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Abstract In the present investigation an exact generalised
model for anisotropic compact stars of embedding class 1
is sought with a general relativistic background. The generic
solutions are verified by exploring different physical aspects,
viz. energy conditions, mass–radius relation, stability of the
models, in connection to their validity. It is observed that the
model presented here for compact stars is compatible with all
these physical tests and thus physically acceptable as far as
the compact star candidates RX J 1856-37, SAX J 1808.4-
3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned.

1 Introduction

The studies on anisotropic compact stars have always
remained a topic of great interest in relativistic astro-
physics. The detailed work of several scientists [1–5] made
our understanding clear of the highly dense spherically
symmetric fluid spheres having a pressure anisotropic in
nature. Usually anisotropy arises due to the presence of
a mixture of fluids of different types, rotation, existence
of superfluid, presence of magnetic field or external field
and phase transitions etc. According to Ruderman [2] for
a high density (>1015 gm/cm3) anisotropy is the inher-
ent nature of nuclear matter and their interactions are
relativistic. In this connection some other work on the
anisotropic compact star models can be found in Refs. [6–
13].

A recent study by Randall–Sundram and Anchordoqui–
Bergliaffa [14,15] re-establishes the idea that our 4-dimen-
sional spacetime is embedded in higher dimensional flat
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space as predicted earlier by Eddington [16]. It is well known
that the manifold Vn can be embedded in pseudo-Euclidean
space of m = n(n + 1)/2 dimensions. The class of manifold
Vn which is less than or equal to m − n = n(n− 1)/2 can be
defined as the minimum extra dimension (p) of the pseudo-
Euclidean space required for embedding Vn in Em . It is to be
noted that when n = 4, i.e. for a relativistic spacetime V4,
the corresponding value of the relativistic embedding class p
is 6. The values of the same for the plane and spherical sym-
metric spacetime are, respectively, 3 and 2. The class of Kerr
is 5 [17] whereas the class of Schwarzschild’s interior and
exterior solutions are, respectively, 2 and 1 and in the same
way for the Friedman–Robertson–Lemaître spacetime [18] it
is 1. In some of our previous works [22–25] we have success-
fully discussed different stellar models under the embedding
class 1. In this paper utilising the embedding class 1 metric
we have attempted to study an anisotropic spherically sym-
metric stellar model. In this investigation we have assumed
that the metric potential ν = n ln

(
1 + Ar2

) + ln B, where
n ≥ 2.

In the present article using the observed parameters [19–
21] of ultra-dense compact stars like RXJ 1856-37, SAX J
1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2), we have
studied the consistency of the proposed model with these
compact stars. One may notice that all these stars are nothing
but pulsars. Li et al. [19] argued that the object SAX J1808.4-
3658 with its two variants SS1 and SS2 are actually “by
far the fastest-rotating, lowest-field accretion-driven pulsar
known”. It is observed that in Ref. [19] several equations
of state (EOS) for rotating neutron star models have been
investigated which are not able to reproduce the fast rotation
of the object SAX J 1808.4-3658. However, by taking the
EOS of strange star models one can understand SAX J and
as such there are two different EOS so that one has two mod-
els: SS1 and SS2. Thus it is found [19] that for these stars
the use of a strange star model is appropriate and the out-
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comes are physically more acceptable than the neutron star
model.

In our investigation though we have assumed a non-
rotating static model of the above mentioned stars, it is inter-
esting to note that the outcomes clearly show that they cor-
respond to the features of strange stars. Though in our study
we are unable to explain physical properties like the pulsa-
tion or the thermonuclear burst observed in these stars, we
can justify some of the basic and important physical features
of these ultra-dense compact stars. However, at this juncture
one can argue that a non-rotating model and an extreme fast
rotating astrophysical object simply do not match. But as a
first try to show that an anisotropic model could fit the data
and that further investigation of rotating models makes sense,
and one can use them and refer to them in this work.

Against the above background the outline of the present
work is as follows: we provide the Einstein field equations
and their solutions in Sect. 2. In Sect. 3 the boundary condi-
tions are discussed to find the constants of integration. Sec-
tion 4 deals with the applications of the solutions to check
several physical properties of the model regarding validity
with the stellar structure. Some remarks are made in the con-
cluding section, Sect. 5.

2 Basic field equations and solutions

To describe the interior of a static and spherically symme-
try object the line element in the Schwarzschild coordinate
(xa) = (t, r, θ, φ) can be written as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

, (1)

where λ and ν are functions of the radial coordinate r .
Now if the spacetime Eq. (1) satisfies the Karmarkar con-

dition [28],

R1414 = R1212R3434 + R1224R1334

R2323
, (2)

with R2323 �= 0 [29], it represents the spacetime of emending
class 1.

For the condition (2), the line element of Eq. (1) gives the
following differential equation:

λ′ν′

1 − eλ
= −2(ν′′ + ν′2) + ν′2 + λ′ν′, (3)

with eλ �= 1.

Solving Eq. (3) we get

eλ = 1 + Fν′2eν, (4)

where F �= 0 is an arbitrary integrating constant.
We are assuming that within the star the matter is

anisotropic and the corresponding energy-momentum tensor
can be taken in the form

Tμ
ν = (ρ + pr)u

μuν − ptg
μ
ν + (pr − pt)η

μην, (5)

with uiu j = −ηiη j = 1 and uiη j = 0, the vector ui being
the fluid 4-velocity and ηi the space-like vector which is
orthogonal to ui . Here ρ is the matter density, pr is the radial
and pt is the tangential pressure of the fluid in the direction
orthogonal to pr.

Assuming κ = 8π with G = c = 1 (in relativistic
geometrised units) the Einstein field equations are given by

1 − e−λ

r2 + e−λλ′

r
= κρ, (6)

e−λ − 1

r2 + e−λν′

r
= κ pr, (7)

e−λ

(
ν′′

2
+ ν′2

4
− ν′λ′

4
+ ν′ − λ′

2r

)
= κ pt. (8)

Here we have four equations with five unknowns, namely
λ, ν, ρ, pr and pt , which are to be found in the proposed
model. This immediately prompts us to explore for some
suitable relationship between the unknowns or an existing
physically acceptable metric potential can be opted for, which
will help us to overcome the mathematical situation of redun-
dancy.

Therefore, to solve the above set of Einstein field equations
let us take the metric coefficient, eν , as proposed by Lake [30],

eν = B(1 + Ar2)n, (9)

where A and B are constants and n ≥ 2.
Solving Eqs. (4) and (9) we obtain

eλ = [1 + D Ar2(1 + Ar2)(n−2)], (10)

where D = 4n2 A B F.

Now using Eqs. (6)–(10) we obtain the expression for ρ,
pr and pt:

κρ

A
= D (1+Ar2)n [3+(2n−1)A2r4+2Ar2+2 n Ar2+D Ar2(1+Ar2)n]

[1+A2r4+2 Ar2+D Ar2 (1+Ar2)n]2 , (11)

κ pr

A
= 2 n (1 + Ar2) − D (1 + Ar2)n

[1 + A2r4 + 2 Ar2 + D Ar2 (1 + Ar2)n] , (12)
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Fig. 1 Variation of the metric functions eν and eλ with the fractional
coordinate r/R for RX J 1856-37 with the mass M = 0.9042 M� and
the radius R = 6.002 km (Table 1). For this graph, the values of the con-
stants are as follows: (i) A = 0.0043, B = 0.3623, F = 81.0930, D =
4.5094 for n = 3, (ii) A = 0.0031, B = 0.3651, F = 81.0968, D =
5.8353 for n = 4, (iii) A = 0.0012, B = 0.3700, F = 81.0905, D =

13.8611 for n = 10, (iv) A = 1.1136 × 10−4, B = 0.3727, F =
81.0794, D = 134.5882 for n = 100, (v) A = 1.1089 × 10−6, B =
0.3730, F = 81.0930, D = 1.3418 × 104 for n = 10,000 (Table 2).
Here the unit of A is in km−2, F is in km2, whereas B and D are dimen-
sionless; these are to be considered henceforth to hold as the units of
any A, F , B and D

Fig. 2 Variation of the effective density (ρ̃ = ρ/nA) with the frac-
tional coordinate r/R for RX J 1856-37. For plotting of this figure, we
have employed same data set values as used in Fig. 1

κpt

A
= (1 + Ar2) [2 n (1 + Ar2) + n2 Ar2 (1 + Ar2) + D (Ar2 − 1) (1 + Ar2)n]

[1 + A2r4 + 2 Ar2 + D Ar2 (1 + Ar2)n]2 . (13)

The anisotropic factor 
 is obtained as


 = A2r2 [n2 f 2 − 2n f ( f + D f n) + D f n(2 + 2 Ar2 + D f n)]
κ [1 + A2r4 + 2 Ar2 + D Ar2 (1 + Ar2)n]2 ,

(14)

where f = (1 + Ar2). The profiles of the metric func-
tions, density, the radial and tangential pressures and the
anisotropic factor are, respectively, shown in Figs. 1, 2, 3
and 4.

From Fig. 4 we also find that for our system the anisotropic
factor is minimum at the centre and it is maximum at the

surface as proposed by Deb et al. [31] for the anisotropic
stellar model. However, the anisotropy factor is zero for all
radial distance r if and only if A = 0. This implies that in
the absence of anisotropy the radial and tangential pressures
and density become zero. Also in this case the metric turns
out to be flat.

3 Boundary conditions to determine the constants

For fixing the values of the constants, we match our interior
spacetime to the exterior Schwarzschild line element given
by

ds2 =
(

1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (15)

Outside the event horizon r > 2m, m being the mass of
the black hole. Also the radial pressure pr must be finite and
positive at the centre of the star which must vanish at the
surface r = R [32]. Then pr(R) = 0 gives

D = 4n2 A B F = 2 n (1 + A R2)1−n . (16)

This yields the radius of the star:

R =
√

(2 n A B F)1/(1−n) − 1

A
, (17)
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Fig. 3 Variation of the effective radial pressure, p̃r = pr/nA, (left
panel) and effective tangential pressure, p̃t = pt/nA, (right panel)
with the fractional coordinate r/R for RX J 1856-37. For plotting

of this figure, the values of the arbitrary constants have used here
same as Fig. 1. The numerical values can be found in Tables 1 and
2

Fig. 4 Variation of the anisotropic factor (
i = 8π
/A) with the frac-
tional coordinate r/R for RX J 1856-37 with mass M = 0.9042 M�
and radius (R) = 6.002 km (Table 1). For plotting of this figure,
the values of the constants are as follows: (i) A = 0.0043, B =
0.3623, F = 81.0930, D = 4.5094 for n = 3, (ii) A = 0.0031, B =
0.3651, F = 81.0968, D = 5.8353 for n = 4, (iii) A = 0.0012, B =
0.3700, F = 81.0905, D = 13.8611 for n = 10, (iv) A = 1.1136 ×
10−4, B = 0.3727, F = 81.0794, D = 134.5882 for n = 100, (v)
A = 1.1089 × 10−6, B = 0.3730, F = 81.0930, D = 1.3418 × 104

for n = 10,000 (Table 2)

by using the continuity of the metric coefficient eν, eλ and
∂gtt
∂r (matching of the second fundamental form at r = R is the

same as the radial pressure should be zero at r = R) across
the boundary, and we get the following three equations:

1 − 2M

R
= B(1 + AR2)n, (18)

(
1 − 2M

R

)−1

= 1 + D AR2(1 + AR2)(n−2), (19)

2M

R3 = 2 n B A(1 + AR2)n−1. (20)

Solving Eqs. (16) and (18)–(20), in terms of the mass of the
radius of compact stars, we obtained the expressions for B,
F and M as

B =
(
1 + AR2

)1−n

1 + (1 + 2 n)AR2 , (21)

F = 1 + (1 + 2 n)AR2

2 n A
, (22)

M

R
= n AR2

1 + AR2(1 + 2n)
. (23)

However, the value of arbitrary constant A is determined
by using the density of star at the surface, i.e. ρr=R = ρR as

A = κρR[1 + A2R4 + 2 AR2 + D AR2 (1 + AR2)n]2

D (1 + AR2)n [3 + (2n − 1)A2R4 + 2AR2 + 2 n AR2 + D AR2(1 + AR2)n] . (24)

We have derived different values of A, B and F for the
different values of n of the compact star RX J 1856-37 in
Table 2.

The gradients of the density and radial pressure (by taking
x = Ar2) are

κ

A

dρ

dx
= −D f n [−2 x3 + 10 + 5D f n + 6 x2 + 3D x2 f n + ρ1(x) − 2 n2 x ρ2(x)]

[1 + x2 + 2 x + D x (1 + x)n]3 , (25)
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κ

A

dpr

dx
= −2 D n2 x f n − D f n [2 f + D f n] + n [2 + 2x2 + 3D f n + 4 x + D x f n)]

[1 + x2 + 2 x + D x (1 + x)n]2 , (26)

where
ρ1(x) = x [18 + 4 D (1 + x)n + D2 (1 + X)2n] + n (x −

1)[5 + 5 x2 + x (10 − 3 D (1 + x)n)],
ρ2(x) = [1 + x2 + 2x − D x (1 + x)n], f = (1 + x).

4 Physical features of the anisotropic models

In this section different physical features of the compact stars
will be discussed.

4.1 Energy conditions

To satisfy the energy conditions, i.e. the null energy condition
(NEC), the weak energy condition (WEC) and the strong
energy condition (SEC), the anisotropic fluid spheres must
be consistent with the inequalities simultaneously holding
inside the stars given by

NEC :ρ ≥ 0, (27)

WEC :ρ − pr ≥ 0(WECr) and ρ − pt ≥ 0(WECt), (28)

SEC :ρ − pr − 2pt ≥ 0. (29)

From Fig. 5 it is clear that the energy conditions are sat-
isfied in the interior of the compact stars simultaneously.

4.2 Mass–radius relation

For the physical validity of the model according to Buch-
dahl [33] the mass to radius ratio for a perfect fluid should
be 2M/R ≤ 8/9, which was later proposed in a more gener-
alised expression by Mak and Harko [6].

The mass of the compact stars from our model is obtained:

M = κ

2

∫ R

0
ρ r2dr = n AR3

1 + AR2(1 + 2n)
. (30)

Fig. 5 Variation of the energy condition with respect to fractional
radius (r/R) for RX J 1856-37: (i) NEC (top left), (ii) WECr for (top
right), (iii) WECt (bottom left), (iv) SEC (bottom right). For this figure,

we have employed data set values of the constants here same as used in
Fig. 4. The numerical values are mentioned in Tables 1 and 2
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Table 1 Numerical values of the physical parameters M(M�), R (km) and AR2 for the different values of n [19–21]

Compact stars M (M�) R (km) n = 3 n = 4 n = 10 n = 100 n = 10,000
AR2 AR2 AR2 AR2 AR2

RX J 1856-37 0.9042 6.002 0.1535 0.1109 0.04158 0.004009 3.9920 × 10−5

SAX J 1808.4-3658 (SS2) 1.3238 6.35 0.3610 0.2484 0.08643 0.00802 7.96 × 10−5

SAX J 1808.4-3658 (SS1) 1.4349 7.07 0.3295 0.2283 0.0803 0.00749 7.438 × 10−5

Table 2 Numerical values of
the physical parameters nA,
AR2, A, B, F and D for the
different values of n for RX J
1856-37

n nA AR2 A (km−2) B F (km2) D

3 0.0128 0.1535 0.0043 0.3623 81.0930 4.5094

4 0.0123 0.1109 0.0031 0.3651 81.0968 5.8353

10 0.0115 0.04158 0.0012 0.3700 81.0905 13.8611

100 0.0111 0.004009 1.1136 × 10−4 0.3727 81.0794 134.5882

1000 0.0111 3.9950 × 10−4 1.1095 × 10−5 0.3729 81.0877 1.3420 × 103

10,000 0.0111 3.9920 × 10−5 1.1089 × 10−6 0.3730 81.0930 1.3418 × 104

Table 3 The central density, surface density and central pressure for the compact star candidate RX J 1856-37

Value of n Central density (gm/cm3) Surface density (dyne/cm2) Central pressure Surface redshift

3 3.0973 × 1015 1.4966 × 1015 3.0722 × 1035 0.3411

4 2.8952 × 1015 1.5455 × 1015 3.2227 × 1035 0.3411

10 2.5791 × 1015 1.6339 × 1015 3.4275 × 1035 0.3410

100 2.4145 × 1015 1.6870 × 1015 3.5212 × 1035 0.3411

1000 2.3987 × 1015 1.6921 × 1015 3.5294 × 1035 0.3411

10,000 2.3969 × 1015 1.6926 × 1015 3.5283 × 1035 0.3410

Fig. 6 Variation of the maximum mass M (in M�) with respect to
corresponding radius R (in km) for different values of n. The values of
the constants can be determined by putting M and R in Eqs. (16), (21),
(22) and (23) for each different n

We would like to compare our proposed model with the
observational data of the different realistic stars. For that
purpose, we have calculated model parameters (see Tables 1,
2 and 3) by choosing the radius of the compact stars RX J
1856-37,SAX J1808.4- 3658 (SS2) and SAX J1808.4-3658
(SS1). The calculated mass in Table 1 of the different com-

pact stars are matched well with the proposed values by Li
et al. [19], Tikekar and Jotania [20] and Thirukkanesh and
Ragel [21].

In Fig. 6 the variation of the maximum mass with respect
to the corresponding radius of the compact stars with the dif-
ferent values of n are shown. We have also plotted in Fig. 7 a
variation of the maximum values of 2M/R for the different
values of n. We found throughout the study for the differ-
ent values of n that our system is valid with the Buchdahl
conditions [33], which is also clear from Fig. 7.

4.3 Compactification parameter and redshift

The compactification factor of the stars is obtained:

u(r) = m(r)

r
= n Ar2

[1 + Ar2 (1 + 2n)] . (31)

The surface redshift Zs with respect to the above compact-
ness u is given as

Zs =
√

1 + AR2 (1 + 2 n)

1 + AR2 − 1, (32)
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Fig. 7 Variation of the maximum values of 2M
R for the different values

of n of the anisotropic compact stars. The values of the constants can
be found in Table 2

Fig. 8 Variation of the redshift (Z ) with the fractional coordinate r/R
for RX J 1856-37 with mass M = 0.9042 M� and radius R = 6.002 km
(Table 1). For plotting of this figure, the values of the constants are as
follows: (i) A = 0.0043, B = 0.3623, F = 81.0930, D = 4.5094 for
n = 3, (ii) A = 0.0031, B = 0.3651, F = 81.0968, D = 5.8353 for
n = 4, (iii) A = 0.0012, B = 0.3700, F = 81.0905, D = 13.8611 for
n = 10, (iv) A = 1.1136 × 10−4, B = 0.3727, F = 81.0794, D =
134.5882 for n = 100, (v) A = 1.1089 × 10−6, B = 0.3730, F =
81.0930, D = 1.3418 × 104 for n = 10,000 (Table 2)

whose behaviour is shown in Fig. 8 with the fractional coor-
dinate r/R for RX J 1856-37.

4.4 Stability of the model

In the following sections we will study the stability of the
proposed mathematical model.

4.4.1 Generalised TOV equation

Following Tolman [34], Oppenheimer and Volkoff [35] we
want to examine whether our present model is stable under
the three forces, viz. the gravitational force (Fg), the hydro-
static force (Fh) and the anisotropic force (Fa) so that the

sum of the forces becomes zero for the system to be in equi-
librium, i.e.

Fg + Fh + Fa = 0. (33)

The generalised Tolman–Oppenheimer–Volkoff (TOV) equa-
tion [8,36] for our system takes the form

− MG(r)(ρ + pr)

r2 e
ν−λ

2 − dpr

dr
+ 2

r
(pt − pr) = 0, (34)

where MG(r) represents the gravitational mass within the
radius r , which can be derived from the Tolman–Whittaker
formula [37] and the Einstein field equations are given by

MG(r) = 1

2
r2e

λ−ν
2 ν′

. (35)

Plugging the value of MG(r) in Eq. (25), we get

− ν′

2
(ρ + pr) − dpr

dr
+ 2

r
(pt − pr) = 0. (36)

Now using Eqs. (16)–(18), the expressions for Fg, Fh and
Fa can be written

Fg = −ν′

2
(ρ + pr)

= −2n A2 r [D (1 − x) f n + n + n x2 + 2 n x + 2 D n x f n]
κ [1 + x2 + 2 x + D x (1 + x)n]2 ,

(37)

Fh = −dpr

dr

= 2A2 r

κ

2 D n2 x (1 + x)n − D f n [2 + 2x + D f n] + n Fh1

[1 + x2 + 2 x + D x (1 + x)n]2 ,

(38)

Fa = 2

r
(pt − pr)

= 2A2 r [n2 f 2 − 2n f ( f + D f n) + D f n(2 f + D f n)]
κ [1 + x2 + 2 x + D x (1 + x)n]2 ,

(39)

where Fh1 = [2 +2x2 +3D (1+ x)n +4 x + D x (1+ x)n)]
and f = (1 + x). We have shown the behaviour of the TOV
equation with n = 3−10,000 in Fig. 9 for RX J 1856-37. As
far as equilibrium is concerned the plots are of a satisfactory
nature.

4.4.2 Herrera’s cracking concept

With the help of Herrera’s [38] ‘cracking concept’ we exam-
ine the stability of the proposed configuration. For the physi-
cal validity the fluid distribution must admit the condition of
causality which suggests that the squares of the radial (Vr

2)

and the tangential (Vt
2) sound speeds individually must lie

within the limit 0 and 1. Also following Herrera [38] and
Abreu et al. [39] it can be concluded that for the stable
region the provided condition is |Vt

2 − Vr
2| ≤ 1, which

indicates that for the stable region ‘no cracking’ is another

123
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Fig. 9 Variation of the different forces with respect to fractional radius
(r/R) for RX J 1856-37 with mass M = 0.9042M� and radius
(R) = 6.002 km (Table 1): (i) n = 3 (top left), (ii) n = 4 (top right), (iii)
n = 10 (middle left), (iv) n = 100 (middle right), (v) n = 10,000 (bot-
tom). For plotting of this figure, the values of the constants are as follows:
(i) A = 0.0043, B = 0.3623, F = 81.0930, D = 4.5094 for n = 3, (ii)

A = 0.0031, B = 0.3651, F = 81.0968, D = 5.8353 for n = 4, (iii)
A = 0.0012, B = 0.3700, F = 81.0905, D = 13.8611 for n = 10,
(iv) A = 1.1136 × 10−4, B = 0.3727, F = 81.0794, D = 134.5882
for n = 100, (v) A = 1.1089×10−6, B = 0.3730, F = 81.0930, D =
1.3418 × 104 for n = 10,000 (Table 2)

essential condition. For our system the sound velocities
are

V 2
r = dpr

dρ
= h(x)

D f n

[
2 D n2 x f n − D f n [2 + 2x + D f n] + n vr1

g(x) + 3D x2 f n + ρ1(x) − 2 n2 x ρ2(x)]
]

, (40)
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Fig. 10 Variation of the square of radial velocity V 2
r and tangential

velocity V 2
t with the radial coordinate (r/R) for RX J 1856-37 with

mass M = 0.9042M� and radius R = 6.002 km (Table 1). The numer-

ical values of the constants A, B, F and D can be found in Table 2 or
Fig. 9 for each different value of n

Fig. 11 Variation of the difference of the square of the sound velocities with the radial coordinate r/R for RX J 1856-37. For this figure, we have
employed same data set of values used as in Figs. 9 and 10. The numerical values are from Tables 1 and 2

V 2
t = dpt

dρ
= −1

D f n

[−2 f vt1 + vt2[1 + x2 + 2 x + D x f n] + f vt3.h(x)

g(x) + 3D x2 f n + ρ1(x) − 2 n2 x ρ2(x)]
]

, (41)

where
h(x) = [1 + x2 + 2 x + D x f n]; g(x) = [−2 x3 + 10 +

5D f n + 6 x2]
vr1 = [2 + 2x2 + 3D f n + 4 x + D x f n)];
vt1 = [2n f + n2x f + D(x − 1) f n] [2 + D f n + 2 x +

D n x f n−1];
vt2 = [2 n f + n2 x f + D (−1 + x) f n];
vt3 = D f n + n2(1 + 2 x) + n [2 + D(−1 + x) f n−1].
From Figs. 10 and 11 it is clear that our stellar system

satisfies all the conditions stated above and hence provides a
stable configuration.

4.4.3 Adiabatic index

According to Heintzmann and Hillebrandt [40] the condition
for the stability of isotropic compact stars is that the adiabatic
index obeys γ > 4

3 in all the interior points of the stars. For
our model we have

γr = ρ + pr

pr

dpr

dρ

= 2(1+x) [D (1 − x) (1+x)n+n+n x2+r1]
2 n (1+x) − D (1+x)n

dpr

h(x)dρ
,

(42)
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γt = ρ + pt

pt

dpt

dρ
= n2 x (1 + x)2 + 2 n (1 + x)[1 + x + Dx (1 + x)n] + t1

(1 + x) [(2 n + n2 x) (1 + x) + D (−1 + x) (1 + x)n]
dpt

dρ
, (43)

where
r1 = [2 n x + 2 D n x (1 + x)n], t1 = D (1 + x)n [2 +

2 x + D x (1 + x)n].
From Fig. 12 it is obvious that for all n the values of γr, γt

are greater than 4/3 and hence our system is stable.

5 Discussions and conclusions

In the present paper we have performed investigations on
the nature of compact stars by utilising the embedding class
1 metric. Here an anisotropic spherically symmetric stellar
model has been considered. To carry out the investigations
we have considered the following assumption for the metric:
ν = n ln(1 +Ar2) + ln B, where n ≥ 2. The reasons for the
choice of n ≥ 2 are as follows:

(i) with the choice of n = 0 the spacetime becomes flat;
(ii) with the choice of n = 1 this becomes the famous

Kohlar–Chao solution [26];
(iii) with the choice of n = 2, as the velocity of sound is

not decreasing, we will get a solution which is not well
behaved.

Under the above circumstances, therefore, we have studied
our proposed model for a variation of n = 3 to n = 10,000.
We find from Table 2 that, for n ≥ 10, the product nA
becomes almost a constant (say C). Thus we can conclude
that for large values of n (say infinity) we have the met-

ric potential ν = Cr2 + ln B as considered by Maurya et
al. [22,27] in the literature. This result therefore helps us in
turn to explore the behaviour of the mass and radius of the
spherical stellar system as can be observed from Fig. 6. We
have shown here the variation of the maximum mass M (in
km) with respect to the corresponding radius R (in km) for
different values of n. The profile is very indicative: it shows
that up to n = 3 and R = 8.2295 km the maximum mass fea-
ture is roughly steady and after n > 3 it gradually decreases.
However, after n = 500 and R = 7.8015 km the maximum
mass again acquires almost a steady feature. In Fig. 7 the
Buchdahl condition, i.e. the mass–radius relation regarding
a stable configuration of the stellar system has been shown
to be satisfactory.

The main features of the present work therefore can be
highlighted for the nature of compact stars as follows:

(1) The stars are anisotropic in their configurations unless
pr �= pt . The radial pressure pr vanishes but the tangen-
tial pressure pt does not vanish at the boundary r = R
(radius of the star). However, the radial pressure is equal
to the tangential pressure at the centre of the fluid sphere.
The anisotropy factor is zero for all radial distance r if
and only if A = 0. This implies that in the absence of
anisotropy the radial and tangential pressures and den-
sity become zero. Also the metric turns out to be flat.

(2) To solve the Einstein field equations we consider the
metric coefficient, eν = B(1 + Ar2)n as proposed by

Fig. 12 Variation of the adiabatic index γr and γt with the radial coor-
dinate (r/R) for RX J 1856-37 with mass M = 0.9042M� and radius
R = 6.002 km (Table 1). For this figure, the values of the constants are:
(i) A = 0.0043, B = 0.3623, F = 81.0930, D = 4.5094 for n = 3, (ii)
A = 0.0031, B = 0.3651, F = 81.0968, D = 5.8353 for n = 4, (iii)

A = 0.0012, B = 0.3700, F = 81.0905, D = 13.8611 for n = 10,
(iv) A = 1.1136 × 10−4, B = 0.3727, F = 81.0794, D = 134.5882
for n = 100, (v) A = 1.1089×10−6, B = 0.3730, F = 81.0930, D =
1.3418 × 104 for n = 10,000 (Table 2)
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Table 4 The central density, surface density and central pressure for the compact star candidate SAX J1808.4-3658 (SS1)

Value of n Central density (gm/cm3) Surface density (gm/cm3) Central pressure (dyne/cm2) Surface redshift

3 3.607 × 1015 1.288 × 1015 0.831 × 1036 0.5770

4 3.177 × 1015 1.351 × 1015 0.813 × 1036 0.5770

10 2.583 × 1015 1.466 × 1015 0.778 × 1036 0.5769

100 2.306 × 1015 1.535 × 1015 0.757 × 1036 0.5770

10,000 2.280 × 1015 0.544 × 1015 0.755 × 1036 0.5772

Table 5 The central density, surface density and central pressure for the compact star candidate SAX J1808.4-3658 (SS2)

Value of n Central density (gm/cm3) Surface density (gm/cm3) Central pressure (dyne/cm2) Surface redshift

3 4.672 × 1015 1.616 × 1015 1.195 × 1036 0.6098

4 4.080 × 1015 1.7 × 1015 1.158 × 1036 0.6099

10 3.274 × 1015 1.85 × 1015 1.089 × 1036 0.6097

100 2.905 × 1015 1.941 × 1015 1.051 × 1036 0.6097

10,000 2.870 × 1015 1.952 × 1015 1.048 × 1036 0.6099

Lake [30] and hence the spacetime of the interior of
compact stars can be described by the Lake metric.

(3) We observe from Fig. 4 that for our system the
anisotropic factor is minimum at the centre and max-
imum at the surface as proposed by Deb et al. [31].
However, the anisotropy factor is zero for all the radial
distance r if and only if A = 0. This implies that in the
absence of anisotropy the pressures and density become
zero, which in turn renders the metric flat.

(4) The energy conditions are fulfilled as can be seen from
Fig. 5 under the variation of n.

(5) We have discussed the stability of the model by applying
(i) the TOV equation, (ii) the Herrera cracking concept
and (iii) the adiabatic index of the interior of star. It can
be observed that stability of the model has been attained
from all the above mentioned tests in our model (see
Figs. 9, 10, 11 and 12).

(6) The surface redshift analysis for our case shows that for
the compact star RX J 1856-37 it turns out that 0.65
is the maximum value. In the isotropic case and in the
absence of the cosmological constant it has been shown
that Z ≤ 2 [33,41,42], whereas Böhmer and Harko [42]
argued that for an anisotropic star in the presence of
a cosmological constant the surface redshift must obey
the general restriction Z ≤ 5, which is consistent with
the bound Z ≤ 5.211 as obtained by Ivanov [5]. There-
fore, for an anisotropic star without cosmological con-
stant our present value Z ≤ 0.65 seems to be satisfac-
tory. It is to further noteworthy that this low value sur-
face redshift is not at unavailable in the literature where
Shee et al. [43] obtained a numerical value for Z as
0.30 (also see Refs. [12,44–47] for a low value surface
redshift).

(7) In Tables 1, 2 and 3 we have calculated the central
density, surface density and central pressure as well
as the mass and radius of different compact stars. It
is interesting to note that all the data fall within the
observed range of the corresponding star’s physical
parameters [12,22,31,44–47]. It would be interesting to
perform a comparative study with the data of our Table
3 with that of Table 4 of Maurya et al. [25] where they
have prepared the table for the value of n = 3.3 only
for different compact stars whereas in the present study
our table includes a wide range of n = 3 to n = 10,000.
Thus, Tables 3, 4 and 5 describe the behaviour of certain
physical parameters for varying n. It is observed that
the central density decreases with increasing n unlike
the surface density, which behaves oppositely. How-
ever, the central pressure increases with increasing n.

(8) The compactification factor, u � 0.30, clearly suggests
that SAX J1808.4-3658 (SS1) and SAX J1808.4-3658
(SS2) are ultra-dense strange stars of type I and the
small u (0.2 ≤ u ≤ 0.3) value for RX J 1856-37 sug-
gests that it is a strange star of type II. The values of
the central densities and surface densities (see Tables 3,
4 and 5) of the stars are several times higher than the
value of the nuclear saturation density, which is another
clear proof of the above classifications of the strange
stars. Moreover, the predicted results of these stars are
consistent with the observational data and the theoret-
ical models of the strange stars which are the same as
proposed by Refs. [19–21]. Hence SAX J1808.4-3658
(SS1), SAX J1808.4-3658 (SS2) and RX J 1856-37
are strange star candidates.
The overall observation is that our proposed model sat-
isfies all the above mentioned physical requirements.
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The entire analysis has been performed in connection
to direct comparison of some of the compact star candi-
dates, e.g. RX J 1856-37, SAX J 1808.4-3658 (SS1)
and SAX J 1808.4-3658 (SS2), which confirms the
validity of the present model.
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