
Low-Weight Primes for Lightweight Elliptic
Curve Cryptography on 8-bit AVR Processors

Zhe Liu1, Johann Großschädl1, and Duncan S. Wong2

1 Laboratory of Algorithmics, Cryptology and Security,
University of Luxembourg, Luxembourg
{zhe.liu,johann.groszschaedl}@uni.lu

2 Department of Computer Science,
City University of Hong Kong, Hong Kong SAR, China

duncan@cityu.edu.hk

Abstract. Small 8-bit RISC processors and micro-controllers based on
the AVR instruction set architecture are widely used in the embedded
domain with applications ranging from smartcards over control systems
to wireless sensor nodes. Many of these applications require asymmetric
encryption or authentication, which has spurred a body of research into
implementation aspects of Elliptic Curve Cryptography (ECC) on the
AVR platform. In this paper, we study the suitability of a special class
of finite fields, the so-called Optimal Prime Fields (OPFs), for a “light-
weight” implementation of ECC with a view towards high performance
and security. An OPF is a finite field Fp defined by a prime of the form
p = u · 2k + v, whereby both u and v are “small” (in relation to 2k) so
that they fit into one or two registers of an AVR processor. OPFs have
a low Hamming weight, which allows for a very efficient implementation
of the modular reduction since only the non-zero words of p need to be
processed. We describe a special variant of Montgomery multiplication
for OPFs that does not execute any input-dependent conditional state-
ments (e.g. branch instructions) and is, hence, resistant against certain
side-channel attacks. When executed on an Atmel ATmega processor, a
multiplication in a 160-bit OPF takes just 3237 cycles, which compares
favorably with other implementations of 160-bit modular multiplication
on an 8-bit processor. We also describe a performance-optimized and a
security-optimized implementation of elliptic curve scalar multiplication
over OPFs. The former uses a GLV curve and executes in 4.19 M cycles
(over a 160-bit OPF), while the latter is based on a Montgomery curve
and has an execution time of approximately 5.93 M cycles. Both results
improve the state-of-the-art in lightweight ECC on 8-bit processors.

1 Introduction

The 8-bit AVR architecture [2] has grown increasingly popular in recent years
thanks to its rich instruction set that allows for efficient code generation from
high-level programming languages. A typical AVR microcontroller, such as the
Atmel ATmega128 [3], features 32 general-purpose registers, separate memories

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/19335129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Z. Liu, J. Großschädl, and D. S. Wong

and buses for program and data, and some 130 instructions, most of which are
executed in a single clock cycle. The AVR platform occupies a significant share
of the worldwide smartcard market and other security-critical segments of the
embedded systems industry, e.g. wireless sensor nodes. This has made AVR an
attractive evaluation platform for research projects in the area of efficient im-
plementation of cryptographic primitives for embedded devices. The literature
contains papers dealing with block ciphers [10], hash functions [17], as well as
public-key schemes based on Elliptic Curve Cryptography (ECC) [23]. Despite
some recent progress [1, 5, 18], the implementation of ECC on 8-bit smartcards
and sensor nodes is still a big challenge due to the resource constraints of these
devices. A typical low-cost smartcard contains an 8-bit microcontroller clocked
at a frequency of 5 MHz, 256 B RAM, and 16 kB ROM. On the other hand, a
typical wireless sensor node, such as the MICAz mote [8], is equipped with an
ATmega128 processor clocked at 7.3728 MHz and provides 4 kB RAM and 128
kB programmable flash memory.

1.1 Past Work on Lightweight ECC for 8-bit Processors

One of the first ECC software implementations for an 8-bit processor was pre-
sented by Woodbury et al in 2000 [41]. Their work utilizes a so-called Optimal
Extension Field (OEF), which is a finite field consisting of pm elements where
p is a pseudo-Mersenne prime [7] (i.e. a prime of the form p = 2k − c) and m is
chosen such that an irreducible binomial x(t) = tm − ω exists over GF(p). The
specific OEF used in [41] is GF((28 − 17)17) as this field allows the arithmetic
operations, especially multiplication and inversion, to be executed efficiently on
an 8-bit platform. Woodbury et al implemented the point arithmetic in affine
coordinates and achieved an execution time of 23.4 · 106 clock cycles for a full
134-bit scalar multiplication on an 8051-compatible microcontroller that is sig-
nificantly slower than the ATmega128. The first really efficient ECC software
for an 8-bitter was introduced by Gura et al at CHES 2004 [15]. They reported
an execution time of only 6.48 · 106 clock cycles for a full scalar multiplication
over a 160-bit SECG-compliant prime field on the ATmega128. This impressive
performance is mainly the result of a smart optimization of the multi-precision
multiplication, the nowadays widely used hybrid method. In short, the core idea
of hybrid multiplication is to exploit the large register file of the ATmega128 to
process several bytes (e.g. four bytes) of the operands in each iteration of the
inner loop(s), which significantly reduces the number of load/store instructions
compared to a conventional byte-wise multiplication.

In the ten years since the publication of Gura et al’s seminal paper, a large
body of research has been devoted to further reduce the execution time of ECC
on the ATmega128. The majority of research focussed on advancing the hybrid
multiplication technique or devising more efficient variants of it. An example is
the work of Uhsadel et al [37], who improved the handling of carry bits in the
hybrid method and managed to achieve an execution time of 2881 cycles for a
(160×160)-bit multiplication (without modular reduction), which is about 7.3%
faster than Gura et al’s original implementation (3106 cycles). Zhang et al [43]



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 3

re-arranged the sequence in which the byte-by-byte multiplications are carried
out and measured an execution time of 2846 clock cycles. A further reduction
of the cycle count to 2651 was reported by Scott et al [30], who fully unrolled
the loops and used so-called “carry catcher” registers to limit the propagation
of carries. This unrolled hybrid multiplication was adopted by Szczechowiak et
al [35] to implement scalar multiplication over a 160-bit generalized-Mersenne
prime field Fp. An interesting result of their work is that the reduction modulo
p = 2160 − 2112 + 264 + 1 requires 1228 cycles, which means a full modular mul-
tiplication (including reduction) executes in 3882 clock cycles altogether. Also
Lederer et al [22] came up with an optimized variant of the hybrid method and
performed ECDH key exchange using the 192-bit generalized-Mersenne prime
p = 2192 − 264 − 1 as recommended by the NIST. A scalar multiplication needs
12.33 · 106 cycles for an arbitrary base point, and 5.2 · 106 cycles when the base
point is fixed. The currently fastest means of multiplying two large integers on
the ATmega128 is the so-called operand-caching method [19, 31], which follows
a similar idea as the hybrid multiplication method, namely to exploit the large
number of general-purpose registers to store (parts of) the operands.

Most lightweight ECC implementations for 8-bit AVR processors mentioned
above suffer from two notable shortcomings, namely (1) they are vulnerable to
side-channel attacks, e.g. Simple Power Analysis (SPA) [28], and (2) they make
aggressive use of loop unrolling to reduce the execution time of the prime-field
arithmetic, which comes at the expense of a massive increase in code size and
poor scalability since the operand length is “fixed.” SPA attacks exploit con-
ditional statements and other irregularities in the execution of a cryptographic
algorithm (e.g. double-and-add method for scalar multiplication [6]), which can
leak key-related information through the power-consumption profile of a device
executing the algorithm. However, not only the scalar multiplication, but also
the underlying field arithmetic can be vulnerable to SPA attacks, e.g. due to
conditional subtractions in the modular addition [34], modular multiplication
[38], or modular reduction for generalized-Mersenne primes [29]. It was shown
in various papers that SPA attacks on unprotected (or insufficiently protected)
implementations of ECC pose a real-world threat to the security of embedded
devices such as smart cards [25] or wireless sensor nodes [9].

Loop unrolling is a frequently employed optimization technique to increase
the performance of the field arithmetic operations, in particular multiplication
[1]. The basic idea is to replicate the loop body n times (and adjust the overall
number of iterations accordingly) so that the condition for loop termination as
well as the branch back to the top of the loop need to be performed only once
per n executions. Full loop unrolling may allow some extra optimizations since
the first and the last iteration of a loop often differ from the “middle” ones and
can, therefore, be specifically tuned. However, full loop unrolling, when applied
to operations of quadratic complexity (e.g. multiplication), bloats the code size
(i.e. the size of the binary executable) significantly. Moreover, a fully unrolled
implementation can only process operands up to a length corresponding to the
number of loop iterations, which means it is not scalable anymore.



4 Z. Liu, J. Großschädl, and D. S. Wong

1.2 Contributions of this Paper

We present an efficient prime-field arithmetic library for the 8-bit AVR archi-
tecture that we developed under consideration of the resource constraints and
security requirements of smart cards, wireless sensor nodes, and similar kinds
of embedded devices. Our goal was to overcome the drawbacks of most existing
implementations mentioned in the previous subsection, and therefore we aimed
for a good compromise between performance, code size, and resistance against
SPA attacks. Instead of using a Mersenne-like prime field, our library supports
so-called Optimal Prime Fields (OPFs) [12] since this family of fields has some
attractive properties that allow for efficient arithmetic on a wide range of plat-
forms. An OPF is a finite field defined by a “low-weight” prime p of the form
p = u · 2k + v, where u and v are small (in relation to 2k) to that they fit into
one or two registers of an 8-bit processor. The reduction modulo such a prime
can be performed efficiently using Montgomery’s algorithm [26] since only the
non-zero bytes of p need to be processed. Our implementation is based on the
OPF library from [43], but we significantly improved the execution time of all
arithmetic operations (especially multiplication) and made it resistant against
SPA attacks. We present a new variant of Montgomery modular multiplication
for OPFs that does not perform any data-dependent indexing or branching in
the final subtraction. A multiplication (including modular reduction) in a 160-
bit OPF takes 3237 clock cycles on the ATmega128, which compares very well
with previous work on modular multiplication for 8-bit processors.

Our OPF library uses an optimized variant of Gura et al’s hybrid technique
[15] for the multiplication, whereby we process four bytes of the two operands
per iteration of the inner loop(s). However, in contrast to the bulk of previous
implementations, we do not fully unroll the loops in order to keep the code size
small. All arithmetic functions provided by our OPF library are implemented in
a parameterized fashion and with “rolled” loops, which means that the length
of the operands is not fixed or hard-coded, but is passed as parameter to the
function along with other parameters such as the start address of the arrays
in which the operands are stored. Consequently, our OPF library can support
operands of varying length, ranging from 64 to 2048 bits (in 32-bit steps). This
feature makes our OPF library highly scalable since one and the same function
can be used for operands of different length without re-compilation.

We provide benchmarking results for operand lengths of 160, 192, 224, and
256 bits on the 8-bit ATmega128 processor, which we obtained with help of the
cycle-accurate simulator of AVR Studio. For the purpose of benchmarking, we
also implemented and simulated scalar multiplication for two different families
of elliptic curves, namely Montgomery curves [27] and GLV curves [11]. In the
former case, an SPA-protected scalar multiplication over a 160-bit OPF takes
only 5.93 · 106 cycles, which is faster than most unprotected implementations
reported in the literature. On the other hand, we use the GLV curve to explore
the “lower bound” of the execution time for a scalar multiplication when resis-
tance against SPA is not needed. Such a speed-optimized implementation has
an execution time of only 4.19 · 106 clock cycles for a 160-bit scalar.



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 5

2 Preliminaries

In this section we recap some basic properties of special families of prime fields
and elliptic curves, and discuss how to exploit their distinctive features to speed
up the arithmetic operations needed in ECC.

2.1 Prime Fields

Even though elliptic curves can be defined over various algebraic structures, we
only consider prime fields in this paper [6]. Formally, a prime field Fp consists
of p elements (namely the integers between 0 and p − 1) and the arithmetic
operations are addition and multiplication modulo p. It is common practice in
ECC to use “special” primes to speed up the modular reduction; a well-known
example for primes with good arithmetic properties are the so-called Mersenne
primes, which are primes of the form p = 2k − 1. Multiplying two k-bit integers
a, b ∈ Fp yields a 2k-bit product r that can be written r = rH · 2k + rL, where
rH and rL represent the upper half and the lower half of r, respectively. Since
2k ≡ 1 mod p, we can simply reduce r via a conventional addition of the form
t = (rH + rL) mod p to obtain a result that is at most k + 1 bits long. A final
subtraction of p may be necessary to get a fully reduced result. In summary, a
reduction modulo a Mersenne prime requires just a conventional k-bit addition
and, in the worst case, a subtraction of p. Unfortunately, Mersenne primes are
rare, and there exist no Mersenne primes between 2160 and 2512, which is the
interval from which one normally chooses primes for ECC.

A wealth of research has been devoted to find other families of prime fields
that allow for similarly efficient arithmetic and many proposals appeared in the
literature, e.g. fields based on “Mersenne-like” primes such as pseudo-Mersenne
primes [7] and generalized Mersenne primes [33]. A pseudo-Mersenne prime is
a prime of the form

p = 2k − c (1)

where log2(c) ≤ 1
2k, i.e. the constant c is small compared to 2k. However, c is

bigger than 1, and hence the reduction operation modulo such a prime is more
costly than that for a “real” Mersenne prime. On the other hand, allowing c to
be bigger than 1 provides a larger choice of primes for a given bit-length.

The so-called generalized Mersenne primes were first described by Solinas in
1999 [33] and shortly thereafter, the NIST recommended a set of five of these
special primes for use in ECC cryptosystems. The common form of the primes
presented by Solinas is

p = 2k − c12k−1 − · · · − ci2k−i − · · · − ck (2)

where all ci are integers with a small absolute value, e.g. ci ∈ {−1, 0, 1}. A con-
crete example is p = 2192 − 264 − 1, which is one of the primes recommended
by the NIST. The reduction operation modulo generalized Mersenne primes is
similar to that of real Mersenne primes, namely to exploit congruence relations
that stem from the special form of the prime to “shorten” the residue.



6 Z. Liu, J. Großschädl, and D. S. Wong

2.2 Elliptic Curves

Any elliptic curve over a prime field Fp can be expressed through a Weierstrass
equation of the form y2 = x3 + ax + b [16]. When using mixed Jacobian-affine
coordinates, a point addition on a Weierstrass curve costs eight multiplications
(i.e. 8 M) and three squarings (i.e. 3 S) in the underlying field, whereas a point
doubling requires 4 M and 4 S [16]. Similar to prime fields, there exist numerous
“special” families of elliptic curves, each having a unique curve equation and a
unique addition law. In the past 20 years, a massive research effort was devoted
to finding special curves that allow for a more efficient implementation of the
scalar multiplication than ordinary Weierstrass curves.

Peter Montgomery introduced in 1997 a family of curves to speed up algo-
rithms for the factorization of big integers [27]. These curves are referred to as
Montgomery curves and have the unique property that a scalar multiplication
can be carried out using the x coordinate only, which is much faster than when
both the x and y coordinate are calculated in each step [6]. In formal terms, a
Montgomery curve over Fp is defined by the equation

By2 = x3 +Ax2 + x (3)

with A,B ∈ Fp, (A2 − 4)B 6= 0 and allows for a very fast computation of the
x-coordinate of the sum P +Q of two points P , Q whose difference P −Q is
known. A point addition performed via the equation from [27, p. 261] requires
4 M and 2 S, whereas a point doubling costs 3 M and 2 S. However, one of the
three field multiplications in the point doubling uses the constant (A+ 2)/4 as
operand, which is small if the parameter A is chosen accordingly. Our results
show that multiplying a field element by a small constant (up to 16 bits) costs
only between 0.2 M and 0.25 M (cf. Section 4). Furthermore, the point addition
formula given in [27, p. 261] can be optimized when using the so-called Mont-
gomery ladder (Alg. 13.35 in [6]) for scalar multiplication and representing the
base point in projective coordinates with Z = 1 (see also Remark 13.36 (ii) in
[6]). Even though the number of field multiplications and squarings is low, one
has to take into account that the Montgomery ladder always executes both a
point addition and a point doubling for each bit of the scalar k. Therefore, the
computational cost of a scalar multiplication amounts to 5.25n multiplications
and 4n squarings in Fp, i.e. 5.25 M + 4 S per bit.

The so-called Gallant-Lambert-Vanstone curves, or simply GLV curves, are
elliptic curves over Fp which possess an efficiently computable endomorphism
φ whose characteristic polynomial has small coefficients [11]. The specific curve
we use in this paper belongs to the family of GLV curves that can be described
by a Weierstrass equation of the form

y2 = x3 + b (i.e. a = 0 and b 6= 0) (4)

over a prime field Fp with p ≡ 1 mod 3 (see Example 4 from [11]). When using
mixed Jacobian-affine coordinates, the point addition on such a curve requires
8 M + 3 S, i.e. adding points is exactly as costly as on an ordinary Weierstrass



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 7

curve. On the other hand, the double of a point given in Jacobian coordinates
can be computed with only 3 M + 4 S since the parameter a of our GLV curve
is 0. However, what makes GLV curves really attractive is that the cost for the
computation of a scalar multiplication can be significantly reduced thanks to an
efficiently-computable endomorphism as described in [11]. This endomorphism
allows one to accomplish an n-bit scalar multiplication k · P by a computation
of the form k1 · P + k2 ·Q, whereby k1, k2 have only half the length of k. The
two half-length scalar multiplications can be carried out simultaneously (via
“Shamir’s trick”), which takes n/2 point doublings and roughly n/4 additions
when k1, k2 are represented in Joint Sparse Form (JSF) [16]. Thus, the overall
cost of computing k · P amounts to 3.5n multiplications and 2.75n squarings in
Fp, i.e. 3.5 M + 2.75 S per bit.

3 Optimal Prime Fields

The lightweight ECC software we introduce in this paper is based on a special
family of prime fields, the so-called Optimal Prime Fields (OPFs), which were
first described in the literature in an extended abstract from 2006 [12]. OPFs
are defined by “low-weight” primes that can be written as

p = u · 2k + v (5)

where u and v are small compared to 2k, e.g. have a length of 8 or 16 bits so
that they fit into one two registers of an 8-bit processor. A concrete example is
p = 65356 · 2144 + 1 (i.e. u = 65356, k = 144, and v = 1), which happens to be
a 160-bit prime that looks as follows when written as a hex-string:

p = 0xFF4C000000000000000000000000000000000001

The main characteristic of these primes is their low Hamming weight, which is
due to the fact that only a few bits near to the Most Significant Bit (MSB) and
the Least Significant Bit (LSB) are non-zero; all the “middle” bits in between
are 0. This property distinguishes them from other families of primes used in
ECC, in particular Mersenne-like primes (cf. Section 2.1), which generally have
a high Hamming weight. Using primes with a low Hamming weight allows for a
simplification of the modular multiplication and other operations since all the
zero-bits (resp. zero-bytes) do not need to be processed in a reduction modulo
p. Most modular reduction algorithms, including Barrett and Montgomery re-
duction [26], can be optimized for OPFs, as will be shown in more detail in the
remainder of this section. Another advantage of OPFs is that there exist a large
number of primes of the form p = u · 2k + v for any bitlength, which is not the
case for generalized Mersenne primes.

The implementation of most of the arithmetic operations we describe in the
following subsections is based on Zhang et al’s OPF library for AVR processors
[43]. However, Zhang’s library, in its original form, is not resistant against side-
channel attacks because it contains operand-dependent conditional statements



8 Z. Liu, J. Großschädl, and D. S. Wong

such as if-then-else constructs. Therefore, we modified the arithmetic functions
in a way so that they exhibit a highly regular execution pattern (and constant
execution time) regardless of the actual values of the operands. In addition, we
optimized a number of performance-critical code sections in the field arithmetic
operations, which improved their execution time by up to 10% versus Zhang’s
OPF library. As stated in Section 1.2, we strive for a scalable implementation
able to process operands of varying length. To achieve this, we implemented all
arithmetic functions to support the passing of a length parameter, which is then
used by the function to calculate the number of loop iterations. Our library is
dimensioned for operands between 64 and 2048 bits in steps of 32 bits, i.e. the
operand length has to be a multiple of 32.

3.1 Selection of Primes

The original definition of OPFs in [12] specifies the coefficients u and v of the
prime p = u · 2k + v to “fit into a single register of the target processor,” i.e. in
our case, u and v would be (at most) 8 bits long. However, the OPF library we
describe in this paper expects u to be a 16-bit integer, while v is fixed to 1. In
the following, we explain the rationale behind this choice and elaborate on the
supported bitlengths of p.

It is common practice in ECC to use primes with a bitlength that is a mul-
tiple of 32, e.g. 160, 192, 224 and 256 bits for applications with low to medium
security requirements, and 384 and 512 bits for high-security applications. All
standardization bodies (e.g. NIST, IEEE, SECG) recommend primes of these
lengths and also we follow this approach. However, for efficiency reasons, it can
be advantageous to use finite fields of a length slightly smaller than a multiple
of 32, e.g. 255 bits instead of 256 [4]. Such slightly reduced field sizes facilitate
certain optimization techniques like the so-called “lazy reduction,” which means
that the result of an addition or any other operation is only reduced when it is
necessary so as to prevent overflow. We conducted some experiments with the
159-bit OPF given by p = 126 · 2152 + 1, but found the performance gain one
can achieve through lazy reduction to be less than 5%. Therefore, we decided to
stick with the well-established field lengths of 160, 192, 224 and 256 bits.

Our OPF software uses Montgomery’s algorithm [26] for multiplication and
squaring modulo p. A standard implementation of Montgomery multiplication
based on e.g. the so-called Finely Integrated Product Scanning (FIPS) method
[21] has to execute 2s2 + s word-level multiplications (i.e. (w × w)-bit mul in-
structions) for operands consisting of s words [14]. However, when we optimize
the FIPS method for primes of the form p = u · 2k + v with 0 < u, v < 2w, then
only s2 + 3s mul instructions are required since all the “middle” words of p do
not need to be processed because they are 0. A further reduction is achievable
if v = 1 since this case simplifies the quotient determination in Montgomery’s
algorithm so that only s2 + s mul instructions need to be executed, as we will
show in Section 3.3. The situation is similar for v = 2w − 1 (which corresponds
to v = −1 in two’s complement representation) as also this special case allows
for a reduction of the number of mul instructions. Having v = 2w − 1 implies



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 9

that the least significant word of p is an “all-one” word, which, in turn, means
p ≡ 3 mod 4 and square roots modulo p can be computed efficiently [6].

The bitlength of a prime of the form p = u · 2k + 1 is not only determined
by the exponent k, but also the coefficient u. To maximize performance, it was
recommended in [12] to select u so that its length matches the word-size of the
underlying processor; in our case, u should be an 8-bit integer in order to fit in a
single register of an ATmega128 processor. When doing so, an optimized FIPS
Montgomery multiplication ignoring all the zero-bytes of p requires to execute
only s2 + s mul instructions. However, high performance is only one of several
design goals; as stated in Section 1.2, we also aim for scalability, which means
the ability to support fields of different lengths without the need to re-compile
the arithmetic library. Besides the common field lengths of 160, 192, 224, and
256 bits, we want our library also to be able to perform arithmetic in 384 and
512-bit OPFs. Unfortunately, neither a 384-bit nor a 512-bit prime of the form
p = u · 2k + 1 with 27 <= u < 28 exists. It should be noted that the situation is
very similar for pseudo-Mersenne primes; none of the 256 integers of the form
2k − c with k = 384 and c < 28 is prime, and the same holds for k = 512. As
a consequence, we decided to “weaken” the original criterium for the selection
of u, namely to fit into a single register on the target processor, and allow u to
have a length of 16 bits. While this relaxed condition for the selection of u en-
tails a slight performance degradation, it significantly increases scalability and
allows our OPF library to support high-security applications requiring 384 and
512-bit fields. All arithmetic functions of our library assume that u is a 16-bit
integer and can be kept in two registers of an 8-bit ATmega128 processor. The
second coefficient v of our low-weight primes is fixed to 1.

Notation. In what follows, Fp denotes an OPF defined by a prime of the form
p = u · 2k + 1, whereby u is in the range [215, 216 − 1], i.e. u has a length of 16
bits. As mentioned above, the bitlength n of the primes we use in this paper is
always a multiple of 32, e.g. n = 160, 192, 224, or 256 bits. Field elements are
referred to by lowercase italic letters, e.g. a ∈ Fp. When implementing ECC in
software, it is common practice to represent field elements by arrays of single-
precision (i.e. w-bit) words so that the arithmetic operations can be executed
efficiently on the processor’s fast integer unit [16]. Normally, one chooses w to
match the word-size of the underlying processor, which would mean w = 8 in
the case of an 8-bit processor. However, as shown by Gura et al in [15], it can
be more efficient to process several (e.g. four) bytes of the operands at a time
(instead of just a single byte), which, in fact, means to work with 32-bit words
even though the processor has just an 8-bit datapath. We follow this approach
and represent the elements of Fp via arrays of s = dn/we words, each having a
length of w = 32 bits. For example, an element of a 160-bit prime field consists
of five 32-bit words since s = 160/32 = 5. We use uppercase letters to denote
these arrays and indexed uppercase letters to refer to individual words within
an array, e.g. A = (As−1, ... , A1, A0) where A0 is the least significant word and
As−1 the most significant word of A, respectively.



10 Z. Liu, J. Großschädl, and D. S. Wong

3.2 Modular Addition and Subtraction

The typical way to perform a modular addition z = a+ b mod p is to first add
the two n-bit operands a, b ∈ Fp to get a temporary sum t = a+ b (which can
have a length of up to n+ 1 bits), followed by a comparison between t and p to
check whether t ≥ p. Based on the result of this comparison, it may be neces-
sary to subtract p from t to get a sum in the range of [0, p− 1]. However, this
approach exhibits an operand-dependent (and, therefore, irregular) execution
pattern that leaks information through small variations of both the execution
time and power consumption profile, the latter of which may be exploited in an
SPA attack as described in e.g. [34]. In fact, this side-channel leakage has two
origins, one is the comparison between t and p, and the other is the conditional
subtraction of p. Most performance-optimized ECC implementations adopt an
“early-abort” strategy to compare two integers, which means the comparison is
done word by word, starting at the most significant word-pair, and the result is
immediately returned when the first unequal word-pair is found. Therefore, the
difference between the operands determines the execution time; it is maximal
when the operands are equal. The second origin of side-channel leakage, i.e. the
subtraction of p, is more obvious since this subtraction is only performed when
the temporary sum t is not smaller than p.

In order to eliminate or, at least, reduce side-channel leakage, we adopt the
idea of incomplete modular arithmetic as described by Yanık et al [42]. Instead
of reducing the result t of the addition to the least non-negative residue in the
range of [0, p − 1], incomplete modular arithmetic allows (i.e. tolerates) results
that are not fully reduced as long as they do not exceed a certain bitlength. In
our case, this means that all results of modular operations are (at most) n bits
long, but do not necessarily need to be smaller than p. All our modular arith-
metic functions also accept incompletely reduced operands as inputs, provided
that their length does not exceed n, the bitlength of p. The advantage of this
“relaxed” residue representation is the possibility to perform modular addition
without an exact comparison between the sum t and the prime p. Instead, we
just check whether the length of t exceeds n bits (i.e. whether t ≥ 2n), which is
only the case when the addition t = a+ b produced a “carry bit.”

Thanks to the carry bit (which is either 0 or 1), the conditional subtraction
of p can be done in an “unconditional” way by applying a mask to each byte
of p before it is subtracted. The value of this mask is either an “all-zero” byte
or an “all-one” byte and can be easily obtained from the carry bit through ne-
gation. For example, when the carry bit c = 0, the value of the mask becomes
m = −c = 0. Applying this mask m to a byte pi of p (i.e. performing a logical
and between m and pi) yields a zero-byte, which means 0 is subtracted from
the sum t. Conversely, when c = 1, we have m = −c = −1 = 28 − 1 = 0xff, and
applying this m to the bytes pi does not change their value, which means p is
subtracted from t. Note, however, that a second subtraction may be required
to obtain an n-bit result since both operands can be incompletely reduced. To
get “branch-less” code, we always perform two masked subtractions of p and
update the carry bit c after the first one. More precisely, the first subtraction



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 11

produces a “borrow bit,” which is either 0 or 1 and has to be subtracted from
the carry bit to obtain the correct carry bit for the second subtraction.

A modular subtraction z = a− b mod p can be implemented on basis of the
same principles as the modular addition described above. Our implementation
performs an ordinary subtraction t = a− b followed by two masked additions
of p, whereby the mask is derived from the borrow bit of the subtraction.

3.3 Modular Multiplication and Squaring

As detailed earlier in this section, our OPF library supports low-weight primes
of the form p = u · 2k + 1 where u is 16 bits long. Following the notation from
Section 3.1, we can represent p via an array P = (Ps−1, . . . , P1, P0) consisting
of s words, each having a length of w bits, i.e. w/4 bytes. The least significant
word P0 is 1, while the most significant word Ps−1 contains u; all other words
are 0. In this subsection, we assume that the two operands a, b to be multiplied
have the same length as p, namely n bits, but they do not necessarily need to
be smaller than p, i.e. a and b are in the range of [0, 2n − 1].

We show in the following that Montgomery modular multiplication [26] can
be optimized for primes of the form p = u · 2k + 1 by simply ignoring all words
Pi with 1 ≤ i ≤ s− 2 (i.e. all “zero” words) in the reduction operation. When
doing so, the overall number of word-level (i.e. (w × w)-bit) multiplications to
compute a Montgomery product amounts to s2 + s, of which s2 contribute to
the multiplication of the s-word operand a by b, and the rest to the reduction
modulo p. In other words, the “overhead” of modular reduction is only s word-
level multiplications, i.e. reduction has linear complexity. For comparison, the
reduction of a 2s-word product modulo a pseudo-Mersenne prime of the form
p = 2k − c (with c fitting into a single word) also requires exactly s word-level
multiplications [6]. However, when performing a modular multiplication with a
pseudo-Mersenne prime, the reduction is typically done after the multiplication
(see e.g. [18]), which is inefficient since the 2s-word product is first written to
memory (during the multiplication), and then it has to be loaded again from
memory to accomplish the reduction. To avoid this, our implementation adopts
a variant of the so-called Finely Integrated Product Scanning (FIPS) method
[21] for Montgomery multiplication, which interleaves multiplication steps and
reduction steps instead of executing them one after the other, thereby saving a
number of load/store instructions and reducing the RAM footprint.

The standard FIPS technique for arbitrary primes, as described in [21] and
[14], has a nested-loop structure with two outer and two simple inner loops. In
each iteration of the inner loops, two Multiply-Accumulate (MAC) operations
are carried out; one with the words of the operands a and b, which contributes
to the computation of a · b. The second MAC operation involves words of the
prime p and, hence, contributes to the reduction operation. Algorithm 1 shows
a special variant of the FIPS method optimized for “low-weight” primes of the
form p = u · 2k + 1. This variant differs from the generic FIPS method for arbi-
trary primes in three main aspects. First, we eliminated all multiplications and
MAC operations performed on zero words of p since they do not contribute to



12 Z. Liu, J. Großschädl, and D. S. Wong

Algorithm 1. FIPS Montgomery modular multiplication for OPFs

Input: An n-bit prime p = u ·2k +1 given as s-word array P = (Ps−1, . . . , P1, P0), two
integers a, b ∈ [0, 2n− 1] given as A = (As−1, . . . , A1, A0), B = (Bs−1, . . . , B1, B0).

Output: An (s + 1)-word array Z = (Zs, . . . , Z1, Z0) with Zs ∈ {0, 1} representing a
possibly incompletely reduced Montgomery product z = a · b · 2−n mod p.

1: T ← A0 ×B0

2: for i from 1 by 1 to s− 1 do
3: Zi−1 ← −(T mod 2w)
4: T ← T + Zi−1

5: T ← T/ 2w

6: for j from 0 by 1 to i do
7: T ← T + Aj ×Bi−j

8: end for
9: end for

10: T ← T + Z0 × Ps−1

11: Zs−1 ← −(T mod 2w)
12: T ← T + Zs−1

13: for i from s by 1 to 2s− 2 do
14: T ← T/ 2w

15: for j from i− s + 1 by 1 to s− 1 do
16: T ← T + Aj ×Bi−j

17: end for
18: T ← T + Zi−s+1 × Ps−1

19: Zi−s ← T mod 2w

20: end for
21: T ← T/ 2w

22: Zs−1 ← T mod 2w

23: Zs ← T/ 2w {Zs is either 0 or 1 }
24: Z ← (Zs, . . . , Z1, Z0)
25: return Z

the final result. Consequently, the inner loops of Algorithm 1 perform only one
MAC operation, similar to the product-scanning method for multiple-precision
multiplication [16]. In fact, the inner loops in line 6–8 and 15–17 are the same
as in product-scanning multiplication, which makes Algorithm 1 fairly easy to
implement. Another difference between our FIPS variant and the generic FIPS
method for arbitrary primes is that the former is optimized for P0 = 1 and, as
a consequence, the Montgomery reduction requires only s MAC operations; one
is performed in line 10 and the remaining s− 1 in the second outer loop (line
18). When P0 = 1, we have −P−1

0 mod 2w = −1 mod 2w = 2w − 1, which sim-
plifies the quotient-determination part of the reduction operation compared to
the original FIPS method (see [43, Section 4.3] for a detailed explanation). Due
to this optimization, the total number of word-level multiplications and MAC
operations of the FIPS method for p = u · 2k + 1 amounts to only s2 + s. The
third difference between our FIPS variant and the classic one is that we peeled
off the computation of A0 ×B0 from the first nested loop and re-arranged the



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 13

loop structure accordingly. Because of this modification, all loops of Algorithm
1 iterate at least one time if s ≥ 2, which simplifies their implementation.

Our AVR Assembly implementation of the FIPS Montgomery multiplication
is based on the pseudo-code from Algorithm 1. However, in order to maximize
performance, we adopt a variant of Gura et al’s hybrid multiplication method
[15], which means all word-level multiplications and MAC operations are per-
formed on four bytes (i.e. 32 bits) of the operands instead of just a single byte
(i.e. our word-size w is 32). In each iteration of the two inner loops, four bytes
of operand a (i.e. the word Aj) and operand b (i.e. the word Bi−j) are loaded
from memory and multiplied together to a 64-bit product. This product is then
added to a cumulative sum T held in nine 8-bit registers. Our implementation
of the inner loops follows [24, Section 3.1] and is, therefore, slightly faster than
Zhang et al’s inner-loop operation from [43]. Each iteration of the inner loops
consists of eight ld (i.e. load), 16 mul, 49 add (or adc), and four movw instruc-
tions (excluding loop overhead). When taking the updating of the loop-control
variable and branch instruction into account, the overall execution time of one
full iteration of the inner loop amounts to exactly 104 clock cycles.

Besides excellent performance, the inner-loop implementation from [24] has
the further advantage that it occupiers only 30 out of the 32 working registers
of an AVR processor. We use the two free registers to accommodate the 16-bit
coefficient u of the prime p = u · 2k + 1. Hence, we have to maintain only three
pointers, namely the pointers to the arrays A, B, and Z, which we hold in the
three pointer registers X, Y, and Z during the execution of a multiplication. In
each iteration of the inner loop, the pointer to A gets incremented by 4, while
the pointer to B is decremented. Therefore, the pointers need to be initialized
with the correct start addresses, and this initialization has to performed in the
outer loop, immediately before the start of the inner loop. Zhang et al [43] did
this pointer initialization with help of the “original” start address of the arrays
A and B (i.e. the address of A0 and B0), which they pushed on the stack at the
very beginning of the multiplication and then popped whenever needed. Unfor-
tunately, this approach is quite expensive since push and pop instructions take
two cycles each. We found it more efficient to re-calculate the original address
of these pointers using the end-value of the loop counter.

Algorithm 1 does not include the so-called “final subtraction” of p, which is
generally required in Montgomery multiplication to guarantee that the result is
smaller than p or, in our case, smaller than 2n. Therefore, the array Z consists
of s+ 1 words, whereby its most significant word Zs is either 0 or 1. Note that
(at most) one subtraction of p is required to get an s-word result in the range
of [0, 2n − 1], even when both inputs are not completely reduced. To minimize
SPA leakage, we perform this subtraction of p in the same way as described in
Section 3.2, but use Zs to derive an “all-zero” or “all-one” mask.

We implemented modular squaring for our low-weight primes similar to the
multiplication, using the same optimizations in the reduction. Furthermore, the
squaring adopts the well-known “trick” that allows one to cut the total num-

ber of word-level multiplications by almost one half (from s2 to s2+s
2 ) [6].



14 Z. Liu, J. Großschädl, and D. S. Wong

4 Performance Evaluation and Comparison

In the following, we present execution times of both field and group arithmetic
operations, including scalar multiplication, for OPFs (and appropriate elliptic
curves) ranging from 160 to 256 bits. As mentioned before, we implemented all
OPF arithmetic operations in Assembly language to achieve peak performance
on 8-bit AVR processors. The group operations (i.e. the point arithmetic) and
the algorithms for scalar multiplication were written in ANSI C and compiled
using WinAVR. We determined the execution time of all arithmetic operations
with help of the cycle-accurate instruction-set simulator of AVR Studio 4.

Table 1. Execution time (in clock cycles) of arithmetic operations in OPFs

Operation 160 bit 192 bit 224 bit 256 bit

Addition 530 631 732 833

Subtraction 530 631 732 833

Multiplication 3237 4500 5971 7650

Squaring 2901 3909 5058 6347

Mul. by 16-bit integer 873 1039 1295 1461

Inversion 223374 311828 416758 531901

Table 1 summarizes the execution times we obtained using the ATmega128
processor as target platform, whereby all timings include the full function-call
overhead. A multiplication in a 160-bit OPF takes 3237 clock cycles, which is
almost 10% faster than the average multiplication time of 3542 cycles reported
by Zhang et al [43]. For comparison, Szczechowiak et al’s NanoECC [35] needs
a total of 3882 clock cycles for a 160-bit modular multiplication (2654 cycles to
do the multiplication, 1228 cycles for a reduction modulo a 160-bit generalized
Mersenne prime), even though they fully unrolled the loops. The overhead due
to the reduction operation accounts for about 31.6% of the total multiplication
time. On the other hand, the reduction overhead of multiplication in a 160-bit
OPF is 459 clock cycles (or 14.2%) since, according to [24], a conventional 160-
bit multiplication (without modular reduction) requires 2778 cycles.

As analyzed in Section 3.3, our FIPS Montgomery multiplication for OPFs
has to perform s2 + s word-level multiplications or MAC operations, which are
essentially (32× 32)-bit multiplications in our case. On an 8-bit processor, this
translates into 16s2 + 8s mul instructions since the two least significant bytes
of Ps−1 are 0, i.e. the s MAC operations in line 10 and 18 of Algorithm 1 need
only eight mul instructions instead of 16. On the other hand, an OPF squaring
including reduction involves (s2 + 3s)/2 word-level multiplications (resp. MAC
operations), which means 8s2 + 12s mul instructions on the ATmega128. As a
consequence, one would expect OPF squaring to be (almost) 50% faster than
OPF multiplication. However, an optimized squaring function has to carry out
some auxiliary operations, e.g. left-shifts of word-level (i.e. 64-bit) products in



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 15

Table 2. Execution time (in cycles) of point arithmetic and scalar multiplication

Operation 160 bit 192 bit 224 bit 256 bit

GLV point addition 40305 54417 70418 88550

GLV point doubling 26684 36539 45369 56296

GLV scalar mul. 4191073 6918518 10064582 14178625

Montgomery point add. 19479 25890 33207 41428

Montgomery point dbl. 15950 21072 26884 33390

Montgomery scalar mul. 5928088 9445554 14109549 20158840

order to double them, which significantly impacts the total execution time, the
more so the shorter the operands are. The results given in Table 1 show that, in
a 160-bit OPF, squaring is just some 10.4% faster than multiplication, but the
gain increases to roughly 17% in a 256-bit OPF. We implemented the inversion
based on the binary version of the well-known Extended Euclidean Algorithm
(EEA) [16], whereby we exploited the special form of our primes to accelerate
certain low-level operations, e.g. additions and subtractions of p. Note that the
inversion has an irregular execution profile, which means the execution time is
not constant but depends on the input. Table 1 specifies the average execution
time of 100 inversions performed on random field elements.

Table 2 lists the simulated execution times of point addition/doubling and
full scalar multiplication for both GLV and Montgomery curves. As explained
in Section 2.2, the addition and doubling of points on a Montgomery curve is
less costly (in terms of arithmetic operations in the underlying prime field) than
the point addition/doubling on a GLV curve, and the simulation results from
Table 2 clearly confirm this. However, the situation becomes different when we
compare the execution times of a full scalar multiplication since the GLV curve
outperforms its Montgomery counterpart by a factor of 1.41 in the 160-bit case
(i.e. 4.19 · 106 versus 5.93 · 106 cycles on an ATmega128). We implemented the
scalar multiplication on the Montgomery curve in a straightforward way based
on a “Montgomery ladder” [6], while the scalar multiplication on the GLV curve
exploits an efficiently computable endomorphism as described in [11, 16]. Since
the Montgomery curves we used have a positive trace and a co-factor of 4, we
evaluated the execution time using scalars that are two bits shorter than the
underlying OPF. On the other hand, our GLV curves have a co-factor of 1 and
we used scalars k that satisfy the following conditions: (1) the two sub-scalars
k1, k2 of the de-composition of k are both positive and n/2 bits long (n is the
bitlength of the underlying OPF), and (2) their JSF contains n/4 zero bits.

Table 3 compares the scalar multiplication time of our two implementations
with previous results reported in the literature. Our GLV variant outperforms
all previous implementations, with two exceptions, namely the implementation
of Aranha et al [1] and Wenger et al [40]. However, both applied extensive loop
unrolling in the field arithmetic operations, which in general entails large code
size and poor scalability. Furthermore, the implementation of Aranha et al can
only be made SPA resistant at the expense of a massive performance hit.



16 Z. Liu, J. Großschädl, and D. S. Wong

Table 3. Comparison of execution time of scalar multiplication over fields of an order
of roughly 160 bits (evaluation platform is an ATmega128 clocked at 7.3728 MHz)

Implementation Field order Fixed P. Rand. P. SPA resistant

Seo et al [32] GF(2m), 163 bit 1.14 s 1.14 s No

Kargl et al [20] GF(2m), 167 bit 0.76 s 0.76 s No

Aranha et al [1] GF(2m), 163 bit 0.29 s 0.32 s No

Liu et al [23] GF(p), 160 bit 2.05 s 2.30 s No

Szczechowiak et al [35] GF(p), 160 bit 1.27 s 1.27 s No

Wang et al [39] GF(p), 160 bit 1.24 s 1.35 s No

Gura et al [15] GF(p), 160 bit 0.88 s 0.88 s No

Chu et al [5] GF(p), 160 bit 0.79 s 0.79 s No

Großschädl et al [13] GF(p), 160 bit 0.74 s 0.74 s No

Ugus et al [36] GF(p), 160 bit 0.57 s 1.03 s No

Wenger et al [40] (Mon.) GF(p), 160 bit 0.75 s 0.75 s Yes

Wenger et al [40] (GLV) GF(p), 160 bit 0.53 s 0.53 s No

Our work (Montg. curve) GF(p), 160 bit 0.80 s 0.80 s Yes

Our work (GLV curve) GF(p), 160 bit 0.57 s 0.57 s No

5 Conclusions

The aim of this paper was to provide new insights into certain implementation
aspects of OPFs on 8-bit AVR processors. First, we argued that OPFs defined
by primes of the form p = u · 2k + 1, where u is a 16-bit integer, represent an
optimal trade-off between performance and scalability. Then, we described in
detail how to implement arithmetic operations for OPFs, taking the properties
(e.g. low Hamming weight) of these primes into account. In particular, we pro-
posed a new variant of Montgomery multiplication for low-weight primes based
on the FIPS method. Our Montgomery variant has the same loop structure as
the ordinary product-scanning method for multiplication and can, therefore, be
well optimized for ATmega processors. We implemented the multiplication and
and all other arithmetic operations needed for ECC in a parameterized fashion
with rolled loops so as to achieve high scalability and small code size. Further-
more, we wrote the Assembly code of all arithmetic functions (bar inversion) in
such a way that always the same instruction sequence is executed, irrespective
of the actual value of the operands, which helps to foil SPA attacks. Simulation
results obtained with AVR Studio 4 indicate an execution time of 3237 cycles
for a multiplication in a 160-bit OPF, while squaring takes 2901 cycles. These
results compare very favorably with previous work and outperform even some
implementations with unrolled loops. We also evaluated the execution time of a
full scalar multiplication on Montgomery as well as GLV curves over OPFs. In
the former case, the scalar multiplication is “intrinsically” SPA resistant and
executes in 5.93 million cycles over a 160-bit OPF, while, in the latter case, we
have an execution time of 4.19 million cycles. Both results confirm that OPFs
are an excellent implementation option for ECC on 8-bit AVR processors.



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 17

References

1. D. F. Aranha, R. Dahab, J. C. López, and L. B. Oliveira. Efficient implementation
of elliptic curve cryptography in wireless sensors. Advances in Mathematics of
Communications, 4(2):169–187, May 2010.

2. Atmel Corporation. 8-bit ARVR© Instruction Set. User Guide, available for down-
load at http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf,
July 2008.

3. Atmel Corporation. 8-bit ARVR© Microcontroller with 128K Bytes In-System Pro-
grammable Flash: ATmega128, ATmega128L. Datasheet, available for download
at http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf, June
2008.

4. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public Key
Cryptography — PKC 2006, vol. 3958 of Lecture Notes in Computer Science, pp.
207–228. Springer Verlag, 2006.

5. D. Chu, J. Großschädl, Z. Liu, V. Müller, and Y. Zhang. Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In Proceedings of
the 1st ACM Workshop on Asia Public-Key Cryptography (AsiaPKC 2013), pp.
39–44. ACM Press, 2013.

6. H. Cohen and G. Frey. Handbook of Elliptic and Hyperelliptic Curve Cryptography,
vol. 34 of Discrete Mathematics and Its Applications. Chapmann & Hall\CRC,
2006.

7. R. E. Crandall. Method and apparatus for public key exchange in a cryptographic
system. U.S. Patent No. 5,159,632, Oct. 1992.

8. Crossbow Technology, Inc. MICAz Wireless Measurement System. Data sheet,
available for download at http://www.xbow.com/Products/Product_pdf_files/

Wireless_pdf/MICAz_Datasheet.pdf, Jan. 2006.

9. G. de Meulenaer and F.-X. Standaert. Stealthy compromise of wireless sensor nodes
with power analysis attacks. In Mobile Lightweight Wireless Systems — MOBI-
LIGHT 2010, vol. 45 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pp. 229–242. Springer Verlag,
2010.

10. T. Eisenbarth, Z. Gong, T. Güneysu, S. Heyse, S. Indesteege, S. Kerckhof, F. Koe-
une, T. Nad, T. Plos, F. Regazzoni, F.-X. Standaert, and L. van Oldeneel tot
Oldenzeel. Compact implementation and performance evaluation of block ciphers
in ATtiny devices. In Progress in Cryptology — AFRICACRYPT 2012, vol. 7374
of Lecture Notes in Computer Science, pp. 172–187. Springer Verlag, 2012.

11. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication on el-
liptic curves with efficient endomorphism. In Advances in Cryptology — CRYPTO
2001, vol. 2139 of Lecture Notes in Computer Science, pp. 190–200. Springer Ver-
lag, 2001.

12. J. Großschädl. TinySA: A security architecture for wireless sensor networks. In
Proceedings of the 2nd International Conference on Emerging Networking Experi-
ments and Technologies (CoNEXT 2006), pp. 288–289. ACM Press, 2006.

13. J. Großschädl, M. Hudler, M. Koschuch, M. Krüger, and A. Szekely. Smart elliptic
curve cryptography for smart dust. In Quality of Service in Heterogeneous Networks
— QSHINE 2010, vol. 74 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pp. 548–559. Springer
Verlag, 2010.



18 Z. Liu, J. Großschädl, and D. S. Wong

14. J. Großschädl and G.-A. Kamendje. Architectural enhancements for Montgomery
multiplication on embedded RISC processors. In Applied Cryptography and Net-
work Security — ACNS 2003, vol. 2846 of Lecture Notes in Computer Science, pp.
418–434. Springer Verlag, 2003.

15. N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz. Comparing
elliptic curve cryptography and RSA on 8-bit CPUs. In Cryptographic Hardware
and Embedded Systems — CHES 2004, vol. 3156 of Lecture Notes in Computer
Science, pp. 119–132. Springer Verlag, 2004.

16. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

17. S. Heyse, I. von Maurich, A. Wild, C. Reuber, J. Rave, T. Poeppelmann, and
C. Paar. Evaluation of SHA-3 candidates for 8-bit embedded processors. Presen-
tation at the 2nd SHA-3 Candidate Conference, Santa Barbara, CA, USA, Aug.
2010. Available for download at http://csrc.nist.gov/groups/ST/hash/sha-3/
Round2/Aug2010/.

18. M. Hutter and P. Schwabe. NaCl on 8-bit AVR microcontrollers. In Progress
in Cryptology — AFRICACRYPT 2013, vol. 7918 of Lecture Notes in Computer
Science, pp. 156–172. Springer Verlag, 2013.

19. M. Hutter and E. Wenger. Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In Cryptographic Hardware and Embedded
Systems — CHES 2011, vol. 6917 of Lecture Notes in Computer Science, pp. 459–
474. Springer Verlag, 2011.

20. A. Kargl, S. Pyka, and H. Seuschek. Fast arithmetic on ATmega128 for elliptic
curve cryptography. Cryptology ePrint Archive, Report 2008/442, 2008. Available
for download at http://eprint.iacr.org.

21. Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

22. C. Lederer, R. Mader, M. Koschuch, J. Großschädl, A. Szekely, and S. Tillich.
Energy-efficient implementation of ECDH key exchange for wireless sensor net-
works. In Information Security Theory and Practice — WISTP 2009, vol. 5746 of
Lecture Notes in Computer Science, pp. 112–127. Springer Verlag, 2009.

23. A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve cryptogra-
phy in wireless sensor networks. In Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN 2008), pp. 245–256. IEEE
Computer Society Press, 2008.

24. Z. Liu and J. Großschädl. New speed records for Montgomery modular multiplica-
tion on 8-bit AVR microcontrollers. Cryptology ePrint Archive, Report 2013/882,
2013. Available for download at http://eprint.iacr.org.

25. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer Verlag, 2007.

26. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, Apr. 1985.

27. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, Jan. 1987.

28. E. Oswald. Enhancing simple power-analysis attacks on elliptic curve cryptosys-
tems. In Cryptographic Hardware and Embedded Systems — CHES 2002, vol. 2523
of Lecture Notes in Computer Science, pp. 82–97. Springer Verlag, 2002.

29. Y. Sakai and K. Sakurai. Simple power analysis on fast modular reduction with
NIST recommended elliptic curves. In Information and Communications Security
— ICICS 2005, vol. 3783 of Lecture Notes in Computer Science, pp. 169–180.
Springer Verlag, 2005.



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 19

30. M. Scott and P. Szczechowiak. Optimizing multiprecision multiplication for public
key cryptography. Cryptology ePrint Archive, Report 2007/299, 2007. Available
for download at http://eprint.iacr.org.

31. H. Seo and H. Kim. Multi-precision multiplication for public-key cryptography on
embedded microprocessors. In Information Security Applications — WISA 2012,
vol. 7690 of Lecture Notes in Computer Science, pp. 55–67. Springer Verlag, 2012.

32. S. C. Seo, D.-G. Han, H. C. Kim, and S. Hong. TinyECCK: Efficient elliptic
curve cryptography implementation over GF(2m) on 8-bit Micaz mote. IEICE
Transactions on Information and Systems, E91-D(5):1338–1347, May 2008.

33. J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR-99-39,
Centre for Applied Cryptographic Research (CACR), University of Waterloo, Wa-
terloo, Canada, 1999.

34. D. Stebila and N. Thériault. Unified point addition formulæ and side-channel
attacks. In Cryptographic Hardware and Embedded Systems — CHES 2006, vol.
4249 of Lecture Notes in Computer Science, pp. 354–368. Springer Verlag, 2006.

35. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks. In Wireless
Sensor Networks — EWSN 2008, vol. 4913 of Lecture Notes in Computer Science,
pp. 305–320. Springer Verlag, 2008.

36. O. Ugus, D. Westhoff, R. Laue, A. Shoufan, and S. A. Huss. Optimized im-
plementation of elliptic curve based additive homomorphic encryption for wire-
less sensor networks. In Proceedings of the 2nd Workshop on Embedded Sys-
tems Security (WESS 2007), pp. 11–16, 2007. Available for download at http:

//arxiv.org/abs/0903.3900.
37. L. Uhsadel, A. Poschmann, and C. Paar. Enabling full-size public-key algorithms

on 8-bit sensor nodes. In Security and Privacy in Ad-hoc and Sensor Networks —
SASN 2007, vol. 4572 of Lecture Notes in Computer Science, pp. 73–86. Springer
Verlag, 2007.

38. C. D. Walter. Simple power analysis of unified code for ECC double and add.
In Cryptographic Hardware and Embedded Systems — CHES 2004, vol. 3156 of
Lecture Notes in Computer Science, pp. 191–204. Springer Verlag, 2004.

39. H. Wang and Q. Li. Efficient implementation of public key cryptosystems on mote
sensors. In Information and Communications Security — ICICS 2006, vol. 4307
of Lecture Notes in Computer Science, pp. 519–528. Springer Verlag, 2006.

40. E. Wenger and J. Großschädl. An 8-bit AVR-based elliptic curve cryptographic
RISC processor for the Internet of things. In Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture Workshops (MICROW
2012), pp. 39–46. IEEE Computer Society Press, 2012.

41. A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart
cards without coprocessors. In Smart Card Research and Advanced Applications,
vol. 180 of International Federation for Information Processing, pp. 71–92. Kluwer
Academic Publishers, 2000.

42. T. Yanık, E. Savaş, and Ç. K. Koç. Incomplete reduction in modular arithmetic.
IEE Proceedings – Computers and Digital Techniques, 149(2):46–52, Mar. 2002.

43. Y. Zhang and J. Großschädl. Efficient prime-field arithmetic for elliptic curve
cryptography on wireless sensor nodes. In Proceedings of the 1st International
Conference on Computer Science and Network Technology (ICCSNT 2011), vol. 1,
pp. 459–466. IEEE, 2011.


