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Abstract—In this paper, we consider robust MIMO precoding
designs against deterministic imperfect channel state infmation
at the transmitter (CSIT). In contrast to the existing works based
on one or two particular channel uncertainty models, we conisler
a general uncertainty set defined by a generic matrix norm, déed
the Schatten norm, which include most deterministic imperéct
CSIT as special cases. Adopting the worst-case robustneske
robust MIMO precoding design is formulated as a maximin
problem to maximize the worst-case received signal-to-ngé ratio
or minimize the worst-case error probability. We show that
the robust precoder admits a channel-diagonalizing struatre
for the Schatten norm based uncertainty set, and then simply
the complex-matrix problem to a real-vector power allocatbn
problem. We further show that the simplified power allocation
problem can be analytically solved in a waterfilling manner,thus
leading to a fully closed-form solution to the robust precodhg
design. Finally, we also investigate the robustness of be&onming
and uniform-power transmission.

Index Terms—Imperfect CSIT, maximin, MIMO, minimax,
Schatten norm, worst-case robustness.

I. INTRODUCTION

The full potential of multi-input multi-output (MIMO) com-
munication systems relies on exploiting channel staterméo

by optimizing the worst-case performance, thereby caled t
worst-case robustness [4].

Applying the worst-case robustness to MIMO precoding
designs is an intensively scrutinized subject. Specificall
the worst-case robust minimum mean square error (MMSE)
precoder was studied in [9] and later was generalized in
[10] by incorporating transmit power constraints. In [1ijda
[12], the authors tried to maximize the worst-case received
signal-to-noise ratio (SNR) but only focused on a simplified
power allocation problem by fixing the transmit directions.
Interestingly, it was found in [13] and [14] that the transmi
directions imposed in [11], [12] are optimal in some sitaas,
leading to fully analytical robust precoders along with som
insights. The worst-case robust precoding was also stddred
MIMO multiaccess channels [15], broadcasting channel [16
and cognitive radio systems [17], [18].

In these works, the channel uncertainty region is usually
modelled as a sphere or ellipsoid set defined by a matrix norm,
where the shape of the uncertainty set is determined by which
norm is used. Two most common norms are the Frobenius
norm [9]-[13], [15]-[17] and the spectral norm [8], [14]9L
Other methods, e.g., the Kullback-Leibler divergence §&h

tion at the transmitter (CSIT) and adopting proper precgdiralso be used to model an uncertainty set. Despite different
techniques [1]. Given perfect CSIT, MIMO precoding designgpes of imperfect CSIT that may be encountered in practice,
have been well studied [2], [3]. However, in practice, CSITost existing works only focused on one or two particular
is often subject to some uncertainty due to, e.g., inaceuraincertainty sets, mainly based on the Frobenius and spectra
channel estimation, quantization of CSl, erroneous orateti norms due to their tractability.
feedback, and time delays or frequency offsets between then this paper we consider a worst-case robust MIMO pre-
reciprocal channels. Therefore, the imperfection of CS#i§ hcoding design, formulated as a maximin problem, to maximize
to be considered, which calls for robust MIMO precodinghe worst-case received SNR or to minimize the worst-case
designs to fully utilize CSIT and meanwhile combat againptairwise error probability (PEP) if a space-time block code
various channel uncertainty. (STBC) [20] is used. In contrast with the existing works [5]—
To characterize imperfect CSI, one common way regarfl0], [12]-[17], [19] based on one or two particular impextfe
that the actual channel lies in the neighborhood, ofteredallCSI models, we try to take into account various channel
the uncertainty set or region, of a nominal channel known lmncertainty by considering a general uncertainty set define
the transmitter [4]-[18]. The size of this set represents tiby a generic matrix norm, termed the Schatten norm. Such a
amount of uncertainty on the channel, i.e., the larger thésse general uncertainty set contains many deterministic ifieger
the more uncertainty there is. In this case, a precodingdesiCSIT models as special cases. Therefore, the previous works
is said to be robust if it can achieve the best performanceery., [L1]-[14], are included as special cases in our framniew
the worst channel within the uncertainty set, or equivdyent We show that, for the Schatten norm based uncertainty set,
can guarantee a performance level for any channel in ttree optimal robust precoder results in a favorable channel-
uncertainty set. Such robust precoding designs can benelotaidiagonalizing structure, and thus simplifies the compleatrin
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problem to a power allocation problem without any loss ahaximin problem (3) and the minimax problem (4) are closely
optimality. We further show that, solution of the simplifiedelated.
power problem can be analytically obtained via a convenientin this paper, we assume perfect CSI at the receiver (CSIR)
waterfilling fashion. Based on these results, we providdlg fuand adopt the following payoff or utility function:
closed-form solution to the robust precoder for a class of _ H
uncertainty sets. Finally, we also investigate the rolessn V(Q H) =Tr(HQH") (5)
of beamforming and equal power transmission. which is proportional to the received SNR. It can be verified
(see [13, Sec. II]) that maximizing (Q, H) corresponds to:
Il. SYSTEM MODEL 1) maximizing the received SNR; 2) minimizing the pairwise
Consider a point-to-point MIMO communication systen@fror probability (PEP) if a space-time block code (STB@)][2
equipped withN' transmit and)M receive antennas. Mathe-is used at the transmitter; 3) maximizing a low-SNR approx-

matically, the system can be represented by a linear modeiMmation of the mutual information; 4) minimizing a low-SNR
approximation of the MSE if a linear MMSE equalizer is used

y=Hx+n (1) at the receiver.

wherex € CV andy € CM are the transmitted and received 1. CHANNEL UNCERTAINTY MODEL

signals, respectivelf)lf € C**" is the channel matrix, and |n the literature [4]-[18], the uncertainty séf is often
n € CM is a circularly symmetric complex Gaussian noisgodeled as a neighborhood of a nominal charffieknown
vector with zero mean and covariance mawd, i.e., n ~ py the transmitter, where the nominal chankekould be an
CN(0,0,1). The transmit strategy or precoder is determinegktimate or feedback of the actual chankEl By defining
by the transmit covariance matr@ = E{xx"}. Indeed, via the channel erroA as the difference between the nominal
decomposingQ = FF", the transmitted symbol vectar, channel and the actual channelas® H—H, the uncertainty
with E{ss”} = 1, can be linearly precoded y, resultingin 11 ¢ # can be equally described b € £ for some set
x = Fs. In practice, the transmitter should satisfy the power. Correspondingly, we can rewrite the utility function in) (5

constraintQ € Q where based onA as
02{Q:Q»0, TH(Q) < P} @) vQA) 2T (H-A)QE-A)T). (@

and P > 0 is the budget on the total transmit power. and thus the maximin and minimax problems (3) and (4) based

Under the assumption of perfect CSIT, i.e., the channeh # can be expressed as
His p(_arfectly known at the tr_ansmltter,_the op_um_al MIMO max min ¥(Q, A) @
precoding has been well studied for various criteria [2], [3 QeQ Aceg
However, due to many practical issues, CSIT is seldom perfegnd
which thus calls for robust precoding designs that canzetili min max ¥(Q, A) (8)
CSIT and at the same time combat against its imperfection. AcfQeQ

To model imperfect CSIT, we consider a compound channgsed or€, respectively.

model [21] assuming thdf belongs to a known sé¥, often The uncertainty sef provides a convenient way to char-

called an uncertainty set, of possible values but otherwigeterize different types of imperfect CSIT. However, most

unknown. In the literature, this imperfect channel moded h&xisting works on worst-case robust MIMO precoding designs

been widely used in robust designs, and the philosophy Hehi@g., [5]-[9], [12]-[17], [19], considered only one or seale

these robust designs is the so-called worst-case robsgdies particular choices of the uncertainty sgt In this paper, we

which is achieved by optimizing the system performance favould like to consider a general uncertainty set based on the

the worst channel ir{ [4]-[18]. Schatten norm that includes many common uncertainty sets as
Specifically, we denote the system performance meas@iecial cases.

by a utility or payoff function¥(Q,H). Then, the worst- Definition 1. ( [22]) Let A € C™*" with + = min{m,n}

case robust transmit strategy is given by the solution to tg?ldp € [1,00]. Then, thep-Schatten nomi-||_ is defined as
following maximin problem: ’ op

L 1/p
max min ¥(Q, H) (3) 1A, Iy iz 0f(A) 7, 1<p<oo )
QeQHeH O'max(A)7 p = oco.

which, namely, offers the best performance for the worst Based on thep-Schatten nornj|-||,,,., we define the uncer-
channel within. As a counterpart of the maximin problemggainty set

we also introduce the following minimax problem: Eop 2 {A A, < 5} (10)
ﬁné% 8}25 ¥(Q.H) ) where, to avoid a trivial solution, we assume that || H||,.
P

which is, namely, to find the worst channel for the best On%|ﬁerent p-Schatten norms are related through

of all possible transmit strategies. We will show later ttree Al o0 < AL, < AL, < 1Al (11)

goo — oq — op —



wherep, ¢ € [1,0c] andp < ¢, and therefore we have A = UsX;VE with singular valuess = a(A) £ {§;}Y,,

whered; = 0 for ¢ > min{M, N}. Define the seP as
gal c gap c gaq c gaoo- (12)

_ P2{p:p>0,1"p< P}. (16)
Some well-known examples of the Schatten norm include:

1) The nuclear norm (also known as the trace norm) Define the functionf,,(d) as

IA]L, = Tr ((ATA)?) = o1(A) +--- + 0. (A) = ||A],, - N s\
( ) (13) fo 2 (ELE) T 1sp<oe gy,
The nuclear norm is viewed as a convex approximation of max;{;}, p=00
the rank of a matrix, and widely used in rank minimizatior&nd the seD... as
for sparse signal processing [23]. Henég; approximately P

desc_ribes the uncertainty on the rank of the channel error Dop 2 {8 : fop(8) < ). (18)
matrix A. Note that€,; is the smallest one of alf,,,.
2) The Frobenius norm Then, we have the following result, whose proof is omitted
1/2 due to the space limitation (the interested reader is redeio
Al = (Te(A"A)) " = (07(A)+---+02(A)) /> [24] for the detailed proof).
1Al (14) Theorem 1. Let& = &,,. Then, the following statements hold.

As the most frequently used model in the literature [9], 1) There exists a solutio@* to the maximin problem (7)
[11]-[13], [15], [16], £,2 represents the uncertainty on the such thatU; = V), and p* is the solution to the
total “power” of all elements ofA. Meanwhile, from the following maximin problem:

probabilistic point of view,| A% = |H — H||% is in fact

N
a closed-form expression of the Kullback-Leibler divergen . 2
between the actual and nominal channel models with Gaussian e sepe »—1(% = 0i)"pi- (19)
noise [7]. .
3) The spectral norm (also known as the 2-norm) 2) There exists a solutiodA* to the minimax problem (8)
such thatU; = Uy, Vi = V), andd” is the solution
[All, = AYZ(ATA) = omax(A) = Al - (15) to the following minimax problem:
Intuitively, £, models the maximum uncertainty on each _ N )
eigenmode of the channel [8], [14], [19]. Indeed, we know S0 (i — 04)pi- (20)
from (12) that, given the same error raditisE,), C Eoo fOr i=1
€ [1, 00]. Hence,&,« is the most conservative one among Theorem 1 reveals that, fét = &, both the robust trans-
all £, representing the largest channel error. mit covariance matrix and the worst channel error align with

As a result of the generality of the Schatten norm, anye nominal channel, resulting in a fully channel-diagaiag
result for&,,, will be applicable to various matrix norm basedructure. In this case, the complex-matrix maximin and-min
uncertainty sets. In the next, we will analytically chaeaie jmax problems (7) and (8) can be simplified respectively

the optimal robust precoder f@f,,,. into the real-vector maximin and minimax problems (19) and
(20) without loss of any optimality. Consequently, seanghi
IV. RoBusT MIMO PRECODER the complex-matrix robust precoder (or worst channel grror
A. Eigenmode Transmission reduces to searching its eigenvalues (or singular valudgsgh

. _ _ significantly decreases the computational complexity.

In this subsection, we show that, for the uncertainty SetAmong existing works, [11] and [12] imposed the same
€qp in (10), the qptlmal transmit d|r_ect|ons, €., the eigeryonsmit directions but without knowing whether or whernythe
\{ectorg, of the optimal transmit covariance matrix, are_jhet were optimal, whereas [13] and [14] proved the optimality of
”.ght smgdular vectgrs_ of _thellTom{nallihannﬁl, meanmgir thfﬂe similar channel-diagonalizing structure but only foet
eigenmode transmission is still optimal from the perspeqb uncertainty sets defined by the Frobenius and spectral norms
the worst-case robustness. Consequently, the complemxma]-t.e_,502 and&, .., as the special cases of this work. We show

robust precoding design can be simplified into a real—vectmat the eigenmode transmission is actually optimal in germ

power allocation problem without loss of any optimality. ¢\ 55t case robustness for a general class of uncertseétsy
Before stating our result, we would like to introduce some The goal of this paper is to find the robust precoder by

n_o_tations and definitions. Denote the eigenvqlue decom%%mng the maximin problem (7) or (19). One may wonder

sonn (E>V/D) of Q by Q. - U‘IA‘IUé{ with elg?hvalues what is the merit of the minimax problem (8) or (20). The

p = {pi},=- Denote tge singular-value decomp]?[smon (SVDpliowing result answers this question by showing that the

of H by H = U, %, V; with singular valuegyi},—;, Where  ayimin and minimax problems are closely linked.

vi = 0 for ¢ > min{M, N}. Denote the SVD ofA by



Theorem 2. Let §* be the optimal solution to the following h n e Tea T
convex problem:

minimize Pt
8EDyp,t (21) u
subjectto (vi —6;)2<t,i=1,....,N

and n* = {n:}Y, be the optimal Lagrange multipliers —
associated with the constraints; — ;)2 <t,i=1,...,N.

Then,8* is the optimal solution to the minimax problem (20)
and n* is the optimal solution to the maximin problem (19).

Theorem 2 implies that the robust precoder and the worst
channel error can be simultaneously obtained by solving
(21). SinceD,, is a convex set, (21) is indeed a convex
problem, meaning that it can be efficiently solved nhumelgcal
Nevertheless, in the next, we will show that the solutiortb)(

Figure 1. Waterfiling procedure for the coupled uncertaisét D, with

. . . . p € [1,00).
can be analytically obtained via a waterfilling manner.
B. Waterfilling Solution andu* € [ye41,7%) is the root of the equatiof,, (6* (1*)) =
From the definition ofD,,,, it is not difficult to see that a € The optimal power allocatiop™ is given by
solution to the following problem is also a solution to (21): pgrr—1 )
N SN <k
miniémize max;=1,.. ~N(7i —d) 22) p; = O’jgk j - (26)

subjectto d € D, 0 < d; <, Vi
The integerk is the number of active eigenmodes and can

where we assume without loss of generality (w.l.0.g.) thgk easily determined from (25). Singe,(d) is an increas-
7 > -+ > qy. We are particularly interested in characterizingyg function, f,,,(6*(4*)) is monotonically increasing ip*,
the solution of (22) or equivalently (21) in the following aw meaning that the optimal water level can be efficiently
situations: 1) the coupled uncertainty $&f, for 1 < p < oo; found via the bisection method OVéf.1,7%). In some
2) the decoupled uncertainty sBto for p = oo. situationsy* may be obtained in a closed form (e.g., [13]).

Let us first consider the coupled case. Intuitively, to minifhe assumption < f,,(v) is to avoid a trivial solution, since
mize max; (y; — 6;), 61 should first compensate the differencer the uncertainty is too large, i.es,> f,,(~), the best worst-
~v1 — 72, thend; and 2 together compensate the differencegse performance is zero.
72 — 73 and so on. As shown in Fig. 1, the whole process Now we consider the decoupled case. It is easy to rewrite the
is like pouring the bottle of wateD,, into the container constraintinD, ., ass; < « for Vi. The process of solving (22)
v £ {7}/, where the water level is given byu = 71 —d1. s like pouring the watet in each bottle into each container

Based on this waterfilling procedure, we can provide a closed jndependently. Therefore, we obtain the following result.

form solution to (21). For this purpose, we defipg,; = 0 )
and define fork = 1,..., N + 1 Theorem 4. Let £ = &, ande < f,o0(7). The optimal

solutiond™ to (21) is given byr =~; fori=1,...,N. The
RY 36, 2 [yi =797 — Ve > 7%—1 — 7,0,...,0]7  optimal power allocatiorp* is given byp} = P andp; = 0
for i > 1.

k—1
= max{y — 1, 0}. (23)  From Theorems 3 and 4, we can obtain some interesting
insights on the robust precoder. The following two corddar
concern the optimality of beamforming that transmits dalg o
over one eigenmode, and the optimality of the equal power
allocation.

From this definition, one can see titt= 0, Oy, = ~, and
0, < 0511 so thatf,,(0;) < fsp(Or+1). Then, we have the
following result (the interested reader is referred to [Bat]
the detailed proof).

Corollary 1. Let &€ = &,,. The robust maximin MIMO
precoding is beamforming over the largest eigenmode i&eith
1)p=o0;0r2)pe[l,o0)ande <1 — 2.

{%-u*, i<k Corollary 2. Let £ = &,p,. The robust maximin MIMO

Theorem 3. Let & = &;, ande < fop(7) for p € [1, 00).
Then, the optimal solutiod™ to (21) is given by

K2

i (24) . A .
0, i>k precoding allocates power equally on the active eigenmodes
if either: 1)p=1;0r2) p € (1,00l andy; =v2 = -+ - = Y.
wherek is an integer such that ) ) ) )
As one of the simplest transmit strategies, beamforming

fop(01) < & < fop(Or1) (25) is often regarded to be sensitive to imperfect CSIT [2], [3]
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Figure 2. Average worst-case received SNRs of robust piegcstrategies Figure 3. Average worst-case received SNRs of robust pregosirategies
versus SNR for differen€sp, with s = 0.2 and0.6 and M = N = 4. versus uncertainty set sizefor different £,,, with SNR =10dB and M =
N = 4.

because of its simplicity. However, our results reveal that
beamforming is actually a robust solution if either the unceare randomly generated according to zero-mean, unitivegia
tainty set iS€, 0, O ¢ < 1 — 72, i.€., the uncertainty is small i.i.d. Gaussian distributions.
or the channel is nearly rank-one. As the most conservativeConsider the channel uncertainty set, defined in (10)
one of Eopy Eooo defines the maximum uncertainty on eachased on the Schatten norm, where [1, co] determines the
eigenmode independently, so the robust transmit strategjy; s shape ofé,;,, while the size of the uncertainty set is given
intuitively, put all power on the strongest eigenmode. Fert by the error radius. As |||, (or |-]|,) is the smallest one
more, one can imagine that, when the channel uncertai@yong allp-Schatten norms, we set a common error radius
or the size of the channel matrix becomes smaller, the i all £, such that? = s|[FL|3 with s € (0,1), so they can
between, .. and other uncertainty sets shall become smalleg reasonably compared. As shown in Section lll, given the
as well. Therefore, we can reasonably infer that beamfagmirsame error radius, the larger the paramgtis; the bigger and
although might not be optimally robust, is a nearly robudfus the more conservative the uncertainty &gt is.
transmit strategy when the channel uncertainty or the atiann Fig. 2 shows the average worst-case received SNRs,
dimension is small. achieved by the robust precoding strategies for diffeggnt
The uncertainty sef,; represents another extreme case o®rsus SNR, while Fig. 3 displays the relation between the
Esp, as it is the smallest one and thus the least conservatixerage worst-case received SNR and the uncertainty set siz
one of&,,. Since&,; approximately models the uncertaintys. In Figs. 4 and 5, we plot the average worst-case symbol
on the rank of the channel error, the robust transmit styategrror rates (SERs), achieved by the robust precoding gteste
may not distinguish the uncertainty on each eigenmode Hat different&,,, versus SNR and the uncertainty set size
treats all active eigenmodes equally, thus leading to amleqtespectively, where we have used an 1/2-rate complex OSTBC
power allocation over the active eigenmodes. The numHd@P] and an ML decoder at the receiver.
of active eigenmodes, however, is determined by the total From these figures, one can observe tradeoff between the
uncertainty, and especially — rank(H) ase — f,,(y) conservativeness of the uncertainty model and the system
for p € [1,00). For &, with p € (1,00], the equal power performance, i.e., the more conservative the uncertaiotyeh
allocation is generally not robust unless the channel gainsis, the lower the performance is. Among &l}, with p <
the active eigenmodes are all equal. [1,00], £r00 IS the most conservative set, thus resulting in
the lowest worst-case received SNR, wher€agsis the least
conservative one, thus leading to the highest performance.
In this section, we demonstrate the effect of the robust practice, the choice of an uncertainty set depends on the
MIMO precoding through several numerical examples. Agrediction of channel errors—large errors correspond toemo
cording to the philosophy of worst-case robustness, differ conservative uncertainty sets, while small errors coordfo
precoding strategies are compared via their worst-caderper|ess conservative sets.
mance, where the worst channel error for any given (either
non-robust or robust) precoder can be obtained by solving VI. CONCLUSION
the inner minimization of (7) for a fixed) (note that the = We have considered a robust MIMO precoding design,
robust strategy and its worst channel error can be simulighich was formulated as a maximin problem, to maximize
neously obtained according to this work). Moreover, to takbe worst-case received SNR or minimize the worst-case
into account different channels, the worst-case perfoo@arPEP for STBCs with imperfect CSIT. To take into account
is averaged over the nominal chanrdl whose elements various kinds of channel uncertainty, we have considered a

V. NUMERICAL RESULTS
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class of uncertainty sets defined by the Schatten norm, whiépl
cover most commonly used uncertainty models as special
cases. We have characterized the structure of the optimal
robust precoder and simplified the matrix problem to a power
allocation problem. We then related the maximin and minim
problems, and showed that the robust precoder and the worst
channel error can be simultaneously obtained by solving a
convex problem. Furthermore, we have provided a closeat-fol*
solution to the simplified power allocation problem through
waterfilling fashion, and also investigated the robustnafss [19]
some common transmit strategies such as beamforming and
equal power transmission. [20]
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