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Abstract—In this paper, we consider robust MIMO precoding
designs against deterministic imperfect channel state information
at the transmitter (CSIT). In contrast to the existing works based
on one or two particular channel uncertainty models, we consider
a general uncertainty set defined by a generic matrix norm, called
the Schatten norm, which include most deterministic imperfect
CSIT as special cases. Adopting the worst-case robustness,the
robust MIMO precoding design is formulated as a maximin
problem to maximize the worst-case received signal-to-noise ratio
or minimize the worst-case error probability. We show that
the robust precoder admits a channel-diagonalizing structure
for the Schatten norm based uncertainty set, and then simplify
the complex-matrix problem to a real-vector power allocation
problem. We further show that the simplified power allocation
problem can be analytically solved in a waterfilling manner,thus
leading to a fully closed-form solution to the robust precoding
design. Finally, we also investigate the robustness of beamforming
and uniform-power transmission.

Index Terms—Imperfect CSIT, maximin, MIMO, minimax,
Schatten norm, worst-case robustness.

I. I NTRODUCTION

The full potential of multi-input multi-output (MIMO) com-
munication systems relies on exploiting channel state informa-
tion at the transmitter (CSIT) and adopting proper precoding
techniques [1]. Given perfect CSIT, MIMO precoding designs
have been well studied [2], [3]. However, in practice, CSIT
is often subject to some uncertainty due to, e.g., inaccurate
channel estimation, quantization of CSI, erroneous or outdated
feedback, and time delays or frequency offsets between the
reciprocal channels. Therefore, the imperfection of CSIT has
to be considered, which calls for robust MIMO precoding
designs to fully utilize CSIT and meanwhile combat against
various channel uncertainty.

To characterize imperfect CSI, one common way regards
that the actual channel lies in the neighborhood, often called
the uncertainty set or region, of a nominal channel known by
the transmitter [4]–[18]. The size of this set represents the
amount of uncertainty on the channel, i.e., the larger the set is
the more uncertainty there is. In this case, a precoding design
is said to be robust if it can achieve the best performance in
the worst channel within the uncertainty set, or equivalently
can guarantee a performance level for any channel in the
uncertainty set. Such robust precoding designs can be obtained

by optimizing the worst-case performance, thereby called the
worst-case robustness [4].

Applying the worst-case robustness to MIMO precoding
designs is an intensively scrutinized subject. Specifically,
the worst-case robust minimum mean square error (MMSE)
precoder was studied in [9] and later was generalized in
[10] by incorporating transmit power constraints. In [11] and
[12], the authors tried to maximize the worst-case received
signal-to-noise ratio (SNR) but only focused on a simplified
power allocation problem by fixing the transmit directions.
Interestingly, it was found in [13] and [14] that the transmit
directions imposed in [11], [12] are optimal in some situations,
leading to fully analytical robust precoders along with some
insights. The worst-case robust precoding was also studiedfor
MIMO multiaccess channels [15], broadcasting channels [16],
and cognitive radio systems [17], [18].

In these works, the channel uncertainty region is usually
modelled as a sphere or ellipsoid set defined by a matrix norm,
where the shape of the uncertainty set is determined by which
norm is used. Two most common norms are the Frobenius
norm [9]–[13], [15]–[17] and the spectral norm [8], [14], [19].
Other methods, e.g., the Kullback-Leibler divergence [7],can
also be used to model an uncertainty set. Despite different
types of imperfect CSIT that may be encountered in practice,
most existing works only focused on one or two particular
uncertainty sets, mainly based on the Frobenius and spectral
norms due to their tractability.

In this paper we consider a worst-case robust MIMO pre-
coding design, formulated as a maximin problem, to maximize
the worst-case received SNR or to minimize the worst-case
pairwise error probability (PEP) if a space-time block code
(STBC) [20] is used. In contrast with the existing works [5]–
[10], [12]–[17], [19] based on one or two particular imperfect
CSI models, we try to take into account various channel
uncertainty by considering a general uncertainty set defined
by a generic matrix norm, termed the Schatten norm. Such a
general uncertainty set contains many deterministic imperfect
CSIT models as special cases. Therefore, the previous works,
e.g., [11]–[14], are included as special cases in our framework.

We show that, for the Schatten norm based uncertainty set,
the optimal robust precoder results in a favorable channel-
diagonalizing structure, and thus simplifies the complex-matrix
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problem to a power allocation problem without any loss of
optimality. We further show that, solution of the simplified
power problem can be analytically obtained via a convenient
waterfilling fashion. Based on these results, we provide a fully
closed-form solution to the robust precoder for a class of
uncertainty sets. Finally, we also investigate the robustness
of beamforming and equal power transmission.

II. SYSTEM MODEL

Consider a point-to-point MIMO communication system
equipped withN transmit andM receive antennas. Mathe-
matically, the system can be represented by a linear model

y = Hx+ n (1)

wherex ∈ CN andy ∈ CM are the transmitted and received
signals, respectively,H ∈ CM×N is the channel matrix, and
n ∈ CM is a circularly symmetric complex Gaussian noise
vector with zero mean and covariance matrixσ2

nI, i.e., n ∼
CN (0, σ2

nI). The transmit strategy or precoder is determined
by the transmit covariance matrixQ = E{xxH}. Indeed, via
decomposingQ = FFH , the transmitted symbol vectors,
with E{ssH} = I, can be linearly precoded byF, resulting in
x = Fs. In practice, the transmitter should satisfy the power
constraintQ ∈ Q where

Q , {Q : Q � 0, Tr(Q) ≤ P} (2)

andP ≥ 0 is the budget on the total transmit power.
Under the assumption of perfect CSIT, i.e., the channel

H is perfectly known at the transmitter, the optimal MIMO
precoding has been well studied for various criteria [2], [3].
However, due to many practical issues, CSIT is seldom perfect,
which thus calls for robust precoding designs that can utilize
CSIT and at the same time combat against its imperfection.
To model imperfect CSIT, we consider a compound channel
model [21] assuming thatH belongs to a known setH, often
called an uncertainty set, of possible values but otherwise
unknown. In the literature, this imperfect channel model has
been widely used in robust designs, and the philosophy behind
these robust designs is the so-called worst-case robustness [4],
which is achieved by optimizing the system performance for
the worst channel inH [4]–[18].

Specifically, we denote the system performance measure
by a utility or payoff functionΨ(Q,H). Then, the worst-
case robust transmit strategy is given by the solution to the
following maximin problem:

max
Q∈Q

min
H∈H

Ψ(Q,H) (3)

which, namely, offers the best performance for the worst
channel withinH. As a counterpart of the maximin problem,
we also introduce the following minimax problem:

min
H∈H

max
Q∈Q

Ψ(Q,H) (4)

which is, namely, to find the worst channel for the best one
of all possible transmit strategies. We will show later thatthe

maximin problem (3) and the minimax problem (4) are closely
related.

In this paper, we assume perfect CSI at the receiver (CSIR)
and adopt the following payoff or utility function:

Ψ(Q,H) = Tr(HQHH) (5)

which is proportional to the received SNR. It can be verified
(see [13, Sec. II]) that maximizingΨ(Q,H) corresponds to:
1) maximizing the received SNR; 2) minimizing the pairwise
error probability (PEP) if a space-time block code (STBC) [20]
is used at the transmitter; 3) maximizing a low-SNR approx-
imation of the mutual information; 4) minimizing a low-SNR
approximation of the MSE if a linear MMSE equalizer is used
at the receiver.

III. C HANNEL UNCERTAINTY MODEL

In the literature [4]–[18], the uncertainty setH is often
modeled as a neighborhood of a nominal channelĤ known
by the transmitter, where the nominal channelĤ could be an
estimate or feedback of the actual channelH. By defining
the channel error∆ as the difference between the nominal
channel and the actual channel as∆ , Ĥ−H, the uncertainty
H ∈ H can be equally described by∆ ∈ E for some set
E . Correspondingly, we can rewrite the utility function in (5)
based on∆ as

Ψ(Q,∆) , Tr
(

(Ĥ−∆)Q(Ĥ−∆)H
)

. (6)

and thus the maximin and minimax problems (3) and (4) based
on H can be expressed as

max
Q∈Q

min
∆∈E

Ψ(Q,∆) (7)

and
min
∆∈E

max
Q∈Q

Ψ(Q,∆) (8)

based onE , respectively.
The uncertainty setE provides a convenient way to char-

acterize different types of imperfect CSIT. However, most
existing works on worst-case robust MIMO precoding designs,
e.g., [5]–[9], [12]–[17], [19], considered only one or several
particular choices of the uncertainty setE . In this paper, we
would like to consider a general uncertainty set based on the
Schatten norm that includes many common uncertainty sets as
special cases.

Definition 1. ( [22]) Let A ∈ Cm×n with r = min{m,n}
andp ∈ [1,∞]. Then, thep-Schatten norm‖·‖σp is defined as

‖A‖σp ,

{

(
∑r

i=1
σ
p
i (A))

1/p
, 1 ≤ p < ∞

σmax(A), p = ∞.
(9)

Based on thep-Schatten norm‖·‖σp, we define the uncer-
tainty set

Eσp ,

{

∆ : ‖∆‖σp ≤ ε
}

(10)

where, to avoid a trivial solution, we assume thatε < ‖Ĥ‖σp.
Different p-Schatten norms are related through

‖A‖σ∞ ≤ ‖A‖σq ≤ ‖A‖σp ≤ ‖A‖σ1 (11)



wherep, q ∈ [1,∞] andp ≤ q, and therefore we have

Eσ1 ⊆ Eσp ⊆ Eσq ⊆ Eσ∞. (12)

Some well-known examples of the Schatten norm include:
1) The nuclear norm (also known as the trace norm)

‖A‖
∗
= Tr

(

(AHA)1/2
)

= σ1(A)+ · · ·+σr(A) = ‖A‖σ1 .

(13)
The nuclear norm is viewed as a convex approximation of
the rank of a matrix, and widely used in rank minimization
for sparse signal processing [23]. Hence,Eσ1 approximately
describes the uncertainty on the rank of the channel error
matrix ∆. Note thatEσ1 is the smallest one of allEσp.

2) The Frobenius norm

‖A‖F =
(
Tr(AHA)

)1/2
=

(
σ2
1(A) + · · ·+ σ2

r(A)
)
1/2

= ‖A‖σ2 . (14)

As the most frequently used model in the literature [9],
[11]–[13], [15], [16], Eσ2 represents the uncertainty on the
total “power” of all elements of∆. Meanwhile, from the
probabilistic point of view,‖∆‖2F = ‖H − Ĥ‖2F is in fact
a closed-form expression of the Kullback-Leibler divergence
between the actual and nominal channel models with Gaussian
noise [7].

3) The spectral norm (also known as the 2-norm)

‖A‖
2
= λ1/2

max(A
HA) = σmax(A) = ‖A‖σ∞ . (15)

Intuitively, Eσ∞ models the maximum uncertainty on each
eigenmode of the channel [8], [14], [19]. Indeed, we know
from (12) that, given the same error radiusε, Eσp ⊆ Eσ∞ for
p ∈ [1,∞]. Hence,Eσ∞ is the most conservative one among
all Eσp, representing the largest channel error.

As a result of the generality of the Schatten norm, any
result forEσp will be applicable to various matrix norm based
uncertainty sets. In the next, we will analytically characterize
the optimal robust precoder forEσp.

IV. ROBUST MIMO PRECODER

A. Eigenmode Transmission

In this subsection, we show that, for the uncertainty set
Eσp in (10), the optimal transmit directions, i.e., the eigen-
vectors of the optimal transmit covariance matrix, are justthe
right singular vectors of the nominal channel, meaning that
eigenmode transmission is still optimal from the perspective of
the worst-case robustness. Consequently, the complex-matrix
robust precoding design can be simplified into a real-vector
power allocation problem without loss of any optimality.

Before stating our result, we would like to introduce some
notations and definitions. Denote the eigenvalue decompo-
sition (EVD) of Q by Q = UqΛqU

H
q with eigenvalues

p , {pi}Ni=1. Denote the singular-value decomposition (SVD)
of Ĥ by Ĥ = UhΣhV

H
h with singular values{γi}Ni=1, where

γi = 0 for i > min{M,N}. Denote the SVD of∆ by

∆ = UδΣδV
H
δ with singular valuesδ = σ(∆) , {δi}

N
i=1,

whereδi = 0 for i > min{M,N}. Define the setP as

P , {p : p ≥ 0, 1Tp ≤ P}. (16)

Define the functionfσp(δ) as

fσp(δ) ,







(
∑N

i=1
δ
p
i

)1/p

, 1 ≤ p < ∞

maxi{δi}, p = ∞
(17)

and the setDσp as

Dσp , {δ : fσp(δ) ≤ ε}. (18)

Then, we have the following result, whose proof is omitted
due to the space limitation (the interested reader is referred to
[24] for the detailed proof).

Theorem 1. LetE = Eσp. Then, the following statements hold.

1) There exists a solutionQ⋆ to the maximin problem (7)
such thatU⋆

q = Vh and p⋆ is the solution to the
following maximin problem:

max
p∈P

min
δ∈Dσp

N∑

i=1

(γi − δi)
2pi. (19)

2) There exists a solution∆⋆ to the minimax problem (8)
such thatU⋆

δ = Uh, V⋆
δ = Vh, and δ⋆ is the solution

to the following minimax problem:

min
δ∈Dσp

max
p∈P

N∑

i=1

(γi − δi)
2pi. (20)

Theorem 1 reveals that, forE = Eσp, both the robust trans-
mit covariance matrix and the worst channel error align with
the nominal channel, resulting in a fully channel-diagonalizing
structure. In this case, the complex-matrix maximin and min-
imax problems (7) and (8) can be simplified respectively
into the real-vector maximin and minimax problems (19) and
(20) without loss of any optimality. Consequently, searching
the complex-matrix robust precoder (or worst channel error)
reduces to searching its eigenvalues (or singular values),which
significantly decreases the computational complexity.

Among existing works, [11] and [12] imposed the same
transmit directions but without knowing whether or when they
were optimal, whereas [13] and [14] proved the optimality of
the similar channel-diagonalizing structure but only for the
uncertainty sets defined by the Frobenius and spectral norms,
i.e., Eσ2 andEσ∞, as the special cases of this work. We show
that the eigenmode transmission is actually optimal in terms
of worst-case robustness for a general class of uncertaintysets.

The goal of this paper is to find the robust precoder by
solving the maximin problem (7) or (19). One may wonder
what is the merit of the minimax problem (8) or (20). The
following result answers this question by showing that the
maximin and minimax problems are closely linked.



Theorem 2. Let δ⋆ be the optimal solution to the following
convex problem:

minimize
δ∈Dσp,t

Pt

subject to (γi − δi)
2 ≤ t, i = 1, . . . , N

(21)

and η⋆ , {η⋆i }
N
i=1 be the optimal Lagrange multipliers

associated with the constraints(γi − δi)
2 ≤ t, i = 1, . . . , N .

Then,δ⋆ is the optimal solution to the minimax problem (20)
andη⋆ is the optimal solution to the maximin problem (19).

Theorem 2 implies that the robust precoder and the worst
channel error can be simultaneously obtained by solving
(21). SinceDσp is a convex set, (21) is indeed a convex
problem, meaning that it can be efficiently solved numerically.
Nevertheless, in the next, we will show that the solution to (21)
can be analytically obtained via a waterfilling manner.

B. Waterfilling Solution

From the definition ofDσp, it is not difficult to see that a
solution to the following problem is also a solution to (21):

minimize
δ

maxi=1,...,N (γi − δi)

subject to δ ∈ D, 0 ≤ δi ≤ γi, ∀i
(22)

where we assume without loss of generality (w.l.o.g.) that
γ1 ≥ · · · ≥ γN . We are particularly interested in characterizing
the solution of (22) or equivalently (21) in the following two
situations: 1) the coupled uncertainty setDσp for 1 ≤ p < ∞;
2) the decoupled uncertainty setDσ∞ for p = ∞.

Let us first consider the coupled case. Intuitively, to mini-
mizemaxi(γi− δi), δ1 should first compensate the difference
γ1 − γ2, then δ1 and δ2 together compensate the difference
γ2 − γ3 and so on. As shown in Fig. 1, the whole process
is like pouring the bottle of waterDσp into the container
γ , {γi}Ni=1, where the water levelµ is given byµ = γ1−δ1.
Based on this waterfilling procedure, we can provide a closed-
form solution to (21). For this purpose, we defineγN+1 = 0
and define fork = 1, . . . , N + 1

R
N ∋ θk , [γ1 − γk, γ2 − γk, . . . , γk−1 − γk

︸ ︷︷ ︸

k−1

, 0, . . . , 0]T

= max{γ − γk1, 0}. (23)

From this definition, one can see thatθ1 = 0, θN+1 = γ, and
θk ≤ θk+1 so thatfσp(θk) ≤ fσp(θk+1). Then, we have the
following result (the interested reader is referred to [24]for
the detailed proof).

Theorem 3. Let E = Eσp and ε < fσp(γ) for p ∈ [1,∞).
Then, the optimal solutionδ⋆ to (21) is given by

δ⋆i =

{

γi − µ⋆, i ≤ k

0, i > k
(24)

wherek is an integer such that

fσp(θk) < ε ≤ fσp(θk+1) (25)

Figure 1. Waterfilling procedure for the coupled uncertainty setDσp with
p ∈ [1,∞).

andµ⋆ ∈ [γk+1, γk) is the root of the equationfσp(δ
⋆(µ⋆)) =

ε. The optimal power allocationp⋆ is given by

p⋆i =







Pδ⋆p−1

i∑
j≤k δ⋆p−1

j

, i ≤ k

0, i > k.
(26)

The integerk is the number of active eigenmodes and can
be easily determined from (25). Sincefσp(δ) is an increas-
ing function,fσp(δ

⋆(µ⋆)) is monotonically increasing inµ⋆,
meaning that the optimal water levelµ⋆ can be efficiently
found via the bisection method over[γk+1, γk). In some
situationsµ⋆ may be obtained in a closed form (e.g., [13]).
The assumptionε < fσp(γ) is to avoid a trivial solution, since
if the uncertainty is too large, i.e.,ε ≥ fσp(γ), the best worst-
case performance is zero.

Now we consider the decoupled case. It is easy to rewrite the
constraint inDσ∞ asδi ≤ ε for ∀i. The process of solving (22)
is like pouring the waterε in each bottlei into each container
γi independently. Therefore, we obtain the following result.

Theorem 4. Let E = Eσ∞ and ε < fσ∞(γ). The optimal
solutionδ⋆ to (21) is given byδ⋆i = γi for i = 1, . . . , N . The
optimal power allocationp⋆ is given byp⋆1 = P and p⋆i = 0
for i > 1.

From Theorems 3 and 4, we can obtain some interesting
insights on the robust precoder. The following two corollaries
concern the optimality of beamforming that transmits data only
over one eigenmode, and the optimality of the equal power
allocation.

Corollary 1. Let E = Eσp. The robust maximin MIMO
precoding is beamforming over the largest eigenmode if either:
1) p = ∞; or 2) p ∈ [1,∞) and ε ≤ γ1 − γ2.

Corollary 2. Let E = Eσp. The robust maximin MIMO
precoding allocates power equally on the active eigenmodes
if either: 1) p = 1; or 2) p ∈ (1,∞] andγ1 = γ2 = · · · = γk.

As one of the simplest transmit strategies, beamforming
is often regarded to be sensitive to imperfect CSIT [2], [3]
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Figure 2. Average worst-case received SNRs of robust precoding strategies
versus SNR for differentEσp with s = 0.2 and0.6 andM = N = 4.

because of its simplicity. However, our results reveal that
beamforming is actually a robust solution if either the uncer-
tainty set isEσ∞, or ε ≤ γ1−γ2, i.e., the uncertainty is small
or the channel is nearly rank-one. As the most conservative
one of Eσp, Eσ∞ defines the maximum uncertainty on each
eigenmode independently, so the robust transmit strategy shall,
intuitively, put all power on the strongest eigenmode. Further-
more, one can imagine that, when the channel uncertainty
or the size of the channel matrix becomes smaller, the gap
betweenEσ∞ and other uncertainty sets shall become smaller
as well. Therefore, we can reasonably infer that beamforming,
although might not be optimally robust, is a nearly robust
transmit strategy when the channel uncertainty or the channel
dimension is small.

The uncertainty setEσ1 represents another extreme case of
Eσp, as it is the smallest one and thus the least conservative
one of Eσp. SinceEσ1 approximately models the uncertainty
on the rank of the channel error, the robust transmit strategy
may not distinguish the uncertainty on each eigenmode but
treats all active eigenmodes equally, thus leading to an equal
power allocation over the active eigenmodes. The number
of active eigenmodesk, however, is determined by the total
uncertainty, and especiallyk → rank(Ĥ) as ε → fσp(γ)
for p ∈ [1,∞). For Eσp with p ∈ (1,∞], the equal power
allocation is generally not robust unless the channel gainsof
the active eigenmodes are all equal.

V. NUMERICAL RESULTS

In this section, we demonstrate the effect of the robust
MIMO precoding through several numerical examples. Ac-
cording to the philosophy of worst-case robustness, different
precoding strategies are compared via their worst-case perfor-
mance, where the worst channel error for any given (either
non-robust or robust) precoder can be obtained by solving
the inner minimization of (7) for a fixedQ (note that the
robust strategy and its worst channel error can be simulta-
neously obtained according to this work). Moreover, to take
into account different channels, the worst-case performance
is averaged over the nominal channelĤ, whose elements
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Figure 3. Average worst-case received SNRs of robust precoding strategies
versus uncertainty set sizes for different Eσp with SNR = 10dB andM =
N = 4.

are randomly generated according to zero-mean, unit-variance,
i.i.d. Gaussian distributions.

Consider the channel uncertainty setEσp defined in (10)
based on the Schatten norm, wherep ∈ [1,∞] determines the
shape ofEσp, while the size of the uncertainty set is given
by the error radiusε. As ‖·‖σ∞ (or ‖·‖

2
) is the smallest one

among allp-Schatten norms, we set a common error radius
for all Eσp such thatε2 = s‖Ĥ‖22 with s ∈ (0, 1), so they can
be reasonably compared. As shown in Section III, given the
same error radius, the larger the parameterp is, the bigger and
thus the more conservative the uncertainty setEσp is.

Fig. 2 shows the average worst-case received SNRs,
achieved by the robust precoding strategies for differentEσp,
versus SNR, while Fig. 3 displays the relation between the
average worst-case received SNR and the uncertainty set size
s. In Figs. 4 and 5, we plot the average worst-case symbol
error rates (SERs), achieved by the robust precoding strategies
for different Eσp, versus SNR and the uncertainty set sizes,
respectively, where we have used an 1/2-rate complex OSTBC
[20] and an ML decoder at the receiver.

From these figures, one can observe tradeoff between the
conservativeness of the uncertainty model and the system
performance, i.e., the more conservative the uncertainty model
is, the lower the performance is. Among allEσp with p ∈
[1,∞], Eσ∞ is the most conservative set, thus resulting in
the lowest worst-case received SNR, whereasEσ1 is the least
conservative one, thus leading to the highest performance.
In practice, the choice of an uncertainty set depends on the
prediction of channel errors–large errors correspond to more
conservative uncertainty sets, while small errors correspond to
less conservative sets.

VI. CONCLUSION

We have considered a robust MIMO precoding design,
which was formulated as a maximin problem, to maximize
the worst-case received SNR or minimize the worst-case
PEP for STBCs with imperfect CSIT. To take into account
various kinds of channel uncertainty, we have considered a
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class of uncertainty sets defined by the Schatten norm, which
cover most commonly used uncertainty models as special
cases. We have characterized the structure of the optimal
robust precoder and simplified the matrix problem to a power
allocation problem. We then related the maximin and minimax
problems, and showed that the robust precoder and the worst
channel error can be simultaneously obtained by solving a
convex problem. Furthermore, we have provided a closed-form
solution to the simplified power allocation problem througha
waterfilling fashion, and also investigated the robustnessof
some common transmit strategies such as beamforming and
equal power transmission.
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