New CHAMP gravity results using the energy balance approach

5th Annual Scientific Conference of the GEOIDE Network

<u>Matthias Weigelt</u>, Nico Sneeuw University of Calgary In collaboration with IAPG, TU Munich

May 23rd, 2003

Outline

2

- Energy integral (Jacobi integral) approach
- Data processing
 - Orbits
 - Accelerometer calibration
- Error analysis
- Results & Validation
- Conclusion

Jacobi integral

Equation of motion in the rotating frame:

$$\ddot{x} \;=\; f\!+\!g\!-\!\omega\! imes\!(\omega\! imes\!x)\!-\!2\omega\! imes\!\dot{x}\!-\!\dot{\omega}\! imes\!x$$

3

GE

$$\int \dot{x} \cdot \ddot{x} dt = \int \dot{x} \cdot (f + \nabla V + \nabla Z - 2\omega \times \dot{x}) dt$$
$$\frac{1}{2} \dot{x} \dot{x} = \int \left(\dot{x} \cdot f - \frac{\partial V}{\partial t} \right) dt + V + Z + c$$

$$T+c = E_{kin} - U - Z - \int f dx + V_t$$

Data Processing: Overview

4

- preprocess RSO, RDO or kinematic data and ACC (synchronization, gaps, overlaps, ...)
- calibrate accelerometer data
- calculate monthly solutions of T + c
- space-wise semi-analytical approach
- spherical harmonic analysis
- downward continuation in spectral domain
- iterate (calibration, continuation/gridding)

Orbit data (1/3)

RSO: rapid science orbits

- provided by the GFZ Potsdam
- Accuracy:
 - Position: 2-3 dm
 - Velocity: ~0.3 mm/s

DoY 2002

5

RDO: reduced dynamic orbits

- provided by the IAPG, TU Munich
- Accuracy:
 - Position: ~5 cm
 - Velocity: 0.1 mm/s

Both depend on a priori information

Orbit data (2/3)

Kinematic Precise Orbit

Determination:

- provided by the IAPG, TU Munich
- pure geometric derivation of the position only
- velocity must be determined in an additional step

6

Orbit data (3/3)

Geomatics for Informed Decisions La géomatique pour des interventions et des décisions éclairées

GEOIDE

Accelerometer Calibration (1/2)

•

3 possibilities of calibration:

Trend analysis:

- Corresponding time series from a priori model
- Solution forced toward the model

High pass Filtering:

- Reduction of a reference model
- Solution similar to the reference model in the long wavelengths

8

Accelerometer Calibration (2/2)

- Cross over analysis:
 - Energy level of descending
 - and ascending arcs are the same
 - Interpolation necessary
 - Only weak dependency on a priori information
 - Ability to reveal unknown time dependent changes in the gravity field

9

Error analysis

Suppose target: $\sigma_E = 1 \text{ m}^2/\text{s}^2 \rightarrow \sigma_N = 10 \text{ cm}$

- $dE_{kin} = \dot{x} \cdot d\dot{x}$ \rightarrow along-track velocity accuracy of 0.14 mm/s
- Determination of velocity from position: $\sigma_{\dot{x}} = \sqrt{2}\sigma_{x}/\Lambda_{t}$
- $\mathrm{d}U = \gamma \cdot \mathrm{d}\mathbf{x}$ \rightarrow radial component better than 10 cm
- $dZ = \omega^2 (x dx + y dy) \rightarrow position requirement of several meter$
- $dZ = (\omega \times x) \cdot (d\omega \times x) \rightarrow pole tide not significant$
- $\int f \, \mathrm{d}x$ V_t \rightarrow controlled by calibration
 - \rightarrow corrected for all known effects

10

Results and Validation (1/4)

Results & Validation (2/5)

Geomatics for Informed Decisions La géomatique pour des interventions et des décisions éclairées

Results & Validation (3/5)

Table 4: RMS of geoid height differences [m] in Canada (1587 points).

L _{max}	GRIM5-S1	EIGEN-1S	EIGEN-2	TEG-4	IAPG
50	1.153	1.012	0.982	1.016	1.008
60	1.187	1.020	0.924	0.970	0.961
70	1.199	1.037	0.903	0.909	0.951

Table 3: RMS of geoid height differences [m] in the USA (5168 points).

L _{max}	GRIM5-S1	EIGEN-1S	EIGEN-2	TEG-4	IAPG
50	1.043	1.021	1.023	1.019	1.025
60	1.099	0.968	0.893	0.904	0.901
70	1.082	0.955	0.916	0.836	0.907

Results and Validation (4/5)

Geomatics for Informed Decisions La géomatique pour des interventions et des décisions éclairées

Results and Validation (5/5)

Geomatics for Informed Decisions La géomatique pour des interventions et des décisions éclairées

Conclusion

 Gravity field recovery by energy integral approach is simple and efficient technique.

16

- Usage of kinematic precise orbit determination
- Cross over analysis is a powerful tool for accelerometer calibration
- New results based on purely kinematic orbit determination reasonable

Acknowledgement

University of Calgary:

Nico Sneeuw

IAPG, TU Munich:

- Christian Gerlach
- Lorant Földvary
- Drăzen Švehla
- Thomas Gruber
- Björn Frommknecht
- Helmut Oberndorfer
- Thomas Peters
- Markus Rothacher
- Reiner Rummel
- Peter Steigenberger
- Martin Wermuth

Thanks to the GEOIDE network and Dr. Sideris etc...

17

Questions?

New CHAMP gravity results using the energy balance approach

5th Annual Scientific Conference of the GEOIDE Network

<u>Matthias Weigelt</u>, Nico Sneeuw University of Calgary In collaboration with IAPG, TU Munich

May 23rd, 2003