual cor-
rection provider confirms that the virtual correction can
be mapped onto the same process that SHERPA’s tree-level
matrix element generator maps the underlying Born pro-
cesses onto, the whole computational unit is mapped. In
this case, the result of the mapped-to process can simply
be reused. The K and P operators, whose internal PDF
factors depend on the initial state flavour, still have to
be recomputed, but their matrix element coefficients are
cached.

• If the virtual correction provider cannot confirm the map-
ping performed for the underlying Born process, only the
underlying Born process is mapped and virtual correction
is recomputed. Again, the K and P have to be recom-
puted, but their matrix element coefficients are cached.
Here, efficiency is lost if the virtual correction provider
uses less efficient process mappings.

3.4 Fiducial phase space definition

Phase space restrictions are an essential part of the imple-
mentation of a framework for automated NLO calculcations.
These cuts, however, need to be applied in an infrared safe
way. At NLO, they must not discriminate between a massless
parton before and after its collinear splitting or before and
after a soft gluon or photon emission. Thus, if QCD singu-
larities are present, massless QCD charged particles must be

clustered into jets before any further cuts are applied. Simi-
larly, in case of the presence of QED divergences, massless
charged particles must either be dressed with the surrounding
photons or be included in the jet algorithm. Subtleties arise
in the presence of both QCD and QED singularities simul-
taneously. Here, usually, only a fully democratic jet finding
can consistently treat all singularities, although specialised
solutions exist for simplified situations. Massive QCD and
QED charged particles may be treated as bare as their mass
shields the collinear singularity, but can also be included into
jet finding and dressing algorithms. An intermediate scheme
which includes only the logarithms of the parton mass needed
to regulate the collinear divergences [45], but are otherwise
treated massless in the calculation, is not implemented.

To this end, the implementation in SHERPA is equipped
with a range of algorithms to define infrared safe quantities
on which further restrictions can be applied. Multiple such
selectors can be nested.

DressedParticleSelector This selector takes a
choice of dressing algorithm (cone or sequential recom-
bination) and (flavour-dependent) dressing parameters
(cone radius or radial parameter and exponent). All
charged particles of the process are then dressed with
all photons using the specified algorithm with the given
(flavour-dependent) parameters. Their four momenta are
added such that four momentum is conserved. The
dressed charged particles may no longer be on-shell
and the photons used to dress the charged particles are
removed from the list of particles. The resulting list of
particles and their momenta are then passed to all subse-
lectors.
Jet_Selector This selector uses FASTJET [61] to
build jets from a given list of input particles. It takes a list
of flavours that are considered as jet finding input parti-
cles, the jet finding algorithm and its parameters includ-
ing phase space boundaries in p⊥, η or y, as well as
a minimal and maximal number of jets to be found as
arguments. Additionally, clustered jets can be tagged or
anti-tagged based on their flavour content, including rel-
ative and absolute constituent momentum requirements
(e.g. b tagging a jet if one of its constituents is a b-quark
or anti-γ -tagging a jet if its photon constitents carry in
excess of zthr fraction of the total jet momentum). The
clustered jets as well as all particles not used as jet find-
ing input are passed on to all subselectors.
Isolation_SelectorThis selector uses the smooth
cone isolation of [62] to isolate particles of a given flavour
against particles of another flavour. It takes both the iso-
lation flavour and rejection flavour list as well as the algo-
rithm parameters as input. It further can be specified how
many isolated particles of the given flavour should min-
imally and maximally be found in a given phase space
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volume (bounded by p⊥ and η or y ranges), e.g. exactly
two isolated photons with p⊥ > 30 GeV and |η| < 2.35.
The list of found isolated flavours and all other particles
except for those that should be isolated, but are not, are
passed to all subselectors.

Once an infrared safe definition of particles is found, the stan-
dard single- or multi-particle selectors such as PT (imple-
menting transverse momentum requirements on a given
flavour), PTmis (missing transverse momentum build from
all neutrinos), or DR (angular distance between the two given
particles) can be used. Further, SHERPA is equipped with a
user hook system, providing the possibility for users to imple-
ment arbitrary routines for phase space cuts and dynami-
cally load them at run time, without the need to modify their
SHERPA installation.

Identified particles should in principle be defined using
fragmentation functions, denoted D j

i (z) for finding parton
i in parton j at momentum fraction z. As, however, all
Di
i (z) have a δ(1 − z) as leading term in on-shell renor-

malisation schemes (and only differ by ratios of couplings in
other schemes) simplified schemes exist that are applicable to
many practical situations. Hence, no fragmentation function
is implemented yet.

3.5 Flavour scheme conversion

All publicly available PDF sets containing QED effects in
their evolution are fitted with five (MRSTqed [63], CT14qed
[64], LUXqed [65,66], HKR16 [67], NNPDF3.0qed [68],
NNPDF3.1luxqed [69]) or six (NNPDF2.3qed [70]) light
flavours. Thus, for next-to-leading order calculations with
four or less light flavours the following scheme-conversion
terms need to be added for consistency [71]

〈O〉(nlf)
NLO QCD(μ2

R, μ2
F)

= 〈O〉(nf)
NLO QCD(μ2

R, μ2
F) +

∫
d�m

nf∑
i=nlf

∑
{ab}

αs

3π
TR

×
[
p log

m2
i

μ2
R

�
(
μ2

R − m2
i

)
− �

gg
ab log

m2
i

μ2
F

�
(
μ2

F − m2
i

)]
B(nf)
ab (�m;μ2

R, μ2
F) O(�m)

(3.5)

and

〈O〉(nlf)
NLO EW(μ2

R, μ2
F)

= 〈O〉(nf)
NLO EW(μ2

R, μ2
F)

−
∫

d�m

nf∑
i=nlf

∑
{ab}

α

3π
NC Q2

i �
γγ

ab log
m2

i

μ2
F

× �
(
μ2

F − m2
i

)
B(nf)
ab (�m;μ2

R, μ2
F) O(�m). (3.6)

Therein, the 〈O〉(n)
NLO QCD/EW is the expectation value of an

arbitrary observable O computed at NLO QCD or NLO EW,
respectively, with n-flavour scheme parton densities and the
corresponding strong coupling summed over all initial state
contributions. B(n)

ab is the Born term, as defined in Sect. 2, in
the ab channel. The sums run over all (nf − nlf) flavours of
mass mi that are part of the nf-flavour PDF parametrisation
but not the nlf-flavour scheme of the calculation and all com-
binations of partonic channels ab occurring in the nlf-flavour
scheme, respectively. p is the power of the strong coupling in
the Born process and �

gg
ab = δga +δgb, i.e. it takes the values

2 in the gg channel, 1 in all qg and q̄g channels, and zero
otherwise. �

γγ

ab is defined analogously. Each logarithm of
course only contributes if the scale is larger than the respec-
tive mass. As the electroweak coupling is not taken running
in the common renormalisation schemes it is independent of
the number of massless flavours in the calculation. For MS-
like renormalisation schemes a similar term proportional to
its power in the Born process is to be added.

4 Checks of the implementation

The implementation of the formalism described in the pre-
vious sections in SHERPA needs to be validated. To this
end, both its independence of its internal free parameters,
{αdip} = {α FF, α FI, α IF, α II}, κ and the choice of spectator in
photon splittings, and its agreement with independent imple-
mentations for fixed values of these parameters need to be
tested. While the latter were carried out in [19,21,25,31,32]
against the private implementations in Munich [74], in [51]
against MadGraph5 [75], and in [51,53] against Recola
[76] and found full agreement, the former represent a pow-
erful check of internal consistency. Further, as the {αdip}
parameters regulate the phase space coverage of the differ-
ential subtraction terms, they can be used to lower the aver-
age number of contributing dipoles for a given real emission
contribution and, thus, reduce the computational costs of the
real-subtracted contribution.

There are now two independent aspects of the calculation
that need to be checked:

(a) The I operator of Sect. 2.2 containing the explicit Lau-
rent expansion in ε as ε → 0 needs to reproduce
the correct ε−2 and ε−1 coefficients in order to cancel
all corresponding poles of the virtual matrix elements,
leading to a finite integrand in Eq. (2.2) in d = 4.
These checks were performed for all possible dipoles
in [19,21,25,31,32,34,37,51–53] and are not repeated
here.
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(b) The expectation value of any infrared observable is inde-
pendent of the choice of the technical {αdip} and κ param-
eters as well as the choice cγ

k̃
of spectator for photon

splittings. It thus needs to be verified that the sum of
the contributions of the ε0 coefficient of the integrated
subtraction terms and the differential subtraction terms
is independent of these parameters and choices. In order
to arrive at a finite result in d = 4, cf. Eq. (2.2), the real
emission correction and the collinear counterterms are
added. The corresponding quantity is defined as

〈O〉IRD =
∫

d�(4)
m

[
ID(�(4)

m ; {αdip}, κ, cγ

k̃
)

+ C(�(4)
m )
]
ε0 coeff.

O(�(4)
m )

+
∫

d�
(4)
m+1

[
R(�

(4)
m+1) O(�

(4)
m+1)

− D(�(4)
m · �

(4)
1 ; {αdip}, κ, cγ

k̃
) O(�(4)

m )
]
,

(4.1)

and will be evaluated for processes containing all avail-
able dipole configurations in the following.

In the following, the inclusive or fiducial cross section con-
tribution σIRD is evaluated for a range of different pro-
cesses, testing all possible dipole configurations. Through-
out the input parameters of Table 1 are used in the Gμ

scheme, although several other EW input parameter schemes
are available in general. Similarly, all unstable particles
are treated in the complex-mass scheme [77]. Further, the
CT14nlo [78] and CT14qed [64]1 PDF sets with five active
and massless flavours and their corresponding αs parametri-
sations with αs(mZ ) = 0.118 are used. While the use of
the CT14nlo PDF set for NLO EW calculations is, strictly
speaking, inconsistent due its missing QED evolution of the
initial state quarks, it offers the quantification of the impor-
tance of photon initiated processes in these technical compar-
isons. To the same end, the CT14qed PDF set is not employed
using its the best fit value for the intrinsic inelastic photon
momentum fraction at the reference scale of Q = 1.295 GeV
pγ

0 = 0.05%, but rather evaluate it for the extremes of its 1σ

uncertainty, pγ
0 = 0 and pγ

0 = 0.14%, where applicable.
In processes where jets need to be constructed to define

a fiducial phase space volume, anti-kt jets with R = 0.4
and p⊥ > 30 GeV are used [80] and both partons and pho-
tons are considered as constituents. Similarly, if leptons need
to be defined for the same purpose, they are dressed with
all photons in a cone of �R = 0.1. The number of phase
space points in the computation of σIRD({αdip}, κ, cγ

k̃
) is kept

constant for each process, such that the indicated statistical

1 To be precise the CT14nlo and CT14qed_inc_proton PDF
sets interfaced through LHAPDF [79] 6.2.1 are used.

Table 1 Numerical values of all input parameters. The gauge boson
masses are taken from [72], while their widths are obtained from state-
of the art calculations. The Higgs mass and width are taken from [73].
The top quark mass is taken from [72] while its width has been calculated
at NLO QCD. In calculations where a massive particle is present as an
external state, its width is set to zero

Gμ = 1.1663787 × 10−5 GeV2

mW = 80.385 GeV �W = 2.0897 GeV

mZ = 91.1876 GeV �Z = 2.4955 GeV

mt = 173.2 GeV �t = 1.339 GeV

uncertainty can be interpreted as a measure of the change of
convergence of the subtraction with respect to the variation
of the technical parameter choices.
Massless dipoles. Contrary to the QCD case, in the Stan-
dard Model almost all particles carry QED charges and there-
fore participate in the construction of dipoles. One notable
exception are neutrinos. Therefore, in order to investigate the
behaviour of the massless II, IF, FI and FF dipoles, and, thus,
the independence of α II, α IF, α FI and α FF separately in this
technical validation σIRD is considered for all three different
rotations of the interaction of a quark-anti-quark pair with a
neutrino-anti-neutrino pair. Hence, besides the σIRD contri-
bution to the O(α) correction to pp → νeν̄e at the LHC at an
invariant mass of 13 TeV, σIRD is computed for both the pro-
duction of at least two jets at a hypothetical νe− ν̄e collider at
a centre-of-mass energy of 1 TeV and inclusive single jet pro-
duction in equally hypothetical νe p deep inelastic scattering
(DIS) with the same centre-of-mass energy are calculated.

Figure 2 now details σIRD for all three setups. νeν̄e → j j
production, detailed in the left hand side plot, comprises
only FF dipoles and, thus, only depends on α FF. Varying its
value over four orders of magnitude leads leaves the value
of σIRD unchanged within the statistical uncertainties. The
black line is placed at the central value of the computation
with the smallest statistical uncertainty to guide the eye. As
is evident, lowering the α parameter too much, i.e. restrict-
ing the subtraction to act only on configurations very close
to the divergence, results in large cancellations between the
real-subtracted and the integrated dipole contributions of Eq.
(4.1), degrading the statistical prowess of the calculation.
Similarly, pp → νen̄ue production, detailed on the right
hand side, comprises only II dipoles and, thus, depends on
α II only. Showing the results for all three choices of photon
content, contributing directly through the respective γ q/γ q̄
channels as well as indirectly through the impact on the quark
PDFs and, through momentum conservation, on the gluon
PDF, a similar picture as for νeν̄e → j j emerges. The three
coloured lines now indicate the central value of the calcu-
lation with the smallest statistical uncertainty for each PDF
choice. In each case, σIRD is found to be stable under the
variation of α II. Finally, the centre plot shows the correction
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Fig. 2 {αdip}-dependence of the sum of integrated subtraction term and differentially subtracted real emission for νe ν̄e → j j , νe p → νe j and
pp → νe ν̄e

contribution for the hypothetical DIS process νe p → νe j
requiring at least one jet in the lab frame. As FI and IF dipoles
always occur in pairs the α FI and α IF dependence is evaluated
together here. The resulting σIRD(α IF = α FI) are also found
to be stable when varying both parameters simultaneously
over four orders of magnitude.

Moving away from the simplest configurations, Fig. 3 dis-
plays the results for electron-positron pair production. The
left hand side plot again displays their production at the hypo-
thetical νe-ν̄e collider used before, finding very similar results
and their independence of α FF. The centre plot now, how-
ever, displays the production of an electron-positron pair at
the LHC. At leading order, this process proceeds through
qq̄ → e−e+ and γ γ → e−e+ at O(α2). Consequently, the
qq̄ channel exhibits six dipoles of all four types. In the γ γ

channel, the number and types of dipoles present depends on
the choice of possible photon splitting spectators cγ

k̃
. To regu-

late all LO singularities the fiducial phase space is defined by
requiring the dressed electrons to have a transverse momen-
tum of at least 20 GeV and the pair to have an invariant mass
of at least 60 GeV. As σIRD now potentially depends on the
full set {αdip} no continuous variation over four orders of
magnitude is performed. Instead, each of the four parame-
ters is varied independently to 0.001 keeping all others at
their default value of 1. These four variations are completed
by setting α FF = α FI = α IF = α II = 1 and 0.001. The result-
ing correction contributions are found to be independent of
{αdip}.

Finally, the right hand side plot of Fig. 3 displays the
dependence of σIRD on the choice of spectators in photon
splittings. Only the γ q/γ q̄ channel is considered as both the
γ γ and qq̄ channels are independent of this choice in this
process. The γ q/γ q̄ channel, however, still receives con-
tributions from photon radiation off quarks in addition to
the sought after photon splittings into quark-antiquark pairs.
Hence, the minimum invariant mass is raised to 2 TeV to
increase the relative importance of the photon PDF, enhanc-

ing the photon splitting contribution. The resulting correction
contribution at O(α3) is found to be independent of all five
choices of photon splitting spectators available. Please note
that for this process scheme 0 and 3 as well as scheme 1 and
2 lead to the same set of allowed spectators, respectively, and
therefore to identical results.
Massive dipoles. Massive particles are so far only allowed
in the final state.2 Dipoles involving massive partons, either
as emitter or spectator, comprise only three types: FF, FI
and IF. Emittees are always considered massless, otherwise
no singularity would be present. In Fig. 4 again top-anti-top
pair production at a hypothetical νe-ν̄e collider and single
top production at a hypothetical νe-p collider is considered
in order to study the individual dipoles separately. In the left
plot, the α FF (in)dependence of the O(α3) correction contri-
bution σIRD, containing only massive FF dipoles, is shown. It
exhibits the familiar picture of decreasing statistical prowess
of the calculation with too small α FF, but otherwise consis-
tent results. The right plot details the α IF and α FI dependent
massive dipoles in the hypothetical DIS scenario. As before,
α IF and α FI are varied simultaneously for this purpose and the
independence of the corrections contribution on both param-
eters is observed.

The left plot of Fig. 5 now investigates the dependence
of σIRD on the κ parameter. In only arises in FF dipoles of
gluons splitting into gluons or massless quarks or photons
splitting into massless fermions in the presence of a mas-
sive spectator. Consequently, to restrict the number of addi-
tional contributions, top-anti-top pair production in associ-
ation with one jet at the hypothetical νe–ν̄e collider is con-
sidered. At LO, this process contributes is defined both at
O(αsα

2) and O(α3) where the final state photon forms the
jet. At NLO, there are contributions at O(α2

s α
2),O(αsα

3)

and O(α4). The O(αsα
3) contribution, however, contains

2 For advances for NLO calculations with initial state massive particles
see [44,81,82].
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Fig. 3 Left and centre: {αdip}-dependence of the sum of integrated
subtraction term and differentially subtracted real emission for νe ν̄e →
e+e− and pp → e+e−. Right: dependence of the sum of the inte-
grated subtraction term and differentially subtracted real emission for

pp → e+e− in the γ q/γ q̄ channel on the choice of recoil partner for the
initial state photon splittings cγ

k̃
. The invariant mass of the electron pair

is raised to increase the contribution of the photon induced channels.
The qq̄ and γ γ channels comprise no dipoles with splitting photons

Fig. 4 {αdip}-dependence of the sum of integrated subtraction term and differentially subtracted real emission for νe ν̄e → t t̄ and νe p → νet . For
the latter the Standard Model is extended by a ut̄ Z interaction with the structure and coupling as the existing uūZ interaction

Fig. 5 Left: κ-dependence of the sum of integrated subtraction term
and differentially subtracted real emission for νe ν̄e → t t̄ j . Right:
dependence of the sum of the integrated subtraction term and differen-

tially subtracted real emission for νe ν̄e → t t̄ j at O(α4) on the choice
of recoil partner for the final state photon splittings cγ

k̃
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Fig. 6 {αdip}-dependence of the sum of integrated subtraction term and differentially subtracted real emission for νe ν̄e → t t̄ and pp → t t̄

neither gluon nor photon splittings. Due to the relative size
of g → gg and g → qq̄ splittings in relation to gluon radi-
ation off the top quarks the κ dependence of the O(α2

s α
2)

contribution is much more pronounced than at O(α4), where
photon radiation off the top quarks overwhelms the photon
splitting contribution. Nonetheless, at both orders an inde-
pendence of the σIRD of κ is found. In addition, the right plot
investigates the influence on the choice of spectators for the
final state photon splitting ocurring atO(α4). No dependence
on this choice is observed. Please note that for this process
scheme 0 and 3 as well as scheme 1 and 2 lead to the same set
of allowed spectators, respectively, and therefore to identical
results.

Figure 6 now considers top-anti-top pair production at
the LHC. This process occurs at LO at O(α2

s ),O(αsα) and
O(α2). Thus, at NLO there exist four contributions, atO(α3

s ),
O(α2

s α),O(αsα
2) and O(α3). While the O(α3

s ) and O(α3)

terms can be clearly identified as NLO QCD and NLO EW
corrections to the LO O(α2

s ) and O(α2) expressions, respec-
tively, the O(α2

s α) and O(αsα
2) terms do not possess such

a unique characterisation: they act as both NLO QCD cor-
rections and NLO EW corrections to different LO processes.
Consequently, their divergence structure contains singular-
ities of both QCD and QED origin. Hence, both QCD and

QED dipoles with underlying Born processes of different
orders are needed for a full subtraction of all divergences. As
explained in Sect. 3.1, this holds true both for the differen-
tial and integrated subtraction terms. It therefore serves as an
additional check to verify the independence of the result of
the {αdip} for each O(α3−m

s αm), m = 0..3, individually. And
indeed, the correction contribution σIRD is found independent
of {αdip} for each such order.
ExternalW bosons. Lastly, it may become necessary to also
consider external W bosons (or other massive charged par-
ticle with spin > 1

2 in BSM theories) as stable final state
particles, e.g. to reduce the computational complexity for
high final state multiplicity processes where off-shell effects
and effects in the decays can be ignored or recovered through
other means [83]. In this case the literature does not provide
expressions for the respective massive dipole functions. As
their mass, however, can be assumed to be large enough to
suppress collinear radiation well enough, this only leaves the
spin-independent soft photon emission limit. 3 Here, both the
expressions for the radiation of a photon off a massive scalar
or a massive fermion can be used.

3 This assumption also proves to be correct for on-shell W production
at a 100 TeV collider.
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Fig. 7 {αdip}-dependence of the sum of integrated subtraction term
and differentially subtracted real emission for νe ν̄e → W+W− and
pp → W+W−. Both choices of subtraction terms for external massive

charged vector bosons, using the ones of an external massive scalar
(filled symbols) and massive fermions (empty symbols), are compared

Figure 7 details the production of a W+W− pair in the
hypothetical νe − ν̄e collider, separating the FF dipoles and
their α FF dependence, on the left hand side. As before, σIRD

is found to be independent within the statistical accuracy and
also independent of the whether the massive scalar or mas-
sive fermion subtraction terms are used. The right hand side
focusses on their production at the LHC. Again, all dipoles
contribute at O(α3), leading again to the afore described six-
point variation. Also in this case, the result is independent of
{αdip} and the choice of scalar or fermionic subtraction term.
The FI and IF dipoles cannot be investigated separately, as
in the νe p → νet case, due to charge conservation.

5 Conclusions

This paper detailed the construction and implementation of
the adaptation of the Catani–Seymour subtraction formal-
ism for NLO EW calculations. Besides the translation of the
QCD dipole functions to the QED case, several other issues
have been addressed. They include the special role photon
splittings play in the formalism, embedding extermal mas-
sive emitters of spin > 1

2 into the formalism and the inter-
play of QCD and QED subtractions for processes exhibit-
ing both kinds of divergences. The resulting general subtrac-
tion for NLO EW calculations has been implemented in the
SHERPA Monte-Carlo event generator framework. Interfaces
to OPENLOOPS, GOSAM and RECOLA to access the needed
virtual corrections exist and are fully functional.

In addition to the checks against independent implemen-
tations on the level of partial and total cross sections per-
formed in previous publications, numerous internal cross
checks for independence of technical parameter choices,
{αdip} = {α FF, α FI, α IF, α II}, κ and the choice of spectator in
photon splittings cγ

k̃
, have been presented here. This imple-

mentation will become publically available in the near future
with the next major SHERPA release and an extension to the
COMIX matrix element generator [84] is foreseen.
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A Differential splitting functions

This appendix details the complete functional form of
the dipoles introduced in Eq. (2.3), Di j,k,Da

i j ,Da
j,k and

Da,b
j . The functional forms of the spin-dependent insertions

Vi j,k,Va
i j ,V

a
j,k and Va,b

j and the kinematic maps of the dif-
ferential splitting functions are taken from the original QCD
case [40,41]. They are summarised in the following.

A.1 Final–final dipoles

Dipoles with both emitter and spectator in the final state take
the form
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Di j,k = − 1

(pi + p j )2 − m2
ı̃j

Q2
ı̃j k̃m

〈. . . , ı̃j, . . . , k̃,

. . . |Vi j,k | . . . , ı̃j, . . . , k̃, . . .〉m . (A.1)

Therein, the charge-correlator is defined in Eq. (2.5). All
momenta of the dipole are on-shell

p2
i = m2

i , p2
j = m2

j , p2
ı̃j = m2

ı̃j , p2
k = p2

k̃
= mk,

(A.2)

and the total four momentum flowing through it is given by

q = pi + p j + pk = pı̃j + pk̃ . (A.3)

It is thus invariant under the emission. The momenta of the
parton before and after the splitting are connected through
the map

pk̃ =

√√√√√ λ
(
q2,m2

ı̃j ,m
2
k̃

)

λ
(
q2, (pi + p j )2,m2

k

)
(
pk − qpk

q2 q

)

+ 1
2

q2 + m2
k̃
− m2

ı̃j

q2 q

pı̃j = q − pk̃ (A.4)

wherein mk̃ = mk and the Kallen function is defined as
λ (a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. The splitting
variables read

yi j,k = pi p j

pi p j + pi pk + p j pk
,

zi = 1 − z j = pi pk
(pi + p j )pk

and

z(m)
i, j = zi, j − 1 − vi j,k

2
, (A.5)

which are defined on the intervals yi j,k ∈ [y−, y+] and zi ∈
[z−, z+]. The boundaries are given by

y− = 2mim j

q2
i j,k

z− = 2m2
i − q2

i j,k yi j,k

2(m2
i + m2

j + q2
i j,k yi j,k)

(
1 − vi j,ivi j,k

)

y+ = 1 −
2mk

√
q2 − m2

k

q2
i j,k

z+ = 2m2
i − q2

i j,k yi j,k

2(m2
i + m2

j + q2
i j,k yi j,k)

(
1 + vi j,ivi j,k

)
. (A.6)

withq2
i j,k = q2−m2

i −m2
j−m2

k . As can be seen, a divergence,
residing at yi j,k = 0, is only present if either i or j are

massless. The relative velocities between ı̃j and k̃, i + j and
k, and i + j and i are given by

vı̃j,k̃ =

√
λ
(
q2,m2

ı̃j ,m
2
k̃

)

q2 − m2
ı̃j − m2

k̃

vi j,k =

√[
2m2

k + q2
i j,k(1 − yi j,k)

]2 − 4q2m2
k

q2
i j,k(1 − yi j,k)

and

vi j,i =
√
q4
i j,k y

2
i j,k − 4m2

i m
2
j

q2
i j,k yi j,k + 2m2

i

. (A.7)

They are introduced to facilitate the analytic integration and
only take effect away from the singular limit. Thus, denoting
the Spins of parton ı̃j in 〈. . . , ı̃j, . . . |Vi j,k | . . . , ı̃j, . . .〉 by
s, s′ (if ı̃j is a fermion), μ, ν (if ı̃j is a photon), or omitting
them (if ı̃j is a scalar) the dipole functions are defined as

〈s|Vγ f,k |s′〉 = 8πμ2εα

{
2

1 − z j (1 − yi j,k)

− ṽi j,k

vi j,k

[
2 − zi (1 − ε) +

m2
f

pi pk

]}
δss′

〈μ|V f f̄ ,k |ν〉 = 8πμ2εα
1

vi j,k

×
{

− gμν

[
1 − 2κ

1 − ε

(
z+z− −

m2
f

(pi + p j )2

)]

− 4

(pi + p j )2

[
z(m)
i pμ

i − z(m)
j pμ

j

] [
z(m)
i pν

i − z(m)
j pν

j

] }

〈|Vγ s,k |〉 = 8πμ2εα

{
2

1 − z j (1 − yi j,k)
− ṽi j,k

vi j,k

[
2 + m2

s
pi pk

]}
.

(A.8)

It is thus clear that only in the case of photons splitting
into massless fermions does the dipole splitting function
have a non-diagonal structure. In all other cases, the inser-
tion 〈. . . , ı̃j, . . . |Vi j,k | . . . , ı̃j, . . .〉 reverts to a simple mul-
tiplication of a real-valued splitting function and a stan-
dard Born matrix element. The parameter κ controls finite
terms and only takes effects in the case where the respec-
tive fermionic products of the splittings are massive. Setting
κ = 0 somewhat simplifies the spin-dependence of the dif-
ferential dipoles.

A.2 Final–initial dipoles

Dipoles with the emitter in the final state and the spectator
in the initial state take the form
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Da
i j = − 1

(pi + p j )2 − m2
ı̃j

1

xi j,a

Q2
ı̃j ã m〈. . . , ı̃j, . . . , ã, . . . |Va

i j | . . . , ı̃j, . . . , ã, . . .〉m
(A.9)

Therein, the charge-correlator is defined in Eq. (2.5). All
momenta of the dipole are on-shell

p2
i = m2

i , p2
j = m2

j , p2
ı̃j = m2

ı̃j , p2
a = p2

ã = 0,

(A.10)

and the total four momentum flowing through it is given by

q = pi + p j − pa = pı̃j − pã . (A.11)

It is thus invariant under the emission. The momenta of the
parton before and after the splitting are connected through
the map

pã = xi j,a pa

pı̃j = q + pã . (A.12)

The splitting variables read

xi j,a = 1 −
pi p j − 1

2

(
m2

ı̃j − m2
i − m2

j

)

(pi + p j )pa
and

zi = 1 − z j = pi pa
(pi + p j )pa

. (A.13)

The singularity of the splitting resides at xi j,a = 1 and is
only present if either mı̃j = mi or mı̃j = m j . Adopting the
above convention for labeling the emitter’s spins the dipole
functions are defined as

〈s|Va
γ f |s′〉 = 8πμ2εα

{
2

2 − xi j,a − z j

−2 + zi (1 − ε) − m2
f

pi p j

}
δss′

〈μ|Va
f f̄

|ν〉 = 8πμ2εα

{
−gμν − 4

(pi + p j )2

×
[
zi p

μ
i − z j p

μ
j

] [
zi p

ν
i − z j p

ν
j

] }
.

〈|Va
γ s |〉 = 8πμ2εα

{
2

2 − xi j,a − z j
− 2 − m2

s

pi p j

}

(A.14)

Again, only photon splittings exhibit any spin correlations.
In all other cases the dipole function and the underlying Born
matrix element factorise.

A.3 Initial–final dipoles

Dipoles with the emitter in the initial state and the spectator
in the final state take the form

Da
j,k = − 1

2pa p j

1

xaj,k
Q2
ãj k̃ m〈. . . , ãj, . . . , k̃,

. . . |Va
j,k | . . . , ãj, . . . , k̃, . . .〉m (A.15)

The charge-correlator is defined in Eq. (2.5). All momenta
of the dipole are on-shell

p2
a = p2

ãj = p2
i = 0, p2

k = p2
k̃

= m2
k, (A.16)

and the total four momentum flowing through it is given by

q = −pa + p j + pk = −pãj + pk̃ . (A.17)

It is thus invariant under the emission. The momenta of the
parton before and after the splitting are connected through
the map

pãj = xai,k pa

pk̃ = q + pãj . (A.18)

The splitting variables read

xaj,k = 1 − p j pk
(p j + pk)pa

and

u j = 1 − uk = p j pa
(p j + pk)pa

. (A.19)

As the splitting partons are all in the initial state and therefore
massless, the singularity at u j = 0 is present in any case.
Adopting the above convention for labeling the spin of the
emitter ãj the dipole functions are defined as

〈s|V f
γ,k |s′〉 = 8πμ2εα

{
2

2 − xaj,k − uk
− 1 − xaj,k

−ε(1 − xaj,k)

}
δss′

〈s|Vγ

f,k |s′〉 = 8πμ2εα

{
1 − ε − 2xaj,k(1 − xaj,k)

}
δss′

〈μ|V f
f,k |ν〉 = 8πμ2εα

{
−gμνxaj,k − 1 − xaj,k

xaj,k

2z j zk
p j pk

×
[
pμ
j

u j
− pμ

k

uk

][
pν
j

u j
− pν

k

uk

]}
(A.20)

As only massless particles are considered as initial states, no
splitting functions involving massive scalars are needed.
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A.4 Initial–initial dipoles

Dipoles with both emitter and spectator in the initinal state
take the form

Da,b
j = − 1

2pa p j

1

xaj,b
Q2
ãj b̃ m〈. . . , ãj, . . . , b̃,

. . . |Va,b
j | . . . , ãj, . . . , b̃, . . .〉m (A.21)

The charge-correlator is defined in Eq. (2.5). All momenta
of the dipole are on-shell

p2
a = p2

ãj = p2
i = 0, p2

b = p2
b̃

= 0, (A.22)

and the total four momentum flowing through it is given by

q = −pa − pb + p j , q̃ = −pãj − pb̃. (A.23)

before and after the emission, respectively. Although q
acquires transverse momentum after the emission, q2 = q̃2

holds, i.e. the mass of the dipole is invariant. The momenta of
the partos before and after the splitting are connected through
the map

pãj = xai,b pa

pb̃ = pb. (A.24)

While the initial state cannot absorb recoil transverse to the
beam access, it is transferred to the final state through a col-
lective boost

kμ

ı̃ = kν
i

[
δμ
ν − 2

(q + q̃)ν(q + q̃)μ

(q + q̃)2 + 2
qν q̃μ

q2

]
(A.25)

of all final state partons. The splitting variables read

xaj,b = 1 − p j (pa + pb)

pa pb
and v j = pa p j

pa pb
, vb = 1.

(A.26)

As the splitting partons are all in the initial state and therefore
massless, the singularity at v j = 0 is present in any case.
Adopting the above convention for labeling the spin of the
emitter ãj the dipole functions are defined as

〈s|V f,b
γ |s′〉 = 8πμ2εα

{
2

2 − xaj,b
− 1 − xaj,b

− ε(1 − xaj,b)

}
δss′

〈s|Vγ,b
f |s′〉 = 8πμ2εα

{
1 − ε − 2xaj,b(1 − xaj,b)

}
δss′

〈μ|V f,b
f |ν〉 = 8πμ2εα

{
−gμνxaj,b − 1 − xaj,b

xaj,b

2v jvb

p j pb

×
[
pμ
j

v j
− pμ

b

vb

][
pν
j

v j
− pν

b

vb

]}
(A.27)

As only massless particles are considered as initial states, no
splitting functions involving massive scalars are needed.

B Integrated splitting functions

This appendix summarises the complete functional form of
the integrated dipole terms cast in the form of the I, K and P
operators [40,41].

B.1 Terms of the I perator

Each dipole contribution to the I operator reads

Iik(ε, μ2; κ, {αdip}) = Q2
ik

[
Vik(ε, μ

2; κ) + �i (ε, μ
2)

+ γi

(
1 + ln

μ2

sik

)
+ Ki

+ AI
ik({αdip}) + O(ε)

]
, (B.1)

cf. Eq. (2.8). Therein, Vik takes the general form

Vik(ε, μ
2; κ)

=

⎧⎪⎨
⎪⎩

Q2
i

(
μ2

sik

)ε [V (S)
ik (ε) + V (NS)

ik (κ) − π2

3

]
i �= γ

V (NS)
γ k (κ) i = γ.

(B.2)

Wherein,V (S)
ik contains all infrared singularities (double poles

for massless fermion splittings, single pole for massive split-
tings), and a non-singular piece V (NS)

ik that incorporates all
finite dependences on the masses of the emitter and the spec-
tator. The latter vanishes in the massless case, see below.
In the case of photon splittings, only the non-singular part
survives, again being non-zero only in the case of massive
spectators. The singular part vanishes in case of photon split-
tings.

The singular term V (S)
ik is symmetric in i and k, it is given

by

V (S)
ik (ε) = 1

vik

(
q2
ik

sik

)ε [
1

ε2

(
1 − 1

2ρ−2ε
i − 1

2ρ−2ε
k

)

−π2

12
(�(mi ) + �(mk))

]
(B.3)
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with

ρi/k =
√√√√ (1 − vik)sik + 2m2

i/k

(1 + vik)sik + 2m2
i/k

mi/k→0−→ 0 (B.4)

and the velocity factors

vik =
√

λ
(
q2
ik,m

2
i ,m

2
k

)
sik

mi ,mk→0−→ 1 (B.5)

parametrise the mass dependence. Therein, q2
ik = (pi +

pk)2 = sik + m2
i + m2

k is the dipole invariant mass. In
d = 4 − 2ε dimensions, ε > 0, the massless limit is
approached smoothly. Subsequently taking the limit ε → 0,
however, results in ε−2 poles only if at least one of both par-
ticles making up the dipole is massless. Completely massive
dipoles only result in single infrared poles.

The non-singular V (NS)
ik contributions encode the addi-

tional finite mi/k > 0 contributions. They vanish in the limit
that both mi → 0 and mk → 0 and their precise form can
be found in Eq. (6.21)–(6.26) of [41]. Of particular interest
is the term for a photon emitter in the presence of a massive
spectator,

V (NS)
γ k (κ) = γγ

[
log

sik
q2
ik

− 2 log
|qik | − mk

|qik | − 2mk

|qik | + mk

]

+ π2

6
− Li2

(
sik
q2
ik

)

+ 2γγ

(
κ − 2

3

) m2
k

sik
log

2mk

|qik | + mk
, (B.6)

with |qik | =
√
q2
ik . Thus, choosing κ = 2

3 somewhat simpli-
fies the integrated subtraction term.

Further,

�i (ε, μ
2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ε

γi i = massless fermion

Q2
i

[
1
ε

+ 1
2 ln

m2
i

μ2 − 2

]
i = massive fermion

1
ε

γγ i = γ

Q2
i

[
1
ε

+ ln
m2
i

μ2 − 2

]
i = massive scalar.

(B.7)

In case of the photon, the sum runs over all massless charged
flavours present in the model. The flavour constants γi and
Ki are given by

γi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
2 Q

2
i i = fermion

− 2
3

∑
f
NC, f Q2

f i = γ

2Q2
i i = scalar

Ki =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
7
2 − π2

6

)
Q2

i i = fermion

− 10
9

∑
f
NC, f Q2

f i = γ

(
4 − π2

6

)
Q2

i i = scalar

(B.8)

and are independent of the particle masses. For the pho-
ton, the sums run over all charged massless flavours of
the model, NC, f being their respective colour multiplicity.
Lastly, the dependence of the I operator on the technical
parameters {αdip} = {α II, α IF, α FI, α FF} is encoded in the last
term AI

ik({αdip}) which is detailed in App. C.

B.2 Terms of the K and P operators

The K operator of Eq. (2.9) reads

Kaa′(x; {αdip}) = α

2π

{
Kaa′(x) − KFS(x) −

∑
i

Q2
ia′Ki,aa′(x)

−
∑
k

Q2
a′k K

t
aa′,k(x)

−Q2
a′b K̃aa′(x) + AK

aa′({αdip})
}

.

(B.9)

Therein, the K collect universal terms present in all splitting
involving an initial state as either emitter or spectator. They
are defined as

Kaa′(x) = Paa′
reg (x) log

1 − x

x
+ P̂ ′aa′

(x)

+ δaa
′
[
Q2

a

(
2

1 − x
log

1 − x

x

)
+

−δ(1 − x)

(
γa + Ka − 5

6
π2Q2

a

)]
. (B.10)

As can be seen, they are independent of the final state and
thus independent of any final state particle masses. Here,
the regular part of the Altarelli–Parisi splitting functions are
given by

Paa′
reg (x) =

⎧⎪⎪⎨
⎪⎪⎩

−Q2
a (1 + x) aa′ = f f

Q2
a [x2 + (1 − x)2] aa′ = f γ

NC,a′Q2
a′

1+(1−x)2

x aa′ = γ f
0 aa′ = γ γ,

(B.11)
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with NC,a′ the multiplicity in the QCD representation of par-
ton a′ (3 for quarks, 1 for leptons). Similarly, the ε-dependent
part of the splitting functions is defined as

P̂ ′aa′
(x) =

⎧⎪⎪⎨
⎪⎪⎩

Q2
a (1 − x) aa′ = f f

Q2
a x aa′ = f γ

NC,a′Q2
a′ x(1 − x) aa′ = γ f

0 aa′ = γ γ.

(B.12)

Thus, for a = a′ = γ the K term takes the simple form

K γ γ (x) = − 8
3 γγ δ(1 − x), (B.13)

and comprises an end-point term only. The factorisation
scheme dependent terms KFS vanish in the MS scheme, and
the Ki,aa′ , containing remnants from final state splittings
where the initial statea forms the spectator. As it also depends
on the final state flavour i , its forms are given as follows. The
contributions, listed separately for scalars, fermions and pho-
tons, read

K f,γ f (x) = 0

K f, f f (x) = 2

[(
log(1 − x)

1 − x

)
+

− log(2 − x)

1 − x

]

+
[
Jaγ Q

(
x,

mi√
sik

)]
+

+ 2

(
1

1 − x

)
+

log
(2−x)sik

(2−x)sik+m2
i

+δ(1−x)

[
− γ f

Q2
i

+m2
i

sik
log

m2
i

sik + m2
i

+ 1
2

m2
i

sik+m2
i

]

K f, f γ (x) = 2
m2
i

xsik
log

m2
i

(1 − x)sik + m2
i

K f,γ γ (x) = K f, f f , (B.14)

and

Ks,aa′(x) = K f,aa′(x) − δaa
′
[(

s2
ik(1 − x)

2[sik(1 − x) + m2
i ]2

)

+

−δ(1 − x)

(
m2

i

sik
log

m2
i

q2
ik

+ m2
i

2q2
ik

+ γs − γ f

Q2
s

)]
.

(B.15)

The missing function Jaγ Q(x, y) is given in Eq. (5.58) of [41].
In the massless limit this reduces to

Ki,aa′(x) = −δaa
′ γi

Q2
i

[(
1

1 − x

)
+

+ δ(1 − x)

]
(B.16)

Simultaneously, for i = γ

Kγ,aa′(x) = −δaa
′
γγ

[(
1

1 − x

)
+

+ δ(1 − x)

]
(B.17)

due to the different normalisation of Q2
ik in the photon case.

The K t
aa′,k terms comprise of initial state splittings in the

presence of a final state spectator. They take the form

K t
aa′,k(x) = Paa′

reg (x) log
(1 − x)sak

(1 − x)sak + m2
k

+ γa δaa
′
δ(1 − x)

×
⎡
⎣log

sak − 2mk

√
sak + m2

k + 2m2
k

sak

+ 2mk√
sak + m2

k + mk

⎤
⎦ (B.18)

Again, for a = a′ = γ the end-point contribution can-
not arise as no corresponding splitting is integrated over,
K t

γ γ,k = 0. Finally, the K̃ terms, containing correlations
between both initial state partons, read

K̃aa′(x) = Paa′
reg (x) log(1 − x)

+ Q2
a′δaa

′
[

2

(
log(1 − x)

1 − x

)
+

− π2

3
δ(1 − x)

]
.

(B.19)

They thus vanish for a = a′ = γ .
Finally, the P operator is given by

Paa′(x, μ2
F )

= α

2π
Paa′

(x)

[∑
k

Q2
a′k log

μ2
F

xsak
+ Q2

a′b log
μ2

F

xsab

]
,

(B.20)

cf. Eq. (2.10). Therein, the regularised Altarelli-Parisi split-
ting functions are given by

Paa′
(x)= Paa′

reg (x)+δaa
′
[

2 Q2
a

(
1

1 − x

)
+

+ γa δ(1 − x)

]
.

(B.21)

Most importantly,

Pγ γ (x) = γγ δ(1 − x). (B.22)
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C Precise forms of AI
ik and AK

ab

C.1 The AI
ik term

The explicit dependence of the I operator on the {αdip}param-
eters, or more precisely only on α FF, is given by [54,55,86–
88] if i is a massless fermion

AI
ik({α}) = − ln2 α FF − γi (ln α FF + 1 − α FF) mk = 0

= ln2 1 − y2+ + 2xy+
(1 − x + y+)(1 + x − y+)

− 2 ln2 1 + y+ − x

1 + y+

+ 4

[
ln

1 + y+
2

ln
1 − y+ + x

1 − y+

+ ln
1 + y+

2y+
ln

1 − y2+ + 2x+y+
1 − y2+

+ Li2

(
1 − y+
1 + y+

)
− Li2

(
1 − y+

2

)

+ Li2

(
1 + x − y+

2

)
− Li2

(
1 − y2+ + 2xy+

(1 + y+)2

)]

− 3
2 (ln α FF + y+(1 − α FF)) mk �= 0 (C.1)

or if i a massive fermion

AI
ik({α}) = 2

[
− ln α FF

(
1 + ln μ2

i

)
+ Li2

(
α FF

μ2
i − 1

μ2
i

)

−Li2

(
μ2
i − 1

μ2
i

)]

+ 1
2

[
−(1 − α FF)

3α FF(1 − μ2
i ) + 2μ2

i

α FF + (1 − α FF)μ
2
i

+1 + μ2
i

1 − μ2
i

ln
(
α FF + (1 − α FF)μ

2
i

)]

mk = 0

= 3
2 (1 + α FFy+) + 1

1 − μk
− 2 − 2μ2

i − μk

d

+ 1
2

(1 − α FFy+)μ2
i

μ2
i + 2α FFy+d

− 2 ln α FF

+ 1
2

μ2
i + d

d
ln

μ2
i + 2α FFy+d
(1 − μk)

+ 2

vik

[
− Li2

(
a + x

a + x+

)
+ Li2

(
a

a + x+

)

+ Li2

(
x− − x

x− + a

)
− Li2

(
x−

x− + a

)

+ Li2

(
c + x

c + x+

)
− Li2

(
c

c + x+

)

− Li2

(
x− − x

x− + c

)
+ Li2

(
x−

x− + c

)

− Li2

(
b − x

b − x−

)
+ Li2

(
b

b − x−

)

+ Li2

(
x+ − x

x+ − b

)
− Li2

(
x+

x+ − b

)

+ Li2

(
b − x

b + a

)
− Li2

(
b

b + a

)

− Li2

(
c + x

c − a

)
+ Li2

(
c

c − a

)

+ ln(c + x) ln
(a − c)(x+ − x)

(a + x)(x+ + c)

− ln c ln
(a − c)x+
a(x+ + c)

− ln(b − x) ln
(a + b)(x− − x)

(a + x)(x− − b)

+ ln b ln
(a + b)x−
a(x− − b)

− ln ((a + x)(b − x+)) ln(x+ − x)

+ ln (a(b − x+)) ln x+

+ ln d ln
(a + x)x+x−

a(x+ − x)(x− − x)

+ ln
x− − x

x−
ln

c + x−
a + x−

+ 1
2 ln

a + x

a
ln
(
a(a + x)(a + x+)2

)]

mk �= 0 (C.2)

or if i is a photon

= −γi (ln α FF + 1 − α FF) mk = 0

= −γi

[(
1 − μk − α FFy+(1 + μk)

1 + μk
+ ln

α FFy+(1 + μk)

1 − μk

)

+ 3
2 (κ − 2

3 )
2μ2

k

1 − μ2
k

ln
(1 − α FFy+)(1 + μk)

2μk

]

mk �= 0 (C.3)

or a massive scalar

= 2

[
− ln α FF(1 + ln μ2

i ) + Li2

(
α FF

μ2
i − 1

μ2
i

)

−Li2

(
μ2
i − 1

μ2
i

)
− (1 − α FF)

α FF(1 − μ2
i ) + μ2

i

α FF + (1 − α FF)μ
2
i

]

mk = 0

= 3
2 (1 + α FFy+) + 1

1 − μk
− 2 − 2μ2

i − μk

d

+ 1
2

(1 − α FFy+)μ2
i

μ2
i + α FFy+d

− 2 ln α FF
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− 1
2 (1 − 2α FF)y+

α FFy+d(1 − μk) + μ2
i

(2α FFy+d + μ2
i )(1 − μk)

+ 2

vik

[
− Li2

(
a + x

a + x+

)
+ Li2

(
a

a + x+

)

+Li2

(
x− − x

x− + a

)
− Li2

(
x−

x− + a

)

+ Li2

(
c + x

c + x+

)
− Li2

(
c

c + x+

)

− Li2

(
x− − x

x− + c

)
+ Li2

(
x−

x− + c

)

− Li2

(
b − x

b − x−

)
+ Li2

(
b

b − x−

)

+ Li2

(
x+ − x

x+ − b

)
− Li2

(
x+

x+ − b

)

+ Li2

(
b − x

b + a

)
− Li2

(
b

b + a

)

− Li2

(
c + x

c − a

)
+ Li2

(
c

c − a

)

+ ln(c + x) ln
(a − c)(x+ − x)

(a + x)(x+ + c)

− ln c ln
(a − c)x+
a(x+ + c)

− ln(b − x) ln
(a + b)(x− − x)

(a + x)(x− − b)

+ ln b ln
(a + b)x−
a(x− − b)

− ln ((a + x)(b − x+)) ln(x+ − x)

+ ln (a(b − x+)) ln x+

+ ln d ln
(a + x)x+x−

a(x+ − x)(x− − x)

+ ln
x− − x

x−
ln

c + x−
a + x−

+ 1
2 ln

a + x

a
ln
(
a(a + x)(a + x+)2

)]

mk �= 0 (C.4)

As can be seen, the massless case can be recovered from the
massive one in the limit that mk → 0. The AI

ik term could
in principle also be shifted into the K operator to leave the I
operator invariant. To be applicable to pure final-state calcu-
lations, though, it is left where it is. The various abbreviations
above are defined as

μ2
i/k = m2

i/k

q2
ik

y+ = (1 − μk)
2 − μ2

i

1 − μ2
i − μ2

k

=
{

1 if mk = 0
1−μk
1+μk

if mi = 0

y = 1
2

[
1 − μ2

k + α FF(1 − μk)
2 − (1 − μk)

×
√

(α FF(1 − μk))2 + (1 + μk)2 − 2α FF(1 + μ2
k)

]

x = (1 − α FF)y+ +
√√√√(1 − α FF)

(
1 − α FFy2+ − 4μ2

i μ
2
k

d2

)

x± = 1
4 y+ ± 1

2

√
λ
(
1, μ2

i , μ
2
k

)
d

a = μk

d

b = 1 − μk

d
c = abd = 1 − y+

d = 1
2
sik
q2
ik

= 1
2 (1 − μ2

i − μ2
k) (C.5)

C.2 The AK
ab term

The dependence of the K operator on the {αdip} parameters,
or more precisely only on α FI, α IF and α II, is given in [54,55,
86,87,89]. It has the general form

AK
ab(x, {αdip}) = A

Kt

ab (x, α FI, α IF) + AK̃
ab(x, α II). (C.6)

The superscripts indicate the general functional form of the
contribution. In case of the α FI and α IF depedence the existing
plus distributions are modified in the K t terms as follows

(..)+ → (..)1−α FI
(C.7)

with

1∫

0

dx f (x)[g(x)]1−α FI =
1∫

1−α FI

dx g(x)[ f (x) − f (1)].

(C.8)

As the singular point sits at x = 1 this modification amouts
to a finite contribution. The α IF on the other hand leads to

finite regular functional contribution in the A
Kt

ab term given
in [87,89].

Lastly, the α II dependence reads [55]

AK̃
ab(x, α II) = log

α II

1 − x
, (C.9)

except when a = b = γ , in which case it is zero as the
original K̃γ γ term.
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