Comparison and combination of CHAMP and GRACE data for gravity field analysis

M. Weigelt¹, M.M. El-Habiby¹, M.G. Sideris¹, N. Sneeuw²

¹ Geomatics Engineering, University of Calgary ² Geodätisches Institut, Universität Stuttgart

mlbweige@ucalgary.ca

CGU Annual Scientific Meeting, 16th May 2006

Outline

- Review and open issues
- Methodology and combination techniques
- Results
- Conclusion

Satellite systems: CHAMP + GRACE

source: GFZ-Potsdam

- orbit height: ~ 485 km
- inclination: ~89°
- principle of low-low SST
- mission duration: 5+ years
- time variable gravity field

- orbit height: ~ 400 km
- inclination: ~87°
- principle of high-low SST measurement
- mission duration: 7+ years

source: GFZ-Potsdam

Open issues

Recovery of a time variable gravity field from an time variable ground track pattern

Variability of monthly CHAMP solution

Variability of monthly CHAMP solution

Approach

- Problem:
 - satellite in resonance with gravity field
 - aliasing caused by data distribution
- Possible Solutions:
 - de-aliasing filter (e.g. spherical cap averages)
 - introduction of additional data in order to improve the data distribution
- Approach: each GRACE satellite is a CHAMP-like single satellite mission
 - Benefits:
 - 3 times data availability: 4.2 million measurements for 2 years
 - combination techniques can be studied
 - effect of downward continuation can be studied
 - Drawback:
 - currently no K-band measurements used → poorer overall performance

Variability of CHAMP and GRACE

Variability of monthly GRACE solution

Equal weighted CHAMP+GRACE solution

Combination Approach

- Optimal data weighting (Lerch, 1991):
 - Influence of subset of solutions is determined
 - can handle biases in the data
 - no convergence reached

- Variance component estimation (Koch & Kusche, 2002):
 - variance component for each month
 - regularization possible
 - convergence reached after 3 5 iterations
- Spectral approach (Kern et. al, 2003)

Variance-Component estimation

Degree RMS-range of combined months

Variability of combined monthly solutions

Conclusions and Future Work

• Conclusions:

- improvement of solutions of months with poor ground track using additional data
- proper data weighting method necessary
- 2-year-solution is limited by measurement errors
- improvement and homogenization of monthly solution

• Future Work:

- incorporation of K-band measurement
- spectral combination techniques

Questions?

Comparison and combination of CHAMP and GRACE data for gravity field analysis

M. Weigelt¹, M.M. El-Habiby¹, M.G. Sideris¹, N. Sneeuw²

Geomatics Engineering, University of Calgary
Geodätisches Institut, Universität Stuttgart

mlbweige@ucalgary.ca

CGU Annual Scientific Meeting, 16th May 2006