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Abstract— In addition to spectrum sensing capability required methods involve decision statistics calculated based en th
by a Cognitive Radio (CR), Signal to Noise Ratio (SNR) es- eigenvalue distribution of the received signal's covar&an

timation of the primary signals is crucial in order to adapt \hapix and use recent results from Random Matrix Theory
its coverage area dynamically using underlay techniques. Fur- (RMT) [8, 9]

thermore, in practical scenarios, the fading channel may be . . . . L
correlated due to various causes such as insufficient scattering RMT has been used in the literature in various applications

in the propagation path and antenna mutual coupling. In this such as modeling transmit/receive correlation in Multiple
context, we consider the SNR estimation problem for a CR in |nput Multiple Output (MIMO) channels and multiuser MIMO
the presence of channel correlation. We study an eigenvalue- fading [10,11]. In the existing literature, RMT has receive
based SNR estimation technique for large-scale CR networks g ! j - oo .

using asymptotic Random Matrix Theory (RMT). We carry out attention in the CR research commum_ty, _specmcally in the
detailed theoretical analysis of the signal plus noise hypothesis to SS research area [7,12]. Several contributions have feduss
derive the asymptotic eigenvalue probability distribution function on eigenvalue-based sensing techniques for large scale CR
(a.e.p.d.f) of the received signal's covariance matrix in the networks using RMT [6, 7, 12—14]. In addition, different G
presence of the correlated channel. Then an SNR estimation Condition Number (SCN) based techniques such as asymptotic

technigue based on the derived a.e.p.d.f. is proposed for PU &N . . . .
in the presence of channel correlation and its performance is [12], semi-asymptotic [6] and ratio based techniques [Bdh

evaluated in terms of normalized Mean Square Error (MSE). It been proposed in the literature. The SS techniques based
is shown that the PU SNR can be accurately estimated in the on Marchenko-Pastur (MP) deterministic bounds have been

presence of channel correlation using the proposed technique proposed in [12]. Furthermore, SS techniques using theyTrac
even in low SNR region. _ .. Widom distribution and the Tracy-Widom Curtiss distrilmuti
Index Terms: SNR Estimation, Channel Correlation, Cognitive have been proposed in [6] and [14] respectively
Radio, Underlay e : .
Most SS related contributions focus on a dual hypothesis
|. INTRODUCTION test to decide the presence or absence of primary on-going
During the last decade, the demand for high speed wireldesnsmissions. In practice, it may be the case that a spec-
connections has constantly been increasing due to thdasrolitrum resource is completely left unused within a sufficigntl
ation of multimedia services. However, the available feaqry large network coverage area. The optimal exploitation ef th
resources are becoming scarce due to spectrum segmentajmcttrum holes in such a scenario depends on the maximally
and dedicated frequency allocation of standardized vdgeleacceptable coverage area of secondary transmission which
systems. In this context, exploring efficient spectrum isigar protects the primary rate [9]. If the CR is able to estimate
techniques to enhance spectral efficiency while guarargeethe SNR of the primary signal, it can dynamically adapt its
quality of service is a highly relevant and challenging peolo  coverage area using underlay techniques. Despite its targor
Cognitive Radio (CR) is considered a promising candidate fapplications, only a few contributions in the literaturedesbs
enhancing the spectrum efficiency of wireless communinatithe SNR estimation problem in the context of a CR [15, 16]. In
systems because it is aware of its operating environmeuts §h5], an SNR estimation method has been proposed for Ultra-
can adjust its parameters dynamically [1]. The most commdtide Band (UWB) CR systems using computer simulations
cognitive techniques in the literature can be categorimadl i and this method is specific only for multi-band orthogonal
Spectrum Sensing (SS) or interweave, underlay, overlay dnelquency division multiplexing based systems. In [16], a
database techniques [2]. In SS only techniques, Secondpsgudo Bit Error Rate (BER) based SNR estimation has been
Users (SUs) are allowed to transmit whenever Primary Usgmoposed for Energy Detection (ED) scheme. Furthermore,
(PUs) do not use that specific band, whereas in underlay teghpractical scenarios, the fading channel may be corrtlate
nigues, SUs are allowed to transmit as long as they respectdue to various causes such as insufficient scattering in the
interference constraint of the PUs. Several SS techniqaes hpropagation path and antenna mutual coupling [17,18]. In
been proposed in the literature for CR based systems [3+4Bik context, the contributions in [19, 20] studied the smps
and they have different operational requirements, adgasta performance of an energy detector when multiple antenreas ar
and disadvantages. Among all existing techniques, eidieewva correlated.
based methods are found to be preferable in the presence dfaking the above into account, exploring efficient SNR
noise covariance uncertainty [6, 7]. Most of aforementtbneestimation techniques in the presence of channel comwali



an important research challenge. In this context, we censiccampling instants(7) is the PU signal at théth instant, whose
the PU SNR estimation problem in the presence of chaBNR is to be estimated, (i) is the amplitude gain of the
nel correlation. For this purpose, the asymptotic eigamvalchannel for thekth receive dimension at thah instant, and
probability distribution function (a.e.p.d.f) under sa@rplus z; (i) denotes the white noise for tieh receive dimension at
noise hypothesis is needed but still missing in the literatu the ith instant. For our analysis, we assume that transmitted
In our previous work [21], the effect of noise correlatiorsymbols are independent and identically distributedd().i.
on eigenvalue-based SS techniques has been studied andctimeplex circularly symmetric (c.c.s.) Gaussian symbdis, t
a.e.p.d.f of the received signal’s covariance matrix haanbenoise samples are independent across both dimensions. For
derived in the presence of correlated noise. In this paper, whannel correlation analysis, we assume channel coefficien
derive the expression for the a.e.p.d.f. of the receivedas®y of M x N channel matrixd to be i.i.d. across samples and
covariance matrix in the presence of channel correlatioamgus correlated across the receive dimensions as reflected in the
RMT. This is the main contribution of this paper. Furthermor Section 1l-A. The sensing duration) and symbol interval
we use the derived a.e.p.d.f. to estimate the PU SNR (ifi;) may not be the same depending on the signal bandwidth
presence of channel correlation based on the maximum eigand sampling rate used at the CR receiver. Based on the
value. Moreover, the performance of the proposed techrigjueelation between and T, we consider the following signal
evaluated in terms of normalized Mean Square Error (MSEnodels under thél; hypothesis.

The remainder of this paper is structured as follows: Sacti€ase 1: In this case, we consider that the transmitted symbol
Il describes the considered signal model and further pteseremains constant during the sensing period. This case may
channel correlation modeling used in this paper. Sectibn Hesult when the sampling rate at the receiver is much higher
presents the channel correlation analysis using RMT and ftinan the transmitted symbol rate. Thé x N received signal
ther proposes the eigenvalue-based SNR estimation teghniatrix Y in this case can be written a¥ = \/ﬁﬂs + Z,
using the derived a.e.p.d.f for received signal’'s covax@ama- where s is a constant transmitted symbaql, is the power
trix. Section IV studies the performance of the proposed SN transmitted symbol andz = [z7,z],...,21,]7, with
estimation technique with numerical simulations. Section z,, £ [ z,,(1) zn(2) ... z.(N) ]. The M x N cor-
concludes the paper. The appendix includes some prelire®arelated channel matrifl £ [h? h%, ..., h7,]7, with h,, £
on random matrix transforms. [ hn(1) hm(2) ... hyp(N) ] with m = 1,2,.. M.
A Notati Since we assume normalized noise variaR®eR = p. In this
. Notation . . . .

case, the covariance of the transmitted signal can be writte

Throughout this papei[-] denotes expectatior(;)” and as:R, = E[s?] = 1.
()" denote the transpose and the conjugate transpose (igse 2: In this case, each column &f, includes the samples
spectively, (-)* represents the complex conjugaledenotes 5, g single symbolY = \/ﬁﬂsd + 7, where S, is the
the identity matrix,Sx represents the Stieltjes transform OHiagonaI transmitted signal matrix of dimensidhx N with
X, Rx represents the R transform adk represents th& giggonals = [s(1)...s(N)]. In this case, the covariance matrix

transform [8]. of the transmitted signal becomes
[l. SIGNAL MODEL E[s2(1)] 0 0
. . i : 0 E[s2(2)] --- 0
LeF us gon5|der a s!ngle cognitive user and a single PURS — E[S,SY] = . -1
for simplicity of analysis. LetNV be the number of samples g
analyzed by the cognitive user for the decision process and 0 0 - E[s*(N)]

7 the sensing duration. Led/ be the number of receive . . @

. : : - . suming that for each sample, we get an i.i.d. c.c.s. symbol
dimensions in the cognitive receiver. From a system-moa\%?lth E[s?] = 1
point of view, this factor can be considered to be the number L

; . ) he received signal matri¥ in both cases can be written in
antennas in a multiantenna-based CR receiver and the number .
. . ¢ following form.
of oversampled branches in an oversampling-based sensing

model as considered in [6, 7, 21]. The signal model presented yi (1) w02 ... yn(N)
in this paper is generic and can be applicable to most multi- Y2 y2(1)  52(2) ... y2(N)
dimensional scenarios. = : = : : . : - (3

Let us denote the hypotheses of the presence and absence of ' '(1) '(2) (V)
the PU signal byH; andH, respectively. A binary hypothesis yM Ym ym e UM
testing problem for the:th receive dimension = 1,..., M, The received signa¥ can be further written as:

can be written as: 3
Hs+7Z, Case 1
B _ { vEE \ (4)
Ho :ye(?d) = 2z1(0) PU absent VvPHS 4+ Z, Case 2
Hiy :ye(i) = hi(i)s(i) + z(i), PU present (1) whereZ ~ CA(0,1) is the additive white Gaussian noise.

where y,.(i) is the signal observed by théth receiving Assuming that the source signal is independent from theawhit
dimension at theith instant. i — 1.2... N denotes the noise, the covariance matrix of received sigia can be



calculated as [6]: asymptotic eigenvalue distribution 8V = ©'/2FFH©!/2

. . has the following p.d.f.
Ry = E[YY"]=E|(/pHS)(/pHS)"] + EZ2"] gp

(-GN
2rA(1 + Ap)

= pEHH"] + Ry, ©) fw() =1 =8)"s(\) +

whereRz = E[ZZ"]. Let us define sample covariance may 1 ere
trices of the received signal and noise Bsy (N) = +YY#

andRz(N) = +zz".

9)

1+ B+ 2u8 — 2¢/Bv/ (1 + 1) (1 + pB)
= 1+ 8+2uB+2v/BV A +p) (1 +pb) (10)

A. Channel Correlation Modeling .
The parameterg andb correspond to\2e; . and A5P, . respec-

The channel correlation in MIMO/Single Input Multipletive|y and the ratio?)/d defines the SCN oW
Output (SIMO) systems depends on propagation [18] and n

antenna mutual coupling [17]. In a wireless multipath &M ¢ ahove theorem is applicable for channel covariancexmatr
ment, the channels are not always independent from each o€ ¢ gigenvalue spread @is related to the degree of chan-

but can be correlated due to poor scattering in the propagathq| covariance i.e., a zero eigenvalue spread correspondls t

path. This type of correlation can be referred as spatigl., cqvariance model and higher spreads are associatied wi
correlation. Channel correlation also arises due to muwrﬁbher covariance models. In (9), the parameteontrols the
coupling between the transmit and/or receive antenna &iSMeya e of covariance and varies the support of the diskibut
[17,22]. In the transmitter and receive antenna arrayremat ; .- forju =0, @ =a andb = b, wherea = (1 — /B)?
mgtual co.upling causes the signals to be coupled with t@e: (1 + \/B)? are the supports of the MP distribution [8].
neighbouring antennas. _ _ For the exponential covariance model as stated in [11], the

For modeling channel correlation, we use the one-sided ameter, is related to the correlation coefficieatwith the
correlation model as in [11]. In this paper, we focus on theyoying relation: . = . Furthermore, the SCN is related

: . . e

correlation across channel receive dimensions and noten {j ¢ with the relationSCN = L. In practical scenarios,

temporal correlation. We model the channel as: the value ofy can be determined using channel estimation

[ TR

H=3!/?H, (6) techniques. The received signal matrix can also be exptesse
as:
where H is an M x N matrix with c.c.s. i.i.d. Gaussian Y — \/Z@%HSMLZ. (11)
entries with zero mean and unit variance abd/2®'/2 =
P = ]E[IiHZIH]_ It can be noted that sincéd ~ Assuming that signal and noise are independent, for very

CN(0,I), HH” follows uncorrelated Wishart distribution i.e.,large value of\V, the sample covariance matrix of received
HH” ~ W) (Ru, N). To ensure thatb does not affect signal under considered scenario in the presence of channel

the channel power, we consider the following normalizatio§orrelation can be approximated as [6]:

(1./M')trace{<1>} =1, wherg each component @ is modeled lim Ry (N)~ P®IHHY & + Ry, (12)
with an exponential covariance model given by [10]; N—oo
=), i< Due to noncommutative nature of random matrices, it's not
bij —{ (g(i—j))* P> (7) straightforward to calculate the eigenvalue distribuioof
the received signa¥ by knowing the eigenvalue distribution
where ¢;; is the ¢,j)-th element of® and¢ € C is the of covariance matrices oft, H and Z in (12). In the
correlation coefficient with ¢ |< 1. following section, we provide the methodology for calcirigt
the a.e.p.d.f. of the received signal’s covariance matiictv
[1l. CHANNEL CORRELATION ANALYSIS USING RMT is then used for SNR estimation in the presence of channel
correlation.

For the purpose of completeness in this paper, we state the
following RMT theorem which is going to be used in our Methodology
analysis.

Theorem 3.1: [11] Let ® be a positive definite matrix
which is normalized as(1/M)trace{®} = 1, and whose
asymptotic spectrum has the p.d.f.

The a.e.p.d.f. of the received signal’s covariance matrix
underH; hypothesis can be used to estimate the PU SNR by
a CR. To calculate the a.e.p.d.f. of received signal's sampl
covariance matrix i.eRy (), we need to know the Stieltjes

1 A A transform of the asymptotic density function of they (V).
foh) = 2T A2 \/(01 - 1) (1 - ?2) ®) Using free probability analysis, the asymptotic spectrirhe
, sum or product can be obtained from the individual asymptoti
with o3 < A < op andp = %- If FisanM x N spectra without involving the structure of the eigenvextof
standard complex Gaussian matrix agi}cFFH follows the the matrices [8] under an asymptotic freeness conditioe Th
MP distribution [8], then as\{, N — oo with % — [, the asymptotic eigenvalue distribution & in our context can be




obtained by applying” and R transforms [8]. In (12), sincewhere the parametegr defines the degree of covariance of the
® is a deterministic matrix an@#IH* is a Wishart random channel covariance matrig.

matrix, they are asymptotically free (see Example 2.34). [8] Proof: Assuming that signal and noise are uncorrelated
As a result, the combined a.e.p.d.f. of the terd2 HH &z to each other, for very large value of, the following

in (12) can be obtained by applying multiplicative free conapproximation can be written for correlated channel andevhi
volution property ofY transform in the following way [23]. noise scenario [6].

Sh, (2) = Do (2)  Nya,, (2), (13) im Ry (N)~ pHHH + Rz(N). (18)

N
V\{here2¢ and ZPRH ar? theX tran.sforms .of the. densities of_l_he Stieltjes transform ORﬂ _
eigenvalues ofP and pRy respectively. Sinc@ is a square [11]:
matrix, ®'/?HHY ®'/2 and ®HH" have identical eigenval- '
ues [8]. FurthermorepHH* andZZ*' are independent and ¢ (2) =2 +2zp+1 -8+ /[z— (1 +B)2 - 4801 + p2)
77" is a Wishart matrix. As a resul®HHY andZZ" are R 22(1 + p2)
asymptotically free due to their unitarily invariance peoly
[9]. Then the combined R transform d&&y can be found
from the R transforms oRz and pRy using additive free
convolution property of R transform in the following way [24

o~ H .
+HH" can be written as

A (19)
The R transform ofR;; can be found by using (24). The R
transform ofpRy; can be found by using26) and can be
written as:

~1 2,2 _ 9 1—-4
RRY (z) = RRZ (z) + Rpﬁﬁ (Z) (14) Rpﬁﬁ (2) = _g (pz + \/(p z upzpz + uﬁpz)). (20)

Since Rz follows MP law, its R transform can be writtenThen the combined R transform fdty can be written as:
as the R transform of MP law and is given by (25). Using 55
the transformations included in the preliminaries, we et t Ry (2) = p(pz =1+ /(0?22 = 2pz + 1 — 4pBp2))
Stieltjes transform oRy as described in the next subsection. 2 Hp=
The a.e.p.d.f. ofY is then obtained by determining the imag- + B ) (21)
inary part of the Stieltjes transfori&iz , for real arguments (1-2)
in the following way. The inverse Stieltjes transform can be obtained by applying
1 (21) on (24) and then the Stieltjes transform can be obtained
f(z) = yl_igg —Im{Sg, (= +jy)}- (15) by solving the quartic polymonial given by (17). n
, The theoretical analysis for SNR estimation in the presefice
B. Main Result both noise and channel correlation can be found in [25].
For the purpose of completeness, we present the Stieltjes
transform for an uncorrelated channel and white noise cdse SNR Estimation Method
from [21]. The Stielties transfornsy =~ of the asymptotic  The Stieltjes transforms oRy for uncorrelated channel
distribution of - Y'Y for this case can be obtained for anylus white noise and correlated channel plus white noisescas
z € C by solving the following cubic polymonial [21]. are obtained solving polymonialdf) and (17) respectively.
Then the supports for the a.e.p.d.f.R% for the correspond-

=1 ing case is calculated using (15). Since we know the valug of
a=01-801-p) +2 and we can measure the valuecpfve can estimate the value
co=p(—28+z+1)+z, of p by sensing the maximum eigenvalueR{ . The value of

3 = pz, (16) ¢ for correlated channel can be found with channel estimation

methods such as [26]. Furthermore, it can be noted that the

wherec, is thenth order coefficient of the polymonial, = 47 parameters3 and ¢ are assumed as operating parameters of
andp is the SNR of the transmitted PU signal. the CR sensing module. For convenience, lookup table (Table

Theorem 3.2: The Stieltjes transforndy ~ of the asymp- |) is provided in Section IV in order to estimate the PU SNR.
totic distribution of eigenvalues of]LVYY where Y = We consider the following two cases: (i) uncorrelated cleinn
HS, + Z can be obtained for any € C by solving a quartic plus white noise, and (i) correlated channel plus whiteseoi
polymonial with the following coefficients In Table I, we include the maximum eigenvalues of received
signal’s covariance matrix for these cases for differetes

co=1+pu, of SNR andj. With the help of this table, we can estimate
1 =2uz+1-8)-Blp+1)+p+z2+2, SNR of the PU signal based on the maximum eigenvalue of
co=p(z—36+2)+ (B —22—-2)—1) received signal’s covariance matrix.

+ p(z(z + p) + 1) + 22,
cs=-2p(B—2)+2zu(l—p+2)+p+ 2z,

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
¢4 = 2(p + pz), (17)  SNR estimation method in the presence of correlation using



normalized MSE. The normalized MSE is considered asgenerate instances & according to the considered case and
parameter to characterize the performance of the proposeel evaluate the MSE performance with (22) considering the

SNR estimation technique and is defined as: corresponding case from the table. From the figure, it can be
E[(p - p)?] noted that the value of normalized MSE decreases with the
MSE = ———, (22) increase in SNR for both cases. It can be further noted that

p? the SNR for both cases can be reliably estimated with almost

wherep is the estimated SNR with the proposed method amg % normalized MSE afted dB. Moreover, it can be noted
p is the actual SNR. that at lower SNR values, case Il has lower normalized MSE

Figure 1 shows the theoretical and simulated eigenvaligan case | and at higher values of SNR (after SNR value of
distribution of the received signal’s covariance matrix fop dB), case Il has higher normalized MSE than the case |. It
correlated channel and white noise scenario. The histagtdm can be concluded that channel correlation effect is dontinan
the eigenvalues were created by accumulating the eigeswalgt higher SNR values in comparison to the uncorrelated case.
over 102 realizations. The theoretical result was obtained byhe detailed description on the combined effect of noise
evaluating the polynomial (17) with the help of a mathen@ticand correlation on the SNR estimation performance of the
software. From the figure, it can be noted that the theolletigioposed techniques can be found in [21].
and simulated eigenvalue distributions match well. Furthe
more, it has been noted that eigenvalue distributions rdiffe

depending on the values of the parameters SCN, SNR3and TABLE I: Lookup table for SNR Estimation

Case | Case Il
SCN | B =N/M SNR (dB) Amax (HS4 + Z) Amax (AS  + Z)
2 1 5 13.18 13.51
2 1 4 10.77 11.03
2 1 2 7.45 7.58
04 T 2 1 0 5.59 5.65
2 1 -2 4.70 471
035) 2 1 -4 4.29 4.29
2 1 -6 4.08 4.08
03l 4 1 5 13.18 14.55
: 4 1 4 10.77 11.86
4 1 2 7.45 8.05
0.251 4 1 0 5.59 5.86
4 1 -2 4.70 4.78
5: 02 4 1 -4 4.29 4.31
4 1 -6 4.08 4.08
0.15
16
0.1
0.05 1 14 Correlated channel (SCN=6)
o —— Correlated channel (SCN=4)

o
@
R
>
<
©
or(Ry (N)))

[u
N
T

—&— Uncorrelated channel

Fig. 1: Theoretical and simulated eigenvalue distribution of theeieed
signal’s covariance matrix for correlated channel and whiiise scenario
ie,Y = (HS;+ Z) (SCN = 4,SNR =2 dB, 8 =1, N = 100)

Table | shows the lookup table for different values of SCN
of the channel covariance matrix and it is obtained using the
methodology described under Section 1lI-C. This table can
be used to estimate the SNR of the PU signal based on the
values of SCN and3 for two different cases shown in the
table. For example, if the value of SCN2s 3 is 1 and the 4
maximum eigenvalue of sample covariance matrix of received - ™ I 2 4
signal i.e., & YY* is 5.65 in case Il, we can then estimate . _
that SNR of the PU signal i dB and intermediate values Fig. 2: Maximum eigenvalue versus SNR for uncorrelated and coeglat

. . . channel scenariog3(= 1, N = 100)
can be calculated through interpolation. Figure 2 shows the
maximum eigenvalue versus SNR for different casgs=(1, V. CONCLUSION
N=100). From the figure, it can be noted that the maximum In this paper, the PU SNR estimation problem has been con-
eigenvalue increases with the SNR for both correlated amulered in the context of a CR. The motivation for this prable
uncorrelated channel cases with the higher rate in the higbmes from the fact that with the knowledge of the PU SNR,
SNR region. Furthermore, the rate of increase is higher feuitable underlay strategies can be implemented at the €Rs i
correlated channel case than for uncorrelated channel taserder to allow the coexistence of the primary and secondary
can be further noted that the maximum eigenvalue increasystems. The theoretical expression for a.e.p.d.f of tbeived
with the value of SCN and the effect of channel correlation &gnal’'s covariance matrix has been derived in presence of
more dominant at high SNR values. channel correlation. Moreover, an SNR estimation techmiqu

Figure 3 shows the normalized MSE versus SNR for tHmsed on the maximum eigenvalue of the received signal's
considered cases with the simulation parametérs=( 1, covariance matrix has been presented in order to estimate th
SCN = 4 and N = 100). In this simulation setting, we PU SNR reliably in the presence of channel correlation. The

10r

Maximum Eigenvalue (A,
©
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