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Abstract— In addition to spectrum sensing capability required
by a Cognitive Radio (CR), Signal to Noise Ratio (SNR) es-
timation of the primary signals is crucial in order to adapt
its coverage area dynamically using underlay techniques. Fur-
thermore, in practical scenarios, the fading channel may be
correlated due to various causes such as insufficient scattering
in the propagation path and antenna mutual coupling. In this
context, we consider the SNR estimation problem for a CR in
the presence of channel correlation. We study an eigenvalue-
based SNR estimation technique for large-scale CR networks
using asymptotic Random Matrix Theory (RMT). We carry out
detailed theoretical analysis of the signal plus noise hypothesis to
derive the asymptotic eigenvalue probability distribution function
(a.e.p.d.f.) of the received signal’s covariance matrix in the
presence of the correlated channel. Then an SNR estimation
technique based on the derived a.e.p.d.f. is proposed for PU SNR
in the presence of channel correlation and its performance is
evaluated in terms of normalized Mean Square Error (MSE). It
is shown that the PU SNR can be accurately estimated in the
presence of channel correlation using the proposed technique
even in low SNR region.
Index Terms: SNR Estimation, Channel Correlation, Cognitive
Radio, Underlay

I. I NTRODUCTION

During the last decade, the demand for high speed wireless
connections has constantly been increasing due to the prolifer-
ation of multimedia services. However, the available frequency
resources are becoming scarce due to spectrum segmentation
and dedicated frequency allocation of standardized wireless
systems. In this context, exploring efficient spectrum sharing
techniques to enhance spectral efficiency while guaranteeing
quality of service is a highly relevant and challenging problem.
Cognitive Radio (CR) is considered a promising candidate for
enhancing the spectrum efficiency of wireless communication
systems because it is aware of its operating environments and
can adjust its parameters dynamically [1]. The most common
cognitive techniques in the literature can be categorized into
Spectrum Sensing (SS) or interweave, underlay, overlay and
database techniques [2]. In SS only techniques, Secondary
Users (SUs) are allowed to transmit whenever Primary Users
(PUs) do not use that specific band, whereas in underlay tech-
niques, SUs are allowed to transmit as long as they respect the
interference constraint of the PUs. Several SS techniques have
been proposed in the literature for CR based systems [3–5]
and they have different operational requirements, advantages
and disadvantages. Among all existing techniques, eigenvalue-
based methods are found to be preferable in the presence of
noise covariance uncertainty [6, 7]. Most of aforementioned

methods involve decision statistics calculated based on the
eigenvalue distribution of the received signal’s covariance
matrix and use recent results from Random Matrix Theory
(RMT) [8, 9].

RMT has been used in the literature in various applications
such as modeling transmit/receive correlation in Multiple
Input Multiple Output (MIMO) channels and multiuser MIMO
fading [10, 11]. In the existing literature, RMT has received
attention in the CR research community, specifically in the
SS research area [7, 12]. Several contributions have focussed
on eigenvalue-based sensing techniques for large scale CR
networks using RMT [6, 7, 12–14]. In addition, different Signal
Condition Number (SCN) based techniques such as asymptotic
[12], semi-asymptotic [6] and ratio based techniques [14] have
been proposed in the literature. The SS techniques based
on Marchenko-Pastur (MP) deterministic bounds have been
proposed in [12]. Furthermore, SS techniques using the Tracy-
Widom distribution and the Tracy-Widom Curtiss distribution
have been proposed in [6] and [14] respectively.

Most SS related contributions focus on a dual hypothesis
test to decide the presence or absence of primary on-going
transmissions. In practice, it may be the case that a spec-
trum resource is completely left unused within a sufficiently
large network coverage area. The optimal exploitation of the
spectrum holes in such a scenario depends on the maximally
acceptable coverage area of secondary transmission which
protects the primary rate [9]. If the CR is able to estimate
the SNR of the primary signal, it can dynamically adapt its
coverage area using underlay techniques. Despite its important
applications, only a few contributions in the literature address
the SNR estimation problem in the context of a CR [15, 16]. In
[15], an SNR estimation method has been proposed for Ultra-
Wide Band (UWB) CR systems using computer simulations
and this method is specific only for multi-band orthogonal
frequency division multiplexing based systems. In [16], a
pseudo Bit Error Rate (BER) based SNR estimation has been
proposed for Energy Detection (ED) scheme. Furthermore,
in practical scenarios, the fading channel may be correlated
due to various causes such as insufficient scattering in the
propagation path and antenna mutual coupling [17, 18]. In
this context, the contributions in [19, 20] studied the sensing
performance of an energy detector when multiple antennas are
correlated.

Taking the above into account, exploring efficient SNR
estimation techniques in the presence of channel correlation is



an important research challenge. In this context, we consider
the PU SNR estimation problem in the presence of chan-
nel correlation. For this purpose, the asymptotic eigenvalue
probability distribution function (a.e.p.d.f) under signal plus
noise hypothesis is needed but still missing in the literature.
In our previous work [21], the effect of noise correlation
on eigenvalue-based SS techniques has been studied and the
a.e.p.d.f of the received signal’s covariance matrix has been
derived in the presence of correlated noise. In this paper, we
derive the expression for the a.e.p.d.f. of the received signal’s
covariance matrix in the presence of channel correlation using
RMT. This is the main contribution of this paper. Furthermore,
we use the derived a.e.p.d.f. to estimate the PU SNR in
presence of channel correlation based on the maximum eigen-
value. Moreover, the performance of the proposed techniqueis
evaluated in terms of normalized Mean Square Error (MSE).

The remainder of this paper is structured as follows: Section
II describes the considered signal model and further presents
channel correlation modeling used in this paper. Section III
presents the channel correlation analysis using RMT and fur-
ther proposes the eigenvalue-based SNR estimation technique
using the derived a.e.p.d.f for received signal’s covariance ma-
trix. Section IV studies the performance of the proposed SNR
estimation technique with numerical simulations. SectionV
concludes the paper. The appendix includes some preliminaries
on random matrix transforms.

A. Notation

Throughout this paper,E[·] denotes expectation,(·)T and
(·)H denote the transpose and the conjugate transpose re-
spectively,(·)∗ represents the complex conjugate,I denotes
the identity matrix,SX represents the Stieltjes transform of
X, RX represents the R transform andΣX represents theΣ
transform [8].

II. SIGNAL MODEL

Let us consider a single cognitive user and a single PU
for simplicity of analysis. LetN be the number of samples
analyzed by the cognitive user for the decision process and
τ the sensing duration. LetM be the number of receive
dimensions in the cognitive receiver. From a system-model
point of view, this factor can be considered to be the number of
antennas in a multiantenna-based CR receiver and the number
of oversampled branches in an oversampling-based sensing
model as considered in [6, 7, 21]. The signal model presented
in this paper is generic and can be applicable to most multi-
dimensional scenarios.

Let us denote the hypotheses of the presence and absence of
the PU signal byH1 andH0 respectively. A binary hypothesis
testing problem for thekth receive dimension,k = 1, ...,M ,
can be written as:

H0 : yk(i) = zk(i) PU absent

H1 : yk(i) = ĥk(i)s(i) + zk(i), PU present (1)

where yk(i) is the signal observed by thekth receiving
dimension at theith instant, i = 1, 2, .., N denotes the

sampling instant,s(i) is the PU signal at theith instant, whose
SNR is to be estimated,̂hk(i) is the amplitude gain of the
channel for thekth receive dimension at theith instant, and
zk(i) denotes the white noise for thekth receive dimension at
the ith instant. For our analysis, we assume that transmitted
symbols are independent and identically distributed (i.i.d.)
complex circularly symmetric (c.c.s.) Gaussian symbols, the
noise samples are independent across both dimensions. For
channel correlation analysis, we assume channel coefficients
of M × N channel matrixĤ to be i.i.d. across samples and
correlated across the receive dimensions as reflected in the
Section II-A. The sensing duration (τ ) and symbol interval
(Ts) may not be the same depending on the signal bandwidth
and sampling rate used at the CR receiver. Based on the
relation betweenτ andTs, we consider the following signal
models under theH1 hypothesis.
Case 1: In this case, we consider that the transmitted symbol
remains constant during the sensing period. This case may
result when the sampling rate at the receiver is much higher
than the transmitted symbol rate. TheM ×N received signal
matrix Y in this case can be written as:Y =

√
pĤs + Z,

where s is a constant transmitted symbol,p is the power
of transmitted symbol andZ , [zT1 , z

T
2 , ..., z

T
M ]T , with

zm , [ zm(1) zm(2) . . . zm(N) ]. The M × N cor-
related channel matrix̂H , [ĥT

1 , ĥ
T
2 , ..., ĥ

T
M ]T , with ĥm ,

[ ĥm(1) ĥm(2) . . . ĥm(N) ] with m = 1, 2, ...,M .
Since we assume normalized noise variance,SNR ≡ p. In this
case, the covariance of the transmitted signal can be written
as:Rs = E[s2] = 1.
Case 2: In this case, each column ofY, includes the samples
for a single symbol.Y =

√
pĤSd + Z, where Sd is the

diagonal transmitted signal matrix of dimensionN ×N with
diagonals = [s(1)...s(N)]. In this case, the covariance matrix
of the transmitted signal becomes

RS = E[SdS
H
d ] =











E[s2(1)] 0 · · · 0
0 E[s2(2)] · · · 0

. . .
0 0 · · · E[s2(N)]











= I.

(2)

assuming that for each sample, we get an i.i.d. c.c.s. symbol
with E[s2] = 1.
The received signal matrixY in both cases can be written in
the following form.

Y =











y1

y2

...
yM











=











y1(1) y1(2) . . . y1(N)
y2(1) y2(2) . . . y2(N)

...
...

.. .
...

yM (1) yM (2) . . . yM (N)











. (3)

The received signalY can be further written as:

Y =

{ √
pĤs+ Z, Case 1√
pĤSd + Z, Case 2

(4)

whereZ ∼ CN (0, I) is the additive white Gaussian noise.
Assuming that the source signal is independent from the white
noise, the covariance matrix of received signalRY can be



calculated as [6]:

RY = E[YYH ] = E

[

(
√
pĤS)(

√
pĤS)H

]

+ E[ZZH ]

= pE[ĤĤH ] +RZ, (5)

whereRZ = E[ZZH ]. Let us define sample covariance ma-
trices of the received signal and noise as:R̂Y(N) = 1

NYYH

andR̂Z(N) = 1
NZZH .

A. Channel Correlation Modeling

The channel correlation in MIMO/Single Input Multiple
Output (SIMO) systems depends on propagation [18] and
antenna mutual coupling [17]. In a wireless multipath environ-
ment, the channels are not always independent from each other
but can be correlated due to poor scattering in the propagation
path. This type of correlation can be referred as spatial
correlation. Channel correlation also arises due to mutual
coupling between the transmit and/or receive antenna elements
[17, 22]. In the transmitter and receive antenna arrays, antenna
mutual coupling causes the signals to be coupled with the
neighbouring antennas.

For modeling channel correlation, we use the one-sided
correlation model as in [11]. In this paper, we focus on the
correlation across channel receive dimensions and not on the
temporal correlation. We model the channel as:

Ĥ = Φ1/2H, (6)

where H is an M × N matrix with c.c.s. i.i.d. Gaussian
entries with zero mean and unit variance andΦ1/2Φ1/2 =
Φ = E[ĤĤH ]. It can be noted that sinceH ∼
CN (0, I), HHH follows uncorrelated Wishart distribution i.e.,
HHH ∼ WM (RH, N). To ensure thatΦ does not affect
the channel power, we consider the following normalization:
(1/M)trace{Φ} = 1, where each component ofΦ is modeled
with an exponential covariance model given by [10];

φij =

{

ς(j−i), i ≤ j
(

ς(i−j)
)

∗

, i > j
(7)

where φij is the (i, j)-th element ofΦ and ς ∈ C is the
correlation coefficient with| ς |≤ 1.

III. C HANNEL CORRELATION ANALYSIS USING RMT

For the purpose of completeness in this paper, we state the
following RMT theorem which is going to be used in our
analysis.

Theorem 3.1: [11] Let Θ be a positive definite matrix
which is normalized as:(1/M)trace{Θ} = 1, and whose
asymptotic spectrum has the p.d.f.

fΘ(λ) =
1

2πµλ2

√

(

λ

σ1
− 1

)(

1−
λ

σ2

)

(8)

with σ1 ≤ λ ≤ σ2 andµ =
(
√
σ2−

√
σ1)

2

4σ1σ2
. If F is anM × N

standard complex Gaussian matrix and1NFFH follows the
MP distribution [8], then asM,N → ∞ with N

M → β, the

asymptotic eigenvalue distribution ofW = Θ1/2FFHΘ1/2

has the following p.d.f.

fW(λ) = (1− β)+δ(λ) +

√

(λ− ã)+(b̃− λ)+

2πλ(1 + λµ)
, (9)

where

ã = 1 + β + 2µβ − 2
√

β
√

(1 + µ)(1 + µβ)

b̃ = 1 + β + 2µβ + 2
√

β
√

(1 + µ)(1 + µβ) (10)

The parameters̃a and b̃ correspond toλ∞
min andλ∞

max respec-
tively and the ratiõb/ã defines the SCN ofW.

The above theorem is applicable for channel covariance matrix
Φ. The eigenvalue spread ofΦ is related to the degree of chan-
nel covariance i.e., a zero eigenvalue spread corresponds to a
zero-covariance model and higher spreads are associated with
higher covariance models. In (9), the parameterµ controls the
degree of covariance and varies the support of the distribution
i.e., for µ = 0, ã = a and b̃ = b, wherea = (1 − √

β)2 and
b = (1 +

√
β)2 are the supports of the MP distribution [8].

For the exponential covariance model as stated in [11], the
parameterµ is related to the correlation coefficientς with the
following relation:µ = ς2

1−ς2 . Furthermore, the SCN is related
to ς with the relationSCN = 1+ς

1−ς . In practical scenarios,
the value ofµ can be determined using channel estimation
techniques. The received signal matrix can also be expressed
as:

Y =
√
pΦ

1
2HSd + Z. (11)

Assuming that signal and noise are independent, for very
large value ofN , the sample covariance matrix of received
signal under considered scenario in the presence of channel
correlation can be approximated as [6]:

lim
N→∞

R̂Y(N) ≈ pΦ
1
2HHHΦ

1
2 + R̂Z. (12)

Due to noncommutative nature of random matrices, it’s not
straightforward to calculate the eigenvalue distributions of
the received signalY by knowing the eigenvalue distribution
of covariance matrices ofΦ, H and Z in (12). In the
following section, we provide the methodology for calculating
the a.e.p.d.f. of the received signal’s covariance matrix which
is then used for SNR estimation in the presence of channel
correlation.

A. Methodology

The a.e.p.d.f. of the received signal’s covariance matrix
underH1 hypothesis can be used to estimate the PU SNR by
a CR. To calculate the a.e.p.d.f. of received signal’s sample
covariance matrix i.e.,̂RY(N), we need to know the Stieltjes
transform of the asymptotic density function of thêRY(N).
Using free probability analysis, the asymptotic spectrum of the
sum or product can be obtained from the individual asymptotic
spectra without involving the structure of the eigenvectors of
the matrices [8] under an asymptotic freeness condition. The
asymptotic eigenvalue distribution ofY in our context can be



obtained by applyingΣ and R transforms [8]. In (12), since
Φ is a deterministic matrix andHHH is a Wishart random
matrix, they are asymptotically free (see Example 2.34, [8]).
As a result, the combined a.e.p.d.f. of the termpΦ

1
2HHHΦ

1
2

in (12) can be obtained by applying multiplicative free con-
volution property ofΣ transform in the following way [23].

ΣpR̂
Ĥ

(z) = ΣΦ(z) · ΣpR̂H
(z), (13)

whereΣΦ andΣpR̂H
are theΣ transforms of the densities of

eigenvalues ofΦ andpR̂H respectively. SinceΦ is a square
matrix,Φ1/2HHHΦ1/2 andΦHHH have identical eigenval-
ues [8]. Furthermore,ΦHHH andZZH are independent and
ZZH is a Wishart matrix. As a result,ΦHHH andZZH are
asymptotically free due to their unitarily invariance property
[9]. Then the combined R transform of̂RY can be found
from the R transforms of̂RZ and pR̂

Ĥ
using additive free

convolution property of R transform in the following way [24].

R
R̂Y

(z) = R
R̂Z

(z) +RpR̂
Ĥ

(z). (14)

Since R̂Z follows MP law, its R transform can be written
as the R transform of MP law and is given by (25). Using
the transformations included in the preliminaries, we get the
Stieltjes transform of̂RY as described in the next subsection.
The a.e.p.d.f. ofY is then obtained by determining the imag-
inary part of the Stieltjes transformS

R̂Y
for real arguments

in the following way.

f(x) = lim
y→0+

1

π
Im{S

R̂Y
(x+ jy)}. (15)

B. Main Result

For the purpose of completeness, we present the Stieltjes
transform for an uncorrelated channel and white noise case
from [21]. The Stieltjes transformS

R̂Y
of the asymptotic

distribution of 1
NYYH for this case can be obtained for any

z ∈ C by solving the following cubic polymonial [21].

c0 = 1,

c1 = (1− β)(1− p) + z,

c2 = p(−2β + z + 1) + z,

c3 = pz, (16)

wherecn is thenth order coefficient of the polymonial,β = N
M

andp is the SNR of the transmitted PU signal.
Theorem 3.2: The Stieltjes transformS

R̂Y
of the asymp-

totic distribution of eigenvalues of1NYYH where Y =

ĤSd +Z can be obtained for anyz ∈ C by solving a quartic
polymonial with the following coefficients

c0 = 1 + µ,

c1 = 2µ(z + 1− β)− β(p+ 1) + p+ z + 2,

c2 = p(z − 3β + 2) + β(µ(β − 2z − 2)− 1)

+ µ(z(z + µ) + 1) + 2z,

c3 = −2p(β − z) + 2zµ(1− β + z) + p+ z,

c4 = z(p+ µz), (17)

where the parameterµ defines the degree of covariance of the
channel covariance matrixΦ.

Proof: Assuming that signal and noise are uncorrelated
to each other, for very large value ofN , the following
approximation can be written for correlated channel and white
noise scenario [6].

lim
N→∞

R̂Y(N) ≈ pĤĤH + R̂Z(N). (18)

The Stieltjes transform of̂R
Ĥ

= 1
N ĤĤ

H
can be written as

[11]:

S
R̂

Ĥ

(z) =
z + 2zµ+ 1− β +

√

[z − (1 + β)]2 − 4β(1 + µz)

2z(1 + µz)
.

(19)
The R transform ofR̂

Ĥ
can be found by using (24). The R

transform ofpR̂
Ĥ

can be found by using(26) and can be
written as:

RpR̂
Ĥ

(z) = −
p

2

(pz − 1 +
√

(p2z2 − 2pz + 1− 4µβpz))

µpz
. (20)

Then the combined R transform for̂RY can be written as:

R
R̂Y

(z) = −p

2

(pz − 1 +
√

(p2z2 − 2pz + 1− 4µβpz))

µpz

+
β

(1− z)
. (21)

The inverse Stieltjes transform can be obtained by applying
(21) on (24) and then the Stieltjes transform can be obtained
by solving the quartic polymonial given by (17).
The theoretical analysis for SNR estimation in the presenceof
both noise and channel correlation can be found in [25].

C. SNR Estimation Method

The Stieltjes transforms of̂RY for uncorrelated channel
plus white noise and correlated channel plus white noise cases
are obtained solving polymonials (16) and (17) respectively.
Then the supports for the a.e.p.d.f. ofR̂Y for the correspond-
ing case is calculated using (15). Since we know the value ofβ
and we can measure the value ofς, we can estimate the value
of p by sensing the maximum eigenvalue ofR̂Y. The value of
ς for correlated channel can be found with channel estimation
methods such as [26]. Furthermore, it can be noted that the
parametersβ and ς are assumed as operating parameters of
the CR sensing module. For convenience, lookup table (Table
I) is provided in Section IV in order to estimate the PU SNR.
We consider the following two cases: (i) uncorrelated channel
plus white noise, and (ii) correlated channel plus white noise.
In Table I, we include the maximum eigenvalues of received
signal’s covariance matrix for these cases for different values
of SNR andβ. With the help of this table, we can estimate
SNR of the PU signal based on the maximum eigenvalue of
received signal’s covariance matrix.

IV. N UMERICAL RESULTS

In this section, we evaluate the performance of the proposed
SNR estimation method in the presence of correlation using



normalized MSE. The normalized MSE is considered as a
parameter to characterize the performance of the proposed
SNR estimation technique and is defined as:

MSE =
E[(p̂− p)2]

p2
, (22)

wherep̂ is the estimated SNR with the proposed method and
p is the actual SNR.

Figure 1 shows the theoretical and simulated eigenvalue
distribution of the received signal’s covariance matrix for
correlated channel and white noise scenario. The histograms of
the eigenvalues were created by accumulating the eigenvalues
over 103 realizations. The theoretical result was obtained by
evaluating the polynomial (17) with the help of a mathematical
software. From the figure, it can be noted that the theoretical
and simulated eigenvalue distributions match well. Further-
more, it has been noted that eigenvalue distributions differ
depending on the values of the parameters SCN, SNR andβ.
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Fig. 1: Theoretical and simulated eigenvalue distribution of the received
signal’s covariance matrix for correlated channel and whitenoise scenario

i.e., Y = (ĤSd + Z) (SCN = 4, SNR = 2 dB, β = 1, N = 100)

Table I shows the lookup table for different values of SCN
of the channel covariance matrix and it is obtained using the
methodology described under Section III-C. This table can
be used to estimate the SNR of the PU signal based on the
values of SCN andβ for two different cases shown in the
table. For example, if the value of SCN is2, β is 1 and the
maximum eigenvalue of sample covariance matrix of received
signal i.e., 1

NYYH is 5.65 in case II, we can then estimate
that SNR of the PU signal is0 dB and intermediate values
can be calculated through interpolation. Figure 2 shows the
maximum eigenvalue versus SNR for different cases (β = 1,
N=100). From the figure, it can be noted that the maximum
eigenvalue increases with the SNR for both correlated and
uncorrelated channel cases with the higher rate in the high
SNR region. Furthermore, the rate of increase is higher for
correlated channel case than for uncorrelated channel case. It
can be further noted that the maximum eigenvalue increases
with the value of SCN and the effect of channel correlation is
more dominant at high SNR values.

Figure 3 shows the normalized MSE versus SNR for the
considered cases with the simulation parameters (β = 1,
SCN = 4 and N = 100). In this simulation setting, we

generate instances ofY according to the considered case and
we evaluate the MSE performance with (22) considering the
corresponding case from the table. From the figure, it can be
noted that the value of normalized MSE decreases with the
increase in SNR for both cases. It can be further noted that
the SNR for both cases can be reliably estimated with almost
0.2 % normalized MSE after0 dB. Moreover, it can be noted
that at lower SNR values, case II has lower normalized MSE
than case I and at higher values of SNR (after SNR value of
0 dB), case II has higher normalized MSE than the case I. It
can be concluded that channel correlation effect is dominant
at higher SNR values in comparison to the uncorrelated case.
The detailed description on the combined effect of noise
and correlation on the SNR estimation performance of the
proposed techniques can be found in [21].

TABLE I: Lookup table for SNR Estimation
Case I Case II

SCN β = N/M SNR (dB) λmax(HSd + Z) λmax(ĤSd + Z)

2 1 5 13.18 13.51
2 1 4 10.77 11.03
2 1 2 7.45 7.58
2 1 0 5.59 5.65
2 1 -2 4.70 4.71
2 1 -4 4.29 4.29
2 1 -6 4.08 4.08
4 1 5 13.18 14.55
4 1 4 10.77 11.86
4 1 2 7.45 8.05
4 1 0 5.59 5.86
4 1 -2 4.70 4.78
4 1 -4 4.29 4.31
4 1 -6 4.08 4.08
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Fig. 2: Maximum eigenvalue versus SNR for uncorrelated and correlated
channel scenarios (β = 1, N = 100)

V. CONCLUSION

In this paper, the PU SNR estimation problem has been con-
sidered in the context of a CR. The motivation for this problem
comes from the fact that with the knowledge of the PU SNR,
suitable underlay strategies can be implemented at the CRs in
order to allow the coexistence of the primary and secondary
systems. The theoretical expression for a.e.p.d.f of the received
signal’s covariance matrix has been derived in presence of
channel correlation. Moreover, an SNR estimation technique
based on the maximum eigenvalue of the received signal’s
covariance matrix has been presented in order to estimate the
PU SNR reliably in the presence of channel correlation. The
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Fig. 3: Normalized MSE versus SNR for uncorrelated and correlated
channel scenarios (β = 1, N = 100)

performance of the proposed technique has been evaluated in
terms of normalized MSE. It can be concluded that the PU
SNR can be reliably estimated by a CR in the presence of
channel correlation using the proposed technique.

APPENDIX

Random Matrix Theory Preliminaries

Let FX(x) be the eigenvalue probability density function of a
matrix X.

Theorem 5.1: The Stieltjes transformSX(z) of a positive
semidefinite matrixX is defined by [8]:

SX(z) = E

[

1

X− z

]

=

∫

∞

−∞

1

λ− z
dFX(λ). (23)

Theorem 5.2: The R transform is related to the inverse of
Stieltjes transform as [8]:

RX(z) = S
−1
X

(−z)−
1

z
. (24)

Theorem 5.3: For a Wishart random matrixX, the R trans-
form of the density of eigenvalues ofX is defined as [8]:

RX(z) =
β

1− z
. (25)

For anya > 0,
RaX = aRX(az). (26)

Theorem 5.4: For a Wishart random matrixX, theΣ trans-
form of the density of eigenvalues ofX is defined as [8]:

ΣX(z) =
1

z + β
. (27)
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