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Abstract

Model-Driven Engineering (MDE) is becoming a popular engineering methodology for developing large-scale
software applications, using models and transformations as primary principles. MDE is now being successfully
applied to domain-specific languages (DSLs), which target a narrow subject domain like process management,
telecommunication, product lines, smartphone applications among others, providing experts high-level and
intuitive notations very close to their problem domain. More recently, MDE has been applied to safety-critical
applications, where failure may have dramatic consequences, either in terms of economic, ecologic or human
losses. These recent application domains call for more robust and more practical approaches for ensuring the
correctness of models and model transformations.

Testing is the most common technique used in MDE for ensuring the correctness of model transformations,
a recurrent, yet unsolved problem in MDE. But testing suffers from the so-called coverage problem, which is
unacceptable when safety is at stake. Rather, exhaustive coverage is required in this application domain, which
means that transformation designers need to use formal analysis methods and tools to meet this requirement.
Unfortunately, two factors seem to limit the use of such methods in an engineer’s daily life. First, a method-
ological factor, because MDE engineers rarely possess the effective knowledge for deploying formal analysis
techniques in their daily life developments. Second, a practical factor, because DSLs do not necessarily have a
formal explicit semantics, which is a necessary enabler for exhaustive analysis.

In this thesis, we contribute to the problem of formal analysis of model transformations regarding each
perspective. On the conceptual side, we propose a methodological framework for engineering verified model
transformations based on current best practices.

For that purpose, we identify three important dimensions: (i) the transformation being built; (ii) the proper-
ties of interest ensuring the transformation’s correctness; and finally, (iii) the verification technique that allows
proving these properties with minimal effort. Finding which techniques are better suited for which kind of
properties is the concern of the Computer-Aided Verification community. Consequently in this thesis, we focus
on studying the relationship between transformations and properties.

Our methodological framework introduces two novel notions. A transformation intent gathers all trans-
formations sharing the same purpose, abstracting from the way the transformation is expressed. A property
class captures under the same denomination all properties sharing the same form, abstracting away from their
underlying property languages. The framework consists of mapping each intent with its characteristic set of
property classes, meaning that for proving the correctness of a particular transformation obeying this intent,
one has to prove properties of these specific classes.

We illustrate the use and utility of our framework through the detailed description of five common intents in
MDE, and their application to a case study drawn from the automative software domain, consisting of a chain
of more than thirty transformations.

On a more practical side, we study the problem of verifying DSLs whose behaviour is expressed with Kermeta.
Kermeta is an object-oriented transformation framework aligned with Object Management Group standard
specification MOF (Meta-Object Facility). It can be used for defining metamodels and models, as well as their
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behaviour. Kermeta lacks a formal semantics: we first specify such a semantics, and then choose an appropriate
verification domain for handling the analysis one is interested in.

Since the semantics is defined at the level of Kermeta’s transformation language itself, our work presents
two interesting features: first, any DSL whose behaviour is defined using Kermeta (more precisely, any trans-
formation defined with Kermeta) enjoys a de facto formal underground for free; second, it is easier to define
appropriate abstractions for targeting specific analysis for this full-fledged semantics than defining specific se-
mantics for each possible kind of analysis.

To illustrate this point, we have selected Maude, a powerful rewriting system based on algebraic specifica-
tions equipped with model-checking and theorem-proving capabilities. Maude was chosen because its underlying
formalism is close to the mathematical tools we use for specifying the formal semantics, reducing the imple-
mentation gap and consequently limiting the possible implementation mistakes. We validate our approach by
illustrating behavioural properties of small, yet representative DSLs from the literature.

Keywords: Model-Driven Engineering, Domain-Specific Languages, Formal Semantics, Formal Verification,
Kermeta, Maude.
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Résumé

L’ingénierie des Modèles (Idm) est devenu ces dernières années une méthodologie de développement logiciel
populaire pour gérer de larges applications, sur la base de modèles et de transformations de modèles. L’Idm
est désormais appliquée aux Langages Dédiés (Lds): ces langages ont pour but de s’attaquer à des domaines
restreints, comme la gestion de processus, les télécommunications, les lignes de produits ou le développement
de logiciels embarqués dans les smartphones, pour fournir aux experts des notations proches de leur domaine
d’expertise et à un haut niveau d’abstraction. Plus récemment, l’Idm a été appliquée avec succès pour développer
des applications critiques, pour lesquelles les pannes sont susceptibles d’avoir des conséquences dramatiques en
terme d’économie, d’écologie ou encore de pertes humaines. L’application récente de l’Idm à ces domaines
sensibles appelle à plus de robustesse dans le développement du logiciel, mais aussi à développer des techniques
d’analyse spécifiques pour assurer la correction des modèles et des transformations entrant en jeu.

La validation des transformations de modèles est un problème récurrent, mais qui n’a pas encore trouvé de
solution convenable. Le Test est la méthode la plus répandue pour répondre à ce problème, mais cette technique
souffre du problème dit de couverture, qui pose problème lorsque la sécurité devient un enjeu crucial. En fait,
la couverture exhaustive devrait être la norme dans ce type de domaines : pour répondre à cette exigence, les
ingénieurs écrivant des transformations devraient utiliser des méthodes et outils formelles. Malheureusement,
leur utilisation se heurte à deux barrières. La première est méthodologique : les ingénieurs possédant rarement
les connaissances nécessaires à la mise en œuvre de ces techniques, il leur est difficile de les déployer dans
leur contexte de travail quotidien. La seconde est davantage pratique : les Lds n’ayant que rarement une
sémantique explicitement écrite ou formalisée, il devient difficile de mettre en œuvre ces techniques sans ce
prérequis incontournable.

Dans cette thèse, nous contribuons au problème de l’analyse formelle de transformations de modèles de
chacun de ces deux points de vue: au niveau conceptuel, nous proposons un cadre méthodologique basé sur
les meilleurs pratiques en la matière, pour guider les ingénieurs dans leur tâche de vérification formelle des
transformations.

Pour cela, nous avons identifié trois dimensions importantes : (i) la transformation en cours de validation ;
(ii) les propriétés de la transformation nécessaire pour prouver sa correction ; et (iii) la technique de vérification à
mettre en œuvre pour effectivement prouver ces propriétés. Trouver la technique la mieux adaptée à chaque type
de propriété est le champ de recherche de la communauté travaillant sur la Vérification Assistée (Computer-Aided
Verification). Dans cette thèse, nous nous intéressons à mettre en exergue les relations entre transformations
et propriétés.

Notre cadre formel introduit deux concepts nouveaux. L’intention d’une transformation réunit sous une
même notion l’ensemble des transformations partageant le même but, le même type de manipulation de modèles
indépendemment de la manière dont est exprimée cette transformation. Les classes de propriétés caractérisent
sous une même dénomination toutes un ensemble de propriétés partageant la même expression mathématique,
mais indépendemment du langage dans lequel seraient exprimées ces propriétés. Le cadre formel devient alors
un mapping caractérisant chaque intention par un ensemble de propriétés caractéristiques de cette intention,
dont la preuve conduirait à la validation des transformations regroupées sous cette intention.
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Nous illustrons l’usage et l’utilité de ce cadre méthodologique au travers d’une description détaillée de cinq
intentions au sein de l’Idm, et nous l’appliquons sur une étude de cas inspirée du domaine automobile qui
consiste en une chaîne de transformation d’une trentaine de transformations.

Au niveau pratique, nous étudions le problème de la vérification formelle de Lds écrits en Kermeta, un
moteur de transformation orienté object aligné sur Mof (Meta-Object Facility), le standard de l’Omg pour la
métamodélisation. Kermeta peut être utilisé non seulement pour les activités de modélisation classique (spécifier
un métamodèle et des modèles qui s’y conforment), mais aussi pour spécifier leur comportement ou, si ces
métamodèles représentent des Lds, leur sémantique comportementale. Malheureusement, le langage Kermeta
n’est pas formellement spécifié, ce qui pose problème pour brancher des outils de vérification. Nous avons donc
commencé par formaliser un sous-ensemble de Kermeta, suffisant pour représenter les transformations les plus
courantes définies ; puis nous avons sélectionné un domaine de vérification adéquat pour fournir des capacités
d’analyse.

Cette sémantique est définie au niveau du langage de transformation de Kermeta, ce qui a deux avantages :
premièrement, tout Ld dont le comportement serait défini à l’aide de Kermeta (ou plus précisément, toute
transformation définie en Kermeta) voit sa sémantique définie formellement ; et deuxièmement, il devient plus
facile, sur la base de cette sémantique de référence pour Kermeta, de définir des abstractions précises utiles
pour documenter la traduction des transformations Kermeta vers de nouveaux outils de vérification. Au final,
il devient plus facile pour les ingénieurs de vérifier leurs transformations : au lieu de définir une translation
spécifique vers chaque nouvel outil d’analyse dont ils ont besoin, pour chacun de leurs Lds, il ne devient
nécessaire de définir qu’un seul de ces mappings directement depuis le langage de Kermeta.

Nous avons illustré cette contribution technique à l’aide de Maude, un puissant moteur de réécriture de
spécifications algébriques proposant deux types d’analyse : du model-checking et du theorem-proving. Nous
avons choisi Maude parce que le formalisme sous-jacent est très proche des outils mathématiques utilisés dans
la spécification formelle de la sémantique du langage, ce qui permet de réduire la distance conceptuelle entre
la spécification et l’implémentation, limitant ainsi les problèmes d’implémentation. Nous avons validé notre
approche en illustrant notre approche sur des Lds simples, mais cependant représentatifs.

Mots-clés: Ingénierie des Modèles, Langages Dédiés, Sémantique Formelle, Vérification Formelle, Kermeta,
Maude.

F



Acknowledgement

This Thesis is the concrete and tangible outcome of a long trip: it started a few years ago in Grenoble, Isère
(France) and finally ended here in Luxembourg. It was not easy, to say the least: the writing, and more
importantly the intensive labour that led to this manuscript, were simultaneously a fight against odds and bad
things, an initiation for research and all the political game behind it, and a spiritual journey when discovering
and learning new stuff.

I’ll start by warmly thanking Pierre Kelsen, without who nothing of this would have even been possible.
He took a huge risk out of his usual environment and comfort zone for supervising this Thesis. Yves Le Traon
was basically the architect of this work, by suggesting very early some of the research directions followed in
this Thesis. I owe him a lot for letting me participate to his SerVal Team. More importantly, he basically let
me doing almost whatever I wanted during the second part of my Ph.D. time, which resulted in many trips,
collaborations, and fruitful ideas. After all these years, I warmly thank them for letting me achieve my vision.

Benoît Combemale influenced this thesis in a special way. More than a scientific mentor, he supported me
when I encountered difficulties, both in my professional and personal life. Back in 2010 when I started to work
on Kermeta, he kindly answered my (sometimes stupid) questions without being bored despite his busy agenda.
It was a pleasure and an honour to have him judge my work and to attend tant bien que mal my defense (oh!
yes, these trips back to Rennes will always be remembered). As he demonstrated during the almost-one-hour
discussion during the defense Q& A session, he always has a very insightful viewpoint about all the core topics
of my Ph.D. I really hope we can continue to work together.

I would also like to thank the other members of my jury. Nicolas Navet always showed an interest in
my work during our discussions. He also partially inspired the Rt-Kermeta perspective thanks to his former
background. Pierre-Yves Schobbens is the professor kind I always liked, the “force tranquille”: a huge amount
of knowledge packed within a very humble man. I hope he didn’t suffer much reading my semantics specification!
I really hope we can pursue a common road together.

The journey was not always as lonely as one might think. Mostly in the Lassy team, then in the SerVal
one, I am grateful to all Post-Docs, Ph.D. students or Research Associates who helped installing a good working
environment, and contributed to overcome the bad feelings that sometimes occur in Research. In Lassy, Núno
Amalio walked with me a few steps along my journey and made me discover Z. Christian Glodt, Qin Ma and
Shahed Parnian were always present for discussing, sharing a coffee or just chatting in the corridor or outside
the building. Later on at SerVal, Kevin Allix, Alexandre Bartel, Donia El Kateb and Christopher Hénard
made me enjoy lunches and the epic SerVal coffee breaks for which I was always delighted to sometimes find
croissants when one of them succeeded at getting a paper accepted. I also thank Iram Rubab, Assad Moawed
and later on, Li Li, for the always interesting discussions at the office. This list cannot end without my office
mate Marwane El Kharbili, with who I shared more than a Ph.D., a real tranche de vie: we were sharing
a past, we then shared a destiny. More than an office mate, he was a companion of my pain and complaints,
and was always there for “going to take a coffee” (and never actually having a coffee) with me when I wasn’t in
the mood of working. Our many discussions, scientific or not, made me appreciate him beyond what we were
sharing at that time. He also opened the path towards successfully graduating and convinced me that it was

G



doable, after all.
Some Post-Docs played a crucial role in my Ph.D. Starting with Yehia Elrakaiby who offered me my

first Conference publication. Gilles Perrouin was the man from the shadow : always a good word to comfort
me, always an efficient help to solve problems, but never out of (sometimes very good) ideas to exploit, he is
actually the first one who suggested me to work on the verification of Kermeta, and I took his advice. My debt
to him cannot be evaluated and he is still largely influencing my professional life with his advice. Would we be
colleagues in the future?

Some people show up in your life and change it so deeply that you can say there is a before and an after
their meeting. I had to wait until the first one left the Lassy Lab. before we could actually work together: Lévi
Lúcio introduced me to the field of Mde verification, supported me in my dark days at Lassy, was always kind
to review (he’s the first one to have read the semantics specification) my production and advise me all along my
Ph.D. He listened to my sometimes crazy ideas and knew how to exploit them the best way to make something
good of them. More than a colleague, he also became a true friend. I cannot forget the visit to Montréal, and
before that to Cascais inside his family. Me deepest recognition and friendship goes to him. I can only hope
Little Valentin will follow the footsteps of his parents!

I have not enough words to thank Francisco (Paco) Durán, Professor at the University of Málaga (Spain).
A kind man with an unlimited knowledge of Maude, rewriting and all that, very humble, very simple. . . He
convinced me that I could make it while enjoying working with Maude (“the best language ever”), and was there
every day, like a coach, to push me forward. I enjoyed each and every of our discussions and look forward to
eat another turrón ice cream with him. Thanks to him, but also all the students in Lab 3.3. (Loli Burgueño,
Javier Troya and Antonio Moreno Delgado), I spent in Málaga probably the best period of my Ph.D ever:
I was working like a fool, but have enjoyed the sun, the beach and the never-sleeping city center. This period
was a blessing, not only for my Ph.D but also for my psychological wellness. Paco also reconciled me with the
ethics of professorship, showing me that it was possible to be one without completely sacrificing what I believe
this job is.

I would like to thank the secretaries that always did a tremendous job at solving my administrative issues:
Danièle Flammang at Lassy, Fabienne Schmitz at the Csc Department, and Laurent Bétry and Christine
Kinet at the SnT.

This list would not be complete without the people that I met and worked with at Grenoble (France). David
Merchat, Lionel Morel and Cyril Pachon were my student fellows during my Licence, Maîtrise and Dea
back then, and started the adventure at Verimag with me. I learned a lot thanks to them, their solicitations,
their experience. Liana Lazar Bozga, Anahita Akhavan enlighted our days by their smile, their kindness and
their snacks. I am grateful to Chaker Nakhli, who switched with me his funding and graduated successfully
before me, and Moez Krichen my office mate for so many years, who taught me a lot about life. I cannot
forget all the top-notch professors of Verimag: Florence Maraninchi and Fabienne Lagnier Carrier, Laurent
Mounier and Jean-Claude Fernandez who wwere my teachers and became colleagues, before teaching me
again how to teach; Marius Bozga, always kind and willing to help; and of course Saddek Bensalem and
especially Yassine Lakhnech, who forced me to learn formal verification on my own.

Enfin pour terminer, j’aimerais remercier ma famille, et en particulier mon père, Bachir, qui aura vécu une
vie de sacrifices et de galères pour offrir à ses enfants la possibilité d’étudier du mieux qu’ils pouvaient. J’espère
que ce titre de Docteur apaisera sa soif de comparaison avec les “enfants des autres”. Les longues heures au
téléphone avec mes soeurs, Malika et Dalila, m’auront aussi aidé à traverser cette épreuve qu’était la (les)
thèse(s), mais aussi plus largement l’épreuve de la vie. Enfin pour terminer, à celle qui se sera pris de plein
fouet la difficile épreuve de la confrontation dès son arrivée à Thionville, et qui aura supporté du mieux qu’elle
pouvait ces années de travail acharné entrecoupées de nombreux voyages, celle qui aura vu de l’intérieur mes
déprimes, mes changements d’humeur, mes joies, mes déceptions, Fatima, ma femme, pour qui je n’ai pas assez

H



de mots dans la langue française pour lui exprimer mon amour, mais aussi ma dette envers elle après toutes ces
années si loin de tout. Peut-être que le silence qu’elle déteste tant est encore la meilleure réponse ?

This work was partially supported by the Fonds National de la Recherche in Luxembourg, but also from
institutional fundings of my supervisors, who always allowed me to travel wherever I wanted.

I





Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Software Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Towards the Formal Analysis of Model Transformations . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 A Description Framework for Model Transformation Intents . . . . . . . . . . . . . . . . . 4
1.4.2 A Formal Specification of Kermeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 Kmv: a Proof-of-Concept Kermeta Model-Checker . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Models, Model Transformation & Model Transformation Verification 7

2 Model-Driven Engineering: (Meta-)Models & Transformations 11
2.1 What is a Model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Model Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 (Meta-)Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Transformation Languages And Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Transformation Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Model Transformation Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Domain-Specific (Modelling) Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Dsml Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Dsmls as Languages: Basic Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Formal Verification 31
3.1 The Verification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Characteristics of Formal Verification Approaches . . . . . . . . . . . . . . . . . . . . . . 32

i



3.1.2 Common Verification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 A Tridimensional Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Formal Verification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Property Kind / Fv Technique (PK/FVT) . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Transformation / Fv Technique (T/FVT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Transformation / Property Kind (T/PK) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Transformation Intent as the glue between dimensions . . . . . . . . . . . . . . . . . . . . 48

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Characteristic Properties of Model Transformations Intents 49

4.1 Overview & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 A Description Framework for Model Transformation Intents . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 A Metamodel for Intents and their Properties . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 A Metamodel for Model Transformation Validation Methods . . . . . . . . . . . . . . . . 51

4.2.3 Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The Intents Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Characteristic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Fundamental Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Property Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Five Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 The Power Window Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Formalism Transformation Graph and Process Model . . . . . . . . . . . . . . . . . . . . 73

4.6.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Identifying Transformation Intents within the Pwcs . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7.1 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8.1 Towards an Intent Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8.2 Composing Intents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9.1 Intents in Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9.2 Classifications of Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.9.3 Classifications of Model Transformation Verification Approaches . . . . . . . . . . . . . . 86

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ii



II Formal Specification of Kermeta 87

5 Kermeta in a Nutshell 91
5.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Metamodelling: the Structural Language (Sl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Sl Meta-metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 The Fsm Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Transformations: the Action Language (Al) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Al Meta-metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 The Fsm Model & Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.2 Abstract Datatypes Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Structural Language 101
6.1 Structural Semantics Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Names, Types and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2 Syntactic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.3 Semantic Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.4 Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.5 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.6 Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.1 Accessible Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6.1 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Action Language 115
7.1 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 Local Variable Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.3 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Type-Checking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.2 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.1 Semantic Domain and Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.3 Semantic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

iii



7.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5.1 Syntactic aspects & Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

III Formal Verification of Kermeta 133

8 Maude In a Nutshell 137
8.1 Equational & Rewriting Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1.1 Functional Modules for Equational Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.1.2 System Modules for Rewrite Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Object-Oriented Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Example: The Simple Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 KMV: Verifying Kermeta with Maude 147
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.1.1 mOdCL & Maudeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Specifying Kermeta’s Structural Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.2.1 Names, Types, and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2.2 Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.4 Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.3 Specifying Kermeta’s Action Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.3.1 Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3.2 Statement Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3.3 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.3.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.3.5 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4 Simulating a Model Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.5 The KMV Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.5.1 Eclipse Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10 Conclusion 173
10.1 Contributions Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.2 Perspectives & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2.1 Description Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.2.2 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.2.3 Kmv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.2.4 Real-Time Kermeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A The Finite State Machine Example 179
A.1 Metamodel and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.2 Kermeta Full Textual Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3 Mathematical Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.3.1 The FSM Metamodel MM
FSM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

iv



A.3.2 The FSM Model Mabc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.3.3 Does Mabc conform to MM

FSM
? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.4 Maude Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B Maude Specification for Kermeta Semantics 189

C Summary of Publications 197

Bibliography 199

v





List of Figures

1.1 Software Engineering Evolution (from Kabore 2008) . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Mapping Dsmls to several, specialised verification domains: classical versus proposal approaches 3

2.1 Token versus Type Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Ontological versus Linguistic instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 The Omg Mda Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Formal construction for metamodel and model sets in Mof . . . . . . . . . . . . . . . . . . . . . 16
2.5 Model Transformation: the big picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Defining behavioural semantics for Dsls: translational versus operational . . . . . . . . . . . . . 22
2.7 Platform-Independant and Platform-Specific Models with Transformations . . . . . . . . . . . . . 25
2.8 Relations between Dsml components: abstract/concrete syntax(es), semantic domain and se-

mantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Representation of the concrete semantics as a trajectory . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Representation of error zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Correct abstraction as an over-approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Representation of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Erroneous abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Bounded Model-Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 False alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Model Transformation Verification Tridimensional Approach . . . . . . . . . . . . . . . . . . . . . 37
3.9 The Tridimensional Classification revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Intents as a classification mechanism for model transformations . . . . . . . . . . . . . . . . . . . 50
4.2 Metamodel for describing model transformation intents. . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Methods for validating model transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Identifying the intent of a model transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Validating a model transformation with a specific intent . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Property Class Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Ftg/Pm for the Power Window Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Safety Analysis Ftg+Pm Slice, with Ftg on the left and Pm on the right . . . . . . . . . . . . . 76
4.9 Example model for the Environment DSL language . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.10 Example model for the Encapsulated Petri Nets language . . . . . . . . . . . . . . . . . . . . . . 78
4.11 Syntactic property preservation example for the EnvToPN Power Window transformation . . . . 79
4.12 Transformation Rules for simulating Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii



List of Figures

5.1 Kermeta as a Kernel for different standardised Mde languages. . . . . . . . . . . . . . . . . . . . 92
5.2 Construction of Kermeta’s Languages using weaving/promotion. . . . . . . . . . . . . . . . . . . 92
5.3 Simplified Kermeta’s meta-metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 The Finite State Machine (FSM) Dsl in Kermeta . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Kermeta’s Action Language Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Overview for the construction of the Sl semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Kermeta’s Action Language (from (Drey et al. 2009, §3.3)) . . . . . . . . . . . . . . . . . . . . . 116
7.2 Bnf for Al’s Expressions and Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 Simplification procedure illustrated on the fire operation . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Functions computing default values for all collection types . . . . . . . . . . . . . . . . . . . . . . 125
7.5 Assignment of objects in a reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 The Bank Account Class Diagram and a simple Object Diagram. . . . . . . . . . . . . . . . . . . 140
8.2 Syntax for the Simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3 Semantics of the Simple Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.1 Dependencies between mOdcl, Maudeling and Kmv . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.2 Translation from Kermeta to Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.3 Integration of Kmv in Eclipse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

viii



List of Tables

3.1 Classification of Contributions according to Property Kinds . . . . . . . . . . . . . . . . . . . . . 42
3.2 Classification of verification techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Query Intent Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Refinement Intent Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Translation Intent Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Analysis Intent Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Simulation Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Intents of transformations present in the Pwcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7 Model transformation examples from the Pwcs falling under the Simulation intent . . . . . . . . 82
4.8 Model transformation examples from the Pwcs falling under the Translation intent . . . . . . . 83

7.1 Common representation of traditional while/if-then-else statements with CondStmt. . . . . . 119

ix





1
Introduction

1.1 Model-Driven Engineering

Over the past five decades, software researchers and developers have been constantly facing new challenges,
forcing them to find new innovative solutions to lower development and maintenance costs, to improve software
performance and reliability, and to better master software evolution. Each time a limit was reached, the software
engineering community created new paradigms, imposing a new vision on how software applications and systems
were managed and developed, which in turn helped mastering development costs and delays; they proposed new
methodologies for designing and modelling these paradigms; and they developed new programming languages,
better suited to their needs and alleviating better abstractions than their predecessors. Figure 1.1 shows how
quickly paradigms shifted from procedural, modular conception in early ’80 to models and model transformations
nowadays.

Advances in programming languages and development platforms during the past two decades have signifi-
cantly raised the software abstraction level at disposal for developers. However, it becomes harder to master the
rapidly growing complexity of software: for example, Thales, a French multinational company delivering critical
systems for aerospace, defense and transportation, noticed that the systems size they deliver to their clients is
multiplied by a factor of 5 or 10 every five years (S. André 2004)! In these conditions, it becomes difficult to
deliver such applications in a reasonable delay, with reasonable costs. One of the major source of this situation
resides in the very nature of languages and platforms: they often have a computer-oriented focus that alleviates
the solution space rather than capturing abstractions of the problem domain (D. C. Schmidt 2006).

Model-Driven Engineering (Mde) emerged in early 2000 as a promising approach to overcome third-
generation general-purpose programming languages limitations. Mde promotes models and model transforma-
tions as first-class citizens for all the facets of the software activity. Among all Mde approaches, Domain-Specific
Modelling (Dsm) consists in focusing on the problem domain, be it technical- or business-oriented, rather than
the possible technical solutions. Dsm is supported by Domain-Specific (Modelling) Languages (Dsmls) that
capture domain concepts, giving modellers the feeling to work with their usual notions. Models are then manip-
ulated through model transformations to translate, analyse, generate code or documentations, extract relevant
information, etc. However, to achieve this level of automation and reuse, Dsmls need to be precisely defined in
order to enable machine manipulation, without sacrificing user readability.

After now more than a decade of intensive research, Mde tool support is reaching a maturity level that enables
its use in many different application targets. Among others, some industrial fields have highly competitive
markets, which requires mastering the software complexity by providing a higher automation level for repetitive
tasks whenever possible. More importantly, these industrial applications like aeronautics, automotive or space-
oriented applications must obey strict security requirements for ensuring that embedded softwares are correctly
implemented.

Some industrial sectors already adopted tools and practices that share a lot with Mde new paradigms (for
example, Airbus, the European aeronautics consortium, develops part of their embedded software using Scade,
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Figure 1.1 – Software Engineering Evolution (from Kabore 2008)

a high-level synchronous language that automatically generates low-level code). However, to beneficiate from
a better impact in such highly competitive industries, Mde has to grow to a full engineering discipline with
accurate development methodologies, and tool support that encompasses all steps of the software development
lifecycle.

1.2 Software Validation

The Software Engineering discipline traditionally distinguishes between two different concerns (Society 2004).
On the one hand, validation is the process of building the right system, in a way that it meets the different
stakeholders’ desiderata. On the other hand, verification aims at building the system right, in a way that it
complies with its specification, in order to eliminate, or at least sufficiently reduce, possible error flaws. While
validation is made difficult by the natural changes occuring along a project, verification can be automatised to
a large extent. Several techniques or approaches are nowadays available for determining if a system satisfies
a given set of requirements. Among all of them, we will distinguish between two conceptually different ones
that are commonly encountered in the context of these industrial developments, namely testing and formal
verification.

Testing is performed on an actual implementation of a system Basically, the idea consists of feeding the
system with some inputs, then, determining, by observing the resulting outputs, if the system behaves as
expected. The main disadvantage of testing relies in the so-called “coverage” problem: supply adequate inputs
to properly explore all possible execution paths is very hard, especially when subtle errors occuring only in highly
exceptional cases become hard to reproduce. Several techniques try to overcome the limitations of testing, by
automating the production of adequate inputs, by reaching a better ratio of coverage, and by automating the
input/output comparisons. Among other popular approaches, we can cite model-based testing (Pretschner 2005;
Selim, Cordy, and Dingel 2012b), and mutation testing (Jia and Harman 2010).

For safety-critical software however, testing is insufficent, since certification standards are higher. Indeed,
all computer scientists have experienced costly bugs in embedded software: everybody is familiar with the
overflowed computation of the Ariane V maiden flight (Lions 1999); or the unit error of the Mars Orbiter
(Stephenson et al. 1999), among others. Failures of this kind of systems may have huge financial and human
losses.

In this context, but also every time a deeper confidence within software systems is required, more powerful
techniques are necessary. Instead of working directly on the system at hand, formal verification techniques
usually operate on a model of the system, and consist of mathematically proving the correctness of a system with
respect to a set of requirements, called in this context properties. The main disadvantage of formal verification
is the so-called combinatorial (or state) explosion problem: exhaustively exploring all possible paths is generally
impossible, especially for infinite systems. Popular approaches for formal verification are model-checking (E. M.
Clarke, Grumberg, and Peled 1999), theorem-proving (Duffy 1991), bounded satisfiability checking (Jackson
2011) and abstract interpretation (Boulanger 2011).
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Figure 1.2 – Mapping Dsmls to several, specialised verification domains. On the left, the classical approach
defines one mapping per Dsml per domain; on the right, our approach defined only one mapping per domain
at the level of the transformation framework.

1.3 Towards the Formal Analysis of Model Transformations

A natural idea would consist of adapting formal analysis techniques developed in the context of software engi-
neering in general, to the specific area of Mde, especially for sensitive application domains. However, it is not
as easy as one could expect.

The analysis of model transformations is complicated by the fact that models are richer structures than the
ones traditionally manipulated by programming languages, ranging from simple data structures, to full syntactic
representation of transformations themselves in the context of higher-order transformations (Tisi et al. 2009).
Since Mde practitioners do not generally possess a strong knowledge in formal analysis, but have at the same
time to work on critical industrial applications, a practical methodological guide could help them precisely target
the tasks they have to perform in order to prove the correctness of their transformations.

Development and analysis time are sometimes difficult to conciliate: the former usually proceeds in Mde
using “agile” methods, i.e. with iterative and incremental evolutions, constantly adapting to new requirements,
a process facilitated by the transformations that automate part of the development; whereas formal analysis
usually requires to have at disposal the entire application before applying verification techniques. It is possible
to help, at some extent, transformation designers during the development with targeted static analysis tech-
niques (by, for example, detecting that a transformation rule will never be applicable, or that a variable is never
initialised), but more powerful techniques, especially when addressing semantic properties, requires transfor-
mations to be fully defined. It is then important to adopt development methodologies that help reducing the
development costs, and at the same time allow to capitalise the knowledge and experience in formal analysis.

1.4 Contributions

In this Thesis, we contribute to the problem of formal analysis of model transformations regarding this double
perspective:

1. For helping Mde practitioners ensuring the correctness of their model transformations, we propose a
Description Framework that helps relating which properties are relevant to which kind of transformations.

2. For helping reducing development costs and capitalising formal analysis knowledge and experience, we
propose define bridges towards verification domains directly at the level of the transformation framework
instead. We demonstrate the feasability of this idea by applying it to Kermeta, a popular Mof-compliant
object-oriented metamodeling framework, offering model-checking and theorem-proving capabilities.

Figure 1.2 compares the classical approach in the literature with our proposal. It is not realistic to hope to
achieve formal analysis of any kind of property by using only one approach or tool (the so-called “one-fits-
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all ” approach): all verification techniques for reasonably interesting properties suffer from the general issue
of undecidability and state explosion. When dealing with various Dsls, the classical approach expects that
engineers will define several mappings for each Dsl, by means of transformations, as depicted on the left of
Figure 1.2: each mapping will target a dedicated verification domain that covers a limited, but specialised,
area that will try to improve analysis results by using dedicated algorithms and data structures. What we
propose is to generalise this approach at the level of transformation frameworks: as depicted on the right of
Figure 1.2, only one bridge for each verification domain is required, defined once and for all. This way, any Dsl
defined within a transformation framework directly benefits from all these mappings for free. For this approach
to be effective, a reference semantics of the transformation framework language is required, i.e. a semantics
defined independently of the targeted verification domains. This semantics is used to precisely identify which
abstractions are necessary for which verification domain. For example, loops are a common source for non-
termination: for formally ensuring termination, one can focus on reentrant rules or recursive operations, and
absract away from the manipulated data. Of course, this approach comes at a price: it is no longer possible to
finely tune the mappings towards verification domains with the specific information contained in Dsls; rather,
it shifts the effort into defining the necessary abstractions one have to define to overcome undecidability, which
can be precisely documented using the reference semantics.

The remainder of the Section details our contributions: the next Section elaborates on the Description Frame-
work; Sections 1.4.2 and 1.4.3 details how we apply the previous idea for the Kermeta transformation framework
with a bridge into Maude, a rewriting system offering model-checking and theorem-proving capabilities.

1.4.1 A Description Framework for Model Transformation Intents

Several aspects of model transformation have been thoroughly investigated in the literature: for example, how
to build model transformation languages or to apply model transformations in different contexts (Sánchez
Cuadrado, Guerra, and de Lara 2011; Syriani and Vangheluwe 2010a). However, very few research has been
conducted on the different intents, or purposes, that model transformation can typically serve in Mde. In
particular, how they can be leveraged for development and validation activities is a clear lack in the literature.

In this Thesis, we propose the notion of intent for capturing the purpose of a transformation and its expected
goals. We present a description framework for model transformations intents that allows the construction of
a model transformation catalogue through the identification of properties that an intent must or may possess,
and any condition that support or conflict with an intent. For instance, the Translation intent describes model
transformations aimed at translating the meaning of a model in a source language in terms of concepts of another
target language, whose result can then be used to achieve several tasks that are difficult, if not impossible, to
perform on the originals. Thus, for a transformation to be considered as a valid realisation of the Translation
intent, it should produce an output model that maintains a semantic relationship with the input.

We expect to propose an useful guide for Mde practitioners and researchers. For instance, it would help
engineers identify the model transformation intent that best matches a particular Mde development goal,
and consequently facilitate the subsequent model transformation development, by providing a comprehensive
explanation of the properties a model transformation has to satisfy. This work is a first step towards a validation
engineering in Mde.

1.4.2 A Formal Specification of Kermeta

For addressing the necessity of multiple verification domains, we define in this Thesis a fully-fledged formal
semantics of a relevant subset of Kermeta. Such a semantics can serve as a reference, independent of Kermeta’s
current implementations (historically in Java, now ported to Scala), so that users can “play” and reason about
the language independently of the execution platform, and propose more advanced analysis tools without being
forced to deal with the entire platform.
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1.5. Thesis Outline

The formalisation is defined at the transformation framework’s level: any Dsl whose specification fits the
addressed Kermeta subset receives de facto a formal underground without any extra effort. This radically con-
trasts with traditional ad hoc approaches for equipping Dsls with formal semantics, that depend on the chosen
target execution as well as the target verification domains. The proposed formalisation does not rely on any
tool-oriented syntax or formalism, relieving the reader from learning new languages just for the purpose of un-
derstanding Kermeta’s semantics. Rather, the formalisation relies solely on mathematics and computer science
concepts: set theory captures the meaning of the metamodels’ structures; and rewriting rules capture the mean-
ing of Kermeta’s dynamic aspects (i.e. those language constructions used for expressing Mde transformations)
by means of a structural operational semantics.

By choosing an adequate target verification domain, it becomes possible to tailor the semantics to a partic-
ular analysis by defining appropriate, documented abstractions helping to overcome verification undecidability.
Starting from the fully-fledged reference definition, one consciously defines which parts are irrelevant for a given
analysis, and consequently abstracted away, instead of leaving them implicit. For example, performing shape
or escape analysis would focus on Kermeta operation calls sites and model topology, abstracting from precise
attribute values; whereas seeking for model-checking capabilities requires to represent as precisely as possible
data structures manipulated during the transformations.

1.4.3 Kmv: a Proof-of-Concept Kermeta Model-Checker

As an example of formal verification for Kermeta, we propose in this Thesis Kmv, a proof-of-concept imple-
mentation of Kermeta’s semantics that enables model-checking as well as theorem-proving.

Choosing Maude as a target verification domain pursues three objectives. First, it shows that the mathemat-
ical formalisation can effectively be concretely implemented in a tool, proving that mathematical formalisation
are not just an exercise, but is rather concretely anchored in software engineering practice. Algebraic speci-
fications and rewriting, the two core components of Maude, give the possibility to translate the formalisation
into a semantic target that offers constructions close to the mathematical tools, reducing the semantic bridge
between the specification and the implementation. Second, Maude can execute such specifications, providing
an alternative execution platform to Kermeta; but more interestingly, Maude provides model-checking as well
as theorem-proving capabilities that are interesting to explore in the context of transformation languages like
Kermeta. We illustrate the capabilities of such a translation with small, yet representative examples covering
different kinds of properties.

1.5 Thesis Outline

This Thesis is organised into three Parts. Part I provides a background on Mde and the formal verification of
model transformations, and details our methodological framework for model transformations verification. This
Part consists of three chapters:

Chapter 2: Mde: (Meta-)Models & Transformations. This Chapter constitutes a background on Mde
and Dsmls, as well as a quick review of the existing model transformation tools.

Chapter 3: Formal Verification. This Chapter introduces the Verification Problem by stating what dis-
tinguishes Formal Verification from other validation approaches, and reviews classical approaches in the
domain. It also surveys the usage of Formal Verification in the domain of model transformations, providing
a comprehensive panorama of existing contributions and research trends.

Chapter 4: Model Transformations Intents Description Framework. This Chapter describes our ap-
proach for describing model transformation intents properties. It presents an Intent Catalog of 21 common
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transformation intents, and presents a high-level formalisation of key characteristic properties of transfor-
mation intents. The framework is applied on a real-life case study consisting of a chain of more than 30
model transformations, aiming at producing hardware code for a Power Window, starting from high-level
requirements.

The other Parts focus on the verification of Kermeta transformations. As an enabler for Formal Verification,
Part II addresses the Formal Semantics of (a subset of) Kermeta.

Chapter 5: Kermeta in a Nutshell. This Chapter is an introduction to Kermeta, the model transformation
language studied in this Thesis. It briefly explains how the language was designed, and presents the
Structural and Action Languages, core constituents of Kermeta.

Chapter 6: Structural Language. This Chapter formalises the Structural Language, used for defining meta-
models and models used within Dsls. The formalisation uses set theory.

Chapter 7: Action Language. This Chapter formalises the Action Language, used for specifying model
transformations in general. In particular for our work, this Language allows the definition of Dsls be-
havioural semantics. The formalisation is expressed in terms of Structural Operational Semantics.

Finally, Part III addresses the Formal Verification of Kermeta transformation using Maude, by presenting our
proof-of-concept tool, Kmv, and demonstrating its use on some examples.

Chapter 8: Maude in a Nutshell. This Chapter is an introduction to Maude, the target domain used for
verification. It briefly explains how Maude specifications are built using Equational and Rewriting Logics.

Chapter 9: Kmv: Verifying Kermeta with Maude. This Chapter explains how Kermeta’s formal seman-
tics is implemented in Maude. This provides an alternative execution engine for Kermeta transformations,
but also a platform for analysing such transformations.

The Thesis finishes by a general Conclusion that summarises the Thesis content and sketches some perspectives;
Appendices gather fully detailed material used within the Thesis, as well as a Publication Summary.

Chapter 10: Conclusion. This Chapter summarises the main contributions and results, and outlines possible
future research directions.

Appendix A: The Finite State Machine Example. This Appendix summarises the code for the Finite
State Machine example in the languages used in the Thesis: first using Mde techniques, then with
Kermeta, and finally with Maude.

Appendix C: Publication Summary. This Appendix summarises our publications.
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Models, Model Transformation & Model
Transformation Verification
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This Thesis is at the crossroad of two research fields: Model-Driven Engineering (Mde) and Formal Verification.
The goal of this Part is to explore each field and try to reconcile them.

Chapter 2 explores the core Mde notions, models and model transformations, to provide the necessary
background for understanding our work. It covers the fundamental concepts, but also provides an insight on
the Mde techniques and tools.

Chapter 3 explores the domain of Formal Verification applied to Mde. After recalling background notions
around Formal Verification, it proposes a comprehensive state-of-the-art based on a tridimensional approach
for studying the field. This Chapter is based on a paper (Amrani et al. 2012b) presented at the Workshop on
Verification of Model Transformations (Volt).

In Chapter 4, we try to reconcile Mde with Formal Verification by proposing a so-called Description Frame-
work that consists of a methodology for supporting model transformations designers through the task of ensuring
the correctness of their transformations. This Chapter is based on a preliminary study (Amrani et al. 2012a)
presented at the Workshop on Analysis of Model Transformations (Amt), and was later extended and then
recently submitted as a Journal paper (Amrani et al. 2013).





2
Model-Driven Engineering: (Meta-)Models & Transformations

During the last decade, software engineering radically changed. On the one hand, the engineering practice
evolved in order to improve the design and deployment of software, but also its maintenance over the years.
Those changes became necessary to respond to the stakeholders demands, including shorter development delays,
but also better evolution of software functionalities over time. On the other hand, new platforms, with new
challenges and specificities, appeared recently: smartphones or graphical tablets, embedding more and more
elaborated processors, and consequently, software; but also more critical applications in the automotive or
aeronautics industries, among others, make reliability become crucial.

Model-Driven Engineering (Mde) seems to be a promising approach for reducing development time and costs,
without sacrificing the quality and reliability of software. Mde promotes models and model transformations
as first class citizens for all the facets of the software activity. Among all existing approaches following the
Mde principle, Domain-Specific Modelling is an approach that consists in focusing on a narrowed technical
or business domain for promoting automation and reuse. In this thesis, we study Kermeta1, a metamodelling
framework designed to support Domain-Specific Modelling in an object-oriented fashion.

This Chapter clarifies the concepts, the terminology and the foundations of Mde core artifacts, with the
objective to provide the necessary background knowledge to understand how our formalisation for Kermeta
is built: Models and Model Transformations are discussed in Sections 2.1 and 2.2 respectively; Section 2.3
explores Domain-Specific Modelling both from a Software Engineering viewpoint, but also from a mathematical
viewpoint to explain our formalisation methodology.

This Chapter illustrates Mde concepts and Domain-Specific Modelling with several examples. Although
we tried to keep things sufficiently simple, we assume the reader is familiar with at least two languages, very
standard and commonly used in Mde, namely the Object Management Group (Omg) languages Uml (Universal
Modeling Language) (Object Management Group 2011a) and Mof (Meta-Object Facility) Object Management
Group (2006). Since Mof is the underlying formalism for representing structures in Kermeta, it is thoroughly
discussed in Part II.

2.1 What is a Model?

Etymologically speaking, the word “model” derives from “modulus”: it can be translated as measure, rule,
pattern, or example to be followed. Not suprisingly, this notion is exploited by many scientific disciplines, like
physics, chemistry, biology, but also by less fundamental sciences like meteorology. Although the respective
meaning of “model” in these discipline can vary, they all share a common characteristics: a model is a sound
abstraction of an original (or, a subject) that depends on the science matter. Being an abstraction means that
a model retains a relevant selection of the original’s properties, or characteristics, which have to be understood
both regarding the original’s context, and the user’s concerns. Being sound means that a model can be safely
used in place of the original for predicting, or infering things about the original (Stachowiak 1973).

1http://www.kermeta.org
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Figure 2.1 – Token versus Type Models (adapted from T. Kühne 2006) Moussa §Add Subject Domain /
Modelsđ

As it is generally the case in science, the precise meaning of the term “model” in the Computer science
and engineering discipline highly depends on the particular field of its use: for instance, image reasoning and
software analysis both use models, but the respective models’ relationships to the original, their use as well as
the kind of reasoning, predictions and inferences engineers can perform differ radically.

No real consensus emerged over the last decade in the Mde community for precisely defining what a model
is. However, the experience from academics, but more importantly from industrial practitioners, established a
common sense that this Section explains, based on the work of Atkinson & Kühne (Atkinson and T. Kühne
2002a,b; T. Kühne 2006): we first explore the relationship between a model and what it models; then study the
cornerstone notion of instantiation and the notion of metamodel. This allows us to propose an approach for the
formalisation of metamodelling, which serves as a basis for Kermeta’s Structural Language in next Part.

2.1.1 Model Kinds

A model is basically a representation of a subject, but it is not the subject: a model always operates an
abstraction regarding its original, and it becomes relevant only when paired with this original. This relationship
between a subject and a model is crucial in Mde, and can be of two kinds: a model is either a token model
or a type model. This distinction is illustrated in Figure 2.1 with the classical example of a road map, which
basically depicts cities interconnected through roads (T. Kühne 2006).

Token models are models that directly represent originals in a one-to-one fashion, by capturing singular
aspects of the original’s elements. At the bottom of Figure 2.1, we find two models (in light green) for
representing the map on the left. The model in the middle associates one model element to exactly one
city or road, and links things together with respect to the map. Notice that at this point, some details
of the reality are abstracted away: e.g., the model does not retain how many legs a road is composed of.
The model in the bottom right represents the same map, but with even fewer details: here, only countries’
capitals are retained, and only the longest roads are retained in the model to link capitals together.

Type models are model that classify, or conceptualise, the original’s elements in a many-to-one fashion, con-
densing complex original’s features into concise descriptions, thus capturing universal aspects of the orig-
inal’s elements. In the dark green models on top of Figure 2.1, we only find two model elements, City and
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Figure 2.2 – Ontological versus Linguistic instantiation (adapted from (T. Kühne 2006))

Road, which classify the actual elements represented by the map by stating the universal nature of maps:
roads link two cities, and cities are possibly connected through several roads.

The classification step, required for models to qualify as a type model, induces a specific relationship: many
elements are mapped to one concept (e.g., Bettembourg, Luxembourg and so on are mapped to City). This
relationship, between elements and concepts, should not be confused with generalisation, another very common
relationship in Mde. Generalisation relates several concepts to one single (super-)concept and thus deals with
type models elements, instead of talking about the “real” objects. As an example, Figure 2.1 shows another type
model depicting maritim roads: ShippingRoads connect Harbors. Maritim and terrestrial roads are conceptually
very similar if we forget about (or abstract away from) their support: it makes sense to generalise them by
considering Connections between Locations, as represented on the top of Figure 2.1, using the classical Uml
plain arrow.

Mde makes use of token and type models under different names: roughly speaking, as the Uml-based syntax
already suggests, token models and type models respectively correspond to object and class diagrams. A token
model is an instance of a type model if they relate to the same subject domain, the former as a representation
and the latter as a classification.

2.1.2 Instantiation

Token and Type models have a relationship with the artifacts from the subject domain. Instantiation is, on the
contrary, a relationship internal to models. We explain now the fundamental distinction between ontological
and linguistic instantiation, since it is a core point in formalising Kermeta’s Structural Language.

Figure 2.2 presents a possible modelling of concepts related to paper sheets, as it can be needed in a printing
company. On the very left on white background, the objects belonging to the expertise domain, sheets, are
described with respect to two levels: the conceptual level of sheet at the top, symbolised by a sheet surrounded
by a lamp; and the actual level of objects at the bottom, with (an image of) an actual sheet, for example, a
witness sheet extracted from this PhD manuscript. The conceptual level can be thought of as a set covering
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all possible sheets in the world, past and future. Therefore, it can be defined intentionally, using a bunch
of predicates indicating whether an object from the reality can be considered as a sheet; or extensionally, by
enumerating all objects considered as a sheet (which is impossible for infinite sets, as it is for sheets). These
descriptions are captured with two functions ι and ε. Our witness sheet object then naturally belongs to the
extension of the sheet concept.

In the green background, this expertise domain is modelled for computer usage, i.e. for being able to reason
about sheets (e.g., assembling sheets for creating a book, flipping or rotating a sheet, etc.) Both levels are
modelled (using here the classical Uml representation for class and object diagrams): the class Sheet models
the idea of sheet at a conceptual level; the object :MySheet models the witness object from the domain (note
that we use two different fonts for denoting classes and objects). As we did in Figure 2.1, both models represent
objects from the subject domain of the white background box on the left: the µ functions capture the association
between models to their representatives. However, they qualify as models because they perform an abstraction
step regarding their originals: for instance, the class does not retain those sheet features not relevant for book
assembling, like the weight of the paper; and the object is unable to distinguish between perfect copies of the
same sheet to be assembled.

In the blue background, the model domain is in turn modelled by elements that describe the language used
for modelling the subject domain. In other words, elements from the blue bakcground have as a subject domain
the elements of the green background: as the intuition already suggested, elements from the top layer correspond
to Classes whereas those from the bottom layer correspond to Objects. As language elements, artifacts depicted
in the blue background also have a precise meaning, i.e. the one traditionally attached to languages, as depicted
in the white areas surrounding the green and blue backgrounds. For instance, the Object class represents a
language (fragment) LObject (hence, the µ function). As a language, LObject describes the set of acceptable
sentences valid for Object, i.e. recognised as an Uml Object: this can be described extensionally (all acceptable
sentence of the language recognised as Object) and intentionally (with a few characteristics like slots, names,
links and so on, just as the Object Management Group (2006) has formalised it for Mof). The same obviously
stands for Class.

So :MySheet represents the actual witness sheet within a computer: it is at the same time an instance of
Sheet and an instance of Object. However, this instantiation relationship has a different nature:

Ontological instantiation The element : MySheet is an ontological instance of Sheet because it is a specific
incarnation of the general concept of sheet: :MySheet refers to an element belonging to the extension of
the concept referred to by Sheet, which is formally expressed by:

µp:MySheetq P εpµpSheetqq

Linguistic instantiation Sheet and :MySheet are linguistic instantiation of Class and Object respectively.
This fact is further enforced by the use of the corresponding Uml dedicated syntax for classes and objects.
Then, Sheet and :MySheet belong to the extension of the language (fragment) meant by Class and Object
respectively, which is formally expressed by

:MySheet P εpµpObjectqq

Although very close, these instantiation relationships are different, as showed in the previous formulæ: with
ontological instantiation, a “detour” via the subject domain is required, forcing us to use the object represented
by :MySheet (i.e., using µp: MySheetq) in the set membership test; whereas with linguistic instantiation, :MySheet
appears as itself for the membership test, because only the form of elements is relevant as opposed to their
content, or meaning for the ontological case. This distinction is made even clearer if we notice that elements
from the blue background are not related at all with those elements from the subject domain (white background
on the left): as a matter of fact, a linguistic model is never a model of its subject model’s subject.
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Figure 2.3 – The Omg Mda Pyramid (from (Thirioux et al. 2007))

2.1.3 (Meta-)Metamodels

With the considerations above, we can now clarify the notion of metamodel largely used in Mde. As the
etymology of the prefix “meta” suggests, a metamodel is a model of a model (Object Management Group 2003,
2004). However, not all models of models can qualify as metamodels. For example in Figure 2.1, the model
at the bottom right is also a model of the model in the middle, but can hardly qualify as metamodel: it has
the same relationship to the subject domain, whereas a metamodel is expected to operate some “detachement”
from its subject. Therefore, only models that are type models of other models can qualify as metamodels, thus
involving an instantiation relationship.

It seems then natural, in an Mde approach, to also use a model to properly define a metamodel. This former
model is then known as a meta-metamodel, and the overall approach is captured by the so-called metamodeling
pyramid of Figure 2.3, as initially proposed by the Object Management Group (2003): the M0 level corresponds
to the “real” world, what we referred to by “subject domain” in Section 2.1.1; the M1 level corresponds to the
model layer, i.e. to token models representing artifacts from M0; the M2 level corresponds to the metamodel
layer, i.e. type models of M1; and finally the M3 level corresponds to the meta-metamodel layer, i.e. a model
for defining (syntactically) metamodels. This pyramid presents two particular features:

• The qualification of M3 as a meta-metamodeling layer is improper with regards to the different instantia-
tions we distinguished previously. As one could expect, the prefix “meta”, applied twice, should correspond
to the application of the same relationship twice, but this is not the case here: the relationship between
M1 and M2 is ontological because M2-artefacts are type models of M1-artefacts (cf. the relation between
: MySheet and Sheet in Figure 2.2), but the relationship between M2 and M3 is linguistic, because the
meta-metamodel describes M2-artefacts’ syntax (just like the relation between Sheet and Class in Figure
2.2). One can still consider M3 as a meta-metamodel if only the instantiation relationship is considered
independently of its nature.

• The pyramid contains a hidden layer, known as the meta-circularity property of Mde meta-metamodels:
the (unique) model in M3 is in fact defined in terms of itself, enjoying again a linguistic relationship with
its syntax. This is particularly useful for reflexivity purposes: all metamodels are syntactically perceived
as being (linguistic) instances of the same meta-metamodel, including the meta-metamodel itself, which
becomes a “regular” M2 citizen.

The first remark has a concrete conceptual consequence from a semantic point of view. Since M3-models capture
the syntax of M2-models, providing a formal semantics for M3 is sufficient to capture the linguistic meaning
of any M2-model, independently of what it ontologically represents. This approach is somehow natural and
unavoidable: the actual meaning of M2-models, in all their diversity, cannot be formally captured once and for
all, since they model various subject domains; but it is enough to reason on this M2-model which represents
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M M

M MM

P P

�
Figure 2.4 – Formal construction for metamodel and model sets for Mof. Languges Lo and Lc of Figure 2.2
are renamedM and M respectively. Instantiation is now more clear: linguistic is captured by set membership
P; ontological by a specific relationship �. Red arrow still denotes µ functions for representation.

what is necessary to know about the domain, and what will be computationally manipulated. Defining the
“right” model for a domain is therefore subsequent to design choices, guided by the model’s purpose and future
uses, but this is not a exact science. As a direct consequence, it is impossible to infer properties on models that
are not somehow “included” within the model.

The second remark has direct consequences from an engineering point of view. Since the meta-metamodel
can be treated exactly as any other metamodel, it favors reuse and reduces development costs of metamodeling
frameworks using the well-known bootstrap technique: once a first core version of a metamodeling framework is
mature and stable enough, treatments on the meta-metamodel can be handled using the framework itself. It
also facilitates metamodel exchange and compatibility, if metamodel bridges (Deltombe, Le Goaer, and Barbier
2012; Wimmer and Kramler 2005) are defined between already existing meta-metamodels2.

2.1.4 Discussions

We discussed in this Section models, the first key artifact in Mde. We explained what a model is, and identified
two relationships:

• an extra-model relationship, i.e. a relationship between a model and its subject, where token models
correspond to the Uml notion of “object diagrams” and type models to Uml “class diagrams”;

• an intra-model relationship, i.e. a relationship between models corresponding to the Uml notion of
instantiation, and distinguished between ontological and linguistic instantiations.

The second relationship shows that from a linguistic viewpoint, two languages are required to describe both levels
of models: in Figure 2.2, Lo captures the meaning of object diagrams, or token models; whereas Lc captures the
meaning of class diagrams, or type models. This is not surprising: Mof itself is organised similarly. Metamodels’
syntax is captured by eMof, and models’ syntax by cMof.

We follow the same perspective for our formalisation of Kermeta’s Structural Language. The following
Definition introduces the notations we will use from now on for these notions:

Definition 2.1 ((Meta-)models — Conformance). M and M are the sets of all metamodels and models respec-
tively, as defined by the (Mof) meta-metamodel. For a given model M P M and a given metamodel MM PM,
we note M � MM if M conforms to MM. The set of all models conforming to MM is noted LpMMq.

Figure 2.4 illustrates this Definition by relating each set to its corresponding Mof metamodel, and by presisely
distinguishing between each type of instantiation. In fact,M and M describe the form, or the syntax, of meta-
models and models respectively: a metamodel MM PM basically consists in declarations that bind metamodel
elements’ names to (syntactic) types and other information with respect to a particular topology defined by the

2Bridges between technical spaces are discussed in Section 4.5.3, as a particular case of a Translation between two metamodels.
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Mof meta-metamodel; a model M PM consists of a collections of objects (also called class instances) that pos-
sess a type, i.e. its referring class, and a state, represented by the values of its properties (i.e. Mof’s attributes
and references).

The ontological instantiation is captured by the conformance relationship �, as depicted in Figure 2.2 for
our Sheet example: this relationship relates two models whose originals are in the same domain, but living at
two different logical levels (i.e. the conceptual and the actual ones). Since computers do not have access to the
things they model, a “real” ontological test cannot be mechanised; instead, a syntactic conformance predicate
is defined to figure out wether a model can be regarded as an (ontological) instance of a type model.

Mof meta-circularity property becomes now clearer: as any other language, metamodels’ syntax can be
described by a metamodel, i.e. there exists a particular metamodel MMM, conforming to M, that exactly
captures metamodels’ syntax, i.e. the basic elements constituting metamodels (such as packages, classes and so
on) as well as their relationship (e.g., the subpackage relation cannot be cyclic).

2.2 Model Transformations

The previous Section provided a discussion about models, the first central notion of Mde. Models capture
various data structures, spanning from elementary ones like sets, to arbitrarily complex ones. But they are
inherently static, in the sense that they just capture concepts and their relationships.

This Section discusses model transformations, the second central notion of Mde, which is computational:
model transformations allow the computerised manipulation of models in various ways. As one can expect, this
area is also very complex and can be declined in many different flavours. We provide in this Section a panorama
of this area, starting from a working definition that highlights the core components of model transformation.
We then discuss each component from our perspective of semantics specification and formal verification.

2.2.1 Definitions

Historically, one of the first definitions was proposed by the Omg, in straight line with the Model-Driven Ar-
chitecture view. The Object Management Group (2003) perceives transformations as "the process of converting
one model to another model of the same system". Immediately after, the system-centric view was enlarged by
A. G. Kleppe, Warmer, and Bast (2003): "a model transformation is the automatic generation of a target model
from a source model, according to a transformation definition". This definition shifts from the system-centric
view in order to consider general source/target models, insisting on the fact that transformations are mostly
perceived as directed and automatic (i.e. without users’ intervention) manipulation of models. Tratt (2005)
describes a transformation as "a program that mutates one model into another", insisting on the computational
aspect of transformations. More recently, two contributions widened the perspective with two important as-
pects: Mens and Van Gorp (2006) proposed to see transformations as "the automatic generation of one or
multiple target models from one or multiple source models, according to a transformation description", whereas
Syriani (2011) re-introduced the crucial importance of the specific intention behind transformations by defining
transformations as "the automatic manipulation of a model with a specific intention".

We propose a broader definition that clearly embeds the dual nature of model transformation, distinguishing
its specification from its execution, and places the transformation’s intention at its core:

Definition 2.2 (Informal Definition from Amrani et al. (2012b)). A transformation is the automatic manip-
ulation, conforming to a specification, of (a) source model(s) to produce (a) target model(s) according
to a specific intent.

Figure 2.5 depicts the elements involved in a model transformation. An input model, conforming to a source
metamodel, is transformed into an output model, itself conforming to a target metamodel, by executing a trans-
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Figure 2.5 – Model Transformation: the big picture (adapted from (Syriani 2011))

formation specification. A transformation specification is defined in terms of the source and target metamodels,
whereas its execution operates on the model level. Both source and target metamodels, as well as the trans-
formation specification, are themselves models, conforming to their respective metamodels: for metamodels,
this is the classical notion of meta-metamodel; for transformations, it actually refers to the transformation
language, or metamodel, which allows a sound transformation specification. Of course, some transformations
may manipulate several source and/or target (meta-)models. For the purpose of this thesis, we only consider
in this document legal transformations, i.e. transformations executing on conforming input models M1

i , . . . ,M
n
i ,

and outputting models M1
o, . . . ,M

m
o eventually not conforming to their respective metamodels.

The rest of this Section discusses both levels for Model Transformations, namely specification and execution,
and reviews the existing classifications and their limitations from the verification viewpoint.

2.2.2 Transformation Languages And Specifications

When specifying a transformation between source and target metamodels, a transformation designer has to
follow the Transformation Language’s syntax. The following Definition captures transformation specification’s
required components:

Definition 2.3 (Transformation Specification). A transformation specification is a triple τ “ ppMMk
i qkPr1..ns,

pMMk
oqkPr1..ms, specq where pMMk

i qkPr1..ns and pMMk
oqkPr1..ms are indexed sets of input and output metamodels,

respectively, and spec P Lτ is a well-formed transformation specification written in a transformation language
Lτ .

As previously noticed by Bézivin et al. (2006), transformations have a dual nature:

• If considered as a model transformation, we emphasise a particular manipulation of source and target
metamodels, as described by spec;

• If considered as a transformation model, we emphasise the linguistic nature of spec, i.e. the relationship
between spec and its defining language Lτ , understood as a computation whose expression relies on a
particular Model of Computation.
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Since here, nothing constrains the nature of the metamodels involved and their manipulation, one can easily
consider transformations of transformations, known as Higher Order Transformations (Hots) (Tisi et al. 2009):
in such case, metamodels represent transformations syntax.

How do model transformation languages allow designers to create transformations? Over the years, many
languages as well as many transformation frameworks emerged, with various model transformation purposes and
targets. We quickly review a categorisation of computing paradigms for model transformations, as previously
stated by Czarnecki and Helsen (2006):

Programming-Based This category encompasses several ones proposed originally by the authors, in which
practices already well-known in General-Purpose Programming Languages are applied, or adapted, for
designing transformations.

Visitor-Based This approach adapts the well-known design pattern (Gamma et al. 1995) for models:
it consists in traversing a tree-based internal representation of a model and then outputting the
corresponding code into a text stream. A good example of this approach is Jamda (Boocock n.d.).

Template-Based This approach adapts the well-known program transformation technique (Visser 2005)
for models: it consists of metacode to access the source model information, and performs code
selection based on metavariables to store intermediate information, then expands them at runtime,
when actual values are known. This approach is very common for code generation, like AndroMda
(Bohlen et al. n.d.) and MetaEdit+ (Kelly and Tolvanen 2008).

Direct Manipulation This approach offers an internal model representation, completed with an Api
to manipulate it, which is directly accessible by the transformation designers. Apis are usually
object-oriented, and users have to define their own libraries for enabling reuse.

Programming-Based approaches are generally well-suited when target metamodels are intented to be
manipulated through text, as so-called “model-to-text (M2t)” transformations. Notice however that M2t
can be considered as a special case of general metamodelling: tools like XText (Bettini 2013) already bridge
both approaches, by easing the definition of a textual representation of a metamodel, or the parsing of a
textual representation for creating a corresponding model.

Operational This category, also known as meta-programming, is similar to the previous one, but usually offers
more dedicated support for handling model manipulation. Generally textual, it consists in enriching the
meta-modeling formalism with facilities for expressing computations, which is actually in the spirit of
what Mof naturally proposes. Obviously, Kermeta belongs to this category, but other frameworks exist
as well, e.g. Epsilon (Kolovos et al. 2012).

Declarative This category is usually based on rewriting, and contrasts with the previous one by letting the
designer specify what is expected from the transformation instead of describing how to realise it, and
is generally equipped with a visual syntax (although most transformation engines actually use a hybrid
syntax, where visual and textual syntaxes are mixed more or less appropriately). Two different approaches
exist in this category:

Relational Transformations are defined based on mathematical relations among source and target meta-
models elements, using constraints. Due to its nature, it makes this approach sometimes not exe-
cutable (since sometimes, the constraints have no solution). Logic and Constraint Programming are
the natural semantic targets for this approach.

Graph Transformation-Based This approach represents models as graphs, and benefits from the well-
established category theory (Rozenberg 1997) for dealing with transformations. However, some native
Mde constructs, like inheritance and containment (Jurack and Taentzer 2010), or multiplicities (),
have been integrated only recently. Examples of such transformation engines are Agg (Taentzer
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2000), Atl ((Atl) n.d.), AtoM3 (de Lara and Vangheluwe 2002), Qvt (Object Management Group
2008), or Viatra (Varró and Balogh 2007), among others.

This categorisation is never perfect: hybrid approaches are common in model transformation frameworks that
combine advantages from several sides.

2.2.3 Transformation Execution

From the runtime viewpoint, a transformation execution is not different from any other program running on a
computer. Therefore, transformation executions can be mathematically modelled as a general Turing Machine
executions.

Definition 2.4 (Transformation Execution). The execution, or semantics, of a model transformation specifi-
cation t is given by a transition system TSt “ pS, I,ÝÑq where S is a set of execution states; I Ď S is a set of
initial states, called input models; and ÝÑ Ď Sˆ S is the transition relation over S.

The precise definition of S and ÝÑ obviously depends on the transformation language. S includes at least the
models involved within the transformation, but often also extra information: for example for meta-programming
languages, features like control flow and local variables are necessary to keep track of the execution logic.
Similarly, ÝÑ is easy to define for graph-based transformation languages, since it follows the semantics attached
to rewriting rules (cf. Rozenberg 1997, for more details).

If a transformation execution is not different from any other executable artifact, what exactly differentiates
model transformation? Darlington and Burstall (1976) introduced in 1976 the closely related notion of program
transformation: the purpose was to transform a program into another program that was expected to preserve
the semantics. Originally designed for coping with complexity involved by recursive programs, the methodology
became popular and gained maturity over the years, if we judge by the number of transformation systems
developed since then (cf. Partsch and Steingbrüggen (1983) for a comparative survey of the tools, and Visser
(2005) for a survey of the techniques and applications).

The difference between program and model transformation is not clear-cut: some model transformation
approaches are very close to actual programming, although models usually manipulate semantically rich data.
Syriani (2011) distinguishes three differenciating characteristics:

• Models are more diverse than program, and can equally represent rich concepts like Dsls as well as
programs, and model-driven environments sometimes represent programs in the same form as models;

• While programming languages are syntactically defined using grammars, leading to abstract syntax trees
as their underlying formalism, models are usually richer and require graphs as their underlying formalism;

• Models provide higher-level constructs for structuring data, such as concept generalisation (or, equivalently
in programming languages, inheritance) and powerful associations (such as aggregation and containment
in Uml) that are rarely present as is in programming languages.

Program or model transformation systems can be equally used for dealing with program or model transformation,
since both are theoretically Turing-complete. But as noticed above, model transformation seems to be a broader
field: it can always manipulate, in the same framework, richer and more diverse artifacts, including programs.

2.2.4 Model Transformation Classifications

From a verification viewpoint, it is important to classify model transformations in order to identify precisely
which properties have to be checked to guarantee correctness. We review the existing classifications available in
the literature, and show their limitations. We then propose a more suitable classification (that we will elaborate
in the next Chapter) for analysing the existing work on formal verification of model transformations.
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2.2.4.1 Features

A first level of classification is to highlight how a transformation is built, i.e. which features compose model
transformations in general. We summarise the features proposed by Czarnecki and Helsen (2006), relevant for
the purpose of model transformation formalisation and verification.

Transformation Units are the basic building blocks used to specify how computations are performed during
the transformation.

Scheduling specify how transformation units are combined to perform the computation, either implicitly, in
which case the transformation designer has no direct control; or explicitly, using a large set of possibilities,
ranging from partially user-controlled schedulers to explicitly modelled Dsls for specifying schedule flow.

For example, most of the graph-based tools are based on rewriting rules specifying which patterns have to
be found in the model, and which pattern have to replace them; whereas in Kermeta, statements are used to
describe one step of the computation.

2.2.4.2 Forms

A second level of classification consists in focusing on the form of the transformation, i.e. in which ways it is
related to the metamodels for its specification and the models for its execution. For this purpose, Mens and
Van Gorp (2006) provided a multi-dimensional taxonomy: we briefly summarise here the interesting aspects of
their classification:

Heterogeneity between the source and target metamodel: if they are the same, the transformation is en-
dogeneous and expresses a rephrasing intention; otherwise, it is exogeneous and conveys a translation
intention.

Abstraction Level related to the detail level involved into models: if the target metamodel adds or reduces
the detail level, the transformation is vertical ; otherwise, if the abstraction level remains unchanged, it is
horizontal.

Model Arity regarding the number of source (respectively, target) models as input (resp., output) of the
transformation.

Source Model Conservation related to the treatment of the source model: if the transformation directly
alters the source model, it is destructive, or in-place; if another independent model is outputted, it is
conservative, or out-place.

This classification is useful from a syntactic viewpoint: it gives information about the number of (meta-)
models involved and their relative abstraction level. However, it is nearly impossible to figure out, from a
verification viewpoint, which properties are interesting to be checked.

2.2.4.3 Intents

We introduced in Definition 2.2 the fact that a transformation follows an intent. We now show how important
this notion is for the Formal Verification activity.

Let us consider a transformation that defines the semantics of a Domain-Specific Language like Finite State
Machines (Fsm). As depicted in Figure 2.6, such a transformation can have two forms:

• either operational, meaning that the semantics is expressed directly on the Fsm’s concepts3, just like
a mathematical definiton would do (e.g., if from the current state s, the automaton reads a letter v

3As we mentioned earlier, an operational semantics is specified on the basis of the Dsl concepts, but usually requires extra
information to keep track of data not immediately present in the Dsl metamodel, but nevertheless required during the execution.
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Figure 2.6 – Two ways for defining Dsls semantics: a translational transformation is out-place, exogeneous
and vertical; an operational one is in-place, endogeneous and horizontal.

corresponding to a transition outgoing from s to s1, then the current state is updated to s1), then the
corresponding transformation is in-place, endogeneous and horizontal;

• or translational, meaning that the semantics is expressed by translating the Fsm’s concepts into another
domain, like Petri Nets, where execution becomes possible, then the transformation is out-place, exoge-
neous and vertical.

The previous example shows that for one purpose, two possible transformations can be designed, each one
leading to the opposite classification of the other. From a verification viewpoint however, properties of interest
attached to a transformation should conceptually be the same (e.g. here, proving the correctness). This is
not surprising, since the previous classification mainly focuses on the transformation’s form, whereas from a
verification viewpoint, the meaning, or the purpose of the transformation is more important in order to figure
out which properties should be established.

We contributed to a community effort that aims at identifying a set of transformation intents that appear
repeatedly in most Mde efforts, to build a Model Transformation Intent Catalog that identifies and describes
transformation intents and the properties they may or must possess. This Catalog has several potential uses:

Requirements analysis for transformations The catalog facilitates the description of transformation re-
quirements, i.e., of what a transformation is supposed to do. Improved requirements can improve reuse,
because they may make it easier to locate suitable transformations among a set of existing ones and reuse
them.

Identification of properties, certification methods, and languages The catalog may help transforma-
tion developers become aware of properties a transformation must possess, how these properties can be
certified, and which transformation language is known to best support their needs (i.e., if the used certi-
fication methods are language dependent).

Model transformation language design The catalog may provide some useful input for designers of
domain-specific transformation languages. For instance, it may be appropriate to design dedicated lan-
guages for specific intents for efficiency or readability. The properties and certification methods associated
with an intent may provide useful information about requirements of a transformation language used for
an intent.

In Chapter 3, we will discuss two of them, namely Simulation and Translation, to analyse which properties these
particular intents should possess. These properties will be formally checked with our tool in Part III.
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2.2.5 Conclusion

As the second key notion in Mde, model transformation allows the manipulation of models in various ways.
We discussed in this Section the core components of model transformations, and provided a comparison with
classical programming. After having compared existing classifications for model transformations, we proposed a
novel approach highlighting transformations intents, which is more suitable from the verification point of view.

2.3 Domain-Specific (Modelling) Languages

A common way to tackle the increasing complexity of current software systems consists in applying the “divide-
and-conquer” approach: by dividing the design activity into several areas of concerns, and focusing each one
on a specific aspect of the system, it becomes possible not only to raise the abstraction level of the produced
specifications, with the immediate benefit of raising the confidence attached to them, but also to make them
closer to each expert’s domains, which facilitate the control of the produced artefacts, and sometimes even
delegating their creations to these experts.

Within Mde, Domain-Specific Modelling (Dsm) becomes a key methodology for the effective and successful
specification of such systems. This methodology makes systematic use of Domain-Specific Modelling Languages
(Dsmls, or Dsls for short) to represent the various artifacts of a system, in terms of models. The idea is simple:
focusing designers’ efforts on the variable parts of the design (e.g., capturing the intricacies of a new insurance
product), while the underlying machinery takes care of the repetitive, error-prone, and well-known processes
that make things work properly within the whole system.

In this Section, we further investigate two facets of Dsml. First, we explore the building blocks of Dsmls,
i.e. what is in the name of Domain-Specific Modelling Languages? Second, we review the core ingredients of
Dsmls, from the viewpoint of languages: what are the basic components of a (computer, formal) language, and
how are they used in the context of Mde?

2.3.1 Dsml Features

This Section helps understanding the notions behind the concept of Dsml, most of them already contained in
the concept’s name itself: what is a domain, in which way can a language become specific to a domain and why
is this desirable, and what are the expectations for using such languages.

2.3.1.1 (Subject) Domain & Reuse

Dsls derive their expressive power from the fact that they directly represent concepts from the subject (or,
equivalently, expertise) domain. Consequently, Dsls enable experts as well as developers to work efficiently by
manipulating what they know best, often using symbols themselves imported from this domain. The idea of
Dsls is by far not new, and not specific to the Mde field: Simos (1995) already provided an useful definition:

We define a software domain as an abstraction that groups a set of software systems or functional
areas within systems according to a domain definition shared by a community of stakeholders. A
domain can be represented by a domain model, which serves as a basis for engineering components
(or assets) intended for use in multiple applications within the domain. The domain model provides
a formalized language for specifying the intended range of applicability of the assets4. (Simos 1995)

The author clearly separates what he calls the domain as the real world and the domain as a set of systems,
which directly refers to the traditional distinction of domains in software engineering:

4The emphasising is from us
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Functional Domain covers the notions from the real world directly related to the business at hand (e.g., bank,
human resources, insurance, or health), which need to be abstracted and represented within the computer
to be able to reason about;

Technical Domain covers the notions meaningful only for software applications and systems development
that require specific tasks among (sub-)systems (e.g., distribution, concurrency, deployment, persistence,
transactions and so on) for which stakeholders’ knowledge is not necessary.

In this respect, Dsls recall the notion of program family, early introduced by Parnas (1977): common features
from the domain are captured once and for all within the Dsl whereas variable parts can be expressed by the
modeller using high-level constructs. This distinction promotes reuse of models at early stages of application
design, as defined by Biggerstaff (1998):

Software reuse is the reapplication of a variety of kinds of knowledge about one system to an-
other similar system in order to reduce the effort of development and maintenance of that other
system. This reused knowledge includes artifacts such as domain knowledge, development experi-
ence, design decisions, architectural structures, requirements, design, code, documentation, and so
forth (Biggerstaff 1998).

2.3.1.2 Raising the Abstraction Level

Since computer scientists have begun programming computers, they faced the need to increase the abstraction
level of programs. The history of programming languages, the primary interface for interacting with computers,
has consistently offered new paradigms for writing and designing programs.

First generation programming languages were operating at the level of the Cpu, directly manipulating the
operation codes used by a particular processor; second generation languages, although specific to a particular
architecture, offered a first layer of abstraction by manipulating mnemonics and macros, allowing programmers
to abstract from the internal binary representation of instructions; third generation languages, with their large
scale of abstraction levels and programming paradigms, offered to programmers the possibility to specify compu-
tations independently from the low-level machine architectures, gaining a substantial expressive power. Among
others, object orientation considers software systems as a large bunch of communicating objects, that enable
programmers to tackle problems and to design systems that were considered impossible a few decades ago.

Mde/Mdd can be seen as the natural continuation of this effort to propose programmers the best abstraction
level they need for each aspect of a large system: functional specification for users, designers, system architects;
but also persistence, maintenance, documentation, and so on. If object orientation enabled Mde underlying
paradigms, Mde operates in fact a radical rupture by going one step further: each aspect of interest is modeled
at the required abstraction level.

Dsls epitomise this abstraction level aspect: Dsls are languages whose model elements directly represent
concepts from the subject domain world, not the code world. Furthermore, Dsls usually enable representations
richer than text: tables and matrices, but also graphical diagrams potentially using dedicated symbols from the
domain. It then becomes possible to propose users richer interfaces for manipulating models: multiple views
over the system can be kept synchronised, allowing users with different roles to work on different aspects of an
application; and information hiding becomes a key capacity for displaying adequate information, hiding low-level
or unnecessary details. With concepts from the domain, adequately represented with domain symbols, Dsls
widen the number of users and involve even the domain experts who are usually reticent to deal with automated
applications.
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Figure 2.7 – Platform-Independant and Platform-Specific Models with Transformations (from Object Man-
agement Group 2003)

2.3.1.3 Narrowing Design Space

As the name indicates, Dsls operate within a narrowed area of interest: they are domain-specific rather than
general-purpose. Since the modelling language is aware of the domain specificities, the modelling tasks are
easier, and further analysis or code generation from models are simplified by the fact that they work on a
smaller focus.

The approach supported by Dsls radically contrasts with other existing Mde approaches, among which the
Model-Driven Architecture (Mda), an Omg proposal launched in 2001 to help standardise model definitions,
and favor model exchanges and compatibility (Object Management Group 2003). The Mda consists of the
following points (A. G. Kleppe, Warmer, and Bast 2003):

• It builds on Uml (Object Management Group 2004), an already standardised and well-accepted notation,
widely used in object-oriented systems. In an effort to harmonise notations and clean the Uml internal
structure, they proposed Mof (Object Management Group 2006) for coping with the plethora of model
definitions and languages;

• It proposes a pyramidal construction of models as sketched in Fig. 2.3: artifacts populating the level M0
represents the actual system; those in the M1 level model the M0 ones; artifacts belonging to the M2 level
are metamodels, allowing the definition of M1 models, and finally, the unique artifact at the M3 level is
Mof itself, considered as meta-circularly defined as a model itself5;

• Along with this pyramid, it enforces a particular vision of software systems development seen as a pro-
cess with the following step: requirements are collected in a Computation Independent Model (CIM),
independently of how the system will be ultimately implemented; then a Platform Independent Model
(PIM) describes the design and analysis of all system parts, independently of any technical considerations
about the final execution platforms and their embedded technologies; these are then refined into Plat-
form Specific Models (Psm) and combined with Platform Description Models (Pdm) to finally use model
transformations for reaching the specific code running on the platform.

5Surprisingly, this claim was considered very innovative because it was seen as being able to reduce the development costs of
frameworks and editors. Unfortunately, this is known from a very long time in other computer engineering fields: in compiler theory,
bootstrapping is a common technique for developing a language’s compiler with the language itself; in rewriting theory, theories can
often (syntactically) described themselves (e.g., Bnf grammars, or even Maude theories). These techniques do not prevent from
paying an initial effort to implement the necessary machinery to make things work before being able to treat the language or the
theory within the framework itself. As we already explained in detail in Section 2.1, the term meta-metamodel for the M3-layer
is improper: the instantiation relationship between M1 and M2 on the one hand, and M2 and M3 and the other do not share the
same nature: the former is ontological while the latter is linguistic (T. Kühne 2006), which is why the meta-metamodel can be
syntactically treated as any other metamodel.
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Although genuinely adopting Mde principles, the Mda approach is questionable in its fundamental philosophy.
First, Uml, which was designed to address every stage of software development (from high-level specification
to low-level implementation details), can clearly not achieve the abstraction goal developers need to properly
address their numerous problems: an “universal” language is rarely efficient and flexible enough for every possible
need without further adaptations (e.g., with profiles and stereotypes as discussed by Atkinson and T. Kühne
2007). Second, the Mda philosophy itself, consisting of separating computational aspects, functional features
and platform-specific details, is difficult to achieve in practice: this leads to many intermediate models engineers
have difficulties to understand because they are partially generated, and capture things they do not completely
master; and these difficulties are enforced by the fact that all model levels need to be kept synchronised, which
is hard to realise when modifications occurring at lower-levels have to be reflected back in higher levels.

Dsls adopt a different approach. Instead of creating models with a general-purpose language like Uml, the
idea consists in specialising the language itself to focus only on a particular domain, and code generators are
the ones that embed platform specificities to reach the final code directly from those high-level models: the
generators are specific to a platform, not the models, and one generator is used for each specific platform.

2.3.1.4 Achieving Better Automation for Reducing Costs

The introduction of Dsmls, either in research projects or companies, clearly differentiates two different roles:
developers in charge of developing the Dsml solution, and users of this solution in charge of creating models.
Using Dsmls then decouples the model creation and modelling framework development activities, which is
beneficial in several aspects.

On the one hand, model creation becomes more focused on the task at hand, allowing modelers to forget
about the low-level coding and development tasks to “make things work”. Since models directly reflect the
expertise domain’s concepts, it is easier to catch modelling errors at earlier stages, specifically because modelling
languages can often include correctness rules that make ill-formed models difficult, or even impossible, to create.
On the other hand, modelling framework infrastructure is harder than creating models, but this is the key point
of Dsml solutions: by allowing model creation at a higher abstraction level, and automating all subsequent
tasks (like persisting relevant information, checking model consistency, executing models, generating code, etc.),
a significant productivity increase is usually observed, compared to pure code solution development. The
decoupling also allows faster reaction to changes, and favor so-called “agile” development processes: models
can be changed, maintained, or adapted to new requirements more easily because they do not directly impact
the underlying infrastructure (unless, of course, modifications of the metamodel become necessary); and new
functionalities to the Dsml framework can be added with a limited impact on existing models (Kelly and
Tolvanen 2008).

Building a Dsml is nevertheless costly, even if this Mde technique includes several methodological advances
for software development that could help reducing these costs. Kelly and Tolvanen (2008) studied the economic
aspects of introducing Dsml in a company’s life, and presented some evidence regarding the productivity gains,
the cost reduction of the complete development of a software solution, and the maintenance costs after solution
deployment. However, these results are considered anecdotal, because they are difficult to assess, reproduce,
or even verify. The Mde methodology is still young, but some academic studies, more independant than the
previous one, show that the benefits are real, even if it is not always at the expected level (cf. Barišic et al.
2014, for a review of existing studies).

2.3.2 Dsmls as Languages: Basic Components

We have seen so far that Dsmls epitomise the Mde methodology, but focus on a particular expertise domain.
Dsmls take the opposite philosophy of what is intended with General-Purpose Languages: by focusing on a
particular domain, they discard by nature the possibility of reuse in areas that go beyond their domain of interest.
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Figure 2.8 – Relations between Dsml components: the abstract syntax is the central component and cor-
responds to a metamodel; concrete syntaxes allow end-users to manipulate the language, they are parsed to
produce a conforming model; the semantic domain(s) will provide meaning(s) for the metamodel constructions
through semantic mapping.

However, thanks to this restriction, Dsmls allow domain experts to achieve a better degree of automation when
getting the final result without knowing all the low-level details.

However, from a theoretical point of view, Dsmls are still languages: it should be possible to study their
essence with the classical tools available from research and practice on formal languages. Figure 2.8 relates the
core components of every language (Harel and Rumpe 2004):

• the form of the language is described by an abstract syntax, which is an internal representation of the Dsl
concepts, and one (or several) concrete syntax (es), which serves as an interface with users to allow them
manipulate the language;

• the meaning of the language is traditionally expressed using a semantic domain (or several ones, depending
on the uses), into which abstract syntax concepts find their meaning through a semantic mapping.

We review each concept, and discuss existing approaches for defining Dsls’ semantics, in contrast to the approach
of this thesis. A concrete example of a simple Dsl is given in Chapter 5, within the context of Kermeta.

2.3.2.1 Dsl Syntaxes

In the context of Mde, an abstract syntax is always a metamodel, conforming to its meta-metamodel. The role
of the abstract syntax is to model the concepts of the language and their relationships, as well as the structuring
rules that constrain the metamodel elements and their combinations, in order to respect the domain’s rule.

On the other hand, a concrete syntax has many forms, usually classified as textual or visual (although “pure”
visual syntaxes are rare since they often include textual parts). A concrete syntax associates to model elements,
or their combinations, a concrete representation that is manipulable by a user (which can already exist in the
expertise domain). Dedicated tools offer nowadays the capability of assisting Dsl designers when choosing
a concrete syntax: manipulating textual representations is usually the easiest, since it already benefits from
advances in the domain of compilation; however, dedicated tools capable of working at the level of metamodels,
like XText, help designers in generating grammars directly from the metamodels and, of course, in parsing
strings according to these grammars. Managing visual syntaxes is perceived as more difficult, but several
advances already provide trustable tools for managing such artifacts. For example, Costagliola et al. (2002)
proposed Vlcc, a graphical system for the automatic generation of visual environments; whereas Ráth, Ökrös,
and Varró (2010) built a tool for synchronising abstract and concrete syntaxes, which is very convenient for
following “live” execution of models.
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From a theoretical viewpoint, it is interesting to compare how metamodelling and traditional compilation
theory approach the syntax problem. When comparing the expressive power of textual grammars like Bnfs and
graphs underlying the metamodelling activity, the latter is strictly more powerful (A. Kleppe 2009): as a matter
of fact, Bnf’s underlying mathematical structures are trees, whereas models are graphs. But this comparison is
questionable in practice: these structures are never used blindly, but usually comes with constraints that change
the general picture.

• Despite the metamodel’s natural representation with graphs, many meta-metamodels impose structural
constraints. For example, Mof has such a constraint, forcing to contain any metamodel element in a
so-called root element, making the overall metamodel look more like a tree than a graph6.

• If we compare the plain usage of both formalisms, grammars and metamodels are equally expressive if we
consider the associated “constraint language”: graphs alone are strictly more expressive than trees; but
metamodels associated with their constraint language, such as the Ocl standard of the Omg, are strictly
equivalent to grammars associated with traditional type-checking techniques.

This again comes with no surprise: using metamodels would not bring us the capability of describing data
structures that could not have been described with already existing programming language; furthermore, many
metamodels are actually persisted using textual representations (and among all possible candidates, the most
popular still remains Xml in Eclipse-based Mof representations) without loss of information (Alanen and Porres
2003).

2.3.2.2 Dsl Behaviour

When the concepts relevant for a Dsl are defined, it becomes necessary to attach to the Dsl a behaviour for it to
be useful. This behaviour will obviously be defined, in the context of Mde, using transformations. Historically,
Dsml’s behavioural aspects were not addressed at the beginning, but received proper attention only lately.
Several overviews exist in the literature (Bryant et al. 2011; Combemale, Crégut, et al. 2009), that all share a
classification along two dual approaches, namely translational and operational semantics, as already depicted
in Figure 2.6. We present the rationale behind each approach, and emphasise their differences.

Translational Semantics is by far the most popular approach: it is exogeneous, meaning that it consists
in translating the Dsl metamodel and behaviour into another metamodel that serves as a target frame-
work for execution. This technique has an obvious advantage: the Dsl directly benefits from the target
framework’s additional capabilities, like testing or formal analysis, which is especially useful for big and
complicated Dsls for which a dedicated tool is difficult to build. But this comes at a price: Dsl designers
need to learn the target language to define the semantics, and to be able to perform such tasks; fur-
thermore, due to the potential difference of abstraction level between both metamodels, mapping results
obtained in the target framework back to the original Dsl metamodel can become tricky.

Depending on which transformation framework is considered formal or not, there exist several seman-
tic targets in the literature complying with the translational approach. Abstract State Machines is an
important formalism (Börger and Stärk 2003) that comes in two flavours: semantic anchoring (Chen,
Sztipanovits, and Neema 2005) on the one hand, and semantic mapping, hooking and meta-hooking (Gar-
gantini, Riccobene, and Scandurra 2009) on the other hand. Petri Nets are another target formalism that
deals very well with state-based Dsl semantics, which is exemplified by de Lara and Vangheluwe (2010).
Graph-Based Transformations and Rewriting Logics share common verification capabilities like reachabil-
ity analysis and model-checking. Among others, Rivera and Vallecillo (2007), later extended with real-time

6Graph-Based Transformation frameworks are a notable exception, since they truely use plain graphs to represent both meta-
models (the so-called typed graphs) and models. However, as already explained in Section 2.2.2, some native Mde constructions
like multiplicities or containments were addressed very recently and require special care.
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behaviour by Riveira (Rivera, Durán, and Vallecillo 2010), formalise Dsl behaviour using Maude (Clavel
et al. 2007); whereas Arendt et al. (2010) with Henshin on the one hand, and citedeLaraVangheluwe2002
with AToM3 on the other hand, are popular tools based on graph transformation enabling the definition
of Dsl semantics in a visual manner.

Operational Semantics is the second approach, popularised by the emergence of graph-based transformation
engines: it is endogeneous, meaning that the semantics is expressed on the basis of the Dsl constructs,
showing how a conforming model evolves over time. This approach has a straightforward advantage: since
Dsl concepts are directly manipulated, the semantics is usually perceived as easier to define, especially
when the Dsl comes with a convenient concrete syntax familiar to the Dsl designers. However, when
it comes to performing further tasks on the Dsl, this approach completely relies on the transformation
engine’s capabilities.

Kermeta clearly belongs to this category: a designer fills Mof operations bodies for performing the
necessary changes to model accordingly to the Dsl intended semantics. We just mention an interesting
overview by Combemale, Crégut, et al. (2009), and provide an in-depth discussion of the related work in
Chapter 7, where Kermeta’s Action Language is formalised.

We do not insist more on Dsml semantics: our main contribution is a semantic specification for Kermeta,
which provides a real-life example on how to proceed for this matter.

2.4 Conclusion

This Chapter reviewed the central notions of Mde, namely models and model transformations for the purpose
of formally specifying Kermeta, a model transformation framework. We explored the relationships of models
and what they represent, emphasising the crucial difference between linguistic and ontologic instantiation, at
the core of the mathematical definition of Kermeta’s Structural Language. We reviewed existing techniques and
tools for model transformations, as well as existing classifications, to notice that from a verification perspective,
they fail at providing a concrete way to design a general method for ensuring transformation correctness. Finally,
we provided an overview of one particular Mde technique, Dsls, both from an engineering and a mathematical
viewpoint. This founded the motivation of our work: by providing a formal semantics of the transformation
language itself, any Dsl whose behaviour is expressed in this transformation language acquires automatically a
formal counterpart.

The following Chapter studies the second dimension of our Thesis, namely Formal Verification, with the
underlying goal of achieving a systematic methodology for ensuring model transformation correctness.

29





3
Formal Verification

After a decade of theoretical developments, and the substantial progress regarding technical advances and tool
assistance, Mde gained the maturity for being used in various domains, spanning from small home-made process
improvements within companies for automating redundant tasks, to complete product lines allowing to manage
the software products’ variability (Weiss and Robert Lai 1999). More recently, Mde has been applied to safety-
critical and embedded applications and systems In these domains, misconceptions or failures may have dramatic
consequences, either in terms of market loss (e.g., the famous Intel Pentium bug ) or in term of human lives
(e.g., the Ariane crash ). This will irremediably call for better techniques for ensuring the correctness of model
transformations which, in turn, will largely benefit to the entire practice of Mde.

Several techniques have correctness in mind, at different levels. The simplest one starts with developers’
habits, when they debug their own production. For Mde, this is still unsufficiently explored, even if notice-
able progress has been done recently (see for example ). Testing and formal analysis are common techniques
for validating software artifacts. In particular, formal analysis (or methods) covers any technique based on
mathematics for the purpose of specification, development, or verification of software (or hardware) systems.

This Chapter provides a background in the domain of formal verification to help position our contribution.
Note however that this Thesis does not contribute to the domain of verification itself (e.g. by defining a new logic
for a new class of properties, or new datastructures for improving model-checking algorithms), but rather makes
an experimental application of pre-existing verification tools in the context of the Kermeta framework. Section
3.1 properly defines what we understand by formal verification, and defines some concepts and terminology.
Section 3.2 presents a state-of-the-art of the practice of formal verification in the context of model transformation.
Maude, as a specification and a verification tool, is extensively covered in Part III. Overall, this Chapter
contributes by identifying the key ingredients of model transformation verification, and by an extensive review
of the literature that provides an up-to-date snapshot of the current practice in the domain.

3.1 The Verification Problem

In Computer Science, a decision problem is a problem meant to be solved using mechanised ways (i.e., using a
computer), and whose answer is boolean, i.e. either Yes or No. Decision problems can be classified according to
their “solvability”: if it is possible to build an algorithm to solve the problem in finite time, the problem is said
decidable, and undecidable otherwise; and semidecidable if such an algorithm exists for only one case (typically,
for answering Yes), that is not guaranteed to terminate for the other case. The well-known Halting Problem,
which consists in determining if a given program executed on a given set of data will terminate or not, is a
classical example of undecidable problems (P. Cousot and R. Cousot 2010).

Shortly stated, the Verification Problem is a decision problem that consists in answering (non-trivial) ques-
tions about all possible executions of a computation. For reaching a more precise definition, we first need to
precise the exact meaning of the involved concepts: what are a computation execution and a question in the
context of the verification problem.
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Execution The execution of a program, a transformation, or any piece of software or hardware material, can
be influenced by several factors, internal or external. In particular, the environment can be a source of
large variations: it can be a human interacting with the program, or the physical world whose data are
captured by sensors and captors. We call concrete semantics a model of an execution under all possible
environments. It basically captures the values of all possible variables involved in the program’s execution,
either internal, i.e. for maintaining information during the execution; or external, i.e. input/output
variables used for communication with the environment. A possibility to represent this concrete semantics
consists of reporting how these variable values evolve over time: Figure 3.1 shows such a description,
where the values are summarised in a variable vector xptq, and are represented as a trajectory over time.
As one can expect, this is mainly a mathematical construction, represented here conceptually, rather than
a representation of what is happening in the reality: as already highlighted, this construction is often
infinite even for very simple programs.

Property In the context of verification, a property captures a set of variable values that characterise erroneous
states (or forbidden zones), i.e. which states are considered, during the computation, as not desirable
because they can cause damages to the system or its environment. Figure 3.2 depicts these states using
red areas.

The Verification Problem can now be precisely stated: we want to prove that independently of the given input
variables, all executions, represented by their trajectories, never cross the forbidden zones representing the
erroneous states. Mathematically speaking, this proof establishes that the intersection of the set of states for
the concrete semantics and the set of erroneous states is always empty. As we expected, this problem is generally
undecidable (at least for “interesting” questions): it is not always possible to answer this question completely
automatically, i.e. without any human intervention, using finite computer resources, without any uncertainty.

In the rest of this Section, we discuss some key characteristics of verification approaches, then review classical
verification techniques.

3.1.1 Characteristics of Formal Verification Approaches

Formal verification techniques have several characteristics that makes them reliable, but difficult to perform
on real-life programs. We contrast and illustrate these characteristics by opposition to other techniques, not
considered as verification per se. A formal verification technique is

Offline (or static): applying the technique should not require actually executing the analysed program. This
implies that the analysed program is treated as an input of the analysis, rather than instrumenting it to
extract relevant data for its correctness.

Exhaustive (or full covering): a verification technique covers all possible execution paths without exception,
which allows to certify the absence of errors under all possible circumstances.

Sound (or correctly abstracting): if the technique concludes to the absence of errors, then it implies there are
actually no errors (at least, for the range of properties checked, not in the absolute).

Exactitude (or preciseness): the technique delivers a boolean answer (in compliance with the definition of a
decision problem).

Since computing the concrete semantics is not feasible in practice, it becomes necessary to operate an approx-
imation: instead of computing each and every step of the execution, several states are amalgamated together
to reduce their number. This is usually referred to as an abstraction, leading to the computation of an abstract
semantics. To ensure the validity of the results, the abstract semantics is an over-approximation: this way,
proving that properties hold on the abstract semantics mathematically ensures that the same properties hold on
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Figure 3.1 – Representation of a program’s con-
crete semantics: all values are captured by a single
vector xptq evolving over time.

Figure 3.2 – Error zones, in red, are variable val-
ues that are forbidden, i.e. that represent bad,
non-desired behaviour.

Figure 3.3 – Correct Abstraction (light green
area) as an over-approximation of the concrete se-
mantics, i.e. covering all possible execution paths.

Figure 3.4 – Representation of Testing : plain
lines are the ones tested; since not all paths
are covered, one can miss erroneous scenarios (in
dashed pink).

Figure 3.5 – Erroneous abstraction: not being an
over-approximation, the erroneous part of the pink
path is not detected.

Figure 3.6 – Bounded Model-Checking checks all
paths, but only up to a certain time, so that late
errors (in pink path) are not detected.

Figure 3.7 – False alarms can occur when coarse-
grained abstractions are used: detected errors do
not correspond to an concrete execution path.
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the concrete one (since the abstract semantics covers more states than the concrete one). To still stay tractable,
an abstraction should balance between computability, i.e. the capacity to model it in order to reason about
the program, and accuracy, i.e. not abstracting too many details in order to preserve the satisfiability of the
properties one is interested in. Figure 3.3 shows a possible abstraction in green: since it encompasses all possible
trajectories, if the green zone does not intersect the error zones in red, so does the actual execution.

From a practical viewpoint, the previous four properties represent an idealistic situation that is sometimes
difficult to reach. In order to propose tractable analysis, tools have to reach a balance between these properties,
and sometimes even break them to propose “lightweight” and “quicker” analysis. We review some classical
techniques and link them with the previous properties.

• Figure 3.4 illustrates the testing approach: testing relaxes exhaustivity, and explores only a few possible
paths for assessing that they do not cross the red zones. As a consequence, if an error happens in a path
not explored for any reason (e.g., not captured by test cases, or not selected at all), it is not detected.

• Figure 3.5 depicts an unsound abstraction, which is therefore incorrect. This case happens when an
abstraction is defined as not being an actual superset of all possible executions: an error can occur in
those path fragments not captured by the approximation.

• Figure 3.6 depicts another unsound abstraction, but for a different reason: it effectively covers all possible
executions, but only up to a certain time. This technique assumes the so-called small scope hypothesis,
stating that if there is an error, it is likely to appear very early in the execution. By doing so, decisions
procedures are considerably accelerated, since only a limited prefix is explored, at the expense of potentially
missing all late errors. This technique is also known as bounded model-checking, and used e.g. in Alloy
Jackson 2011.

• Another possibility is to relax the decision problem’s answer. For example, semi-decidable algorithms
combined with soundness lead to decision procedures that ensure the safety of a system if no errors are
detected, but can loop indefinitely or return erratic answers. This kind of techniques is problematic
because no indication for fixing the errors are given.

Another path is probabilistic analysis: instead of a boolean answer, a correctness score is returned that
indicates to which extent the set of properties hold.

• A last possibility is to require human assistance to overcome the complexity. This is often the case for
theorem-provers like Coq (Bertot and Castéran 2004) or Isabelle/Hol (Nipkow, Paulson, and Wenzel
2013): the user guides the proof towards the goal when automated procedures fail.

Formal verification techniques suffer from well-known issues that hinder their use and their results. We
discuss some of them in the light of their adaptation to model transformation verification.

Explosion problem When not efficiently balanced, the exhaustivity requirement induces that execution rep-
resentations can become so large that it hinders the analysis itself: completely exploring all possible states
can take unreasonable time. For complex transformations, one can expect the same problem.

False Alarms Approximating executions leads to the simple consequence that more behaviours are represented
than the actual ones, sometimes even executions that do not occur in the reality. Sometimes, this leads to
detecting errors called false alarms, i.e. errors that have no counterpart in the concrete program execution.
Eliminating such alarms is a crucial challenge for enabling formal verification to be used in more diverse
contexts. This situation is depicted in Figure 3.7: the green light zone corresponding to the approximation
crosses the top red zone, although there is no erroneous trajectory corresponding to an actual execution
path.
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Backward Traceability When a property is violated, verification techniques usually produce so-called coun-
terexamples, expressed in terms of the abstract semantics. Relating counterexamples back to the concrete
semantics would help interpreting the results more appropriately in the formalism familiar to the pro-
grammer. However, abstractions are often difficult to reverse, with the consequence that the programmer
becomes forced to understand the abstract semantics to hope for correcting the discovered errors. This is,
together with the explosion problem, one of the main challenges in formal verification.

Heavy Mathematical background The requirements for formal verification techniques, namely exhaustivity
and soundness, imply that their formal background is sometimes seen as difficult to learn, and develop.
This also explains why this kind of analysis techniques were mostly used in contexts where the costs of
deploying them counterbalances their investment returns: hardware systems, safety-critical and embedded
systems and applications were for decades the main target for formal verification, because a failure in these
applications could cost millions, or worst, be life-threatening.

These issues are intrinsically connected to the nature of formal verification and the requirements that were
presented earlier. However, to enable a wide adaptation of these techniques to Mde, it is crucial to study how
to leverage them and adapt them to the context of model transformations. In particular, transformations defining
Dsls behavioural semantics carry the same issue, since they represent the Dsl execution. However, because
of the higher level of abstraction, it should be possible to build execution approximations that would allow
their analysis. The second challenge is the versatility of Mde compared to traditional software development:
typically, building models and transformations is an agile process that calls for many development rounds, each
of them being potentially submitted to analysis. This typically breaks the usual way verification is made, since
the full definition of the execution is necessary before exhaustively exploring it for errors.

3.1.2 Common Verification Techniques

This Section briefly reviews common verification techniques by explaining their key conceptual differences. As
recalled earlier, the verification problem has three components: an abstract semantics that approximates the
“real” concrete semantics; a specification of the properties of interest; and a way to check the latter against the
former.

The goal of a verification tool is to automate the checking process, given the other components. The main
variation points for verification techniques are then the following: which (sometimes implicit) form has the
approximation of the program, and which role has the user in building it; and the flexibility, or the range of
properties, the technique is able to handle. Since only practical considerations are important for us, rather than
the theoretical considerations, we only briefly review the main verification techniques in light of the previously
mentioned variation points (P. Cousot and R. Cousot 2010).

Static Analysis consists in a predefined approximation, generally automatically pre-computed over the anal-
ysed entity. Sometimes, the user can parametrise the analysis in order to focus on specific properties.
This technique is nowadays well mastered, and accompanies very often development tools for providing
assistance and computing relevant information from a program to help developers better understand their
programs and correct simple mistakes. Different forms of static analysis have been popularised during the
last decades.

Some techniques are very old, because they were studied for optimising compilation of programs (e.g., live
variables or dead code detection, for optimising registry allocation and code generation). Other techniques
emerged with new programming paradigms like object orientation (e.g., inheritance hierarchy for tracking
fields/methods redefinition and overloading; graph calls for better understanding objects interactions,
escape and shape analysis for improving data representation).
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Model-Checking consists in approximating programs into finite dynamic structures (most of the time, labelled
transition systems), and providing a formal logic for expressing properties of interest independently from
the program. Finite structures obviously result from the fact that some details are lost during the process:
for example, for detecting deadlocks, it is often enough to forget about the actual values of variables and
focus solely on the interactions executed in parallel.

The user has to provide the finite representation; the model-checker basically automates the checking.
Most of the time however, this finite representation is automatically extracted from the program itself,
using static analysis techniques, which relieves the user from this burden. A model-checker usually provides
a violation trace if the property does not hold: this trace indicates a scenario leading to a violation, which
helps the user figuring out what went wrong and where. However, due to the usual semantic gap between
program languages and model-checker representations, it is often a real challenge to trace violation paths
back to the original program.

Theorem-Proving consists of specifying a program by means of inductive properties satisfying verification
conditions. Basically, properties of interest have the form of predicates whose truth is checked against the
inductive properties representing the program.

The user has to provide such a specification; the theorem-prover basically automates the proof burden,
i.e. the fact that these properties are indeed inductive. However, due to the undecidability issue, the
theorem prover sometimes needs guidance to fully discharge the proof. The specification can be partially
discovered directly from the program by using static analysis techniques.

Abstract Interpretation somehow generalises the previous approaches by allowing any kind of approximation
to be defined. The user then has then to prove that the proposed approximation is sound, and the abstract
interpreter automates the verification process for the properties. By using predefined abstract domains,
the approximation can eventually be automatically computed, but this restricts the range of properties
the abstract interpreter is capable of checking.

3.2 A Tridimensional Approach

This Section proposes a classification of Model Transformations’ verifiable properties: it brings an interesting
snapshot of the current state-of-the-art in this area, thus enabling reasoning about evolution and trends of this
research domain. In order to provide a comprehensive interpretation, we propose a tridimensional approach,
as depicted in Figure 3.8, that allows locating each contribution in the literature regarding the constitutive
characteristics for model transformation verification: the transformation involved; the property kinds; and the
verification technique. These dimensions are closely related, but clearly independent. This work allows a better
understanding of the expected properties for a particular transformation, and facilitates the identification of
suitable tools and techniques for enabling their verification.

3.2.1 Transformations

Since the Transformation dimension is already thoroughly reviewed in Section 2.2, we only recall the main
elements for the purpose of this approach:

Definition We reviewed the definitions existing in the literature, and proposed a broader and more complete
one in Definition 2.2, that puts more emphasis on transformations’ intent ;

Languages We proposed a general definition of both levels a transformation operates at, namely the speci-
fication and the execution levels (cf. Definitions 2.3 and 2.4) and explored the various transformation
languages;
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Figure 3.8 – Model Transformation Verification Tridimensional Approach

Classifications We reviewed existing classifications for model transformations: one is based on transforma-
tion’s features (Czarnecki and Helsen 2006), the other is based on the transformation’s form (Mens and
Van Gorp 2006). However, both fail at providing an efficient way to associate transformations properties
according to their intents.

3.2.2 Properties

Expressed in a particular Transformation Language Tl, model transformation specifications relate source and
target metamodel(s) and execute on models. Considering only conforming models for transformations to be
valid is not enough: due to the large number of models transformations can be applied on, one has to ensure
their validity by carefully analysing their properties to provide modelers a high degree of trustability when they
use automated transformations to perform their daily tasks.

This Section explores properties one may be interested in for delivering proper and valid transformations.
Following the dual nature of transformations, we identified two classes of properties: the first class in Sec. 3.2.2.1
relates to the computational nature of transformations and targets properties of Tls; whereas the second class
in Sec. 3.2.2.2 deals with the modelling nature where models plays a prominent role. Table 3.1 summarises the
reviewed papers according to the property kinds identified hereby.

3.2.2.1 Transformation Models: Language-Related Properties

From a computational perspective, a transformation specification conforms to a transformation language (cf.
Fig. 2.5), which can possess properties on its own. In the Mde context, two properties are interesting at
execution time: termination, which guarantees the existence of target model(s); and determinism, which ensures
uniqueness. These properties qualify the execution of transformations written in such languages. Another
property, namely typing, relates to design time: it ensures the well-formedness of transformation specification,
and can be seen as the Tl’s static semantics.

Because they hold at the Tl’s level, these properties directly impact the execution and design of all trans-
formations. Therefore, formally proving them cannot be done by relying on one particular transformation’s
specifics. Tls adopt one of the following strategies for proving execution time properties hold: either the Tl
is kept as general (and powerful) as possible, making these properties undecidable, but the transformation
framework provides capabilities for checking sufficient conditions ensuring them to hold on a particular trans-
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formation; or these properties are ensured by construction by the Tl, generally by sacrificing its expressive
power.

3.2.2.1.1 Termination Termination directly refers to Turing’s halting problem, which is known to be un-
decidable for sufficiently expressive, i.e. Turing-complete, Tls: Graph-Based Transformations (Gbts) have
already been proven to not terminate in the general case (Plump 1998); whereas Mpls often use loops and
(potentially recursive) operation calls, enabling them to simulate Turing machines.

Termination Criteria A large literature for Gbt already exists, which makes exhauste coverage beyond this
paper’s scope. H. Ehrig, K. Ehrig, et al. (2005), introduce layers with injective matches in the rewriting
rules that separate deletion from non-deletion steps. Varró, Varró-Gyapai, et al. (2006) reduce a transfor-
mation to a Petri Net, where exhaustion of tokens within the net’s places ensures termination, because the
system cannot continue any more. Bruggink (2008) addressed a more general approach by detecting in the
rewriting rules infinite creating chains that are at the source of infinite rewritings. Küster (2006) proposes
termination criteria with the same base idea, but on graph transformations with control conditions.

Termination criteria for Mpls directly benefit from the large and active literature on imperative and
object-oriented programming languages. They usually rely on abstract interpretations built on top of
low-level programming artefacts (like pointers, variables and call stacks). For example, Spoto, Hill, and
Payet (2006) detect the finiteness of variable pointers length; and Berdine et al. (2006) use separation
logics for detecting effective progress within loops. Since these techniques are always over-approximations
of the Tl’s semantics, they are sound but not complete, and can potentially raise false positives.

Expressiveness Reduction Reducing expressivity regarding termination generally means avoiding constructs
that may be the source of (unbounded) recursion. For example, DslTrans (Barroca et al. 2010) uses
layered transformation rules and an in-place style: rules within a layer are executed until they cannot
match anymore, which occurs because models contain a finite amount of nodes that are deleted in the
process, preventing recursions and forbidding loops syntactically.

3.2.2.1.2 Determinism Determinism ensures that transformations always produce the same result. Gen-
erally, this property is only considered up to the interactions with the environment or the users. Considering
this, Mpls are considered deterministic since they directly describe the sequence of computations required for
the transformation.

Determinism Criteria Determinism directly refers to the notion of confluence (often called the Church-
Rosser, or diamond, property) for Gbtls, which has also been proven undecidable (Plump 2005). Conflu-
ence and termination are linked by Newman’s lemma (Newman 1942), stating that confluence coincides
with local confluence if the system terminates. This offers a practical method to prove it by using the
so-called critical pairs. The Gbt community is very active and already published several results. Heckel,
Küster, and Taentzer (2002) formally proved the (local) confluence for Typed Attributed Graph Gram-
mars, and Küster (2006) for graph transformations with control conditions. Lambers, H. Ehrig, and
Orejas (2006) improved the efficiency of critical pairs detection algorithms for transformations with injec-
tive matches, but without addressing pairs of deleting rules. More recently, Biermann (2011) extended the
result to Emf (Eclipse Modelling Framework), thus preserving containment semantics within the transfor-
mations. In another area, Grønmo, Runde, and Møller-Pedersen (2011) addresses the conformance issue
for aspects, i.e. ensuring that whatever order aspects are woven, it always leads to the same result.

Expressiveness Reduction Reducing expressivity regarding confluence means either suppressing the possi-
bility of applying multiple rules over the same model, or providing a way to control it. In DslTrans for
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example (Barroca et al. 2010), the Tl controls non-determinism occuring within one layer by amalgamat-
ing the results before executing the next layer. This ensures confluence at each layer’s execution, and thus
for a transformation.

3.2.2.1.3 Typing A crucial challenge for transformation specification is the detection of syntactic errors
early in the specification process, to inform designers as early as possible and avoid unnecessary execution
that will irremediably fail. This property primarily targets visual modelling languages, since textual modelling
already benefits from experience gathered for building Ides for Gpls, where a type system (usually static) reports
errors by tagging the concerned lines. All syntactic errors cannot be detected, but a framework possessing this
feature will considerably ease the designers’ work.

To achieve this goal, tools must rely on an explicit modelling of transformations (Bézivin et al. 2006).
T. Kühne et al. (2009) studied the available alternatives for this task and their implications: either using a
dedicated metamodel as a basis for deriving a specialised transformation language, or directly using the original
metamodel and then modulating the conformance checkings accordingly, for deriving such a language. Studying
the second alternative, they proposed the Ram process (Relaxation, Augmentation, Modification) that allows
the semi-automatic generation of transformation specification languages. On the other hand, Levendovszky,
Lengyel, and Mészáros (2009) explored in the other alternative by proposing an approach based on Domain-
Specific Design Patterns together with a relaxed conformance relation to allow the use of model fragments
instead of plain regular models.

3.2.2.2 Model Transformations: Transformation-Related Properties

From a modelling perspective, a transformation refers to source/target models (cf. Fig. 2.5) for which dedicated
properties need to be ensured for the transformation to behave correctly. Of course, the properties of interest
range over a large scale of nature, precision, and complexity.

This section provides a comprehensive overview of properties of interest based on their kinds: properties
involving transformations’s source and/or target models were historically the first to be considered; then, syntax-
guided properties, which relate models’ syntaxes (i.e. their metamodels) provide a first level of analysis; and
finally, properties involving the underlying semantics of models are discussed.

3.2.2.2.1 On the Source/Target Model(s) A first level of property verification concerns the source
and/or target model(s) a transformation refers to. The conformance property is historically one of the first
addressed formally, because it is generally required by transformations to work properly. Transformations ad-
mitting several models as source and target require other kinds of properties, either required for transformations
or simply desirable.

Conformance & Model Typing Conformance ensures that a model is valid w.r.t. its metamodel, and is
required for a transformation to run properly. Usually, structural conformance, involving only the model,
is distinguished from constrained conformance, which is an extended property that includes structural con-
straints, otherwise referred to as metamodels’ static semantics or well-formedness rules (see e.g. Boronat
2007). Nowadays, this property is well understood and automatically checked within modeling frameworks
for input models. However, proving that a transformation always outputs conform target model(s) is not
trivial, especially when using Turing-complete frameworks. Most of the time, an existing procedure for
checking conformance is programatically executed after the transformation terminates. Model Typing (J.
Steel and Jézéquel 2007) extends the notion of type beyond classes, by defining a subtyping relation on
models. This enables better reuse for modelers: transformations defined for particular models also work
for any sub-model.
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N-Ary Transformations Properties Unsurprisingly, transformations operating on several models at the
same time, e.g. model composition, merging, or weaving, require dedicated properties to be checked.

Concerning merging, Chechik, Nejati, and Sabetzadeh (2011) follow an interesting research line: they
enunciate several properties merge operators should possess: completeness means no information is lost
during the merge; non-redundancy ensures that the merge does not duplicate redundant information spread
over source models; minimality ensures that the merge produces models with information solely originating
from sources; totality ensures that the merge can actually be computed on any pair of models; idempotency,
which ensures that a model merged with itself produces an identical model. These properties are not always
desirable at the same time: for example, completeness and minimality become irrelevant for merging
involving conflict resolution. Beyond merging, they can potentially characterise other transformations,
not necessarily involving several source models.

Concerning aspect weaving, Katz (2006) identifies temporal logics to characterise properties of aspects: an
aspect is spectative if it only changes variable within this aspect without modifying other system variables
or the control flow; it is regulative if it affects the control flow, either by restricting or delaying an
operation; it is invasive if it changes system variables. Static analysis techniques enriched with dataflow
information or richer type systems are generally used to detect these properties. Despite their textual
programming orientation, these properties should apply equally in Mde. Molderez et al. (2010) present
delMDSoC, a language for Multi-Dimensional Separation of Concerns implemented in Agg (Taentzer
2000). Ultimately, this framework will allow the detection of conflicts between aspects by model-checking,
typically when multiple advices must be executed on the same joinpoints.

3.2.2.2.2 Model Syntax Relations A “lightweight” approach for ensuring that a transformation behaves
correctly is to look at the outputted artefacts: a transformation could be considered as correct if certain model
elements, or structures, of the input model are transformed into other elements or structures of the output
model. Of course, the fact that these structures are a correct match has to be defined by the user who knows
how the transformation is supposed to behave. This kind of property is called model syntax relations: they
relate the shape of an (set of) input model(s) with the shape of an (set of) output model(s), leaving the actual
semantics of input and output models implicit, and manipulating it symbolically through these structures.

Akehurst, Kent, and Patrascoiu (2003) formally introduce a set of structural relations between the meta-
models of the abstract syntax, concrete syntax and semantic domain of a fragment of Uml, by creating an
intermediate structure that relates the elements of both metamodels as well as the elements of the interme-
diate structure itself. Although only apply it to an academic example, the proposed technique appears to be
sufficiently well founded to be applied in a more generalised case. (Narayanan and Karsai 2008b) also define a
language for defining structural correspondences between metamodels that take into consideration the attributes
of an entity in the metamodel. In particular they apply their approach to verifying the transformation of Uml
activity diagrams into the Csp (Communicating Sequential Process) formalism. They also point out that Triple
Graph Grammars (Tggs) (Schürr and Klar 2008), the formalism used for defining model transformations, could
also be used to encode structural relation properties between two metamodels. Lúcio, Barroca, and Amaral
(2010) formally define a property language to express structural relations between two language’s metamodels
and propose a symbolic technique to verify those relations hold, given an input and an output metamodel, and
a transformation.

3.2.2.2.3 Model Semantics Relations Beyond structural relationships between source and target models,
it may be interesting to relate their meaning, which implies to dispose of at least a partial explicit representation
of the models’ semantics, or a way of computing it.

An example of such a semantics relation property could the fact that a statechart is transformed into
a bisimilar statechart. In this case the relation between the semantics of these two behavioral models is
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bisimulation – which is a strong variant of a simulation relation – where both systems are able to simulate
each other from an observational point of view. In order to prove automatically such a relation is enforced by
a transformation it is necessary to build, explicitly or implicitly, the labelled transition systems corresponding
the semantics of both the input and the output model.

Narayanan and Karsai (2008a) show how to verify that a transformation outputs a statechart bisimilar to
an input statechart. Combemale, Crégut, et al. (2009) formally prove the weak simulation of xSpem models
transformed into Petri Nets, in the context of the definition of translational semantics of Domain-Specific
Languages, thus enabling trustable verification of properties on the target domain.

The fact that two systems are able to simulate each other pertains to the observational behavior of those
systems. One may wish to enforce a relation between the actual states of the behavioral input and output mod-
els. Varró and Pataricza (2003) are able to prove that Ctl (Computation Tree Logic) properties are preserved
when transforming statecharts into Petri Nets. Several contributions addressed in the recent years the formal
verification of temporal properties. The idea consists in representing metamodels, models and transformations
in an external formal framework already equipped with verification capabilities, generally delegated to a ded-
icated tool. Among others, Gargantini, Riccobene, and Scandurra (2010) use Abstract State Machines within
the Asmeta framework to perform Ctl verification using Spin; Rivera, Durán, and Vallecillo (2009) use the
Maude rewriting system and its embedded Ltl model-checker to verify semantic properties of Domain-Specific
Languages.

An interesting subset of Ctl are safety properties, which are expressed as invariants over the reachable
states of the system. The idea is that certain conditions can never be violated during execution. In this sense,
Becker et al. (2006) are able to prove that safety properties (expressed as invariants) are preserved during the
evolution of a model representing the optimal positioning of a set of public transportation shuttles running
on common tracks. Given the evolution of the model is achieved by transformation, the safety properties will
enforce that the shuttles do not crash into each other during operation. Padberg, Gajewsky, and Ermel (1997)
introduce a morphism that allows preserving invariants of an Algebraic Petri Net when the net is structurally
modified. Although this work was not explicitly created for the purpose of model transformation verification,
it could be used to generate a set of model transformations that would preserve invariants in Algebraic Petri
Nets by construction.

Models may have a structural semantics, rather than a behavioral semantics. This is the case of UML class
diagrams, which semantics is given by the instanceOf relation. In this case, although the behavioral properties
mentioned above do not apply, relations between the structural semantics of input and output models may still
be established. Massoni, Gheyi, and Borba (2005) present a set of refactoring transformations that preserve the
semantics of UML class diagrams.

3.2.2.3 Summary

Table 3.1 classifies the literature contributions we reviewed according to the property classes they are targeting,
based on the dual nature of model transformations. This research emphasised two levels property classes
are operating at: at the level of transformation languages, the property classes correspond to those of any
computational language; at the level of model transformations, we distinguished three classes: source/target
properties are only interested in the models involved in a transformation, without any consideration about the
computation itself; whereas the transformation is taken into account with syntactic and semantic relations.

Not suprisingly, termination and determinism are broadly explored for graph-based approaches, since they are
recurrent issues for this kind of model transformation frameworks. The first property class, namely source/target,
represents a lightweight possibility for ensuring transformation correctness, without delving into the specific
details of a transformation. Obviously, semantic properties are harder to cover, and therefore less explored,
often by simply reusing, or readapting existing techniques for general purpose programming languages.
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3.2.3 Formal Verification Techniques

In this section, we discuss Fv techniques proposed in the literature to prove Mt properties implemented in
various Tls. Table 3.2 captures our classification of Mt verification techniques, which fall into one of three
major types: Type I Fv techniques guarantee certain properties for all transformations of a Tl, i.e. they are
transformation independent and input independent. Techniques of Type II prove properties for a specific trans-
formation when executed on any input model, i.e. they are transformation dependent and input independent.
Techniques of Type III prove properties for a specific transformation when executed on one instance model, i.e.
they are transformation dependent and input dependent. When a Fv technique is transformation independent,
it implies that no assumption is made on the specific source model: this explains why, in Table 3.2, the cell
representing Fv techniques that are transformation-independent and input-dependent is empty.

Although applicable to any transformation, Type I verification techniques are the most challenging to im-
plement since they require expertise and knowledge in formal methods. Type III verification techniques are
the easiest to implement and are considered "light-weight" techniques since they do not verify the transforma-
tion per se; they verify one transformation execution. Across all the three types of verification techniques, the
approaches used often take the form of model checking, formal proofs or static analysis.

Different properties discussed in section 3.2.2 were verified in the literature using different techniques from
the three types. Some properties (e.g. termination) were proved only once by construction of the model trans-
formation or the Tl. Proving such properties required less automation and more hand-written mathematical
proofs, although some studies used theorem provers to partially automate the verification process. Type I
verification techniques were used to prove such properties. Other properties (e.g. model typing and relations
between input/output models) were proved repeatedly for different transformations and for different inputs.
Proving such properties required more automated and efficient verification techniques from Type II and Type
III techniques. In the following subsections, we discuss examples of each type of verification technique from the
literature.

3.2.3.1 Type I: Transformation-Independent and Input-Independent

Properties that hold independently of the transformations expressed in a particular Tl are normally proved
once and for all. Performing tool-assisted proofs is cumbersome: it requires to reflect the semantics of the un-
derlying Tl directly in the Fv tool, which is a heavy task. For example, formally proving termination for Gbt
with a theorem-prover requires to express the semantics of pattern-matching in the theorem-prover’s language.
Therefore, these kinds of proofs are usually presented mathematically. Barroca et al. (2010) prove termination
and confluence of DslTrans inductively, following the layered syntactic construction of the language’s trans-
formations. H. Ehrig, K. Ehrig, et al. (2005) address termination of Gbts inductively, by proving termination
of deleting and non-deleting layers separetely. Küster (2006) proposes sufficient conditions for termination and
confluence of Gbt with control conditions, by formalising the potential sources of problems within the theory
of graph rewriting.

Another proof strategy consists of taking advantage of existing machinery in a particular formalism. For
example, several techniques for proving termination exist for Petri Nets. The challenge is then to provide a
correct translation from the metamodeling framework and the Tl into the Petri Nets technical space. Varró,
Varró-Gyapai, et al. (2006) prove termination by translating Gbt rules into Petri Nets and abstracting from the
instance models (i.e. the technique becomes input-independent); the proof then uses the Petri Nets algebraic
structure to identify a sufficient criterion for termination. Padberg, Gajewsky, and Ermel (1997) prove that
safety properties, expressed through invariants over Algebraic Petri Nets, transfer to refined Nets if specific mod-
ifications of the Nets are followed, thus guaranteeing the preservation of these safety properties. Massoni, Gheyi,
and Borba (2005) checks the validity of refactoring rules over Uml class diagrams by translating everything into
Alloy to discover inconsistencies in the rules, taking advantage of the instance semantics of Alloy.
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3.2.3.2 Type II: Transformation-Dependent and Input-Independent

For this type of verification, classical tool-assisted techniques are generally used: model-checking, static analysis
and theorem-proving.

Model-Checking Rensink, À. Schmidt, and Varró (2004) compared two approaches for the model-checking
of Gbts. The first approach used the CheckVml Tool to transform a Gbt system to a Promela model,
further verified using Spin. The second approach used the Groove Tool to simulate Gbt rules and build
a state space of graphs for model-checking. The second approach was found more suited for dynamic and
symmetric problems. Lúcio, Barroca, and Amaral (2010) implemented a model-checker for the DslTrans
Tool that builds a state space for a transformation where each state is a possible combination of the
transformation rules of a given layer, combined with all states of the previous ones. The generated state
space is then used to prove if properties hold for all input models of the transformation. Varró and
Pataricza (2003) used model checking to prove that dynamic consistency properties were preserved in a
model transformation from statecharts to Petri Nets.

Static Analysis Becker et al. (2006) proposed a static analysis technique to check whether a model transfor-
mation (formalized as graph rewriting) preserved constraints expressed as (conditional) forbidden patterns
in the output model. The study proved that the structural adaptation does not transform a safe system
state to an unsafe one by verifying that the backward application of each rule to each forbidden pattern
cannot result in a safe state.

Theorem Proving Asztalos, Lengyel, and Levendovszky (2010) proposed deduction rules that can be applied
to model transformation rules (formalized as graph rewriting) to prove or disprove a property. The
deduction rules were implemented as a verification framework in Visual Modeling and Transformation
System and were used to verify a refactoring transformation on business process models. R. F. Paige,
Brooke, and Ostroff (2007) compared two approaches for the verification of model conformance checking
and multi-view consistency checking (Mvcc): with Pvs, a popular theorem prover based on set theory;
and with Eiffel, an object-oriented language. Nevertheless, performing Mvcc checking requires actually
executing the generated Eiffel code. Giese, Glesner, et al. (2006) proposed formalizing Model-to-Code
transformations using Tggs in Fujaba, further verified within Isabelle/Hol.

3.2.3.3 Type III: Transformation-Dependent and Input-Dependent

Using Traceability Links To prove that a specific transformation preserved certain properties for a specific
input model, some studies proved that input-output relationships are maintained for a transformation
instance. Narayanan and Karsai (2008b) used Great for both structural and semantic relationships
between source and target models: they generate crosslinks between source and target models to check
structural correspondence between source and target models. Narayanan and Karsai (2008a) check state
reachability in a transformation between StateCharts to Extended Hybrid Automata, by checking the
existence of a bisimulation with the help of crosslinks between source and corresponding target models.

Using Petri Net Analysis de Lara and Vangheluwe (2010) formalized the operational semantics of a visual
Tl using graph rewriting. The transformations and the manipulated models were transformed into Petri
Nets to benefit from existing Fv techniques. The study further proposed extending graph rewriting rules
with timing information and transforming them into timed Petri Nets for formal verification.

Using Sat Solvers Anastasakis, Bordbar, and Küster (2007) used Alloy for simulation and assertion checking.
Source and target metamodels, as well as transformations, are represented as Alloy models. The Alloy
Analyzer then generates possible instances of the source metamodel and the transformation; the Analyzer
is then used to check if the corresponding target model satisfies assertions. If no instance is found, it
reveals inconsistencies in the transformation specification.
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3.2.3.4 Summary

Table 3.2 classifies the literature contributions according to the last dimension, namely the formal verification
technique employed for ensuring transformation correctness. This research emphasised two cross-cutting levels:
whether a verification technique depends on the transformation at hand, or applies to all possible transformation
expressible within the transformation framework; and whether it depends on a particular input model, or for all
possible conforming input models. This classification offers a graduated evaluation of the effort needed for the
verification process: the more specific it is (i.e. specific to a transformation and an input model), the easier and
“lightweight” the technique can be performed. At one extreme, transformation-dependent and input-dependent
techniques are very close to testing, but with the fundamental difference that they are still offline.

Another result of this research is the large spectrum of techniques already implemented for verifying model
transformations. With the notable exception of Abstract Interpretation, all other techniques are at least im-
plemented by one contribution, the most represented being model-checking. Beyond its relative popularity,
model-checking is an attractive technique for two reasons: it is fully automatic, and the state explosion problem
can be sometimes circumvented within specific contexts, when the models involved in a transformation are
sufficiently small.

3.3 Discussion

Our tridimensional classification captures all variation points influencing the activity of formally verifying model
transformations. We discuss in this Section the relations between pairs of dimensions (as depicted in Figure
3.9), and revisit the central role played by the notion of model transformation intent.

3.3.1 Property Kind / Fv Technique (PK/FVT)

This relation is the best explored within this paper, and directly relates to the contributions made by the
Computer-Aided Verification community: on the one hand, we distinguished two property kinds that follow the
dual nature of model transformations (Bézivin et al. 2006) to obtain language-related and transformation-related
properties; on the other hand, we identified three different types of Fv techniques that depend or not on the
transformation and the input.

From the literature, we showed that language-related properties, such as termination or determinism, are
often proved mathematically: when it is possible to establish such properties for all transformations expressible
in a given Tl, the proof is discharged mathematically once and for all; otherwise, sufficient criteria (also math-
ematically proved) are integrated into Tls to help transformation designers establish those kind of properties
for each transformation.

Classical Fv techniques, such as static analysis, model-checking, theorem-proving, are mostly employed for
transformation-related properties that are related to the transformation’s semantics, and that have to be verified
on all possible inputs. We note that abstract interpretation is largely absent from the reviewed contributions.
Two explanations can justify this fact: the underlying difficulty of the mathematical underground, and the lack
of general-purpose tools.

It is sometimes interesting to prove some properties of interest on a specific input only, for example when the
transformation is used on a limited number of input models that need to be deployed within an application (e.g.
a transformation expressing the behaviour of a Dsl). In this context, the classical techniques remain applicable
but lightweight approaches become also interesting because they are generally easier to deploy.

An interesting trend in the literature is the use ofmodel syntactic correspondences. Although the idea already
exists for programming languages, it reaches another level of complexity for model manipulations. Capturing
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3.3. Discussion

Transformation

Verification Technique

Property (kinds)
PK/FVT

T/PK

T/FVT

Clockwise Scenario
Anticlockwise Scenario

Figure 3.9 – Closing the loop: the relation between each pair of transformation dimension; and the two possible
scenarios for model transformation verification.

the similarity of the input and output models through patterns or contracts expressed on each side avoids diving
into the complexity of the semantic layer. This trend has interesting results for structural models, but can only
provide a quick check for more complex models that integrate behaviour.

3.3.2 Transformation / Fv Technique (T/FVT)

This relation remains largely unexplored in our work as well as in the literature. It seems natural that the
underlying paradigm of Tls would influence the spectrum of Fv techniques that are usable for proving some
property kinds. The respective research communities (of programming languages on the one hand, and of
verification on the other hand) could provide interesting knowledge about the core principles governing this
relation, and to which extent it is possible to adapt this knowledge to the manipulation of models.

From the literature, we noticed however an interesting trend. Instead of developing specific techniques for
model transformations, some contributions took the opposite approach: they express the full semantics of a
Tl within a general-purpose programming language already equipped with analysis capabilities (such semantic
mappings exist for example for Gbt in simple/double pushout style in Maude (Rivera, Guerra, et al. 2009).
This approach is interesting because it is often perceived as easier than developing an analysis engine from
scratch. However, it limits the spectrum of verifiable property kinds to those already handled by the selected
programming language.

3.3.3 Transformation / Property Kind (T/PK)

We showed on a simple example that the current classifications for model transformation are not sufficient
to derive the properties one needs to prove to ensure transformation correctness. What really matters is the
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intent of a transformation: by capturing the purpose of a transformation instead of the form of its expression,
one can define precisely what is the appropriate notion of correctness attached to this transformation. We
extracted several kinds of properties of interest from the contributions found in the literature; however, a more
systematic study of both dimensions and how they relate to each others will enable a better engineering of
model transformation verification.

3.3.4 Transformation Intent as the glue between dimensions

How can a transformation designer be guided through the process of formally verifying model transformations,
especially when those transformations are used in sensitive applications like safety-critical and embedded sys-
tems? We have already discussed the drawbacks of first selecting a transformation engine natively equipped
with predefined verification capabilities, which corresponds to the anticlockwise scenario in Figure 3.9. In our
opinion, another possibility is more desirable. Instead of limiting a priori the set of verification techniques
a designer can employ, it can be more interesting to select the appropriate technique(s) corresponding to the
needs of each transformations. As already noticed e.g. by Rahim and Whittle (2013), the notion of model
transformation correctness is tighly related to the kind of transformation one is attempting to verify. We be-
lieve that the concept of the engineering intent of a model transformation can act as a “glue” between our three
dimensions: by identifying the intent of a transformation, it becomes possible to precisely circumscribe the
properties that matter for proving that transformation’s correctness, and then to select the most appropriate
verification technique(s) for discharging this proof.

3.4 Conclusion

This Chapter explored the second central notion for this Thesis, namely Formal Verification, in two stages: first,
it reviewed the main characteristics and the most popular techniques of Formal Verification; and then surveyed
the literature for its application in the domain of Model Transformation. For this purpose, we introduced a
powerful tridimensional approach based on the components involved in the process of transformation verification:
the transformation, the properties and the verification techniques. This approach allowed us to capture an
interesting snapshot of the current engineering practice in this domain, and proved to be popular (for example,
Calegari and Szasz (2013) almost copied our approach).

Starting from a popular model transformation task, namely providing semantics to a Dsl, we showed that
existing classifications of model transformations lack to classify their purpose, or intent. In the following Chapter,
we explore further this novel notion and its implication for the purpose of model transformation verification, as
a possible answer to the clockwise scenario suggested in Figure 3.9.
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4
Characteristic Properties of Model Transformations Intents

In Mde, models or software abstractions comprise the basic building blocks in the software development process
and such models are manipulated by model transformations. Thus, model transformations are considered the
heart and soul of Mde (Sendall and Kozaczynski 2003) and can be used for a variety of purposes such as the
generation or synchronization of models on different levels of abstraction, the creation of different views on a
system, and the automation of model evolution tasks (Czarnecki and Helsen 2006).

Although several aspects of model transformations have been thoroughly investigated in the literature (e.g.,
model transformation languages and applications of model transformations), minimal research has been con-
ducted on requirements and specifications for model transformations in general, and on the different intents or
purposes that model transformations can typically serve in Mde and how they can be leveraged for development
and validation activities.

We showed on the previous Chapter that classifying model transformations by their form is not enough
for extracting the properties of interest needed to prove the validity of transformations. In this Chapter, we
introduce the new notion of model transformation intent (Amrani et al. 2012a) that serves as a “semantic”
classification of model transformation, i.e. targeting the purpose, or goal, of a model transformation, in contrast
to the existing “syntactic” classifications (Czarnecki and Helsen 2006; Mens and Van Gorp 2006) more interested
in the form of transformations.

This Chapter starts by motivating the introduction of our Description Framework as a methodological ap-
proach for studying and engineering model transformations. Section 4.1 provides an overview of the Description
Framework as well as a motivation from a research and engineering perspectives. Section 4.2 goes a step ahead
by presenting two conceptual metamodels, making things more operational, and explaining through several
scenarios how the Framework can be exploited. The rest of the Chapter then details all components of the
Description Framework articulated around a real-life case study.

4.1 Overview & Motivation

The Description Framework allows the construction of a model transformation intent catalogue through the
identification of properties that an intent must or may possess, and any conditions that support or conflict
with an intent. For instance, a Translation model transformation intent can describe a model transformation
whose purpose is to prepare a model M1 for some kind of analysis. Thus, for a model transformation to be
considered a valid realisation of the translation intent for analysis, it should produce an output model M2 that
when analysed, yields analysis results that “carry over” to M1.

As illustrated in Fig. 4.1, intents are used to group transformations with the same goal and to associate
with them so-called characteristic intent properties, such as termination, type correctness, traceability, or the
preservation of structural or semantic aspects. A characteristic intent property can be thought of as a template
that can be concretised into a transformation property, i.e., a concrete property pertaining to a specific trans-
formation. The resulting link between transformations and transformation properties then facilitates validation
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Transformations
Section 6

Transformation properties
Section 7

Validation method
Future work

Transformation
Intents 
Section 3

Intent properties
Section 4

Section 5

Figure 4.1 – Intents as a classification mechanism for model transformations

of transformations via appropriate validation methods.

The use of the framework is illustrated by presenting an initial catalogue of 21 common model transformation
intents and discussing five of them (Query, Refinement, Translation, Analysis and Simulation) in more detail.
Moreover, a case study involving the use of model transformations for the development of the control software
for a power window in the automotive industry is described and for some of these transformations their intents
and transformation properties are identified.

This work on model transformation intents should be useful to Mde practitioners and researchers. For
instance, it would help engineers identify the model transformation intent that best matches a particular Mde
development goal and facilitate the subsequent model transformation development or reuse by explicating the
properties that a model transformation has to satisfy. Moreover, the notion of model transformation intent would
also provide useful input for researchers interested in the specification and analysis of model transformations
by clarifying how to best describe what a transformation is doing and which kinds of model transformation
analyses might be most useful. Finally, the notion of model transformation intent can be used to classify model
transformations into different domains that can be leveraged for the development of domain-specific model
transformation languages and tools dedicated to express transformations of specific intents due to the language
features or the kinds of analyses that they support.

4.2 A Description Framework for Model Transformation Intents

The ideas informally depicted in Figure 4.1 are now more formally described by means of the two metamodels
of Figures 4.2 and 4.3. After describing them, we explain how they can concretely be used by transformation
designers or researchers.

4.2.1 A Metamodel for Intents and their Properties

In Figure 4.2 a ModelTransformationIntent is described in a manner similar to object-oriented design pat-
terns (Gamma et al. 1995). An intent has a name, and is more precisely described using description and
useContext. The description informally conveys the general idea behind the intent whereas the useContext
presents precise scenarios where the intent is used. One or several examples refer to sample transformations,
possibly from the literature, having this intent. A set of preconditions describes any necessary conditions that
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4.2. A Description Framework for Model Transformation Intents

Figure 4.2 – Metamodel for describing model transformation intents.

need to be satisfied for transformations to possess this intent. Boolean attributes exogenous? and endogenous?
indicate whether transformations with this intent can have different or the same metamodel. An intent can
have several relatedIntents with which it shares similarities regarding the nature and purpose of their model
manipulation; related intents are expected to have similar CharacteristicPropertys.

A CharacteristicProperty (also called intent property) of an intent is a property common to all transformations
with that intent. Characteristic properties can be thought of as templates with “holes” for either the specifics
of a transformation (e.g., its specification or just aspects of it, e.g., the target metamodel) or of the property to
be expressed (e.g., a postcondition the output model has to satisfy). Characteristic properties can thus refer to
aspects of the execution of the transformation, or to the result produced. The size and number of holes makes
some intent properties more abstract than others. Section 4.4 presents several characteristic properties including
“termination”, “type correctness”, and “determinism” which are concrete; more abstract intent properties include
the “Structural Relation Property” which allows the expression of conditions over pairs of input and output
models; intent property “Semantic Relational” additionally considers their semantics; properties requiring the
preservation of aspects of structure or semantics arise as special cases of these two.

The mapping between ModelTransformationIntent and CharacteristicProperty is split into two different parts:
mandatory and optional properties. The mandatory property set describes necessary properties for a transfor-
mation to have a particular intent. Note, however, that this set is not sufficient, i.e., it is very common that
related intents share their mandatory properties. In such cases, the intents’ remaining attributes have to be
consulted for disambiguation. The optional property set collects properties that transformations with a specific
intent may, but do not need to, have.

4.2.2 A Metamodel for Model Transformation Validation Methods

If the transformation is part of the development of a safety-critical application, validation1 or even formal
verification may be desired. Partial classifications of formal verification techniques for model transformations
have already been proposed in (Amrani et al. 2012b; Calegari and Szasz 2013) where is highlighted the impact
of two factors on the suitability of a given verification technique (cf. Section 3.2): the model transformation
language paradigm, i.e. if the model transformation language is, e.g., declarative, meta-programmed, or hybrid
(Czarnecki and Helsen 2006), and the model transformation form, i.e., how the transformation is syntactically
specified (Czarnecki and Helsen 2006).

The process of filling the holes of an intent property is called concretisation and yields a TransformationProp-
erty, i.e., a fully fleshed out property pertaining to a specific transformation which can be used for transfor-

1We use the term validation to refer to all formal, semi-formal, and informal activities aimed at collecting evidence for the
correctness of a model transformation with, e.g., testing and formal verification as prominent special cases.
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Figure 4.3 – Methods for validating model transformations.

mation validation. In comparison to Amrani et al. (2012b) and Calegari and Szasz (2013), Figure 4.3 collects
and organises ValidationMethods (extracted from Adrion, Branstad, and Cherniavsky 1982; E. M. Clarke and
Wing 1996; D’Silva, Kroening, and Weissenbacher 2008) for validating a transformation with respect to a
transformation property. We distinguish between two validation categories: ByConstruction and ByChecking.
ByConstruction means that the property is implied by the way the transformation language is constructed and
operates. Techniques that allow transformation-independent and input-independent validation of transforma-
tions (i.e., properties that are shown to hold for all transformations of the language and for all input models)
are often ByConstruction: for instance, using a mathematical proof one might be able to show termination or
determinism for a model transformation expressed as a graph rewriting system for all transformations and in-
puts (cf. Section 3.2.3.1 for details). Other formal properties are either Statically or Dynamically validated with
formal techniques. Dynamic techniques require executing the transformation being validated (e.g., Testing or
DynamicMetrics) whereas static techniques include abstraction-based techniques such as AbstractInterpretation,
TheoremProving, ModelChecking or any StaticAnalysis with a specific scope (e.g., identifying unfireable rules).
For many of these categories, concrete examples of approaches from the research literature can be found in
Section 3.2.

4.2.3 Usage Scenarios

We presented a mapping between transformation intents and characteristic properties, intended to be concretised
to enable transformation validation through various techniques. This proposal can be helpful for practition-
ers and researchers for supporting the following activities. This Section presents several scenarios where the
Description Framework is useful: for identifying the intent of model transformation and for validating model
transformations against their properties of interest (both described through an Activity Diagram Object Man-
agement Group 2011a) and more generally, for favouring model transformation research.
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Figure 4.4 – Identifying the intent of a model
transformation

Figure 4.5 – Validating a model transformation
with a specific intent

4.2.3.1 Intent Identification

Given an existing transformation, our intent catalogue can be used to determine the intent of that transformation
together with any relevant optional intent properties as depicted in Figure 4.4. Should the transformation
not match any intent in the catalogue sufficiently well, our framework could be used to describe the new
intent and add it to the catalogue. Knowing the transformation’s intent may facilitate the documentation,
maintenance, validation, or reuse of the transformation. If the transformation has not been implemented yet,
intent identification may still be possible using, e.g., requirements documents or interviews with Mde engineers.
In this case, knowing which intent the transformation possesses may facilitate its implementation.

4.2.3.2 Model Transformation Validation

For validating a given transformation with respect to a specific intent, the mandatory intent properties and,
to the appropriate extent, the optional intent properties, need to be concretised into transformation properties
pertaining to the given transformation. Validation succeeds if the transformation satisfies all transformation
properties. This process is summarized in Figure 4.5.

4.2.3.3 Model Transformation Research

Our work is relevant to researchers interested in the specification and analysis of model transformations, since it
describes and formalises properties that transformations may have to possess. Allowing for these, and perhaps
other properties to be expressed in a uniform, elegant specification language for model transformations would
be of interest, as would be the development of effective analysis and validation techniques and tools for model
transformations.

Some intents may occur so frequently and require so much development effort, that the development of
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an “intent-specific” (e.g., domain-specific) transformation language may be helpful. The new language may
be a subset of an existing one obtained by removing certain constructs (e.g., constructs that introduce non-
termination), or a completely new language employing paradigms and features that optimally support the
efficient construction of transformations with a specific intent. Should these transformations be part of the
development of safety-critical software, designing the transformation language in such a way that the proof
of transformation properties is facilitated (e.g., a transformation language without possibly non-terminating
constructs will only allow the construction of terminating transformations) could further increase productivity.
Consequently, our work may also stimulate more research into the design, implementation and analysis of
domain-specific model transformation languages.

4.2.4 Outline

Section 4.3 presents a non-exhaustive catalogue of 21 common transformation intents. The description of each
intent is rather short, using only a small part of our framework of Section 4.2. Section 4.4 presents high-
level formalisations of some key characteristic intent properties. The list of properties is also not meant to
be exhaustive. Section 4.5 uses the full framework from Section 4.2 to provide detailed descriptions of five
intents: Query, Refinement, Translation, Analysis, and Simulation. Section 4.6 describes the Power Window
Case Study (Pwcs) which shows how Mde techniques in general, and model transformations in particular, can
be used for the development of software for a power window. The case study contains a transformation chain
of over 30 transformations. Section 4.7 applies our work to the case study. After a detailed description of two
transformations extracted from the case study, their intents are identified and some of their intent properties are
concretised into transformation properties for validation purposes (the validation itself is left for future work,
though). Section 4.7 ends by identifying the intent, together with their properties, for all transformations in
the case study. Section 4.8 and 4.9 discusses topics around the notion of intent, and the related work.

4.3 The Intents Catalog

Several classifications for model transformations exist in the literature. Such classifications are based on the
transformation features and form (Czarnecki and Helsen 2006), or syntactic aspects (Mens and Van Gorp
2006). From a formal verification point of view, what really matters is the intent behind a transformation
(cf. Section 3.2): the intent conveys the transformation’s actual meaning, which influences the properties of
interest that need to be verified. This section proposes an Intents Catalogue: a description of recurring model
transformation intents and illustrative examples from the literature. With respect to the metamodel in Figure
4.2, this Catalogue informally indicates several instances of the ModelTransformationIntent class for which the
following information is detailed: name, description and example.

Our Intents Catalogue is not an exhaustive list of all model transformation intents, but it encompasses
existing lists (e.g. Czarnecki and Helsen 2006; Iacob, Steen, and Heerink 2008; Mens and Van Gorp 2006;
Syriani 2011; Tisi et al. 2009, which are discussed in Section 4.9) and has already been presented in several
workshops with various audiences to validate it.

Model Editing The simplest operations on a model are adding an element to the model, removing an element
from the model, updating an element’s properties, navigating through the elements, and accessing the
properties of an element. These primitive operations are also known as the CRUD operations as first
introduced by Kilov (1990). These simple operations are considered as a model transformation when the
system is completely and explicitly modeled, such as in AToMPM (Syriani 2011).

Restrictive Query A query transformation requests some information about a model in the form of a proper
sub-model or a view. This operation takes a modelM as an input and outputs a view ofM . For example,
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the query “retrieve all cycles in a Causal Block Diagram model” outputs a view of the causal block
diagram model represented as a cyclic graph composed of strongly connected components. We consider
any subsequent aggregation or restructuring of the resultant sub-model or view as an abstraction. EMF
INC-Query (Bergmann et al. 2011) is a model transformation language that is used specifically for querying
EMF models.

Refinement A refinement transformation produces a lower level specification, e.g. a platform-specific model,
from a higher level specification, e.g. a platform-independent model (A. G. Kleppe, Warmer, and Bast
2003), i.e., refinement adds precision to models. As defined by Giese, Levendovszky, and Vangheluwe
(2007), a modelm1 refines another modelm2 ifm1 can answer all questions thatm2 can answer. Typically,
m1 contains at least the same information as m2. For example, a non-deterministic finite state automaton
(NFA) can be refined into a deterministic finite state automaton (DFA). Denil et al. (2012) defined a set
of refinement transformations that iteratively add platform knowledge to a deployment model.

Abstraction Abstraction is the inverse of refinement: if m1 refines m2 then m2 is an abstraction of m1.
Typically, m2 will hide some information while revealing other information. For example, an NFA is an
abstraction of a DFA. Mannadiar and Vangheluwe (2010) used a transformation to extract user-interface
behavior from a Statecharts model into a PhoneApps model.

Synthesis A synthesis transformation produces a well-defined language format from an input model, such as
in serialization. Synthesis is also referred to as Model-to-code generation (Stahl, Voelter, and Czarnecki
2006) when the transformation produces source code in a target programming language. For example,
Java code can be synthesized from a UML class diagram model.

Note that the synthesis intent can be considered as a special case of the refinement intent if the output
of the transformation is an executable artifact. Further, the refinement intent can be viewed as a means
to achieve the synthesis intent as demonstrated by Mannadiar and Vangheluwe (2010) and Tri and Tho
(2012).

Reverse engineering Reverse engineering is the inverse of synthesis: it extracts higher level specifications
from lower-level ones. For example, a UML class diagram model can be generated from Java code using
Fujaba (T. Fischer et al. 2000). Note that reverse engineering can be considered as a subset of abstraction
where the input model is code.

Approximation As defined by Giese, Levendovszky, and Vangheluwe (2007), an approximation transforma-
tion is a refinement transformation with respect to negated properties. That is, m1 approximates m2 if
m1 negates the answer to all questions that m2 negates. For example, a Fast Fourier Transform is an
approximation of a Fourier Transform which is computationally very expensive.

Translation A translation transformation translates the meaning of a model in a source language in terms
of the concepts of another target language. The resulting model can then be used to achieve several
tasks that are difficult, if not impossible, to perform on the originals. For example, Syriani and Ergin
(2012) transformed a UML activity diagram into a Petri Net model in order to detect deadlocks and
starvation, i.e., analysis is delegated to the Petri Net workspace. Translation is also common for capturing
the semantics of new Dsls. In this case, the transformation specifies the semantic mapping (Harel and
Rumpe 2000) into a semantic domain with well-known semantics. For example, Causal Block Diagram’s
semantics are expressed as Ordinary Differential Equations.

Analysis A model transformation can be used to implement analysis algorithms of varying complexities, start-
ing from detecting dead code or unapplicable rules to model-checking temporal formulae over appropriate
structures described by models. For example, Lúcio and Vangheluwe (2013a) implemented a symbolic
model-checker for the DslTrans transformation language using model transformations.
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Simulation A simulation transformation defines the operational semantics of a modeling language by defining
a model transformation that updates the modeled system’s states. The output model of the transformation
is then an “updated version” of the input model (i.e., the transformation is in-place). Simulation updates
the abstract syntax of the model, which may trigger modifications in the concrete syntax. T. Kühne et al.
(2010) provide one example where a model transformation was used to simulate a Petri Net model and
produced a trace of the transitions firing.

Animation Animation is the visualization of a simulation. It projects the behavior of a model on a specific
animation view. In contrast with a simulation transformation, an animation transformation operates on
the concrete syntax (or the abstract syntax of the concrete syntax) of a model. For example, Ermel and
H. Ehrig (2008) used a model transformation to define the mapping from simulation steps to animation
steps of a radio clock.

Normalization A normalization transformation aims to decrease the syntactic complexity of models by trans-
lating complex language constructs of an input model into more primitive constructs, resulting in a canon-
ical form of the input model. For example, Agrawal et al. (2006) normalized a Statechart model into its
flattened form, replacing OR- and AND-states by the appropriate states and transitions. Parsing the
concrete syntax of a modeling language back to its abstract syntax is also considered normalization that
can be implemented by a model transformation involving the meta-model of the concrete syntax and the
meta-meta-model of the language.

Rendering A rendering transformation assigns one (or more) concrete representation(s) to each abstract syntax
element or group of elements in an input model, as long as the meta-model of the concrete syntax is defined
explicitly. For example, Guerra and de Lara (2007) used event-driven grammars to relate the abstract and
concrete syntaxes of visual languages.

Model Generation Model generation is a transformation that automatically produces possible (correct) in-
stances of a metamodel, such as in (Winkelmann et al. 2008). The meta-model of a language can be defined
using a grammar, e.g., the Extended Backus-Naur Form (EBNF), or a graph grammar (Viehstaedt and
Minas 1995). Such model transformations are very useful for testing model transformations since it facil-
itates the automatic generation of input test models to verify the correctness of a transformation (Dalal
et al. 1999).

Model Finding Adapted from Torlak and Jackson (2007), model finding is a transformation that searches
for models that satisfy given constraints. In that case, several models are generated according to a set of
rules and evaluated to check whether the generated models satisfy some constraints. If not, a backtracking
mechanism reverses some of the applied rules to find another model. A typical use of this intent is in
design-space exploration (e.g. Schatz, Holzl, and Lundkvist 2010) which supports decision-making when
several solutions exist.

Migration A migration transformation transforms software models written in one language (or framework)
into software models conforming to another language (or framework), while keeping the models at the
same abstraction level Mc Brien and Poulovassi 1999. For example, transforming Enterprise Java Beans
2.0 (EJB2) class diagrams so that the resulting models conform to EJB3 can be achieved by a migration
transformation as in Asztalos, Syriani, et al. 2011. The process of migrating each model individually
so that they conform to the evolved metamodel can be automated through model transformations as
presented in Cicchetti et al. 2008.

Optimization An optimization transformation aims at improving operational qualities of models, e.g., scala-
bility and efficiency. For example, replacing n-ary associations with binary associations in a UML class
diagram can optimize the code generated from the class diagram Gessenharter 2008.
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Model Refactoring Model refactoring is a transformation that restructures a model to improve certain quality
characteristics without changing the model’s observable behavior (Fowler 1999; Griswold 1991). Zhang,
Lin, and Gray (2005) proposed a generic model transformation engine that can be used to specify refac-
torings for domain-specific models.

Model Composition Model composition integrates models produced in isolation into a compound model,
where each isolated model represents a concern that may overlap with any of the other isolated models.
A particular instance of composition is model merging. In this case, the composition creates a new model
such that every element from the union of both models is present exactly once in the merged model. Engel,
R. Paige, and Kolovos (2006) proposed a transformation language that allows one to compute the merged
model from two models conforming to the same meta-model.

Model Matching A model matching transformation creates correspondence links between corresponding en-
tities. This is also known as model weaving. Fabro and Valduriez (2009) defined a generic meta-model to
capture correspondences between models.

Model Synchronization Model synchronization integrates models that have evolved in isolation and that
are subject to global consistency constraints by propagating changes to the integrated models. Such
transformations are typically used when multiple views of a common repository model are accessed or
modified as in (Guerra and de Lara 2006).

4.4 Characteristic Properties

This Section gathers formal definitions for the characteristics intent properties, built on top of basic definitions
for the core components of model transformation, as depicted in Figure 2.5 (namely, transformation specification
and execution), independent of the transformation’s underlying paradigm. Directly inspired from the relevant
literature in Computer Aided Verification, these definitions have been limited for covering the five intents of this
Chapter. Nevertheless, they form an extensible basis as new intents will be described within our Description
Framework.

Recall from Section 2.2 the basic definitions for (meta-models) and transformations. The sets of models and
metamodels are denoted respectively by M and M; given M P M and MM PM, the fact that M conforms to
MM is noted M � MM, and the set of models conforming to MM is LpMMq (cf. Definition 2.1. A transformation
specification is a triple t “ pMMs,MMt, specq, where MMs,MMt P M are the source and target metamodel
respectively, and spec P L the well-formed transformation specification written in a transformation language L.
The execution of t corresponds to a transition system TSt “ pS, I,ÝÑq, where S is the set of execution states,
and I the set of initial states (cf. Definitions 2.3 and 2.4). In this Section, we will abuse the notation and
amalgamate S with M, and note ÝÑ˚ the transitive closure for ÝÑ: this way, we say that M is rewritten, or
reduce, to M1 if M1 ÝÑ˚ M1.

From the perspective of formal language theory, what a model designer defines with a metamodel is a
language’s abstract syntax, i.e. the designer captures the relevant concepts and their relationships in a way
that enables their internal representation for further computations. To allow their manipulation by modelers, a
metamodel must be accompanied with one or several concrete syntaxes that define their concrete representation,
be it graphical or textual (or both). As a last ingredient, the semantics is necessary to perform manipulations
of models according to the meaning attached to the modeled concepts.

Definition 4.1 (Model Semantics (borrowed from Harel and Rumpe 2000)). Let MM P M be a metamodel.
The semantics of MM, noted JMMK, is a pair JMMK “ pD

MM
, µ

MM
q, where D

MM
is called the semantic domain
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and µ
MM

the semantic mapping defined as follows:

µ
MM

: LpMMq ÝÑ D
MM

M ÞÑ µ
MM
pMq

The precise definition of D
MM

and µ
MM

(noted without subscripts when clear from context) highly depends on
the nature of the models in MpMMq and what the semantics will be used for. If MM does not have any
associated behaviour, the semantic domain usually consists only of data structures. Otherwise, as it is generally
the case for Domain-Specific Models, MM has a behaviour, and the semantic domain needs to appropriately
capture it. Finally, if MM is a full transformation language (making the associated transformation a higher-order
transformation), the semantic domain usually corresponds to a fully-fledged mathematical framework (such as
category theory) whose precise definition is left implicit.

Note also that the semantics style depends on the machinery associated to D
MM

: it can be denotational if
D

MM
comes with a functional framework, operational if it is equipped with rewriting capabilities, axiomatic if it

defines a Floyd-Hoare logic, or even translational if it represents a target computer language the semantics is
translated into.

The aim of this section is to provide a minimal mathematical framework for the intent properties used in
our description framework (Section 4.2). The next Sections detail the second important class of the metamodel
of Figure 4.2, namely CharacteristicProperty. In our description framework, each transformation intent has cor-
responding mandatory (optional) properties that all transformations with this intent must (may) satisfy. Some
intent properties can directly be instantiated for a given transformation, other properties are still quite abstract
and will need to be concretised for the given transformation before they can be checked. Section 4.7 demonstrates
for two example transformations how it is possible to find out the appropriateness of mandatory properties for a
given transformation and also how to concretise abstract intent properties to concrete transformation properties
that can be validated.

The description of characteristic intent properties assumes a transformation specification t “

pMMs,MMt, specq with its associated execution TSt “ pS, I,ÝÑq. Each property is given an abbreviation (in
square brackets following the name) that is used to refer later to the property.

4.4.1 Fundamental Property

A fundamental property is one of the following singleton properties: termination, determinism and type cor-
rectness. They are called singleton because they directly apply to a transformation without needing further
concretisation. Type Correctness is specific to model transformations whereas Termination and Determinism
are common for any computational system. Further details about the verification of such properties have been
detailed in Section 3.2.

Definition 4.2 (Termination [T]). TSt is terminating if there exists no infinite chain M0 ÝÑ M1 ÝÑ . . . ÝÑ

Mn ÝÑ . . . starting from an input model M0. We say that Mn is an output model for M0 if there exists a finite
chain M0 ÝÑ M1 ÝÑ . . . ÝÑ Mn such that no further transition from Mn exists.

Consequently, a terminating transformation execution ensures the existence of a final output model for any legal
input model. If from M P I, we reach Mn without any further possible reduction, we say that Mn is canonical
and note M ñ Mn.

Definition 4.3 (Determinism [D]). TSt is deterministic (or confluent) if for all model M that can be reduced
to M1 and M2 (i.e. M1

˚ÐÝ M ÝÑ˚ M2), there exists another model M1 into which both M1 and M2 reduce, i.e.
M1 ÝÑ

˚ M1 ˚ÐÝ M2.
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Figure 4.6 – Property Classes arranged according to their underlying mathematical nature and their application
level (either syntactic or semantic)

Determinism is relevant only for declarative transformation languages (since other transformation languages are
deterministic by nature). Executing a deterministic transformation means that the execution result does not
depend on the rules’ applications.

When TSt is terminating and deterministic, it is said to be convergent, or functional, in which case we
note the unique output model M1 using a functional notation: M1 “ tpMq. This notation is well-defined: M’s
image exists (by termination) and is unique (by determinism). For convergent transformation execution, we
also denote indifferently by tpMq the transformation specification and its execution starting from M.

Definition 4.4 (Type Correctness [TC]). Let t be convergent. Then, t is type correct if it always outputs a
conforming model.

@M P LpMMq, tpMq� MMt

Proving this property for any input is hard: usually, type correctness is checked a posteriori, after the transfor-
mation completes, by running a pre-existing routine for checking type correctness.

4.4.2 Property Classes

A property class gathers properties that share the same form and that rely on the same artefacts. For a
specific transformation obeying a given intent, a property class still needs to be concretised with respect to a
transformation to afterwards effectively validate the transformation correctness. This will be illustrated later
on witness transformations extracted from the Pwcs.

From our literature review, we collected several properties that we classify according to their mathematical
nature and their application level, as illustrated in Figure 4.6:
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Relation links artefacts from the transformation’s left-hand side to corresponding artefacts from the right-hand
side. The expressive power of such relations depends on both the axioms they satisfy, and the levels they
operate at (either syntactic or semantic).

Preservation uses a property specification language P to express that whenever some properties on the left-
hand side of the transformation hold, then it is “preserved” on the right-hand side. Preservation is also
declined at both level, syntactic and semantic.

Behavioural Property differs from the previous property classes in the sense that it does not relate transfor-
mation artefacts, but rather characterises the transformation execution itself.

To distinguish between the different levels, we will use a generic notation Pp¨q for specifying the nature of the
languages involved, i.e. which artefacts, either syntactic or semantic, specification languages rely on. For exam-
ple, PpMMq denotes a syntactic property specification language whose elements are MM’s classes, attributes,
references and so on. Notice however that theoretically comparing these property specification languages (i.e.
their respective expressive power or their possible relationships) is beyond the scope of this thesis2.

Unless explicitly stated, the following definitions assume a convergent and type correct transformation exe-
cution (otherwise, the definitions become meaningless).

4.4.2.1 Relations

A Relation class aims at establishing a mathematical relation between transformation’s left-hand side (i.e. the
source metamodel or the input model) and right-hand side (the target metamodel or the output model) artefacts.

Definition 4.5 (Syntactic [STR]/Semantic [SMR] Relations). A syntactic relation property is a relation ρ Ď

M ˆ M1 over all legal model pairs pM,M1q such that M1 “ tpMq. A semantic relation property is a relation
ρ1 Ď DMMs ˆ DMMt over elements of the semantic domains attached to the source and target metamodels.

Despite their resemblance, these relations fundamentally differs in nature: a structural relation links together
model elements, like class instances, or association links; whereas a semantic relation links together semantic
domains’ elements.

How powerful and meaningful these relations are highly depends on the set of axioms these relations satisfy.
For example, an interesting class of structural relations are injective homomorphisms, i.e. relations preserving
models’ structure with respect to external operations (this is for instance useful for the Query intent, among
others).

A classical useful semantic relation is simulation, i.e. a relation ensuring that the execution of the input
model cannot observationally be distinguished from the output execution. This means that the target can be
transparently used in lieu of the source (which is particularly useful for the Simulation intent, among others).

An important syntactic relation is traceability, i.e. the ability for a transformation to create, either automat-
ically or with the help of the designer, links from input artifacts to their corresponding output artifacts resulting
from the transformation. We introduce a specific Definition because traceability characterises many intents.

Definition 4.6 (Traceability [TR]). A syntactic relation property is a traceability property if a syntactic relation
is created during the transformation execution for each model pair pM,M1q such that M1 “ tpMq.

2The paper submitted by Amrani et al. (2013) uses the same terminology, but proposes a hierarchical classification of fundamental
properties with two main differences: no distinction appears between what we call fundamental properties and property classes;
instead, all properties are considered to be a specialisation of Behavioural Property, with two hierarchy paths for each of our
Application Layer. This is not clear to us what this hierarchy relation means: when a property “inherits” from another, does it
means that it is expressible in the same way, or that a verification technique used to discharge the verification of one property
can similarly be used to discharge a sub-property? The first one is very unlikely, since for example, termination and determinism
can not be expressed as a behavioural property. Similarly, following our study of Chapter 3, the techniques for our fundamental
properties are radically different from the ones used for property classes.
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4.4.2.2 Preservation

A Preservation property class stipulates that whenever some property, defined with respect to a property lan-
guage, holds on the source metamodel and/or the input model, something equivalent, or similar in some sense,
should hold on the target and/or output.

Definition 4.7 (Structural Preservation [STP]). Let PpMMs,Mq (resp. PpMMt,Mq) be a property language
operating on the source (resp. the target) metamodel and the model set. A structural preservation property
stipulates that whenever a formula π P PpMMs,Mq holds on the input model Mi, then another pattern π1 P

PpMMt,Mq should hold on the corresponding output model Mo.

Mi $s π P PpMMs,Mq ùñ Mo $t π
1 P PpMMt,Mq

Property languages PpMMs,Mq and PpMMt,Mq obviously rely on the metamodels, but also on the models: it is
often necessary to match elements values (such as an class attribute’s value, or the object(s) pointed by a class
reference, etc.). Typically, the Omg Ocl (Object Management Group 2010) language can serve for expressing
patterns. Notice however that the languages on both sides can differ: this is why we use two different satisfaction
predicates $s and $s.

Definition 4.8 (Semantic Preservation [SMP]). Let PpJMMsKq (resp. PpJMMtKq) be a property language on
the source (resp. target) metamodel’s semantics. A semantic preservation property stipulates that whenever the
input model satisfies a semantic property φ, then the corresponding output model Mo satisfies a property φ1 that
is ensured to be equivalent in some sense to φ.

Mi |ùs φ P PpJMMsKq ùñ Mo |ùt φ
1 P PpJMMtKq

Here, languages PpJMMsKq and PpJMMtKq allow talking about elements of the semantic domains for each model.
Similarly to the syntactic case, the satisfaction relation (noted here |ùs and |ùt, to differentiate from the syntactic
case) can differ in each side.

Ensuring that the properties expressed on the input and the output models are really equivalent is a challenge
on itself. Sometimes, it is possible to automate this task by using so-called property translators, if the property
languages on input and output are the same, or at least comparable. Generally however, when they differ
too much, or the semantic gap between each metamodel is too deep, no general procedure exists for building
such translators. This becomes the designer’s job, with all the accompanying issues: aside from the properties’
correctness, the translation can add another source of errors for the validation process (Varró and Pataricza
2003).

4.4.2.3 Behavioural Properties

The last property class qualifies transformations instead of (meta-)models of each side, and are particularly
suitable for inplace, endogeneous transformations like Simulation or Refinement.

Definition 4.9 (Behavioural Property [BP]). Suppose now that TSt is not necessarily convergent. Let PpTStq

be a property language over the transformation execution and Mi P M a legal input model for t. A behavioural
property φ P PpTStq expresses the fact that starting from Mi, the transformation execution satisfies φ.

Mi,TSt |ù φ P PpLTStq

This property class does not differ much from what is studied in the field of general-purpose programming
language verification since here, the focus is on the correctness of the transformation’s computation itself:
thanks to the so-called decomposition theorem, any verification property of interest can be expressed as a
conjunction of safety and liveness (see e.g. (Naumovich and L. Clarke 2000) for a formal definition of safety
and liveness), making PpTStq representing temporal logics.
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4.5 Five Examples

This Section presents the five intents we have chosen to illustrate further: Query, Refinement, Translation,
Analysis and Simulation. Each intent is described systematically using the following approach:

1. We present informally the intent to convey the general idea behind it;

2. We review contributions from the literature to demonstrate different intent usages and help explain how
the ModelTransformationIntent instance has been built;

3. We formalize the intent as an instance of the metamodel presented in figure 4.2. The goal of this formaliza-
tion is to provide a mapping between the intent, informally presented in section 4.3, and its characteristic
properties, defined in section 4.4.

4.5.1 Query

As with queries over databases, a query transformation applied to a model extracts a subset of information from
that model. We refer to the extracted subset of information as a view. The Query/View/Transformations initial
call for submissions (Gardner et al. 2003) defines a query as “an expression that is evaluated over a model” and
a view as “a model which is completely derived from another model”. This definition is very general since any
automated transformation could be viewed as a way of completely deriving one model from another. In this
paper, we define a query transformation as one that produces a restrictive view of the model by omitting a
portion of the model - that is, it extracts a submodel. For example, the query “show only classes/associations
of a class diagram” produces a restrictive view that extracts the submodel of a class diagram containing all and
only the classes and associations.

4.5.1.1 Query in the Literature

Query transformations are often used as a preprocessing step to extract the portion of a model that is needed
as input for another transformation. For example, in order to apply an analysis transformation to a state
machine within a larger UML model, a query transformation will first be used to extract this state machine.
Query transformations are also used to support the separation of concerns by extracting the submodels related
to different concerns and then feeding these to their own transformations. For example, in the context of the
Uwe web application, Koch et al. (2008) use query transformations to extract the subsets of the requirements
model related to website function and website architecture, in order to feed these submodels into their own
transformation chains that ultimately reintegrate these concerns downstream. We give additional examples of
this technique below for the power window case study.

Model slicing represents a type of query transformation that has received recent attention by the modeling
community. Model slicing, like program slicing, is intended to support human comprehension of a complex model
by extracting submodels that are restricted to the behaviour and properties for a subset of model elements.
Some of the slicing techniques produce amorphous (Harman, Binkley, and Danicic 1997) models, while other
produce structure-preserving ones. The techniques that produce structure-preserving models can be considered
as restrictive queries. For example, Lano and Rahimi (2011) describe slicing techniques for various UML
diagrams with the goal of producing analysable models from those diagrams.

Similar approaches have been proposed for metamodel slicing. For example, Bae, Lee, and Chae (2008) use
a model slicing technique to modularise and manage the complexity of the UML metamodel. The technique
takes as input key elements of UML diagrams (e.g. Class Diagrams, Use Case Diagrams, etc) for which it
produces a sub-metamodel that describe such diagrams, by navigating the associations emanating from the key
elements. Following a similar line of thought, Sen et al. (2009) a more generic approach that makes use of
a Kermeta model transformation to prune any given metamodel. The goal is to find a sub-metamodel for a
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Attributes

name Query

description Extract a submodel (the view) from a model that satisfies some criterion (the query).

useContext
1. Want to extract the relevant part (view) of a model for a task.

2. Want to decompose a model to manage complexity.

example 1. Extract the submodel that are immediate neighbours of a particular element.

2. Extract the submodel of structural elements from a UML model.

3. Model slicing.

4. Model decomposition.

is_exogeneous True

is_endogeneous True

preconditions 1. Must be able to characterize the submodel of interest using a condition expressible in terms of the metamodel
of the base model.

Associations

mandatory 1. [T] Terminating
2. [TC] Type Correct
3. [STR] The view must be a submodel of the base.

optional 1. [D] Deterministic
2. [SMP] Semantics preservation

relatedIntent Abstraction

Table 4.1 – Query Intent Characterisation

given purpose, such as defining the allowed set of inputs for a model processing program or tool. The model
transformation takes as inputs the large metamodel and a set of required classes and properties and returns
a sub-metamodel including those classes and properties, and their mandatory dependencies. The authors also
provide an additional algorithm to check that the pruned metamodel is a sub-type of the source metamodel.
This ensures that instances of the pruned metamodel are also instances of the source metamodel.

Since the application of a query on a model produces a model fragment that is not necessarily well-formed,
an important consideration for a query transformation is how to ensure type correctness (i.e. well-formed
results). The work of Kelsen, Ma, and Glodt (2011), provides an efficient algorithm to address this problem by
decomposing a fragment into its atomic constituents and then re-merging them while preserving well-formedness.
The net effect is that the fragment is expanded to the nearest well-formed submodel that contains it.

4.5.1.2 Query Metamodel Instance

The attributes of the query transformation intent are shown in Table 4.1. If we consider the mandatory
properties, termination [T] is a reasonable property to expect from a query – since it is of no use if it never
produces a result. We also expect the resulting view to be well-formed with respect to the target metamodel
and so it must be type correct [TC]. Most importantly, the resulting view must be a submodel of the input,
or base, model. This is the key property that identifies a transformation as a (restrictive) query and can be
formalised as a structural relation [STR] enforcing an injective homomorphism mapping from the view to the
base.

A property that is optional is for the query to be deterministic [D] – i.e. that the query should always
produce the same result on the same input model. Often this is expected, but there are cases where it is not
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needed. For example, consider a query transformation that extracts a submodel of a UML model showing an
example of how a class is used. In this case, any sequence diagram that uses the class is sufficient and it is
not necessary to always produce the same one. The optional property that the query be semantics preserving
[SMP] means that the information in the view submodel should not change its meaning even though it is taken
out of context of the whole model. This is often an important requirement when the view has a human consumer
(e.g. model slicing) since otherwise the information in the view could be misleading.

The query transformation intent is related to the abstraction transformation intent as it can be seen as a
form of information hiding.

4.5.2 Refinement

A transformation with the refinement intent is a transformation that produces a lower level specification, e.g.,
a platform-specific model, from a higher level specification e.g., a platform-independent model (A. G. Kleppe,
Warmer, and Bast 2003).

4.5.2.1 Refinement in the Literature

From the literature review, a Refinement can either be an interactive or a fully-automated transformation. We
describe the characteristics of each of them, based on more general studies for this particular intent.

Interactive Refinement Transformations The refinement approaches presented by Padberg (1999) and
Scholz (1998) are rule-based. In the first approach, the rules need to adhere to specific properties in order
to guarantee the preservation of safety properties and in the second approach specific refinement rules
already exist. The user decides where to apply which rules.

Van der Straeten, Jonckers, and Mens (2007) present a formal approach to model refinement and its
interplay with model refactoring. The user of the refinement needs to decide how to refine the models and
afterwards behaviour preservation can be checked.

Fully-Automated Refinement Transformations Baresi et al. (2006) describe exogenous refinements of
business-oriented architectures, abstracting from technology aspects, into service-oriented ones.

Mannadiar and Vangheluwe (2010) introduce two exogenous graph transformations, one of which is used to
refine a domain-specific model (DSM) of the PhoneApps domain specific language (DSL) for a conference
registration mobile application. The PhoneApps DSL captures both the behaviour and the visual structure
of mobile device applications.

Tri and Tho (2012) discuss an approach for the automatic refinement of Seam models. Seam is a language
and tool that supports visual modelling, that has the same modelling capability as Uml with the additional
advantage that Seam can easily maintain consistency between design components since it can capture the
entire system in a single view. Due to that single-view representation, the final Seam model can become
too complicated, which justify the introduction of a methodology to automatically refine abstract Seam
models into detailed Seam models such that the final Seam model can eventually be used to generate
code.

4.5.2.2 Refinement Metamodel Instance

Table 4.2 instantiates the intent metamodel of Fig. 4.2 for the refinement intent, summarizing our findings in
the literature. Since transformations with the refinement intent are required to add detail to existing models,
it is intuitive that having a clear understanding of the information to be preserved and the information to be
added are preconditions for such transformations. These preconditions were mentioned implicitly in all the
previously described papers. For example, in the rule-based refinement approaches these preconditions are
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Attributes

name Refinement

description Add precision such that the output model contains at least the same amount of information as the input model. The
information contained by a model is equivalent to the relevant questions that can be asked concerning the model (Giese,
Levendovszky, and Vangheluwe 2007).

useContext Add more detail to a model.

example Going from a platform-independent model to a platform-specific model (A. G. Kleppe, Warmer, and Bast 2003).

is_exogeneous True

is_endogeneous True

preconditions 1. A clear understanding of the amount of information described by the input model, and how to preserve it.
2. A clear understanding of the information that needs to be added, and how to add it.

Associations

mandatory 1. [T] Termination
2. [TC] Type Correctness
3. [STR, SMR, STP, SMP] Information Preservation
4. [STR, SMR] Information Creation

optional

relatedIntent Abstraction, Synthesis

Table 4.2 – Refinement Intent Characterisation

needed to be able to design the refinement rules as well as to apply them. In the studies discussed in subsection
4.5.2.1, it was usually mentioned that the mandatory termination, type correctness, information preservation and
information creation properties stated in Table 4.2 need to be fulfilled. Whereas termination, type correctness
have a one to one correspondence with properties [T] and [TC] in section 4.4, information preservation and
information creation will generally need to be shown by a collection of several concrete properties, both at
the structural and the semantic level. For example, the fact that there is a simulation between each input
and output model’s semantics might imply information preservation and can be expressed as semantic relation
[SMR] property. Also, having a bijection between the syntactic elements of the input and the output models
might imply information preservation and can be expressed as a structural relation [STR] property. It is also
reasonable to think that information preservation might be expressed as a set of structural preservation [STP]
properties where the information to be preserved is encoded in the syntactic property that is transported to the
output model. The same reasoning holds at the semantic level for the usage of a set of semantic preservation
[SMP] properties. Note that in Table 4.2 the notation [STR, SMR, STP, SMP] means that any non-empty
combination of those four properties can be used to formally show information preservation.

Information creation implies the existence in the output model of syntactic and semantic elements that did
not exist in the transformation’s input model. It thus seems reasonable to think that [STR, SMR] can be
helpful, if necessary, in showing information creation, depending on the notion information creation required
by the considered transformation.

Some of the papers we surveyed have not explicitly verified all the properties in Table 4.2. Our work aims at
identifying these gaps in order to allow for a more systematic engineering of model transformations with specific
intents in the future. For example, Mannadiar and Vangheluwe (2010) and Tri and Tho (2012) do not verify the
mandatory properties and but they use case studies to demonstrate that the refinement transformations fulfills
their purpose. Both studies also informally discussed how a mapping is done between the input model and the
refined model and thus, how information is preserved. Usually, the information creation property does not need
to be checked explicitly, since it trivially follows from applying a refinement in the corresponding approaches.
For endogenous approaches like, it is moreover usually trivial to check type correctness (cf. e.g. Padberg 1999).
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Finally, the refinement intent is related to two other intents. It can be seen as the inverse of the abstraction
intent. Moreover, a special case of refinement is synthesis where the target language is a platform-specific
programming language. Further, refinement can also be seen as a means to generate models that can eventually
be used for synthesis (Mannadiar and Vangheluwe 2010; Tri and Tho 2012).

4.5.3 Translation

A transformation with the translation intent is a transformation that translates the meaning of models con-
forming to a source metamodel into models conforming to a target metamodel. The resulting models can then
be used to achieve tasks that are difficult, or impossible, to perform on the originals.

4.5.3.1 Translation in the Literature

From the review of the contributions present in the literature, it appears that a translation is performed for
two main reasons: bridging structures to enable metamodel exchanges at a structural level (e.g., for importing
models from another metamodeling framework); delegating actions to the target metamodel by simulating, or
formally analysing input models using dedicated engines available for the output models. The delegation is
valuable in the case where the cost of re-implementing a simulation/analysis engine for the source metamodel
is too high.

Bridges The four-layered organisation depicted in Fig. 2.5 is shared by several technical spaces: modelware,
grammarware, ontoware or dataware, to name just a few (Muller and Hassenforder 2005; Wimmer and
Kramler 2005). Often, one has to bridge artifacts from one to another: for example, query languages
and transaction operations in dataware are already available, taking advantage of SQL and its many
capabilities and various implementations one can simply reuse instead of reimplementing things for a
novel technical space. The goal of a bridge is to translate the meaning of the meta-metamodel itself,
i.e. offering a way to automatically convert any metamodel of one technical space into another. This
differs from the usual understanding of a transformation shown in Fig. 2.5, where the transformation is
specified on a metamodel and executes on a model, not the level above. However, as previously noted,
a meta-metamodel can usually be treated just as a metamodel and manipulated as such. Furthermore,
bi-directional bridges are usually required for enabling round-trips between technical spaces.

Two papers (Muller and Hassenforder 2005; Wimmer and Kramler 2005) published in 2005 explicitly use
the terms grammarware and modelware to refer to exchanges between textual and visual representations
of models. Most probably, closing the gap between language theory (or compilation techniques, based on
BNF grammars) and MDE (generally using MOF) are the most represented contributions (Deltombe,
Le Goaer, and Barbier 2012; Izquierdo and García Molina 2012; Muller and Hassenforder 2005). Kern and
his colleagues performed several bridges from various meta-metamodels into either MOF or its specific
Eclipse implementation EMF: GOPRR, used in the commercial transformation engine MetaEdit+ (Kern
2009); Aris, the well-known enterprise modelling tool (Kern and S. Kühne 2007); Visio, the Microsoft
general-purpose modelling tool (Kern and S. Kühne 2009). A comparative study (Kern, Hummel, and
S. Kühne 2011) also describes the bFlow Toolbox, their integrated tool for performing these bridges
seamlessly. Brunelière et al. (2010) and Bézivin et al. (2006) independently studied bi-directional bridges
between Microsoft DSL Tools and Eclipse EMF, providing an efficient way to exchange models between
one of the most popular DSL development tools.

Simulation Delegation A Translation is often specified for providing simulation (or execution) capabilities for
models. This type of delegation is a popular approach for defining the semantics of DSLs (and, in this case,
often more precisely called Translational Semantics). Since they capture domain expertise as concepts
and rules with a precise meaning, the Translation just transposes these semantics in terms of a target
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metamodel that offers the necessary execution machinery. Another popular use for Translation consists
of taking advantage of a richer framework to perform tasks specific to simulation, such as calibrating the
parameter values of models to enhance their non-functional properties (typically, performance).

Rivera, Durán, and Vallecillo (2010) use Maude for specifying the behavioural semantics of domain specific
modeling languages and for simulating the models by executing them using Maude rewriting rules. T.
Kühne et al. (2009) define a transformation from Finite State Automata into Petri Nets, implementing
the automata’s semantics: by running the Petri Net translated model over an input sequence, it can check
whether it belongs to the language accepted by the input automaton model.

MoTif is the result of combining the T-Core framework with a discrete event simulation language
DEVS (Syriani and Vangheluwe 2010b). This allows model transformations to be expressed in a mod-
ular and compositional way together with the explicit introduction of a time dimension. Syriani and
Vangheluwe (2008) demonstrated how adding the notion of time allows for the simulation-based design of
reactive systems such as computer games. This allows the modelling of player behaviour and the incorpo-
ration of data about human players’ behaviour and reaction times. The models of both player and game
were used to evaluate, through simulation, the playability of a game design.

Troya, Rivera, and Vallecillo (2009) and Troya, Vallecillo, et al. (2013) employ simulations based on
model transformations for reasoning about aspects of Quality of Service (QoS) such as performance and
reliability. In their work, they add not only general runtime information to the models, as is for example,
done by Engels et al. (2000) or in fUML, but they also add specific elements called observers to track
information the designer is interested in. The authors used e-Motions (Rivera, Durán, and Vallecillo 2010)
for implementing and executing the behaviour of the models to simulate. Internally, e-Motions is compiled
to Maude.

Analysis Delegation A Translation can take advantage of the analysis capabilities of the target metamodel.

de Lara and Taentzer (2004) transform in models for process interaction expressed in a discrete event
formalism tailored for the manufacturing domain into Timed Transition Petri Nets. This transformation
is expected to terminate, to be deterministic, type correct and to preserve Process Interaction’s behaviour.
Termination, type correctness and behaviour preservation are proved informally, but determinism is proved
using the classical critical pairs technique already implemented in Agg, the tool used to specify the
transformation.

Varró, Varró-Gyapai, et al. (2006) prove the termination of graph transformations with negative appli-
cation conditions by translating them into Petri Nets and showing that the resulting Petri Net is not
partially repetitive, i.e. no (initial) marking has a firing sequence in which a transition occurs infinitely
many times. Augur2, a graph transformation tool proposed by König and Kozioura (2008), approximates
transformations with Petri Nets for analysing property preservation. Here, the property is specified as
a graph pattern and then translated into an equivalent marking, which is checked for reachability. A
counterexample is produced in case the marking is not reachable.

Narayanan and Karsai (2008a) proved reachability within StateCharts using a two-layered translation.
First, a StateChart model is translated into an Extended Hybrid Automaton model, building traceability
links between both instances. Then, the Extended Hybrid Automaton is translated in Promela, the entry
language of the Spin model-checker, where reachability can be checked. If a counterexample is produced, it
can be traced back to the StateChart model following the traceability links previously established. Notice
however that this technique is not general: it checks a particular property (reachability in the paper) on a
particular StateChart model, and works only because the StateChart and the Hybrid Automaton models
are proved to be bisimilar.

Cabot et al. (2010) automatically extract OCL invariants from bi-directional transformations expressed
declaratively in QVT Object Management Group 2008, using a higher-order transformation. These in-
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Attributes

name Translation

description Translate the meaning of conforming input models into models conforming to a target metamodel to achieve a subsequent
task.

useContext Equip a DSL with an executable semantics, or perform a task difficult, or impossible to realise over the original models.

example
1. Provide a reference semantics for a DSL. (cf. Pwcs).

2. Exchange models between Microsoft Visio and Eclipse EMF (Kern and S. Kühne 2009).

3. Prove reachability in StateCharts using Promela (Narayanan and Karsai 2008a).

is_exogeneous True

is_endogeneous True

preconditions

Associations

mandatory 1. [T] Termination

2. [D] Determinism

3. [TC] Type Correctness

4. [STP] Semantic equivalence (Bridge)

5. [SMR, SMP] Observational equivalence / Similarity (Simulation, when source semantics available)

6. [STR, STP] Structural Preservation (Simulation, without source semantics available)

7. [STP, SMP, SMR] Soundness (Analysis)

optional 1. [TR] Backward Traceability to relate results back to the input.
2. Readability of the transformation’s output for debugging purposes.

relatedIntent Synthesis, Refinement, Analysis, Simulation

Table 4.3 – Translation Intent Characterisation

variants allow one to answer various questions about the transformation, such as whether a valid input
or output model exists for the transformation, or whether an output model exists for any possible valid
input. However, the actual invariant satisfaction problem is delegated to specialised tools able to work on
UML models decorated with OCL invariant constraints.

4.5.3.2 Translation Metamodel Instance

Table 4.3 shows the ModelTransformationIntent’s instance for the Translation intent. This intent is closely related
to the following intents: Synthesis, Refinement, Analysis and Simulation. A Synthesis is a Translation where
the output is expected to represent a programming language, generally outputted in textual form; the difference
being that it generally induces a gap in the abstraction level. A Synthesis is therefore very close to a Bridge (i.e.
the meaning of the source is integrally translated), or, often, a Translation with simulation delegation, when the
resulting code is used for execution purposes. A Refinement is a (possibly endogeneous) Translation, with the
specific task to add precision and information at each step. Analysis and Simulation are related because of the
ability of a Translation to delegate such tasks to the target metamodel, where specialised engines already exist.

A Translation is by nature terminating [T] and deterministic [D], otherwise the expected output models
could never exist, or could be ambiguous regarding the original input. Because the output is expected to
somehow “represent” the input, the transformation should be type correct [TC].

The remaining mandatory properties depend on both the Translation’s nature and the existence of a precise
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semantics for the source metamodel.

Bridge If it is possible to attach a formal semantics to both meta-metamodels, then it becomes possible to
formally compare conforming metamodels of both sides; otherwise, it should be possible to define structural
preservation [STP] between both sides.

Simulation If the Simulation defines the source metamodel’s semantics, then structural preservation [STP]
is the only possible property. Otherwise, if the source metamodel has a predefined semantics, structural
[STP], but also semantics preservation [SMP], are possible. It can also be interesting to prove a simulation
relation [SMR] between the input and the output, thus ensuring for reactive systems that all actions of the
input can actually be performed by the output (but obviously, also more actions, typically time-related).

Analysis Since an Analysis generally focuses on particular aspects of the inputs, the transformation should
be “sound”, i.e. it should verify some form of preservation of the property under analysis [STP,SMP].
Depending on the abstraction level difference of both sides, it is also possible to verify a simulation relation
[SMR] between models in each side.

Some optional properties are also sometimes desirable. As already mentioned, a Bridge could sometimes be
bidirectional. Traceability [TR] is also desirable for Analysis and Simulation to be able to relate results back
to the input: for example, playing a counterexample obtained from an analysis in terms of the input to help
identify errors.

4.5.4 Analysis

A transformation with the Analysis intent is a transformation that implements an analysis algorithm of any
complexity. Examples include: the computation of a call graph for operations of a MOF model, detecting dead
code or inapplicable rules, and the model-checking of a temporal formula over a given structure.

4.5.4.1 Analysis in the Literature

From the literature review, we noted two types of scenarios in which Analysis occurs. A transformation is a
Pure Analysis Transformation if it expresses an analysis algorithm on its own, i.e. computes the necessary
information for performing the analysis. Otherwise, it is a Built-In Analysis Transformation if it is executing
with a transformation engine that is already equipped with analysis features.

Pure Analysis Transformations This Analysis scenario is, in fact, very rare. One reason is that specifying
an analysis algorithm is typically complicated and so it is often easier instead to delegate the analysis to
a dedicated tool after having translated the models. Furthermore, a key issue when analysing models is
scalability, and this often requires the use of dedicated data structures to enable performance gains (for
example, consider the use of binary decision diagrams for scalable model-checking).

Narayanan and Karsai (2008b) implemented a graph rewriting system in Great to transform UML activ-
ity diagrams to Communicating Sequential Process (CSP) models. The graph rewriting system was then
checked for preserving structural correspondences between input and output models (property preserva-
tion). Unfortunately, no data related to the performance and scalability is given. Recently, Lúcio and
Vangheluwe (2013a) explored the possibility of checking structural correspondence properties on DslTrans
transformations. The approach scales up to 21 rules for a transformation with acceptable computation
times.

Built-In Analysis Transformations This Analysis scenario corresponds to the fact that a transformation
is expressed in a transformation framework that is natively equipped with formal analysis capabilities.
When possible, this represents a good choice, since the analyses are tailored for the transformation engine,
ensuring good performance.
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Attributes

name Analysis

description Perform an analysis on the input models.

useContext
1. Develop an analysis algorithm using transformations.

2. Benefit from the built-in analysis capabilities of a transformation engine.

example Reuse Maude’s model-checking capabilities for model-checking graph transformations. (Rivera, Durán, and Vallecillo
2009)

is_exogeneous True

is_endogeneous False

preconditions 1. Access to analysis algorithms.

Associations

mandatory 1. [TC] Type correctness

optional

relatedIntent Translation, Simulation

Table 4.4 – Analysis Intent Characterisation

Rivera, Durán, and Vallecillo (2009) encode graph transformations into Maude (Clavel et al. 2007). Graph
transformations are specified visually by using AToM3 (de Lara and Vangheluwe 2004) as a front-end, and
encompass negative application conditions, well-formedness rules and both single and double pushout
approaches. Since Maude provides reachability analysis, Ltl model-checking, and theorem-proving capa-
bilities, all these analysis become available for graph transformations, and the results are easily traced
back due to their high-level encoding of (meta-)models. Gargantini, Riccobene, and Scandurra (2010)
use Abstract State Machines (ASM) (Börger and Stärk 2003) to encode a DSLs’ semantics. Metamodels
and models are expressed with EMF whereas the transformation expressing their operational seman-
tics is expressed with the ASM language. Using the built-in bidirectional translation into νSmv, LTL
model-checking become possible in this framework.

Groove (Rensink 2003) allows the (bounded) model-checking of CTL formulæ over graph-based transfor-
mations with negative conditions (Kastenberg and Rensink 2006). The tool can also handle reachability
analysis by expressing adequate invariants in CTL.

4.5.4.2 Analysis Metamodel Instance

Table 4.4 shows the ModelTransformationIntent instance for the Analysis intent. This intent is closely re-
lated to two other intents: Translation and Simulation: a Translation often delegates an analysis to the target
metamodel; whereas a Simulation can directly benefit from the potentially available analysis capabilities of
the simulation engine. When such capabilities exist, the task of the transformation designer consists of just
specifying the transformation adequately (i.e. in the engine’s own language), the analysis becoming the trans-
formation’s engine responsibility, not the designer’s. For example, Rivera, Durán, and Vallecillo (2009) (cited
as example in Tab. 4.4) use Maude as such a target, providing model-checking and theorem-proving analysis for
all transformations specified within their framework.

Pure analysis transformations are obviously type correct when delivering a result [TC]. Beyond this, it
is difficult to say more since it highly depends on the analysis being performed. They are not necessarily
required to be terminating, or deterministic, since many types of static analysis are undecidable. For example,
consider a model-checking procedure: it does not generally terminate for infinite systems, and if it does, the
only requirement is to answer with one counterexample among all possible ones. In general, proving an analysis

70



4.5. Five Examples

transformation’s correctness is roughly equivalent to proving the correctness of an implementation with respect
to an analysis algorithm. For example Lúcio and Vangheluwe (2013a) would be asked to prove that their
transformations actually correctly realise model-checking.

The Analysis intent clearly needs further research. The fact that we cannot better characterise such an intent
also comes from the fact that it is often, based on our observations, neither an atomic intent, nor has a single
target (consider again model-checking: the analysis verdict is, if negative, accompanied with a counterexample).

4.5.5 Simulation

In the modeling community, simulation is a transformation that encodes some operational semantics of a lan-
guage. Therefore it simply updates the state of a model in response to events (e.g., time, trigger, causal
dependency). We can define a simulation such that its trace of execution is a label-transition system (LTS)
where a node is a legal snapshot of the state of the model and a transition is the application of a rule.

Note that the term “model simulation” is understood differently in the modeling community and the sim-
ulation community. In the modeling community, model simulation normally refers to the development of an
operational semantics for a modeling language, while in the simulation community, simulation (Shannon and
Johannes 1976) refers to the process of designing a model of a real system and conducting experiments with
this model for a certain purpose. Thus, the first interpretation can be seen as the enabler of the latter.

4.5.5.1 Simulation in the Literature

There is a large body of work discussing how to implement the operational semantics for modeling languages.
Generally, there are two approaches for defining the behaviour of models: piq by incorporating the runtime
concepts into the metamodel and adding transformation rules for evolving the initial state of a model, and
piiq embedding the modeling language into some existing simulation formalism (as already discussed in Subsec-
tion 4.5.3.1). Thus, we refer the interesting reader for the second approach to Subsection 4.5.3.1 and deal in
this subsection only with the first one.

Concerning the first approach, one way for defining an operational semantics is to introduce executability
concerns by defining graph transformation rules operating on metamodel instances as proposed by Engels et al.
(2000). Another possibility is to follow an object-oriented approach by specifying the behaviour of operations
defined for the metaclasses of a modeling language (within the metamodels representing the abstract syntax of
the languages) using a dedicated action language. Many action languages have been proposed, including the use
of existing general purpose programming languages: Kermeta (Muller, Fleurey, and Jézéquel 2005), Smalltalk
(Ducasse and Gîrba 2006), xCore (Clark, Evans, et al. 2004), EOL (Kolovos et al. 2012), the approach proposed
by Scheidgen and J. Fischer (2007), and fUml (Mayerhofer, Langer, and Wimmer 2012). Prominent examples
used in these papers are the definition of the operational semantics of Petri Nets or State Charts.

Most of this work only addresses the definition of the operational semantics of languages that model discrete
systems without time, i.e., the time elapsed between two state changes is not considered. However, there are also
some approaches dedicated to modeling specific real-time systems that require an explicit notion of time. For
instance, de Lara, Guerra, et al. (2010) use so-called flow graph grammars for scheduling graph transformation
rules and scheduling grammars for introducing an explicit notion of time for modeling a mail system.

An interesting problem and solution is presented in (Biermann, K. Ehrig, et al. 2009; Ermel and H. Ehrig
2008) where the goal is to have consistency between animation rules operating on the concrete syntax of a model
and the simulation rules operating on the abstract syntax of the model. Although we consider this consistency
property between animation and simulation as very important, in this paper we focus only on properties inherent
to the simulation intent.
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Attributes

name Simulation

description To give an operational semantics to a modeling language by updating the state of the model.

useContext Need to compute the trace of a model’s execution, its final state or both.

example Compute worst-case execution time, throughput, error rates of a production model.

is_exogeneous False

is_endogeneous True

preconditions 1. Access to intended semantics.
2. Metamodel contains runtime information as is currently provided by the dynamic metamodeling approach (En-

gels et al. 2000). As an example for runtime information consider the token concept in Petri Nets.
3. Modeling language has behaviour.
4. Real-time systems require a notion of time.

Associations

mandatory 1. [T] Controlled Termination
2. [TC] Type correctness
3. [BP] Dynamic properties of the simulation

optional 1. Log of simulation is accessible.
2. Readability of the transformation’s output.
3. If animation is provided, it has to correspond to the simulation

relatedIntent Translation, Analysis, Synthesis, Animation

Table 4.5 – Simulation Intent

4.5.5.2 Simulation Metamodel Instance

Table 4.5 shows the ModelTransformationIntent instance for the Simulation intent. As already mentioned,
the purpose of simulation in Mde is to give operational semantics to a modeling language by updating the
state of a model. Of course, this applies only to behavioural models. The transformation is considered to be
either exogenous if an already existing simulation formalism is selected for this purpose or endogenous if the
behavioural semantics is directly attached to the language’s metamodel.

In general, a simulation is a terminating transformation. When a terminating condition is met, the simulation
must stop. This condition can be based on the state of a model, on the gained information, or on time. This
latter point means that the transformations are expected to terminate at some point in time, although it may
happen that the simulation has to be stopped even though there are still rules that can be applied. Concerning
the second point, sometimes the successful execution of the simulation is meant to be non-terminating unless an
information saturation point is met. This can be a failure or an exception case arises that may lead to rejecting
the hypothesis to be tested, or the opposite, the information gained allows to accept the hypothesis. To sum
up, controlled termination [T] has to be supported.

Whether a simulation transformation is deterministic [D] depends on the system being modelled and cannot
be decided on a general basis. If the system is deterministic, the simulation should be deterministic, too;
otherwise, one of the transformation rules is non-deterministically selected and applied.

Each simulation step should result in a valid model with respect to its metamodel: a stronger type correctness
[TC] property than the one of Definition 4.4 needs to hold. However, ensuring this may require a sequence of
several transformation rules corresponding to a single logical simulation step (making transformation rules act
similarly to a transaction).

Proving the simulation to be correct usually required that a set of behavioral properties [BP] hold: among
others, invariants, or reachability constraints over the set of reachable states of the simulated system.

Logging of transformation execution events is considered to be an useful but optional property. Especially,
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some transformation engines are able to produce complete logs, e.g., the order of the rules applied, the different
execution states, the binding of the rules and timing information. Some approaches also provide the means to
automatically produce views on the logging information to support better understandability of the simulation
results, e.g., to show the number of events per event type. This is also connected to an optional property, the
readability of the transformation’s output. Here, not only the output model has to be in a human-readable
form, but also the logging information since it may be considered to form a critical aspect of the simulation
result.

Because an animation of a simulation is optional, we consequently consider the consistency property between
animation and simulation as an optional property.

4.6 The Power Window Case Study

This section introduces the case study for this paper, developed in the context of an industrial project aimed
at building control software for an automobile power window (Denil 2013; Mustafiz et al. 2012). A power
window is basically an electrically powered window. Such devices exist in the majority of the automobiles
produced today. Besides lifting and descending the window, a power window also includes an increasing set of
additional functionalities, aimed at improving the comfort and security of the vehicle’s passengers. To manage
this complexity while reducing costs, automotive manufacturers use software to handle the control of such
physical devices.

The Power Window Case Study (Pwcs) consists of a chain of model transformations aiming at generating
control software for a power window as C code, starting from high level requirements. The whole transformation
chain contains 37 transformations and involves 28 different metamodels. The Pwcsserves as an experimental
platform for the research presented in this paper. We use it for two complementary purposes.

• since the Pwcs was developed independently of our research, it presents an unbiased collection of trans-
formations that we use for partially validating the Intents Catalogue of Section 4.3: we will identify
occurences of intents in this real-world transformation chain.

• The Pwcs can be used to illustrate the practical usefulness of our Intent/Property mapping in Section 4.5
and of our abstract framework for formalizing properties provided in Section 4.4: in particular, we ex-
tract from the transformation chain two witness transformations in Section 4.7 for two exemplary intents,
namely, Translation and Simulation. By using our mapping we illustrate how to build concrete transfor-
mation properties that help in showing the correctness of the two witness transformations by instantiating
the abstract framework.

Section 4.6.1 presents the Ftg+Pm formalism in which the Pwcs transformation chain is expressed. Section
4.6.2 describes the transformation chain itself, with an emphasis on the steps the witness transformations are
extracted from. Section 4.7.3 links the transformations appearing in the Pwcs with their respective intents.

4.6.1 Formalism Transformation Graph and Process Model

Figure 4.7 depicts a condensed version of the Ftg+Pm for describing the Power Window software. It consists
in two parts:

Ftg (Formalism Transformation Graph) on the right side of the Figure, captures a set of Domain-Specific
Formalisms, visually defined as labelled rectangles. Those formalisms are connected to small labelled circles
that represent transformations from one formalism to the other.

Pm (Process Model) on the left side of the Figure, represents a diagram describing a set of ordered tasks
necessary to produce the Power Window code. This diagram is directly inspired from the Uml Activity
Diagram Language (Object Management Group 2011a).
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Figure 4.7 – Ftg (on the left) and Pm (on the right) for Power Window software development
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Both sides are in a direct correspondence as follows: actions, represented by round-edged rectangles in the Pm,
are typed by executions of the transformations with the same label declared in the Ftg; whereas data objects,
represented by square-edged rectangles in the Pm, represent instances of the models declared in the Ftg that
are produced and/or consumed by actions. A model is an instance of the formalism declared in the Ftg with
the same label. A thin arrow in the Pm indicates a data flow; whereas a think arrow indicates control flow. An
horizontal bar depicts a join/fork control flow construct; and a decision node has the form of a diamond. Some
actions are greyed: this indicates that the corresponding transformation requires manual intervention (e.g., to
provide a configuration parameter, or because it denotes a manual task), contrary to the others that are fully
automated.

4.6.2 Description

The transformation chain of Figure 4.7 is constituted by several phases, identified by numbered layers: Require-
ments Engineering, Design, Verification, Simulation, Calibration, Deployment and finally Code Generation.
Some of these phases phases can be executed in parallel (e.g., ?? and ?? that are later joinded before ??).
Others, such as ?? (Deployment), contains loops.

We focus on the four first phases that lead to a viable, trusted system that can then be calibrated and
deployed: the construction of transformation properties used in Section ?? are extracted from these phases.
A detailed description of the Pwcs can be found in the corresponding literature (Denil 2013; Lúcio, Joachim,
et al. 2012).

Note that the Pm of Fig. 4.7 contains collapsed blocks (e.g., Model Requirements, Safety Analysis or Hybrid
Simulation) that hide the details of the corresponding tasks. Whenever relevant for the explanation, we will
explicitly detail the blocks content.

1 Requirements Engineering. Before design activities can start, engineers have to extract requirements
from legal and technical documents in order to produce requirement and use case diagrams that document
what is expected from the system. These transformations are usually done manually, although some parts
could be automated (e.g., for populating those diagrams).

2 Design. Using these requirement artefacts, software engineers start the design activity following design
practices inspired from control theory Dorf 2011: the controller is the piece of software controlling the
window’s functionalities; the process (also called plant) is the physical power glass window with all its
mechanical and electrical components, i.e. the mechanical lift, the electrical engine and the sensors de-
tecting the window’s position or collision events; and the environment is constituted of the human actors
and the other vehicle subsystems, e.g. the central locking system, the ignition system, etc. (the way
the Pwcs is built closely follows the work by Mostermann and Vangheluwe Mosterman and Vangheluwe
2004). Each aspect of the system is captured by a dedicated Dsl (Domain-Specific Languages explicitly
named Environment, Plant and Control in Fig. 4.7), later bound together using an extra Network Dsl
for expressing how they interact.

After this phase, the entire system is modelled and can be deployed. However, regulations in the automotive
sector have strong security concerns that need to be addressed at early stages of the system design. Since the
Power Window is a critical system, two validation tasks, namely Verification and Simulation, are conducted in
parallel in the Pwcs to ensure that the code generated from the models are trustable.

3 Verification. Formal Verification is applied by translating all domain-specific models from the previous
stage into corresponding Petri Nets Peterson 1977. All the resulting Nets are then composed accordingly
to the Network model, to obtain a fully functional Petri Net, on which reachability analysis of undesired
states, specified according to the requirements, is then checked.
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Figure 4.8 describes the details of the collapsed block corresponding for safety analysis. On the right side,
the :CombinePN composes the five models resulting from the previous Design activity into a combined
Petri Net that describes the behaviour of the whole system. This combined Petri Net is the source of two
activities performed in parallel: the :toSafetyReq, which requires human intervention, produces a set of Ctl
formulas encoding the requirements based on a safety requirement model; and the :BuildRG automatically
builds the reachability graph corresponding to the combined Petri Net model. These activities are then
joined together, since they are prerequisites before the ReachableState action is executed for model-checking
the combined Petri Net behaviour against the safety requirements, and produces a verdict (given as a
boolean value).

4 Simulation. On the other hand, a simulation of the whole system is conducted to evaluate the responsivity
when interacting with the passengers. The continuous behaviour of the window is modeled using a hybrid
formalism: the models for the environment and the plant resulting from the Design phase are translated
in Causal Block Diagrams (Cbds)3 whereas the controller model is transformed into a StateChart. The
process of verifying the continuous behaviour is similar to theVertification phase, although as a requirement
language CBDs are also used.

When the Verification and Simulation tasks are both completed, engineers can think about how to efficiently
deploy the system on the platforms they target (Phases 5 to 7 ). The Calibration phase aims at extracting a
performance model that gives measurements about the execution times corresponding to the different use cases.
This performance model is then used during the Deployment phase for selecting a deployment solution with
real-time behaviour where spatial and temporal requirements are respected. Finally, when a feasible solution
is found, the code specific to the target platforms can be synthesised: this includes the code of the application
itself, but also the code corresponding to the middleware and to the runtime environment.

3Causal Block Diagrams are a general-purpose formalism used for modelling causal, continuous-time systems, mainly used in
tools like Simulink.

76



4.7. Identifying Transformation Intents within the Pwcs
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! cmdUp  3
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! cmdUp  2

Driver Pass

//

Figure 4.9 – Example model for the Environment DSL language

4.7 Identifying Transformation Intents within the Pwcs

This Section takes two transformations from the Pwcs and describes for each of them how we identified their
intent by following the process described in Figure 4.4: the first one is a Translation whereas the second one is
a Simulation. We also illustrate for each transformation a concretisation of one property among those ensuring
the transformation correctness. Finally in Section 4.7.3, we provide an overview of the intents identified within
the Pwcs.

4.7.1 Translation

As a first example transformation for which we want to identify the intent we chose the EnvToPN transformation.

Selecting Intent using Description Attribute As afore briefly mentioned, the EnvToPN transformation
takes a model expressed in the Environment DSL language and produces as result a model in the Encapsu-
lated Petri Nets language. The purpose of this translation is to profit from the fact that the Encapsulated
Petri Net has a well known and studied semantics which can be used as a semantic domain for the analysis
of models of the Environment DSL language. The Environment DSL language has no explicitly formalized
semantics and the role of the translation is to provide an artifact that can explicitly produce such seman-
tics in the form of a Petri Net like formalism. Consequently, the obvious intent of the transformation is to
provide Translational Semantics to Environment DSL models in terms of the Petri Net formalism. This
fits nicely to the description of the Translation intent in Table 4.3.

Checking Remaining Intent Attributes The useContext mentioned in Table 4.3 and the fact that the
transformation needs to be exogeneous fit both as well. In what concerns the example attribute, example
3 is the same kind of translation having analysis as its purpose.

Checking Appropriateness of Mandatory Properties We switch to checking if the mandatory intent
properties are appropriate for the EnvToPN transformation. As can be observed in Table 4.3, the Trans-
lation intent has as mandatory properties termination, determinism, type correctness and soundness. As
for the first three properties, it is obvious that they are appropriate.

Because the semantics of models written in the Environment DSL language is not defined, it is not
meaningful to discuss the preservation of semantic properties for the EnvToPN transformation. It is
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cmdUpDriver
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cmdStopDriver
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cmdDownDriver lockOutDriver

Figure 4.10 – Example model for the Encapsulated Petri Nets language

however meaningful to preserve syntactic properties of an Environment DSL model that reflect its correct
translation into an Encapsulated Petri Net model. Consequently, we can conclude that the mandatory
properties are appropriate.

Selecting Optional Properties The optional properties for the translation intent are backward traceability
and readability. The implementation traceability was not required given the simple nature of the properties
being verified in the Pwcs. Special care was however devoted to readability of the transformation’s
output such that, given the very visual nature of Petri Nets, the models resulting from the EnvToPN
transformations could be understood by humans. This proved useful both for debugging and especially
for demoing purposes, as the Pwcs has been presented at several venues as an example of transformation
chaining for the contruction of complex systems using MDE principles.

Outlooking to Validating Properties After having identified the intent for the EnvToPN transformation,
we want to validate as described in Fig. 4.5 if its mandatory/selected optional properties are indeed fulfilled.
We give a brief idea of this process and first have a more detailed look into the EnvToPN transformation.

Fig. 4.10 depicts the result of executing the EnvToPN transformation on the model in Fig. 4.9, which
represents the parallel issuing of two sequences of statements. The box annotated with ’Driver’ sends out four
sequential commands to the set of buttons on the driver’s door and the box annotated with ’Pass’ send three
sequential commands to the set of buttons on the passenger’s door. Note that each command box has a number
in it, which represents the amount of time during which the command is in effect. The translational semantics
of the model in Fig. 4.9 is produced by transformation as the Encapsulated Petri Net model in Fig. 4.10. The
resulting model is a Petri Net where the commands issued by the driver are merged with the commands issued by
the passenger along the same Petri Net transition timeline. Petri Net transitions pass messages to outside of the
component via ports, represented as black squares on the border of the component. Due to timing constraints
the driver and the passenger commands are sometimes issued simultaneously. In the model in Fig. 4.10 this
translates into the fact that some of the transitions on the Petri Net in Fig. 4.10 are connected to more than
one port in the component.

In Fig. 4.11, we express a structural preservation [STP] transformation property that we wish to hold for
the EnvToPN transformation. Akehurst, Kent, and Patrascoiu (2003), Büttner, Egea, Cabot, and Gogolla
(2012), Büttner, Egea, and Cabot (2012), Cariou et al. (2009), Gogolla and Vallecillo (2011), Guerra, De Lara,
et al. (2013), Lúcio and Vangheluwe (2013b), Vallecillo and Gogolla (2012) have studied structural preservation
properties. They allow expressing in a similar fashion how the structure of the transformation’s input model
influences the structure of the transformation’s output model. In order to express such properties for all
executions of a transformation those languages typically use a mix of the transformation’s source and target
metamodel elements, additional constraint languages (e.g. Büttner, Egea, and Cabot (2012) and Büttner, Egea,
Cabot, and Gogolla (2012), Cariou et al. (2009), Gogolla and Vallecillo (2011) and Guerra, De Lara, et al.
(2013) and Vallecillo and Gogolla (2012) all used Ocl) and often metaclasses allowing describing traceability
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Postcondition XOR

//

Precondition

Postcondition

MergeEventSequences

Postcondition

Figure 4.11 – Syntactic property preservation example for the EnvToPN Power Window transformation

connections between the source and target metamodel elements (Akehurst, Kent, and Patrascoiu 2003; Büttner,
Egea, Cabot, and Gogolla 2012; Lúcio and Vangheluwe 2013b). The property language designed by Lúcio and
Vangheluwe (2013b) served as a basis for expressing the transformation property in Fig. 4.11.

The [STP] transformation property in Fig. 4.11 states that whenever the input model includes two sequences
of parallel output commands, each of those sequences containing a first and a last command, the resulting
output model will merge the two first commands as a single transition and the final transition is coming from
the last command of either the first or the second sequence (but not both, as denoted by the XOR operator).
Note that in Fig. 4.11 the thick dashed arrows between Precondition or Postcondition elements state those
elements are indirectly linked; thin dashed arrows between Precondition and Postcondition elements represent
traceability links; and blend colored elements represent negative condition, i.e., elements that cannot not occur
in input/output models. In Section 4.4 we have defined [STP] properties as follows:

Mi $s π P LpMMsq ùñ Mo $t π
1 P LpMMtq

For the example property in Fig. 4.11, π and π1 correspond respectively to the Precondition and Postcondition
part of the property. Also, Mi and Mo are instances of the Environment DSL and Encapsulated Petri Net
languages respectively and Mo is the result of applying the EnvToPN transformation to Mi. If Mi instantiates
the property’s Precondition pattern π, then Mo necessarily instantiates the property’s Postcondition pattern π1.
Note also that π and π1 are related by the property’s traceability links connecting the property’s Precondition
and Postcondition elements.

4.7.2 Simulation

As a second example transformation we have selected a Petri Net simulation called BuildRG and located in
Area ??. We describe the intent identification of this transformation with less detail. In particular, we select
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Figure 4.12 – Simulation of Petri Nets: transformation rules (left) and schedule (right).

the intent using the description attribute and then describe merely why one of the mandatory properties is
appropriate.

Selecting Intent using Description Attribute The transformation BuildRG specifies the semantics of
Place/Transition Petri Nets operationally, i.e. in an inplace fashion. This fits obviously to the description
attribute of the Simulation intent in Table 4.5.

Checking Appropriateness of Mandatory Property [BP] Let us call t “ pMMs,MMt, specq the corre-
sponding transformation specification. Since a simulation is inplace, MMs and MMt both represent a
metamodel for Place/Transition Petri Nets. The specification follows a graph-based approach, using Mo-
Tif (Syriani and Vangheluwe 2011) as a model transformation language L. The attached transformation
execution TSt corresponds to the semantics on the MoTif execution engine.

As shown in Fig. 4.12, it is possible in MoTif to specify the transformation rules (on the left, adapted from
T. Kühne et al. 2010 for the purpose of the Pwcs), but also their scheduling (on the right). Four rules
compose the specification: FindTr, ConsumeTks, NonFiringTr and ProduceTks. The rules are organized
in two nested loops; the outer-most, called Simulation, runs in an infinite loop. The first rule FindTr
(which is a query consisting of solely a LHS) selects one transition. The transition found is assigned to a
pivot variable transition to be referred by subsequent rules. Then, the transformation ensures that only
firing transitions will be processed. To find enabled transitions, the transformation iterates through all
transitions until one has been found that does not satisfy the pattern of a non-firing transition. This is
done by iterating over every transition in the model and, if the NonFiringTr rule cannot succeed, it is
assigned to the pivot in order to fire the transition. This interruption in the inner-loop is represented
by connection from the fail port of the rule NonFiringTr to the success port of the enclosing rule block.
When a firing transition is found, it is assigned the transition pivot, replacing the former transition. Then,
tokens are transferred along this transition as depicted by rules ConsumeTks and ProduceTks. These two
rules are applied for all adjacent arcs and places (denoted by an ‘F’). After that, the first FindTr rule is
applied again recursively, by re-matching the new model looking for a transition given the new marking.
This control flow goes on until no more transitions are fireable. This transformation succeeds if the input
model contains a transition and fails if not.

Outlook to Validating Mandatory Property [BP] After having identified the intent for the BuildRG
transformation, we want to validate as described in Fig. 4.5 if its mandatory/selected optional prop-
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Intent Transformations

Restrictive
Query

CheckReachableState, CheckContinuous, ExtractPerformance, CheckBinPacking, SearchArchitecture, SearchECU,
SearchDetailed, CheckSchedulability, CheckDEVSTrace

Refinement ArchitectureDeployment, ECUDeployment, DetailedDeployment

Abstraction ExtractTimingBehaviour

Synthesis SCToAUTOSAR, SwToC, ToInstrumented, GenerateCalibration, ArToMw, ArToRte

Translation EnvToPN, PlantToPN, ScToPN, ControllerToSc, EnvToCBD, PlantToCBD, ToBinPackingAnalysis,
ToSchedulabilityAnalysis, ToDeploymentSimulation

Simulation BuildRG, SimulateHybrid, ExecuteCalibration, SimulateDEVS, CalculateSchedulability

Composition CombinePN, CombineCBD, CombineCalibration, CombineC

Table 4.6 – Intents of transformations present in the Pwcs.

erties are indeed fulfilled. We give a brief idea of this process for the identified mandatory property [BP]
as described above.

The [BP] mandatory intent property can be concretized in the following way. As defined in Definition 4.9,
a [BP] depends on an input model. In our case, Mi is the Petri Net model illustrated in Fig. 9 of Lúcio,
Mustafiz, et al. 2013 that models the behaviour of the power window control software. In particular, each
place in that Petri Net must contain at most one token during its execution. Petri Nets of this kind are
also called 1-safe. Therefore, an indicator of the correctness of the BuildRG transformation could be that
at each step of the simulation each place has at most one token, assuming of course the Petri Net model
being simulated is indeed 1-safe. The following [BP] states that given that input Petri Net, the execution
of the transformation from Fig. 4.12 will always satisfy that property φ expressed in Ltl4. Here, M
denotes the marking of a place p in Mi.

@p P Mi . Mi,TSt |ù  ˝ p|M ppq| ą 1q

Simulation transformations often include a loop where the same steps are re-executed on the resulting
model. Furthermore, some steps may require choices to be done. Thus a simulation execution consists
of one branch in TSt. In our example, every loop of the simulation starts by looking for a non-firing
transition. However, when found, only one such transition is taken into consideration. Therefore to verify
that a transformation does not satisfy φ, it suffices to check whether φ is not satisfied at each step in one
simulation execution. Some approaches allow one to specify such invariants on the model transformation
steps directly (cf. e.g. Wimmer, Kappel, et al. 2009).

4.7.3 Overview

As a partial validation of our description framework, we applied the scenario described in Fig. 4.4: we identified
the intents of transformations of the Pwcs. In Table 4.6 the Pwcs transformations are classified according to the
intent they obey. As one can easily notice, some of our intents are not represented at all. This is not surprising
however: the purpose of the Pwcs transformation chain is to generate trustable C code for hardware execution;
consequently, intents related to transformation visualisation, synchronisation or syntactic manipulation, among
others, have no corresponding transformation in the chain. On the contrary, some of the intents collect many
transformations: most of the transformations belong to either Query, Refinement, Synthesis, Translation or
Simulation.

4E. M. Clarke, Grumberg, and Peled (1999) provides more details on the syntax, semantics of Ltl, as well as its expressive
power and a comparison with Ctl.
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Transformation Description Precond. Mandatory Optional

BuildRG The BuildRG transformation simulates the execution of a
Place/Transition Petri Net in order to build that net’s reach-
ability graph. Safety requirements for the power window can
then be checked on the produced reachability graph.

(1),(2),(3) (1),(2),(3),(4) (1),(2)

SimulateHybrid This transformation simulates the interactions between the
physical window and the designed window controller. While
the physical window has continuous behaviour, i.e., the win-
dow is moving up/down in a continuous manner, the user
can push buttons to control the window that correspond to
discrete signals. Casual Block Diagrams (CBD) represent-
ing the window behaviour are co-simulated with Statecharts
that represent the user events.

(1),(2),(3),(4) (1),(2),(3),(4) (1),(2),(3)

CalculateBinPacking The bin packing transformation is a simple transformation
that simulates and evaluates the usage of a hardware com-
ponent by calculating the sum of each execution time of a
function mapped to the hardware component divided by the
period of the functions. The transformation is implemented
as an equation and produces measurements.

(1),(2),(3),(4) (1),(2),(3),(4) (1),(2)

ExecuteCalibration By running a simulation on a host computer, the input to
execute an instrumented software application on the target
platform for collecting measurements to obtain calibration
parameters.

(1),(2),(3),(4),(5) (1),(2),(3),(4) (1),(2)

SimulateDEVS AUTOSAR models are translated into DEVS for producing
traces by simulating the DEVS representations. The output
of the DEVS simulations are traces that are further analyzed
by a boolean formula.

(1),(2),(3),(4),(5) (1),(2),(3),(4) (1),(2)

Table 4.7 – Model transformation examples from the Pwcs falling under the Simulation intent

In addition to the coarse-grained alignment, Tables 4.7 and 4.8 show the detailed results for the Simulation
and Translation transformations identified in the Pwcs. For each transformation, we describe what the transfor-
mation does, and report on the satisfaction of the preconditions, and mandatory/optional properties. This gives
an interesting snapshot on the applicability of our method in real-world transformation chains. Although both
tables collect transformations with the same intent, the preconditions and even the mandatory properties are not
the same for all transformations: In Table 4.7, these differences are due to the fact that pre-conditions (4) and
(5) in the Simulation intent (Table 4.5) are considered optional; in Table 4.8 the differences in the mandatory
properties come from the fact that some properties in the Translation intent (Table 4.3) are dependent on the
translation type (bridge, simulation, or analysis).

4.8 Discussion

The notion of intent is central to our Description Framework: it captures the adequate abstraction level for
expressing property classes. We discuss here this notion from a broader viewpoint and sketch possible future
work around this notion.

4.8.1 Towards an Intent Taxonomy

At a first glance, our research problem required to identify the various model transformation intents reported in
the literature: Section 4.3 describes an Intent Catalog that can be viewed as a description of possible instances
of the ModelTransformationIntent class of the metamodel appearing in Figure 4.2.

This description was “flat” in the sense that it only consists of a comprehensive list where instances are not
really linked together, except for the intents illustrated in this thesis: by expliciting the possible values of the
relatedIntent reference, we showed for example that Simulation, Translation and Analysis share some similarities.
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Transformation Description Precond. Mandatory Optional

EnvToPN Build a Petri Net representation of a specialised model of the
passenger’s interactions with the powerwindow.

None (1),(2),(3),(7) (2)

SCToPN Build a Petri Net representation of a statechart model repre-
senting the powerwindow control software to allow checking
power window security requirements.

None (1),(2),(3),(4) (2)

PlantToPN Build a Petri Net representation of a specialised model of the
powerwindow physical configuration to allow checking power
window security requirements.

None (1),(2),(3),(7) (2)

ControllerToSC Produce a statechart for providing semantics to a specialised
model of the power window control flow.

None (1),(2),(3),(7) (2)

PlantToCBD Generate a causal block diagram (as python code) that can
be used both for simulation of the combined system and for
calibration of the combined system

None (1),(2),(3),(6) (2)

EnvToCBD Generate a causal block diagram (as python code) that can
be used both for simulation of the combined system and for
calibration of the combined system

None (1),(2),(3),(6) (2)

ToBinPackingAnalysis Build an equational algebraic representation of the dynamic
behavior of the involved hardware components from an AU-
TOSAR (Website n.d.) specification to allow checking proces-
sor load distribution.

None (1),(2),(3),(6) (2)

ToSchedulabilityAnalysis Build an equational algebraic representation of the dynamic
behavior of the involved hardware and software components
from an AUTOSAR specification to allow checking software
response times.

None (1),(2),(3),(6) (2)

ToDeploymentSimulation Build a DEVS representation of the deployment solution to
allow checking latency times, deadlocks and lost messages.

None (1),(2),(3),(6) (2)

Table 4.8 – Model transformation examples from the Pwcs falling under the Translation intent

Nevertheless, our Catalog should be subject to a better classification based on characteristic properties, leading
to an Intent Taxonomy, i.e. an organisation that emphasises shared similar qualities of intents.

To further illustrate this point, let us consider the best suitable intent of our thesis, namely Translation. It
is related to four other intents: Synthesis, Refinement, Analysis and Simulation (cf. Tab. 4.3). All share the
idea of translating input models’ meaning into the target domain, but they do so in different ways. Simulation
and Analysis can both be performed translationally, thus delegating their core task to a target dedicated engine;
their translation requires using approximations, or abstractions, for the notions that do not natively exist in the
target, with the idea to preserve the original semantics. On the contrary, Synthesis and Refinement follows a
different translation scheme: here, preserving the semantics is also important, but it must be carried out with
an extra constraint of putting more details, lowering the abstraction level during the process. Not surprisingly,
all these intents have close characteristic property classes for ensuring their correctness, as demonstrated by
comparing the contents of Tables 4.3 and 4.5.

We foresee the existence of intents clusters that regroup intents sharing close characteristic property classes
for ensuring their correctness. Not surprisingly, Synthesis, Refinement, Analysis and Simulation form such a
cluster, as witnessed by the careful examination of Tables 4.3 and 4.5, which can be extended with Translational
Semantics and Migration. Identifying precisely such clusters is left for future work, but several obvious clusters
can already be pointed from our Intent Catalog. For example, Model Visualisation could contain Animation and
Rendering, regrouping intents with a target dedicated to visual elements; or Syntactic Manipulation, containing
Normalisation and Refactoring, which regroups intents working at a syntactic level.
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4.8.2 Composing Intents

Beyond its exhaustivity, the Intent Catalog raises the fundamental question of its atomicity : can each intent
be further decomposed into more fundamental intents? The same question can be envisaged from the dual
perspective of combination closure: is it possible to create new intents by combining, in any possible way
(sequence, composition, etc.), the current intents together? Despite their theoretical nature, these questions
have a direct impact on our work: by considering the best granularity level, it seems possible to have a property
characterisation of intents that can scale up, and ultimately clarify properties for particular combinations of
intents. As a simple example, consider two translations in sequence. It seems reasonable to consider the sequence
as a translation itself, but depending on the nature of the end-target metamodel, the sequence can actually
be better characterised as code generation, like modern compilers proceed when they need an intermediate
representation (e.g., the Java source code is first compiled into bytecode, then compiled into platform-specific
code).

This conceptual question has direct practical consequences from the certification viewpoint. The combination
closure principle could help designers elaborate compositional verification techniques, just in the spirit of the
corresponding research line in Computer-Aided Verification (cf. Cheung and Kramer 1999; de Roever et al. 2001;
Graf, Steffen, and Lüttgen 1996 for an overview and a survey of the existing techniques for various applications):
instead of certifying intents at a whole, the idea is to decompose the certification burden according to atomic
sub-transformations and to elaborate results to exploit them for combined transformations.

Beyond the theoretical conceptualisation, we observed an engineering anchoring of this (de-)composition
principle: in the Pwcs, the Pm offers a language support to compose transformations in order to consider them
as a black box, just like procedures for imperative programming languages. For example, Figure 4.8 describes
how the originally designed Dsl models are first translated into Petri Nets, then combined to perform safety
analysis. Although the entire box is qualified as Analysis, it is unsurprisingly organised into a sequence of
transformations: the first is an Abstraction aiming at building what corresponds to Petri Net’s state space;
the second is the exhaustive state space exploration to check the satisfiability of safety formulæ. This (de-
)composition principle also induces that a transformation intent is context-sensitive. For example, considered
on its own, all transformations aiming at translating these Dsl models into Petri Nets are simply Translational
Semantics, whereas if considered in the context of their final goal with the subsequent box, this is rather a
Translation with Analysis Delegation, since the purpose is to combine all Dsl models to analyse them.

4.9 Related Work

Since we investigated model transformations intents and their relevant properties, we discuss three lines of
contributions related to our work: intents in software engineering; classifications of model transformations and
classifications of model transformation verification approaches.

4.9.1 Intents in Software Engineering

The notion of intents in software engineering is not new. In 1994, Yu and Mylopoulos (1994) realized that
research in this area was, at the time, more focused on design and implementation of software—the what and
the how—rather than on the requirements necessary to understand the software to improve the underlying
development processes—the why. Mde is following a similar path: research has been more devoted to the
different modelling and transformation activities rather than exploring the intents behind such activities.

Two studies (T. Kühne 2006; Muller, Fondement, et al. 2010) investigated the rationale (i.e., purpose or
intent) behind modelling artifacts. T. Kühne (2006) identified two modelling intents based on the relationship
between the modeled artifacts and their representative models: token models “project and translate” artifacts
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from the reality, and type models that additionally perform an “abstraction” step from the artifacts to represent
universal aspects. Recently, Muller, Fondement, et al. (2010) explored the relationship between artifacts and
their symbolic representations, using intention as a core constituent to the modelling activity. The intents
discussed in the two former studies are amongst the intents presented in this paper, besides other additional
intents that we investigate using our Intent/Property mapping (Section 4.5).

In the field of requirements models, requirements patterns have been proposed to facilitate requirements
analysis (Withall 2007). Similar to transformation intents, requirements patterns are high-level descriptions of
the properties that the implementation should possess. A key difference is that our notion of intents focuses
on model transformations used in Mde, whereas requirements patterns have a much wider scope and are not
tailored to the intricacies of a specific domain.

This Chapter extends a preliminary version of the Description Framework, proposed by Amrani et al. (2012a)
with three major additions:

1. The Intents Catalogue summarises many of the intents discussed in the literature, and extends the one
given by Amrani et al. (2012a), making it more precise (in particular for the Translation);

2. The relations between Analysis, Translation and Simulation are carefully handled in our Chapter, espe-
cially with the fact that a Translation can often be considered as an enabler to the other ones (what we
called delegation in Section 4.5.3);

3. We refined our treatment of those intents, and explored two new ones: Query and Refinement.

4.9.2 Classifications of Model Transformations

Several studies (Czarnecki and Helsen 2006; Iacob, Steen, and Heerink 2008; Mens and Van Gorp 2006; Tisi
et al. 2009; Visser 2005) proposed different classifications of model transformations based on different transfor-
mation aspects. Mens and Van Gorp (2006) provided a multidimensional taxonomy of transformations based on
aspects related to the manipulated models (e.g., the abstraction level of the transformation’s input and output
models) and the used transformation execution strategies (e.g., in-place and out-place transformations). The
classification dimensions are illustrated on transformations that can be grouped according to our intents. This
Chapter investigated well-known uses of transformations, proposed fourteen additional intents to seven intents
outlined by Mens and Van Gorp (2006), and discussed several intent properties. Iacob, Steen, and Heerink
(2008) presented design patterns for model transformations expressed in QVT Relations, but the intents behind
the transformations are not discussed.

Tisi et al. (2009) examined higher-order transformations, i.e., transformations manipulating transformations.
They classified them based on whether their input and/or output models are transformations or not, resulting
in four combinations: synthesis produces a transformation from a non-transformation; analysis takes an input
transformation and produces a non-transformation output; (de-)composition uses multiple transformations both
in input and output; and modification takes an input transformation and then produces a modified version of the
input as an output. Our intents are more general in the sense that we do not distinguish between transformation
and non-transformation models allowing for a wider applicability of the intent catalogue.

Czarnecki and Helsen (2006) classified the features of transformation languages by establishing a feature
model. To do so, they introduced five intended applications of transformations which are also covered in our
transformation intent catalogue.

A taxonomy of program transformations is presented by Visser (2005). Instead of proposing a taxonomy
of multiple dimensions, like the one of Mens and Van Gorp (2006), Visser (2005) employed one discriminator
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for the taxonomy: out-place vs. in-place transformations (named as translations and rephrasing). Some of the
leaf nodes in the taxonomy are program-specific, e.g., (de-)compilation, inlining, and desugaring. Other nodes
in the taxonomy are covered in our intent catalogue. Moreover, we present several intents that are specific to
model transformations.

To sum up, our transformation intent catalogue is more comprehensive than previous attempts. Besides
providing a name and an example of each intent, comprehensive meta-information (e.g., the use context, pre-
conditions) and properties of interest for the given intent are proposed. To the best of our knowledge, the latter
aspect has not been previously investigated.

4.9.3 Classifications of Model Transformation Verification Approaches

Several studies (Amrani et al. 2012b; Calegari and Szasz 2013; Gabmeyer, Brosch, and Seidl 2013; Rahim and
Whittle 2013) proposed classifications of formal verification approaches of model transformations. Amrani et
al. (2012b) (as well as Chapter 3) presented a tridimensional space for classifying transformation verification
approaches, that have been also reused by Calegari and Szasz (2013) to derive a state-of-the-art of model
transformation verification. Rahim and Whittle (2013) classified model transformation verification approaches
with respect to the general approach used (e.g., testing, theorem proving, and model checking) and investigated
the approaches with respect to the three dimensions of Chapter 3 (i.e., transformation language, verification
property, and verification technique).

Gabmeyer, Brosch, and Seidl (2013) presented a feature model for the classification of verification approaches
of software models that can be leveraged for the classifications of model transformation verification approaches
by considering transformations as models. Our tridimensional approach corresponds on a general level to the
main features of the feature model presented by Gabmeyer, Brosch, and Seidl (2013).

4.10 Summary

In this Chapter, we proposed a methodology aimed at facilitating the use of model transformations in industry
in general, but also at paving the way to efficient development of verified transformations for safety-critical appli-
cations. This methodology adequately capture the goal and requirements of model transformation, and simplify
the process of transformation specification, development, reuse, maintenance, validation and verification.

Our methodology contains at its core the Description Framework : it consists of a mapping between two
new concepts, namely transformation intents and their characteristic properties. We proposed a preliminary
Intents Catalogue of 21 intents, and presented in more details five of them: for each intent, we give at least one
sample transformation from the literature possessing this intent. Although we do not claim for exhaustivity, this
Catalogue encompasses the most frequently occuring intents that we found after a thorough literature review. We
also provided a high level formalisation, at different abstraction levels, of the characteristic properties that were
necessary for the illustrative five intents. The Description Framework is evaluated and extensively illustrated
by applying these five intents to an industrial-scale Case Study describing a software for an automotive Power
Window: this Case Study consists of more than 30 transformations whose intent has been identified using our
Framework. We also extracted from this Case Study two witness transformations, on which we demonstrated
concrete examples of properties.
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Formal Specification of Kermeta
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This Part defines a reference semantics for the Kermeta language, the core metamodelling and transformation
language for the Kermeta platform.

The core Kermeta Language is decomposed into two sublanguages: the Structural Language (Sl) allows
modelers to specify metamodels and models in a way that respects the Omg standard Mof; whereas the Action
Language (Al) allows transformation designers to define model transformations with object-oriented statements
used to fill Mof’s operation bodies.

It is not realistic to address the whole Kermeta language in such a work, since it covers many orthogonal
features that do not directly impact the formal analysis of Kermeta transformations, but are rather user-oriented
features aimed at simplifying and facilitating Kermeta specifications. As a consequence, the subset we address
includes all model- and object-oriented features at the core of the Al.

Three Chapters naturally constitute this Part: Chapter 5 is an introduction to the Kermeta Platform;
Chapter 6 captures the semantics of the Structural Language whereas Chapter 7 addresses the semantics of the
Action Language.

The content of this Part was first published as two Technical Reports: one using a Z formalisation of the
Sl (Amrani and Amálio 2011), which helped deriving the full set-based mathematical formalisation of Chapter
6; then as a preliminary Report covering both languages (Amrani 2011). It was published as a double-round,
double blind peer-reviewed Chapter of the Book Formal And Practical Aspects of Domain-Specific Languages:
Recent Developments (Amrani 2013).





5
Kermeta in a Nutshell

For the purpose of the Formal Specification, this preliminary Chapter presents the Kermeta Language: it
first describes how the Language was historically designed, and illustrates the Language’s constructions on a
small, yet representative running example, which also serves in the forthcoming chapters to illustrate the formal
semantics. The last Section explains the mathematical notations at the basis of our formal definitions.

5.1 History

Soon after the emergence of Mde, the Omg started to propose standardised languages for the description of
metamodels (called metadataat this time). The goal was to normalise metamodel representations and to fa-
cilitate data exchanges between applications and stakeholders: originally, Mof was perceived as a “metadata
management framework, and a set of metadata services to enable the development and interoperability of model
and metadata-driven systems” (Object Management Group 2006). However, the question of model transfor-
mation was still an open issue: as already seen in the previous Chapters, a plethora of model transformation
languages are available, all with different characteristics and purposes.

Kermeta (originally typed KerMeta for Kernel for Metamodelling) emerged in 2006 in an effort to propose
a complete metamodelling framework that complies with the following requirements:

• Providing an integrated framework where all metamodelling activities are centralised in a common infras-
tructure;

• Respecting the Omg standards, particularly in the domain of metamodelling specification and static
semantics definition;

• Using an object-oriented action language for expressing model transformations

Using an object-oriented action language naturally fits eMof’s behavioural nature that nevertheless requires
a careful choice of constructions for the action language to properly fit with eMof’s semantics. Figure 5.1
summarises the vision behind Kermeta, seen as the central, common kernel for metamodelling activities.

In order to respect the previous requirements, Kermeta is built on top of eMof following a particular process
using weaving/promotion, that aims at bootstrapping Kermeta in itself (Muller, Fleurey, and Jézéquel 2005).
Figure 5.2 illustrates the process. Starting from eMof, a metamodel for the Structural Language (noted Sl)
(i.e. eMof itself, with special features specific to Kermeta) and the Action Language (noted Al) are defined,
conforming to the standard eMof (on the left of the Figure). Then, these languages are weaved, i.e. structurally
merged, to create a new metamodel, denoted xeMof in the Figure, that fully captures executable metamodels
in Kermeta. However, this weaving only results in structural definitions: a promotion, aiming at both defining
the semantics of both languages, and enabling further metamodels’ instantiation, is required to create Kermeta’s
framework. The promotion, depicted by the grey arrow, makes xeMof a meta-metamodel from which it is then
possible to normally define, as represented on the right of the Figure, other metamodels like Uml, or Kermeta’s
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Figure 5.1 – Kermeta as a Kernel for different
standardised Mde languages.

Figure 5.2 – Construction of Kermeta’s Lan-
guages using weaving/promotion.

languages themselves. This promotion operation basically consists of defining the execution infrastructure for
xeMof, based on the weaving of both the structural and the action languages, in order to make things work
properly in the next step.

The rest of this Chapter is organised accordingly to Kermeta’s language organisation: Section 5.2 describes
Kermeta’s Structural Language (Sl) whereas Section 5.3 describes Kermeta’s Action Language (Al). Both are
illustrated with a small Dsl very familiar to computer scientists: the Finite State Machine (Fsm). By choosing
such a popular Dsl, we assume the reader sufficiently familiar so we do not have to explain the Dsl itself, but
rather focus on how it is built.

5.2 Metamodelling: the Structural Language (Sl)

Kermeta’s Sl is fully compatible with the Omg standardised structural language Mof, as described in Figure
5.2. This Section describes Kermeta’s Sl in detail, highlighting the key differences with Mof, and the restrictions
we operated for the purpose of the formal specification, and illustrates its use with the Fsm example, both in
diagrammatic and textual representations.

5.2.1 Sl Meta-metamodel

Figure 5.3 depicts the eMof meta-metamodel as used in Kermeta: it describes how Kermeta metamodels are
syntactically formed. A metamodel is a set of Packages that can contains nested subpackages. Each Package
owns a set of Types that are either DataTypes or Classes. DataTypes naturally include usual PrimitiveTypes
(booleans, integers, reals and strings) as well as Enumerations, constituted by EnumerationLiterals simply
represented by their name (inherited from NamedElement). A Class also has a name, can be abstract and can
have superclasses, and contains Features. Since Feature inherits from CollectionType, it has a multiplicity (i.e.
a lower- and upper-bound), and a type that can be arranged in collections (characterised by the uniqueness and
ordering of their elements). A Feature has a name, and is either a Property or an Operation. A Property is
either an Attribute (whose type is always a DataType), or a Reference (whose type is always a Class), that
can be a containment and can possess an opposite reference. Just like Classes, an Operation can be abstract,
has a (possibly empty) Parameter list and a Body (for non abstract Operations). As usual, a Parameter has a
name and a type, except that this type can be combined with collections (since Parameter also inherits from
CollectionType).

Since Mof is a refoundation of the core concepts present in Uml, and Uml was directly inspired from
Object-Oriented Programming Languages, with a strong emphasis on Java, Mof unsurprisingly shares with
Java several concepts: Package, Enumeration, Class, and Operation cover the same ideas than their Java
equivalents. However, there exist some key differences:
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Figure 5.3 – Simplified Kermeta’s meta-metamodel (Drey et al. 2009), compliant with the Omg eMof standard
(Object Management Group 2006). In green, the class Body used in Kermeta for enriching Operations with a
behaviour. In red, the class Feature and the reference from are added to Kermeta’s original meta-metamodel
to enable full type checking in our semantics specification of Chapter 6.

• Mof allows multiple inheritance, a feature that is present for Java only at the level of interfaces, but not
for classes.

• The concept of Property replaces what is known in Java as fields, with two differences: no modifier
(i.e. public, protected, and private Java keywords) can alter a property visibility; and the Java distinction
between static and instance fields is irrelevant for Mof, since in models, all declared property in a class
is automatically visible for each of its possible instance.

• In Java, the concept of collection is handled through the Collection Api: it is ultimately defined as regular
Java code instead of being a first-class concept as in Mof; and multiplicities have no equivalent in Java.

• Operation overloading, i.e. defining operations with the same name but different parameters, is fordidden
in Kermeta: in the presence of multiple inheritance, it seriously complicates dynamic operation retrieving.
Property redefinition does not makes sense for models, since any property is automatically inherited.
However, operation overriding (or redefinition), i.e. redefining an operation’s behaviour in subclasses, is
possible like in Java, and is desirable for handling polymorphism.

Furthermore, if we notice that Mof concrete syntax, i.e. the way metamodels are physically represented, is
largely inspired from Uml, it becomes very easy to understand diagrammatic representations of metamodels in
Mof. In fact, Figure 5.3 takes advantage of Mof’s meta-circularity property to represent Mof’s metamodel
using its own diagramatic syntax. Kermeta can of course work with this representation (more precisely, the
Eclipse Ecore implementation of eMof, and Uml class diagrams), but it also provides a purely textual repre-
sentation: very close to Java’s syntax, it is naturally understood by anyone with some experience in Java. This
textual representation is aimed at simplifying model exchanges and management (since textual representations
are easier to handle).

Figure 5.3 also shows the key differences between the standard eMof and the meta-metamodel used in
Kermeta. In green, an additional class Body is added to enable the weaving of the Action Language. In red, an
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Figure 5.4 – The Finite State Machine (FSM) Dsl in Kermeta

extra class Feature and its reference from are added for the purpose of our formal specification, for enabling full
static type checking. Notice finally that we simplified the meta-metamodel by not including Kermeta’s features
that we do not formalise:

Genericity (also known as parametric classes), a notion not yet available in MOF, is a powerful paradigm for
achieving concise structural description and reuse.

Model Type is a powerful extension that enriches MOF notion of type with the capacity of manipulating
entire models as a type. When combined with operation parameters, this feature achieves a high-level of
abstraction in the specification of behaviour.

Aspects are a convenient way of expressing cross-cutting concerns in a simple and uniform fashion, and for
combining them properly. This feature introduces modularity in the metamodelisation process.

These features are already known from Object-Oriented Languages (with the notable exception of model types,
very specific to models); however, their formal grounds are still open research questions (see for example Castagna
and Xu 2011). Besides, sticking to the standard features present in Mof gives more perspective to our formali-
sation: it becomes more standard in the sense that it covers any Mof-like structural language (even Uml with
the same features).

5.2.2 The Fsm Metamodel

Figure 5.4 depicts a possible metamodel and a simple model for Fsms. On top of the Figure, a package named
FSM (in green) contains four classes named Label, FSM, State and Transition, and one enumeration named Kind.
Each class inherits from Label (except Label itself): the inherited label attribute represents the Fsm name, the
state’s names and the transition’s label respectively. The FSM alphabet attribute, typed as a set of Strings,
represents the possible actions for transitions (here, a, b and c). An FSM contains a non-empty set of States
and of Transitions (accessible through the references states and transitions). A State has a kind that determines
its nature: either a START or a STOP (i.e. final) state, or a NORMAL state; whereas a Transition is attached
to a source and a target State (corresponding respectively to the src and tgt references). On the bottom of
the Figure is represented a model with three states and three transitions, using the traditional visual notation
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for Fsms. Several red dashed arrows relate model elements to their metamodel class they are instance of (e.g.,
states, transitions and labels).

Below is the textual representation for the same metamodel. Since Kermeta’s textual syntax has a lot in
common with Java, we only comment on specific Kermeta constructions. Two constructions usually start any
metamodel declaration: require, in Line 2, is used to import other declarations in a modular fashion; and using
in Line 3 simplifies further type declarations by setting a default namespace to avoid typing fully qualified types
(here, it is used for primitive types like integers and booleans). Kermeta distinguishes between an attribute and
a reference by using two dedicated keywords. A reference with an opposite, like transition in Line 13, is denoted
using a dash: here # fsm, declared in class Transition, is the opposite reference (which symmetrically has to
declare the other as in Line 20). Type declaration is simplified in Kermeta: multiplicities are simply declared
in the form [low..min]; and Kermeta introduces some keywords for collection types (for example in Line 13 and
14, one finds set and seq for respectively declaring sets and sequences). Creating the simple model of Figure
5.4 requires the use of the Action Language, explained in the next Section.

1 package FSM;
require kermeta

3 using kermeta :: standard

5 enumeration Kind {NORMAL;START;STOP;}

7 class Label{
attribute label: String

9 }

11 class FSM inherits Label{
// FSM assumes there is only one START and one FINAL State

13 attribute alphabet: set String [1..*]
reference states: seq State [1..*] # fsm

15 reference transitions: seq Transition [0..*]# fsm
}

17

class State inherits Label{
19 attribute kind: Kind

reference fsm: FSM # states
21 reference in: Transition [0..*] # tgt

reference out: Transition [0..*] # src
23 }

25 class Transition inherits Label{
reference fsm: FSM # transitions

27 reference tgt: State [1..1] # in
reference src: State [1..1] # out

29 }

5.3 Transformations: the Action Language (Al)

As described in Figure 5.3, the Sl and the Al are connected at the level of the class Operation. However,
weaving new behavioural elements within a meta-metamodel should be carefully done to ensure full static
typing. We describe the Kermeta Al, comparing it with corresponding Java constructions. We then list our
restrictions, before illustrating how to use the Al on our Fsm example.

5.3.1 Al Meta-metamodel

Figure 5.5 describes the Al, as described in Kermeta’s Manual (Drey et al. 2009). Several classes from this
metamodel play the exact same role as their Java counterparts. Literal describes literal values (e.g. for property
or variable values). Block, VariableDecl, Conditional and Loop cover the usual imperative constructions for
blocks, variable declarations, conditional and iterative statements, as in Java; Self is Kermeta equivalent for
this in Java. Raise and Rescue handle exceptions (corresponding to throw and catch in Java). The class
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Assignment covers two Java constructions, namely assignment and casting. CallExpr is an umbrella class for all
calls, i.e. an element whose value is needed: a CallVar stands for example for a variable on the right-hand side
of an assignment; CallResult is equivalent to return in Java (Kermeta uses a special variable result for storing
operation values); CallFeature enables navigation through class properties and operation calls; and CallSuperOp
allows to call an operation defined in superclasses. Three classes denote constructions specific to Kermeta with
no equivalent in Java for now: LambdaParameter and LambdaExpression enable the use of functionals1, just
like in Ocl (e.g., a -> select(...), and TypeReference allows to use model types.

We already restricted Kermeta Sl by not considering genericity, aspects and model types. We additionally do
not address exception handling, since it is somehow orthogonal to Dsl behavioural specification. Summarising,
the following constructions will be ignored: LambdaParameter and LambdaExpression; TypeReference; and
finally Raise and Rescue.

5.3.2 The Fsm Model & Behaviour

Creating a model is easy, since Kermeta uses an instance creation statement very close to Java. The only
difficult part here is to set model properties properly to represent the desired model instance.

1 // Declare and initialise (with ‘‘empty ’’) the FSM Model
2 var abc: FSM init FSM.new

// Declare and initialise State s1 as START
4 var s1: State init State.new

s1.kind := Kind.START
6 // Initialise references states and transitions

abc.states.add(s1)
8 // Other states here

// Declare and initialise Transition ta as START
10 var ta: Transition init Transition.new

abc.transitions.add(t1)
12 // Other transitions tb, tc

var outS1 : Transition [0..*] init OrderedSet <Transition >.new
14 outS1.add(ta)

// same for tb, tc
16 s1.out.addAll(outS1)

The behavioural semantics of an Fsm closely follows the classical semantics. An FSM is said to accept a
word if, by successively firing transitions from a current state, it ends in a final state when the word is entirely
consumed. A State fires when there exists an outgoing Transition with the adequate label as the current letter
of the word. We reproduce here the corresponding operation bodies.

1 package FSM;
2 // Previous code here ...

4 class FSM inherits Label{

6 // ...

8 operation getStart (): State i s do
var i : Integer init 0

10 from i := 0
until i == states.size() or states.at(i).kind == Kind.START

12 loop
i := i+1

14 end
i f i == states.size() then

16 result := void
else

18 result := self.states.at(i)
end

1At the time we are writing (September 2013), so-called lambda expressions, or closures, have been integrated in Java 8, whose
public release in scheduled for March 2014. Scala, another object-oriented programming language, already offers such features in
an integrated fashion; this is one of the reasons Kermeta’s interpreter engine has been reimplemented in Scala.
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Figure 5.5 – Kermeta’s Action Language (from (Drey et al. 2009, §3.3))
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20 end

22 operation getFinal (): State i s do
var i : Integer init 0

24 from i := 0
until i == states.size() or states.at(i).kind == Kind.STOP

26 loop
i := i+1

28 end
i f i == states.size() then

30 result := void
else

32 result := self.states.at(i)
end

34 end

36 operation accept(word: seq String [0..*]) : Boolean i s do
var current: State init self.getStart ()

38 var final : State init self.getFinal ()
var toEval : seq String [0..*] init word

40 var isNull : Boolean init false

42 from var i : Integer init 0
until i == toEval.size() or isNull //((not toEval.isEmpty ()) and (not isNull))

44 loop
current := current.fire(toEval.at(i))

46 i f (current.isVoid) then
isNull := true

48 end
i := i+1

50 end
result := (current == final)

52 end
}

54

class State inherits Label{
56

// ...
58

operation fire(letter: String): State [0..1] i s do
60 var trans: seq Transition [0..*] init self.out.asSequence ()

62 i f (trans.isVoid) then
// no output transitions: return what is suitable for no state (card = 0)

64 result := void
else

66 var current: Transition init trans.at(0) // head only reads the head , do not modify the sequence

68 from var i : Integer init 0
until i == trans.size() or trans.at(i).label == letter //(current.isVoid) or (current.label ==

letter)
70 loop

i := i+1
72 end

i f (current.isVoid) then
74 result := void

else
76 result := current.tgt

end
78 end

end
80 }

5.4 Mathematical Background

The sign 4
“ defines a set either by extension or by intension. The set of booleans is noted B4

“tJ,Ku for truth
values true and false, respectively. The set of naturals and integers are noted N and Z respectively; and we
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define N‹ 4
“Nzt0u; we note R and S the sets of real numbers and strings, respectively. Let S, S1, S2, S3 be sets.

The notation S
K
stands for S Y tKu, with S XK “ H. The size of S is noted |S|.

5.4.1 Functions

Since all the mathematical framework is based on set theory and makes extensive use of functions, we explicit
here the notations used.

Total, resp. partial, functions are noted f : S Ñ S1 and f 1 : S ZÑ S1; their domain is noted Dom p¨q and their
range Ran p¨q. Partial functions are right-associative: g : S ZÑ S1 ZÑ S2 ZÑ S3 means g : S ZÑ pS1 ZÑ pS2 ZÑ S3qq

and we abbreviate ppgpsqqps1qqps2q into gpsqps1qps2q, or sometimes write gs
1

s ps
2q for short. Substituting f by

ps1, s2q P S ˆ S
1, noted f rs1 ÞÑ s2s, results in a function f 1 where forall s ‰ s1, f 1psq “ fpsq and f 1ps1q “ ps2q.

If h : S ÝÑ S1 ˆ S2, we sometimes write hpsq “ p_, s2q or hpsq “ ps1,_q when the first or the second element is
not relevant in context, and use the same notation for substitution.

Example 5.1 (A Simple Function). Suppose a function f defined as follows (where | ¨ | denotes the
length of a string):

f : S ZÑ pR ZÑ Rq
s ÞÑ gs

gs : R ZÑ R
x ÞÑ

|s|
x

Suppose that for some reason, we would like to restrict f to the strings representing week days
(encoded on three characters): we then have Dom pfq “ tmon, ¨ ¨ ¨ , sunu Y tεu. Similarly, we also
have for all s P Dom pfq that Dom pfpsqq “ Dom pgsq “ R‹, since a fraction is not defined for zero as
a denominator. In fact, the image of a string by f is actually a (partial) function itself, as suggests
the definition of f on the left. Since aaa R Dom pfq, aaa has no image, but mon does: for example,
pfpmonqqp3q, preferably noted fpmonqp3q, is equal to 1. We could also substitute the effect of one
value with a special function. For example, f rmon ÞÑ 0Rs changed the image for mon to the 0R

function on real (i.e. the constant function that associates 0 to any real), while keeping the old
definition of other week days.

5.4.2 Abstract Datatypes Specifications

This Section introduces notations and formal counterparts (H. Ehrig and Mahr 1985; Spivey 1992) for the
classical abstract datatypes useful for representing several collections of values, which is a central part of our
semantic domains. Classical collection kinds common in Mde are bags, sets, sequences and ordered sets2 and
are considered well-formed, i.e. collections containing values of the same type.

Let C be a collection of values of type T, and t, t1 P T some values. We suppose predefined functions over
collections: 7pCq returns the number of elements in C and typepCq returns the type of C, i.e. T. Adding and
removing an element t from C is uniformly noted t‘ C and ta C respectively, whose effect is properly defined
below for each collection kind.

Definition 5.1 (Bag Collection). A bag (or multiset) of values in T, represents a collection where an element
can be repeated many times (in contrast to sets) and is noted rTs.

rTs
4
“ tT ÝÑ N‹u

2The term usually used in Mde is ordered set, which is quite confusing: in set theory, an ordered set is a set equipped with an
order on the element (i.e. a binary relation); whereas in the Mde vocabulary, an ordered set is a set where the elements are stored,
or are accessible, in a certain order. In order words, the first is naturally not concerned with the computational considerations of
the second. In this Background Section, we will prefer a more precise denomination: “sequence with unique representative”.
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A bag tt1 ÞÑ n1, . . . , tn ÞÑ nnu is preferably written rt1, . . . , tns, where each element ti appears ni times in the
list t1, . . . , tn. The empty bag r s is a shortcut for the empty function from T to N‹. Let B,B1 P rTs. We note
t7B the number of times t appears in B; and use the usual set notations for bag membership and subbaging:
t P B holds if t appears in B at least one time; and B Ď B1 holds if all elements appearing in B appear in B’ at
least the same number of times. Adding an element in B, noted t‘B (or removing it, noted taB) changes the
number t is repeated, or adds it if it was not there (resp. removes if it appeared only once).

Definition 5.2 (Set Collection). A set collection is a collection of elements that are not repeated, noted ℘pTq3.

Since this notion coincide with the subset notion in set theory, it does not need more explanation. The uniform
notations for adding ‘ and removing a an element from a set are synonyms of the usual set operators union Y
and difference z.

Definition 5.3 (Sequence collections). A sequence (also called list) is a collection where the order of the
elements matters. We distinguish between sequences allowing multiply repeated values, noted xTy and sequences
forbidding repetitions, i.e. with a unique representative of each element (also called ordered sets), noted xxTyy.

xTy
4
“ tf : N ZÑ T | Dom pfq “ t1..7fuu

xxTyy
4
“ tf : N ZÑ T | Dom pfq “ t1..7fu ^ f injectiveu

A sequence t1 ÞÑ t1, . . . , n ÞÑ tnu is preferably noted xt1, . . . , tny or xxt1, . . . , tnyy . The empty sequence x y and
xx yy are shortcuts for the empty function from N to T. Let S,S1 P xTy be two sequences. Adding t on top of S
is noted t ‘ S; removing one occurrence of t in S is noted t a S. Concatenating two lists, noted S ˝ S1, results
in a sequence containing the elements of S followed by those of S1. If S is non-empty, it can be decomposed in
S “ t1 :: S1, where t is the element at the head and S1 is the rest, or the tail, of the sequence.

Collections possess two orthogonal dimensions: uniqueness, i.e. whether a collection admits an element
multiply or not; and ordering, i.e. whether the order of these elements matter or not. If operations to remove
repetition and choose an arbitrary order between unordered elements are available, it is possible to convert any
collection to any other one. The following definition introduces two operators that convert collections.

Definition 5.4 (Downward/Upward Conversions). Let Collection
4
“tBag,Set, List,OSetu. The family of down-

ward conversion operators p
`

c
q and upward conversion operators p

a
c
q, indexed by c P Collection, convert col-

lections adequately by imposing an arbitrary order or removing repetitions of elements.

Example 5.2 (A Simple Function). Let B “ r1, 2, 5, 1, 3, 2, 9s P rIntegers be a bag of integers.
Then

`
List
pBq results in a list L P xTy with all elements of B in an arbitrary order: for example, in

the order of the presentation, L “ x1, 2, 5, 1, 3, 2, 9y. Similarly,
`

Set
pBq results in the following set

collection S “ t1, 2, 5, 3, 9u P ℘pTq, whereas
`

OSet
pBq, with the natural order over natural, results in

the ordered set O “ t1, 2, 3, 5, 9u P xxTyy. Creating a bag from O is done by applying the adequate
upward convertor

a
Bag
pOq, which results in the bag B1 “ r1, 2, 3, 5, 9s. This proves that conversion

operators are neither commutative, nor associative.

3We use the so-called “Weierstraß p” ℘ symbol to denote powerset instead of the P symbol as found in Z, because it is already
used as a set symbol later.
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6
Structural Language

This Chapter formalises the Structural Language (Sl) of Kermeta considered in this work: in a nutshell, the Sl is
a conservative extension of Mof (in its 2.0 version, i.e. without any consideration about genericity) allowing full
static typing. The considered extension enables the Action Language to take full advantage of these structures.
The formalisation proposed in this Chapter applies directly to any Mof-like language, therefore constituting
a canonical semantics for Mof-like structural languages that use the same concepts: packages, enumerations,
classes with attributes, references with multiplicities and uniqueness/orderness, and operations.

6.1 Structural Semantics Overview

The Kermeta Sl is an conservative extension of the Omg standard Mof. We choose to simplify this language
by not considering some of the already existing Kermeta constructions: genericity, model typing and aspects.
By isolating this subset of Kermeta’s Al, we lose powerful expressive constructions, but gain the fact that the
formalisation goes beyond Kermeta: in fact, it works well for any Mof-like Sl, even for Uml Class Diagrams
with the same features.

The Mof Specification (Object Management Group 2006) comprises two parts: eMof (or Essential Mof)
and cMof (or Complete Mof). eMof is in fact a meta-metamodel: it is a model that describes a language for
defining models. cMof extends eMof by explicitly defining what the Omg calls the “cMof abstract semantics”
(Object Management Group 2006, §15), i.e. a language (always as a model) that describes what is represented
by models.

In Kermeta, things are slightly different. Creating metamodels can be achieved in two ways: either visually,
by importing a diagrammatic metamodel from another formalism (e.g. Uml or ECore) or by using the
dedicated editor; or textually, by using the classical Eclipse editor.

For the sake of generality, we explain our formal specification of Kermeta’s Sl based on the visual represen-
tation of eMof metamodel. The Figure 6.1 describes our approach. After having described the core artifacts
necessary to mathematically specify metamodels and models, we define two sets:

• M is the set of all Kermeta metamodels that can therefore be seen as a mathematical representation of
the eMof meta-metamodel.

• M is the set of all Kermeta models by only capturing the syntax of models.

Of course, when a metamodel designer chooses a particular metamodel MM P M, it induces a set of models
M1, . . . ,Mn, . . . P M that are valid regarding MM (notice that the set of induced models is generally infinite).
This notion of validity is traditionally called conformance in the Mde community: by defining a model M PM,
one has to ensure that M is actually one of the models induced by MM, i.e. Di ¨M “ Mi. This relation is noted
M � MM.

The rest of this Chapter is organised as follows: the next Section defines the core artifacts on which rely
the whole formalisation: names, types and values. Then, we proceed as explained: Section 6.3 formalises Mof
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M M

M MM

P P

�
Figure 6.1 – Overview for the construction of the Sl semantics (from Section 2.1).

metamodels; Section 6.4 formalises models; and finally Section 6.5 relates models to metamodels by expressing
their conformance. All definitions are illustrated using the Fsm example presented in Chapter 5; the full
formalisation, with all components, is available in Appendix A. The Chapter ends by proposing a discussion
and reviewing some related work in Section 6.6.2.

6.2 Names, Types and Values

This Section introduces basic mathematical constructions used all over the formalisation, namely names, (syntac-
tic) types and (semantic) values. These constructions are extracted either from the metamodel itself, providing a
basic interpretation of core artifacts in the Mof metamodel, or from the instance model described as a semantic
domain for Mof in the Mof Specification Document (Object Management Group 2006).

6.2.1 Names

In Mof, every concrete class inheriting from the NamedElement class should have a name1. The following
Definition formally defines these concrete elements and associated names.

Definition 6.1 (Elements — Names). The set Element is the set of concrete Mof artifacts. The set Name
represents the names for any Mof artifact.

Element
4
“ tPkg,Class,Enum,Attr,Ref,Op,Paramu

Name
4
“ pNameeqePElement

To avoid the subscripted notation, we introduce a more compact notation for referring to names: for example,
the set of class names Name

Class
will be noted ClassN.

Notice that because Name is sorted, it can represent adequately ontologically different artifacts with the
same name. In the Fsm example, the package named FSM contains a class also named FSM, which is valid in
Mof. These is represented as follows: FSM P Name

Package
and FSM P Name

Class
.

Furthermore, we require that package names in a metamodel are unique, since they are the entry point
for accessing other metamodel components. To achieve this requirement, we flatten package names as follows:
suppose a package P contains another package PP, then these packages will be represented with the following
names: P,P :: PP P PkgN, respectively (or by using any other separator distinct from valid name characters).
Consequently, the extraction of names from a metamodel represented as a diagram is straightforward. From
now on, unless clearly specified, we will not distinguish between an element and its name in a metamodel.

1For a discussion on how Mof actually deals with names, element identifiers and constraints over names in a metamodel, the
reader can refer to Sections §10, §12.4 and §12.5 of the Specification Document (Object Management Group 2006). The least we
can say is that names and identifiers are intricately defined and should receive proper attention. We choose to simplify the notion
of identifier, i.e. how to uniquely refer to a metamodel element, by only considering names. Furthemore, this approach fits well
with the way Kermeta’s Action Language is defined.
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Finally, the notions of property (i.e. either attribute or reference) and feature (i.e. either property or
operation) names are introduced by following Mof definitions.

PropN
4
“ AttrNY RefN

FeatN
4
“ PropNY OpN

Example 6.1 (Fsm names). The main package name would be represented as FSM P PkgN. Class
names correspond to the following: Label,FSM,State,Transition P ClassN. Names for other artifacts
are easily inferred. Notice here how sorts help distinguishing between the package and the class with
the same name.

6.2.2 Syntactic Types

Mof defines syntactic types that can be used at the metamodeling level: they correspond to the abstract class
Type in Mof and Kermeta (cf. Fig. 5.3).

A type (sometimes called basic type) is either a primitive type, a class name or an enumeration, both declared
in the scope of a given package. Each type is combined with two other pieces of information: a collection kind
and a multiplicity, which constitutes our notion of syntactic type MType.

Definition 6.2 (Syntactic Types). The set of primitive types PrimType is one of the classical built-in type
names. A (basic) type (name) Type is either a primitive type, or a class name or an enumeration name
declared in the scope of a package. A collection kind is one of the usual collection encountered in metamodeling,
namely bag, list, set or ordered set2, or no collection, which is denoted by K. A collection type is a pair of a
collection and a type. A multiplicity type is a pair of a multiplicity, given through its lower and upper bounds,
and a collection type. The sets PrimType and Collection are equipped with the usual order (denoted respectively
ď

Prim
and ď

Coll
represented by the Hasse diagram in the right.

MType
4
“ pNˆ N‹q ˆ CType

CType
4
“ Collectionˆ Type

Collection
4
“ tBag, List,Set,OSet,Ku

Type
4
“ PClassNY DataType

PrimType
4
“ tBoolean, Integer,Real,Stringu

In the previous definition, we introduced a shortcut for class or enumeration declared in the scope of a package
as following:

DataType
4
“ PEnumNY PrimType

PClassN
4
“ PkgNˆ ClassN

PEnumN
4
“ PkgNˆ EnumN

We define N‹
4
“N Y t‹u to reflect the usual notation for Mof upperbounds, together with the associated

order relation ď
‹
defined by n ď

‹
n1

4
ðñpn1 “ ‹q _ pn ď n1q.

Let mt “ pplow, upq, pC, tqq P MType be a multiplicity type. To lighten the notation, we will note mt “

plow, up,C, tq. Furthemore, mt is valid iff

plow ď
‹

upq ^ pC ‰ K ùñ 1 ď
‹

upq

2Note here that the traditionally used denomination “ordered set” is confusing: in the Mde area, it denotes a set where the
order of elements matters, whereas in general it denotes a set equipped with an order over the elements.
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Example 6.2 (Fsm Types). There is only one enumeration named Kind P EnumN, and therefore
pFSM,Kindq P PEnumN. The set C

FSM
of all class names is C

FSM
“ tpFSM, Labelq, pFSM,FSMq, pFSM,

Stateq, pFSM,Transitionqu Ď PClassN.

Focusing on the class FSM, the attribute alphabet has a collection type pSet,Stringq P CType and a
multiple type pp1, ‹q, pSet,Stringqq P MType. Similarly, the reference transitions as a multiple type
pp0, ‹q, pSet,Transitionqq P MType. Note that we will always flatten multiple types, e.g. for transitions,
we note p0, ‹,Set,Transitionq P MType.

6.2.3 Semantic Values

The set of (semantic) values V constitutes the core semantic domain for models. It roughly follows the under-
specified Omg Mof definitions (cf. (Object Management Group 2006, §15.2), which is part of cMof). The
definition follows the structural construction of syntactic types, to which they are formally related later in Def.
6.6.

Definition 6.3 ((Semantic) values). The set V of (semantic) values is the (disjoint) union of basic sets of
values, namely the sets of booleans B, integers N, reals R, strings S, enumeration literals E and objects (also
called instances) O, with the bags, (sub)sets, sequences and ordered sets of these basic sets.

V4
“ B Z Z Z R Z S Z E Z O

rBs Z rZs Z rRs Z rSs Z rEs Z rOs
℘pBq Z ℘pZq Z ℘pRq Z ℘pSq Z ℘pEq Z ℘pOq
xBy Z xZy Z xRy Z xSy Z xEy Z xOy
xxByy Z xxZyy Z xxRyy Z xxSyy Z xxEyy Z xxOyy

This construction, although complicated, does not admit any ill-formed collection of values, i.e. collections with
values of different sets (for example, a list with one integer and one boolean). The size of a value | ‚ | : VÑ N
is defined by extension from Sec. 5.4.2. The type of a value will be defined later, when formal definitions of
metamodels and models will be available.

Example 6.3 (Fsm Model Values). Due to the chosen concrete syntax, some values in the model
are explicit, whereas others are not. For example, the labels corresponding to states are “1”, “2” and
“3”, which are strings (denoted here between “ ¨”); but the input arrow of state “1”, denoting that
it is start state, says that attribute kind in class pFSM,Stateq is set to the value START P E, which
corresponds to its declaration.

6.3 Metamodels

A metamodel basically consists of declarations: Mof elements (through their name) are bound to (syntactic)
types and other information, w.r.t. a particular topology defined by Mof. This Section defines several sets of
functions capturing the structure of these declarations. Of course, all these declarations make sense when put
together to define the metamodel itself.

This Section proceeds as follows: for each Mof artifact, an informal description based on the metamodel
representation in Fig. 5.3 is provided, from which a formal definition is derived by providing adequate mathe-
matical structures in order to create a set of functions formalising the idea of this artifact. As we said before,
the formalisation only addresses the concrete classes of the meta-metamodel (namely, the classes corresponding
to packages, enumerations, classes, properties and operations), which are actually instanciated in a particular
metamodel specification.
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6.3.1 Package

From the metamodel in Fig. 5.3, the class Package has two references: subpackages (with its opposite super-
package) allows a package to eventually contain subpackages; and types (with its opposite package) allows a
package to eventually contains types, i.e. either enumerations or classes.

The set P of package functions represents the packages declarations: such a function p P P maps packages
that are part of a metamodel to their subpackages, and nested classes and enumerations; and p is correct if no
package is contained in itself3.

P 4
“tp : PkgN ZÑ ℘pPkgNq ˆ ℘pClassNq ˆ ℘pEnumNq | @pkg, pppkgq “ pP,C,Eq ñ pkg R P u

Notice here why we required that package names need to be unique throughout a metamodel: P, as well as
the following definitions, is a function from package names, which implies to be able to uniquely access any
metamodel package through its name. This is generally not true in Mof: it is valid in Mof to have a package
named P containing a subpackage of the same name P. The package name uniqueness requirement does not
change the structural consistency of metamodels, and the convention we proposed is not ambiguous, allowing
one to retrieve the original metamodel names.

Example 6.4 (Fsm Package Function). Let p
FSM
P P be the package function for the Fsm meta-

model. As noticed in Example 6.1, Dom pp
FSM
q “ tFSMu, and its image is pH,C

FSM
, tKinduq with C

FSM

defined in Example 6.1.

6.3.2 Enumeration

From Fig. 5.3, the class Enum has one reference literals (with its opposite reference enum) to the class EnumLit,
constraining an enumeration to possess at least one literal. The EnumLit class also inherits from NamedElement,
making any literal possessing a name, and the set of literals for an enumeration is ordered.

The set E of enumeration functions represents enumeration declarations: such a function e P E maps
enumerations declared inside a package to an ordered set of enumeration literals.

E 4
“te : PkgN ZÑ EnumN ZÑ xxEyyu

Again, we impose that enumeration literals are unique throughout a metamodel. This is also generally not
true, neither in Mof or in Kermeta. Nevertheless, this constraint seems reasonable: in Kermeta, enumeration
literals are always qualified by their enumeration name (cf. Appendix A.2 in getStart’s body). Like for package
names, it is always possible to ensure this requirement by considering qualified enumeration literal names.

Under this condition, it is possible to define a reverse function enum that retrieves the enumeration which
a literal is defined in.

enum : EnumLit Ñ PkgNˆ Enum

lit ÞÑ ppkg, enumq if lit P eppkgqpenumq

Example 6.5 (Fsm Enumeration Function). Let e
FSM

P E be the enumeration function for the
Fsm metamodel. Recall that it is right associative. We define the domains of all partial func-
tions for this first time, we will then omit this trivial details unless it contains something spe-
cial. The Fsm metamodel contains only one package, which contains only one enumeration:
Dom pe

FSM
q “ tFSMu, and Dom pe

FSM
pFSMqq “ tKindu. Furthermore, this enumeration contains

3Remember that package names are flattened, making each package name unique within a metamodel.
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three values: e
FSM
pFSMqpKindq “ tSTART,STOP,NORMALu. This induces for example that

enumpSTARTq “ pFSM,Kindq.

6.3.3 Class

From Fig. 5.3, the class Class has one attribute and two references. The attribute abstract indicates that a
class is abstract; it implies that the class is concretely represented with its name in italic, and make this class
not directly instantiable. The super reference indicates that a class can refer to superclasses from which it
inherits; and the features reference (with its opposite class) allows a class to declare features, i.e. properties
and/or operations.

The set C of class functions represents classes declarations: such a function c P C maps classes declared
inside a package to a boolean indicating if they are abstract, and the set of their superclasses; it is correct if no
class inherits from itself, and if the inheritance hierarchy is acyclic.

C 4
“tc : PkgN ZÑ ClassN ZÑ Bˆ ℘pClassNq | ppkg, cq ć`

Class
ppkg, cqu

The previous definition uses a (partial) order relation ă
Class
Ď PClassNˆPClassN, induced by the inheritance

hierarchy inside the same package (i.e. ppkg, cq ă
Class
ppkg, c1q if c defines c’ as one of its superclass). The relation

ă`
Class

used in the previous definition is the transitive closure of this order.

@pkg P Dom pcq, ppkg, cq ă
Class
ppkg, c1q

4
ðñ c, c1 P Dom pcppkgqq ^ cppkgqpcq “ p_, Cq ^ c1 P Cu

We define an order ď
Type

on Type by union of the order ď
Prim

on primitive types (from Definition 6.2) and the
order ď

Class
on classes (enumerations are not ordered). Then, ď

Type
is extended into ďĎ CTypeˆ CType to cover

collection type:

ď
Type

“ ď
Class
Y ď

Prim

pC, tq ď pC1, t1q
4
ðñ C ď

Coll
C1 ^ t ď

Type
t1

Example 6.6 (Fsm Class Function). Let c
FSM

P C be the class function for the Fsm metamodel.
The domains are Dom pc

FSM
q “ tFSMu, and Dom pc

FSM
qpFSMq “ C

FSM
(as defined in Example 6.2). All

classes except Label are similarly defined: all inherit from Label and are concrete, whereas Label is
abstract. We therefore have the following definitions (and similarly for other classes):

c
FSM
pFSMqpLabelq “ pJ,Hq

c
FSM
pFSMqpFSMq “ pK, tLabeluq

This induces the class order ă
Class

to be defined for all class c other than Label by pFSM, cq ă
Class

pFSM, Labelq.

6.3.4 Property

In Fig. 5.3, the class Property inherits from Feature, which in turn inherits from CollectionType. The class
Feature has one reference from that indicates optionally indicates which class should be considered if the
feature (name) is multiply inherited, and a class reference indicating that a feature is always always declared, or
contained, in one class. The class CollectionType simply represents an MType. Since Property is abstract, we
should look at the concrete classes that inherit from it: the Attribute class has no properties, but is required to
possess a DataType as a type; whereas the Reference class is required to possess a Class as a type (cf. (Steinberg
et al. 2009)). Furthermore, the Reference class has one attribute containment, indicating if the reference is a
containment (which is notationally represented by a black diamond in the concrete notation); and an opposite

106



6.3. Metamodels

reference indicating that a reference admits another reference from its type as an opposite (which is notationally
represented by removing the arrow head).

The set Prop of property functions represents property declarations: such a function prop P Prop maps each
class property to a boolean indicating if it is a containment reference, an optional class used for the from clause,
the multiplicity type of the property and its optional opposite reference.

Prop
4
“tprop : PkgN ZÑ ClassN ZÑ PropN ZÑ Bˆ ClassNK ˆMTypeˆ RefNKu

Suppose that propppkgqpclassqppq “ pcnt, from, mt, oppq with mt “ plow, up, coll, tq is a property function. Then
prop is correct if it respects the previously stated constraints:

• if p P AttN is an attribute, it is assumed to be always contained4, does not possess an opposite, and its
type is DataType.

cnt “ J^ t P DataType^ opp “ K

• if p P RefN is a reference, then its type is a class and its opposite reference opp is conversly mapped to the
enclosing class of p

t “ ppkg1, c1q P PClassN^ opp ‰ K ùñ

$

’

&

’

%

propppkg1qpc1qpoppq “ pcnt1, from1,mt1, pq

with mt1 “ plow1, up1, coll1, pkg, cq

and cnt “ J ùñ cnt1 “ K^ plow1, up1q “ p0, 1q

Example 6.7 (Fsm Property Function). Let prop
FSM
P Prop be the property function for the Fsm

metamodel. We illustrate the definition of properties contained in classes Label and FSM: they cover
the main variations encountered within the Fsm metamodel.

prop
FSM
pFSMqpLabelqplabelq “ pJ,K, p1, 1,K,Stringq,Kq

prop
FSM
pFSMqpFSMqpalphabetq “ pJ,K, p1, ‹,Set,Stringq,Kq

prop
FSM
pFSMqpFSMqpstatesq “ pJ,K, p1, ‹,OSet,Stateq, fsmq

prop
FSM
pFSMqpFSMqptransitionsq “ pJ,K, p0, ‹,OSet,Transitionq, fsmq

For example, reference transitions in class FSM is a containement reference (the first J), and is not
ambiguously defined (second argument K). Its multiple type is defined according to Example 6.2,
and it has an opposite reference fsm from class Transition. Attribute alphabet is similarly defined,
except that it cannot have an opposite, thus the K as last element. As an example, and to be able
to check that prop is correct, here is the definition for reference fsm in class Transition:

proppFSMqpTransitionqpfsmq “ pK,K, p1, 1,K,FSMq, transitionsq

6.3.5 Operation

In Fig. 5.3, the class Operation inherits from Feature, which in turn inherits from CollectionType. Therefore, it
shares with the Property class the same capabilities. Furthemore, the Operation class has one attribute and two
references. The abstract attribute indicates that an operation is abstract, which means that it has no body and

4With respect to containment, Kermeta’s concrete syntax is interesting: the keyword attribute is used not only for Mof’s
attributes, but also Mof’s references that are containments. Interestingly, Uml diagrammatic notation represents attributes
“contained” in the box representing a class.
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is also contained in an abstract class. The parameters reference points to the Parameter class, which represents
the (ordered) list of parameters, which are typed because the Parameter class inherits from CollectionType.
The statements reference points to the Body class and corresponds to the body of the operation, whose precise
definition is the purpose of Chapter 7.

The set O of operation functions represents operations declarations: such a function o P O maps each class
operation to a boolean indicating if it is abstract, an optional class used for the from clause, a multiplicity type
representing the return type (where K corresponds to void), a (ordered) sequence of parameters together with
their types, and the definition of the body; and o is correct if every operation defined as abstract does not have
a body.

O 4
“ to : PkgN ZÑ ClassN ZÑ OpN ZÑ Bˆ ClassNK ˆ xxParamsyy ˆMTypeK ˆ Body

K
|

@pkg P PkgN, c P ClassN, op P OpN, oppkgqpcqpopq “ pabs,_,_,_, bq, abs ùñ b “ Ku

Params
4
“ ParamNˆMType

Here, Params is defined as a pair containing the parameter name and its multiplicity type.

Example 6.8 (Fsm Operation Function). Let o
FSM

P O be the operation function for the Fsm
metamodel. We illustrate the definition of operations contained in classes FSM: this class contains
operations with and without parameters.

opFSMqpFSMqpacceptq “ pK,K, xxpword, p0, ‹, List,Stringqqyy, p1, 1,K,Booleanq, bacceptq

opFSMqpFSMqpgetStartq “ pK,K, xxyy, p1, 1,K,Stateq, b
getStart

q

opFSMqpFSMqpgetFinalq “ pK,K, xxyy, p1, 1,K,Stateq, b
getFinal

q

Take operation accept: it is not abstract and is not redefined to need a from clause, which justifies
the two first K; it has one parameter word, given with its multiple type, and has as a result a Boolean,
encoded by the multiple type p1, 1,K,Booleanq (with lower and upper bounds both equal to 1, we
impose this return value); and baccept just captures a list of statements constituting accept’s body. The
two getters are similarly defined, except that they return a State and that they have no parameters
(denoted by xxyy).

6.3.6 Metamodel

The set of metamodelM can now be defined by putting the previous definitions together. Note that the use of
(partial) function naturally ensures Kermeta’s constraint on unicity of names: it is not possible to represent, in
our framework, e.g. a metamodel that would contain two packages (or two properties in the same class) with
the same name.

Definition 6.4 (MetamodelM). A metamodel MM PM is a tuple MM “ pp, c, e, prop, oq P PˆCˆEˆPropˆO.

Let MM “ pp, c, e, prop, oq P M be a metamodel of interest. The set of qualified property names QPropN
(respectively, qualified operation names, and qualified feature names) is the set of property (resp. operation,
feature) names correctly defined in the scope of MM:

QPropN
MM

4
“ tppkg, c, pq P PkgNˆ ClassNˆ PropN | pkg P Dom ppropq ^ c P Dom ppropppkgqq ^ p P Dom ppropppkgqpcqqu

QOpN
MM

4
“ tppkg, c, opq P PkgNˆ ClassNˆ OpN | pkg P Dom poq ^ c P Dom poppkgqq ^ p P Dom poppkgqpcqqu

QFeatureN
MM

4
“ tppkg, c, fq P PkgNˆ ClassNˆ FeatureN | ppkg, c, fq P QPropN_ ppkg, c, fq P QOpNu
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Example 6.9 (Fsm Qualified Names). We can now mathematically build the metamodel MM
FSM
P

M corresponding to the Fsm metamodel from all the previous examples:

MM
FSM
“ pp

FSM
, c

FSM
, e

FSM
, prop

FSM
, o

FSM
q

The qualified name sets corresponding to MM
FSM

then correspond to the following:

QPropN “ tpFSM, Label, labelq, pFSM,FSM, alphabetq, pFSM,FSM, statesq, pFSM,FSM, transitionsq,

pFSM, State, kindq, pFSM, State, fsmq, pFSM, State, inq, pFSM, State, outq,

pFSM,Transition, fsmq, pFSM,Transition, srcq, pFSM,Transition, tgtqu

QOpN “ tpFSM,FSM, acceptq, pFSM,FSM, getStartq, pFSM,FSM, getFinalq, pFSM, State, firequ

A number of functions are also defined to ease the manipulation of a particular metamodel’s information.
These functions act like projector functions, i.e. they select a particular element in the image of the functions
constituting the metamodel.

superMM : PClassN ÝÑ ℘pClassq

absMM : QOpNY PClassN ÝÑ B
partypes

MM
: QOpN ÝÑ xxCTypeyy

fromMM : QFeatN ÝÑ ClassK
type

MM
: QFeatN ÝÑ MType

K

parnames
MM

: QOpN ÝÑ xxParamNyy

We only give the formal definition for super, the other functions are built the same way from MM’s functions.
Let ppkg, cq P PClassN such that c P Dom pcppkgqq, super

MM
ppkg, cq “ C

4
ðñ c

MM
ppkgqpcq “ p_, Cq: it represents

the set of ppkg, cq superclasses. Similarly, abs indicates if a class ppkg, cq or an operation ppkg, c, opq is abstract;
the fonction from

MM
retrieves the disambiguation class (if any) of a feature; and type the multiplicity type of a

feature (which can be K, i.e. void, in the case of an operation); and partypes and parnames retrieve the ordered
list of respectively the collection types and the names of an operation’s parameters.

Example 6.10 (Fsm Auxilliary Functions). We illustrate each function on MM
FSM

using one exam-
ple, whose result can be retrieved from the previous examples:

super
MM

FSM
pFSM,FSMq “ tLabelu

abs
MM

FSM
pFSM, Labelq “ J

abs
MM

FSM
pFSM,FSMq “ K

abs
MM

FSM
pFSM,FSM, acceptq “ K

partypes
MM

FSM
pFSM,FSM, acceptq “ xxp0, ‹, List,Stringqyy

parnames
MM

FSM
pFSM,FSM, acceptq “ xxwordyy

type
MM

FSM
pFSM,FSM, acceptq “ p1, 1,K,Booleanq

type
MM

FSM
pFSM,FSM, getStartq “ K

type
MM

FSM
pFSM,FSM, alphabetq “ p1, ‹,Set,Stringq

type
MM

FSM
pFSM,FSM, statesq “ p0, ‹,OSet,Stateq

A metamodel MM “ pp, e, c, prop, oq is valid if all classes declared inside a package also appear in the
domains of c, prop and o under the same package, and every class containing an abstract operation is also
declared abstract5.

5Strictly speaking, this constraint comes from Kermeta: “Kermeta requires that every class that contains an abstract operation
must be declared as an abstract class.” (Drey et al. 2009, §2.8.2)
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pppkgq “ pP,C,Eq ùñ

$

’

’

’

&

’

’

’

%

E “ Dom peppkgqq

C “ Dom pcppkgqq

C “ Dom ppropppkgqq

C “ Dom poppkgqq

absppkg, c, oq ùñ absppkg, cq

Example 6.11 (Fsm Metamodel Validity). MM
FSM

is obviously valid: domains are correctly defined;
and the condition on abstract components obviously holds since the metamodel contains no abstract
operation.

6.4 Models

A metamodel defines a set of models. A model basically consists of a collection of objects (or equivalently called
instances). Each object has a type, i.e. a class of a metamodel, and maintains a state. An object’s state is
intuitively a mapping between property names and values, in such a way that the involved names correspond
to the declared names for the object’s type.

6.4.1 Accessible Features

In the presence of inheritance, and especially multiple inheritance, referring to features by their names might
be ambiguous because the names can be repeated throughout the inheritance hierarchy. In fact, we will show
that for a given object, each property name is unique with respect to the disambiguation clause.

Suppose now a model M P M of a metamodel MM P M, and an object o of type ppkg, cq P PClassN. To
be correctly defined, o’s state should associate a value to all accessible properties declared in MM, i.e. those
properties defined in the inheritance scope of c: either directly declared in c, or inherited from c’s superclasses.
Similarly, o’s accessible operations are those operations that are either defined directly in c or inherited from
superclasses.

We define two functions to capture accessible features: the function π
MM

over a metamodel MM (omitted
when clear from context) recursively computes the information of all properties accessible from classes of MM;
and the function ω

MM
recursively computes the information of all accessible operations.

π
MM

: PkgN ZÑ ClassN ZÑ PropN ZÑ BˆMTypeˆ RefNK

ω
MM

: PkgN ZÑ ClassN ZÑ OpN ZÑ Bˆ xxParamsyy ˆMTypeK ˆ Body

Notice that the signature of these functions is slightly different: since they compute the accessible features, they
are not ambiguous any more: no component records the disambiguation clause.

Functions π
MM

and ω
MM

are well-founded because they follow the well-founded order ă
Class

over classes. Nev-
ertheless, we must ensure that they are well-defined, i.e. each accessible property for o has an unique name and
each call resolves into a unique operation.These properties hold for different reasons; we only sketch the proof
for each of them.
Properties. First, as we mentioned before, direct property names are unique. Second, Kermeta, following
Mof, disallows property overriding because “it simply does not make sense from a structural point of view ”
(Drey et al. 2009, §2.9.5): this ensures that in a single inheritance path, property names are unique. Finally,
any class with multiple superclasses must ensure uniqueness of property names by using the from disambiguation
clause.
Operations. First, as we mentioned before, overloading is forbidden in Kermeta: inside a given class, operation
names are unique. Second, Kermeta allows invariant overriding, meaning that in a single inheritance path, an
operation call resolves to the closest operation up to the class hierarchy. Finally, in case of multiply inherited
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6.4. Models

operations, each class must ensure the uniqueness of the inherited operations (Drey et al. 2009, §2.9.5.4) by
using the from disambiguation clause.

Consequently, each accessible property has a unique name and we can define a function decl that associates
to a property (name) the (unique) class where it is defined.

decl : PClassNˆ PropN ZÑ PClassN

pppkg, cq, propNq ÞÑ

$

’

’

’

&

’

’

’

%

ppkg, cq if fromppkg, c, propNq “ K

and propN P Dom pπppkgqpcqq

ppkg, c1q if fromppkg, c, propNq “ c1

and propN P Dom pπppkgqpc1qq

As operations rely on dynamic lookup, i.e. the chosen operation’s body for a call depends on the dynamic type
of the object, it is not possible to define a similar function for operations. The decision will be made dynamically
(cf. 7.4.3.4).

Example 6.12 (Fsm Accessible Features). Recall, from the previous examples, the metamodel
corresponding to the Fsm MM

FSM
“ pp

FSM
, c

FSM
, e

FSM
, prop

FSM
, o

FSM
q P M. We had for example for

class State that Dom pprop
FSM
pFSMqpStateqq “ tkind, fsm, in, outu, meaning that these properties were

actually declared within class State. However for our model, we need to set the State’s label, inherited
from class Label. Hence, from the inheritance hierarchy induced by c

FSM
(cf. Example 6.6), we obtain

that

Dom pπ
FSM
pFSMqpStateqq “ tkind, fsm, in, out, labelu

The same mechanism holds for ω
FSM

, but it is not possible to illustrate it on the Fsm since no
operation is inherited or redefined.

6.4.2 Model

The following definition only translates in a mathematical structure the considerations made at the beginning
of this Section, taking advantage of the previous remarks on uniqueness of properties.

Definition 6.5 (Model M). The set of models M is a set of functions that associate model objects to their type
and state.

State
4
“ tσ : PropN ZÑ Vu

M 4
“ tM : O ZÑ PClassNˆ Stateu

Given a model M PM, we note σo
M
the state of the object o P O, if o P Dom pMq and type

M
poq its type (subscripts

are omitted if clear from context).

Example 6.13 (Fsm Model). Let us now call Mabc P M the representation of the model depicted
in Fig. 5.4. Using the names as object identifiers, we have Dom pMabcq “ tabc, 1, 2, 3, a, b, cu. We
obviously have typepabcq “ pFSM,FSMq, typep1q “ typep2q “ typep3q “ pFSM,Stateq and typepaq “
typepbq “ typepcq “ pFSM,Transitionq. We only describe the state of the necessary instances for the
conformance proof.

111



Chapter 6. Structural Language

σabcplabelq “ ”pabq ` c”

σabcpalphabetq “ t”a”, ”b”, ”c”u

σabcpstatesq “ xx1, 2, 3yy

σabcptransitionsq “ xxa, b, cyy

σaplabelq “ ”a”

σapsrcq “ 1

σaptgtq “ 2

σapfsmq “ abc

σ1plabelq “ ”1”

σ1pkindq “ START
σ1pinq “ xxbyy

σ1poutq “ xxayy

σ1pfsmq “ abc

σbplabelq “ ”b”

σbpsrcq “ 2

σbptgtq “ 1

σbpfsmq “ abc

The following definition relates values to (collection) types in the context of a model: types of scalar values
(booleans, integers, reals and strings) do not depend on the model; the type of an enumeration literal is the
enumeration where this literal is defined; and the type of an object is the object’s type in the model.

Definition 6.6 (Type of a value). The function τ trivially associates a (syntactic) type to a (semantic) value.

τ
M,MM

: V ÝÑ CType

v ÞÑ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pK,Booleanq if v P B
pK, Integerq if v P N
pK,Realq if v P R
pK,Stringq if v P S

pK, enum
MM
pvqq if v P E

pK, type
M
pvqq if v P O
. . .

pBag,Booleanq if v P rBs
pSet,Booleanq if v P ℘pBq

. . .

6.5 Conformance

We say that M conforms to MM, and note M � MM, if M actually belongs to the set induced by MM. This
predicate is defined recursively: M � MM holds if all objects of the metamodel respect these conditions: @o P
Dom pMq,

• o’s type is declared in MM and each accessible property from this type has a value;

typepoq “ ppkg, cq ùñ

$

’

’

’

&

’

’

’

%

p P Dom ppq

pppkgq “ pP,C,Eq ñ c P C

pDom pσoq “ Dom pπppkgqpcqq

@p P Dom pσoq, σoppq P V

• For each property p P PropN that is accessible from o (i.e. p P Dom pσoq and that has value v P V and
type mt “ plow, up,C, tq P MType (i.e. σoppq “ v and πppkgqpcqppq “ mtq, the following holds (i) v’s type
specialises (C, t); and (ii) v’s size respects p’s declared bounds.

(i) typepvq ď pC, tq

(ii) low ď | v | ď up
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• Furthermore, if v is a collection of (internal) values v1, . . . , vn (i.e. C ‰ K) then each of these vi has a type
that specialises t (remember that collection values are always well-formed (cf. Def. 6.3);

@i, typepviq ď t

• Finally, if the property p is a reference with an opposite property opp (i.e. p P RefN such that
oppppkg, c, pq “ opp ‰ K), then opp’s value is either an object v itself, or a collection of (internal)
objects v11 . . . v1n; in this case, the original object o must be included between opp’s (internal) value(s).

opp ‰ K ùñ @i, o Ď σvipoppq

Example 6.14 (Conformance of the Fsm model to its metamodel). We now have the full definition
of the metamodel MM

FSM
“ pp

FSM
, c

FSM
, e

FSM
, prop

FSM
, o

FSM
q P M and the model Mabc P M. The

conformance basically states that all values and instances conform to their declarations. This proof
is fully presented in Appendix A, since it is lengthy to present it fully here.

6.6 Discussions

This Section first discusses some of the semantics’ design choices and Kermeta’s specific constructions, and then
compares with related works in the domain of the Structural Language.

6.6.1 Design Choices

Names. The proposes formalisation heavily relies on names: the sets M of metamodels and M of models
bind names with respectively types and values. A first point of discussion is the way names are extracted
from metamodels. We briefly discussed in Sec. 6.2.1 and illustrated the extraction process from the graphical
representation on our running example in Sec. 6.2.1. The extraction process from the textual representation
is further simplified by the classical use of namespaces into Bnf grammars. Moreover, we introduced two
simplifications on package and enumeration literal names: each of these names is always prefixed by another
name that is guaranteed to be unique (the “path” of package names, and the enumeration name, respectively).
These simplifications seem reasonable since they are used in Kermeta itself (cf. Appendix A.2). A last point
is the use of property namespaces in Kermeta: the keyword attribute introduces a property (i.e. either a Mof
attribute or a reference) that is contained. We reflected this point in our constraint on the definition of Prop.

The choice of using names to build the definitions ofM and M can easily be criticised in the sole context of a
structural part’s formalisation: it is easier to consider feature identifiers, reflecting what is behind Mof. Identi-
fiers also avoid using qualified names, building the functions πMM and ωMM, and using the disambiguation clause
from. As a counterpart, they introduce an unnecessary burden when dealing with the Action Language, whose
statement construction relies explicitly on feature names. To deal with identifiers, one has either to completely
change the Action Language itself to allow direct use of identifiers (which is, at the moment, unrealistic given
the cascaded changed required in the whole Kermeta tool infrastructure), or to require an explicit mapping from
identifiers to names, which is exactly the reason why identifiers are usually used. This latter solution assumes
that the way identifiers are built is known from the user to define such a mapping properly: this contradicts
the intuition of using models independently of their implementation.

Types. The types formalised in the set MType do not trustfully represent Kermeta’s types. First, primitive
types are not “primitive” but are rather meta-represented as classes in the package kermeta::standard: they
all subclass ValueType, with eventually umbrella classes to wrap common features (as Numeric for numerical
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types Integer and Real). As a concrete consequence, they do not respect the expected Hasse Diagram of Def.
6.2 and require a proper Api to implement that. Furthermore, some of these types do not possess a “surface”
syntax and should be obtained by using Api features (e.g., var x: Real init “1.0”.toReal to obtain the real value
1.0).

Similarly, collection representation in Kermeta does not follow the natural Hasse Diagram of Def. 6.2 but
rather adopts a hierarchy that favours implementation and code generation purposes (cf. (Drey et al. 2009,
§2.14)): for example, the abstract class OrderedCollection, from which OrderedSet and Sequence inherit,
factorises common features like iterators. These choices reflect more implementation efficency choices than
theoretical considerations.

6.6.2 Related Works

We discuss in this Section the related works that focus on structural parts of a Dsml; the discussion of those
that directly relate to Dsml transformations and Dsml behavior are postponed to Chapter 7.

Historically, most formalisations focused on structural aspects, which is an understandable and natural first
step. Several formal frameworks were used, but accordingly to our initial motivation, they contrast with our
work by the fact they are expressed in the syntax of a particular tool. Moreover, some of them are incomplete
regarding Mof.

As already mentioned, Algebraic Specifications (As) were used to formalise Mof in (Boronat and Meseguer
2008) together with its reflection capabilities, using Maude. Abstract State Machines (Asm) serve both as
formal foundations for Mof (Gargantini, Riccobene, and Scandurra 2009) and as a metamodeling framework
for Asm (Gargantini, Riccobene, and Scandurra 2008), thus providing bridges between Mde and Asm tools.
The Z language was used in (Song et al. 2005) but does not cover packages, and stays very general for at-
tributes/references and does not take into consideration collection/multiplicity types, despite the fact that Z
offers these concepts natively.

Category Theory is another important framework: Constructive Type Theory was used in (Poernomo 2006)
to formalise Mof in the context of the “proofs-as-programs” concept, but without an explicit notion of con-
tainment/opposite references, and does not provide a clear mechanism to transform Mof specification into
Constructive Type Theory; Graph-Based (Gb) formalisations are used to achieve both formalisation of Mof
and transformations (Biermann, Ermel, and Taentzer 2008; Rozenberg 1997), but usual Mof constructions like
containment and inheritance were not addressed until recently (Jurack and Taentzer 2010).

Numerous contributions try to formalise Uml diagrams (and in particular, as expected, Uml Class Diagrams)
by translating them into languages with well-defined semantics. As a general remark, these contributions always
address specific parts or small subsets of Uml Diagrams. Among many other formalisms, we already mentioned
Z (Song et al. 2005), but also Object-Z in (Soon-Kyeong and Carrington 1999), the algebraic language Casl
(Reggio, Cerioli, and Astesiano 2001) where the behavior is expressed with transition systems that naturally
flow from algebraic specifications, and the theorem-prover Pvs by abstracting Diagrams into state predicates
in (Krishnan 2000).
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7
Action Language

Kermeta’s Al is structurally weaved into the Sl by extending the class Operation with a Body (cf. Fig.
5.3), which consists of a sequence of statements (cf. (Drey et al. 2009; Muller, Fleurey, and Jézéquel 2005)).
This Chapter starts by reminding the restrictions we consider on the original Kermeta Al. Following these
restrictions, the Chapter proceeds by defining a core Al for Kermeta, sufficient to represent sufficiently rich
Kermeta actions to handle a large variety of transformations: this core Al can be seen as an intermediate
representation for Kermeta operations’ bodies if the actions used comply with our subset Al. We will refer to
our subset Al as core Al whereas Kermeta’s Al will be refered to as original.

The Chapter then proceeds by formally specifying the core Al’s semantics using the classical Structural
Operational Semantics (Sos) framework (Winskel 1993): from the definition of the Al abstract syntax, we
present a type-checking system in Sec. 7.3 that ensures the correct use of the statements; and finally provide
the rewriting rules in Sec. 7.4.

7.1 Restrictions

Figure 7.1 depicts (an excerpt of) Kermeta’s original Al, as presented in the Manual (Drey et al. 2009, §3.3)
(where the Al is called “Behavior Package” and has one superclass named Expression from which all other
constructions inherit).

We do not address genericity and model type because it heavily complicates the concise definition of the
semantic domain: the classes TypeLiteral (for literal representing types), LambdaParameter (representing pa-
rameters that uses a generic type), TypeReference (for referencing a type) and LambdaExpression (for defining
expressions that uses generics) are not part of our Al.

Since exception handling mechanisms concerns abnormal behaviours of transformations, and because we
target formal verification, we do not consider exception constructions: the classes Raise (for raising an exception
inside an operation’s body) and Rescue (for declaring an exceptions attached to an operation) do not appear
in our Al.

Finally, we do not consider native calls to Java (cf. JavaStaticCall) as it concerns more interaction with the
platform.

Two other classes of this metamodel do not appear formally in our metamodel, namely Block and Vari-
ableDecl, because they are represented otherwise (see details below). All other classes from the Expression
behavioral metamodel of Kermeta are handled in our core Al.

7.2 Definition

In Kermeta, the operation’s body consists in an ordered sequence of unique statements (in the sense that,
despite the possibility to have structurally identical statements, the statements themselves are different entities).
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Chapter 7. Action Language

Figure 7.1 – Kermeta’s Action Language (from (Drey et al. 2009, §3.3))
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7.2. Definition

Exp ::= null | scalarExp | instExp | collExp
ScalarExp ::= literal | instExp instanceof pClassN
InstExp ::= self | lhs

Lhs ::= varN | paramN
| target.propN

Target | super | instExp
CollExp | exp.nativeExp

NativeExp | isEmpty() | size() | at(exp)

LocalN ::= varN | paramN | self
PClassN ::= (pkgN classN)

Body ::= [Stm]`

Stm ::= lab: Stmt
Stmt ::= condStmt

| assignStmt | castStmt
| newInstStmt | CollStmt
| returnStmt | CallStmt

CondStmt ::= if exp
AssignStmt ::= lhs = exp
CastStmt ::= varN ?= exp

NewInstStmt ::= varN = pClassN.new
ReturnStmt ::= return | return exp

CallStmt ::= call | varN = call
Call ::= target .opN(exp˚)

CollStmt ::= exp.nativeStmt
NativeStmt ::= add(exp) | del(exp)

Figure 7.2 – Expressions (left) and Statements (right)

Kermeta’s statements consists in either local variable declarations or statements with an actual dynamic effect.
We first explain how local variables are represented before proceeding to the statements’ syntax.

7.2.1 Local Variable Declarations

This formal semantics focuses on the dynamic aspects of Kermeta’s Al. We operate several syntactic simplifi-
cations that do not change the dynamic semantics but allow us to simplify the presentation without any loss of
generality.

The first simplification concerns the variable declarations in an operation’s body, which are all shifted at
the beginning before any other statement (variables can always be renamed consistently to avoid name clashes),
and they are considered to scope to the entire body. This classical simplification does not affect the operation’s
behavior but only influences the complexity of the type-checking system (Aho, Sethi, and Ullman 1986).

A local name LocalN is a name whose scope is local to an operation’s body: it is either a local variable VarN,
or one of the operation’s parameter ParamN. Additionally, we consider the special variable self whose value is
directly attached to the considered operation. The following definition capture the local type declarations for
LocalN.

Definition 7.1 (Local Type Environment). Given a metamodel MM PM, the local (type) environment is a
function that associates to each operation in MM a function mapping local declarations to their types.

λ
MM

: QOpN ZÑ LocalN ZÑ MType

As usual, the attached metamodel MM will be omitted, since statements are always structurally attached to an
operation of a class in MM. Notice also that if a operation is abstract, no local variables are defined:

@qop P QOpN, abs
MM
pqopq ùñ Dom pλ

MM
pqopqq “ H

7.2.2 Syntax

Starting from Kermeta’s Al and removing the constructions reminded in Sec. 7.1, we obtain the core Al
presented in Fig. 7.2 in the form of a Bnf grammar. Using a grammar was a choice made for two main reasons:
first, traditional Sos rules are usually expressed on top of Bnf sentences; and second, the definition of the core
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Al is more compact in this form (as compared to the original metamodel in the Manual). The non-terminal
Body of Fig. 7.2 is directly linked with the metamodel’s class Body in Fig. 5.3, which formally establishes the
connection between the Sl and the Al. Furthermore, the grammar presented here follows as much as possible
the textual concrete syntax of Kermeta, which make it easier to retrieve the corresponding constructions.

The Body consists in a non-empty sequence of statements Stm: we already discarded from operations func-
tions the case where an operation’s body is empty (cf. definition in Sec. 6.3.5). Each statement is associated
with a label lab P Lab that uniquely identifies the statement through the entire metamodel. Consequently, we
can consider that an operation’s body is represented by the sequence of its labels, given by the function labs

MM
.

A label encloser function op associates a label to its enclosing operation in the metamodel1.

labs
MM

: QOpN ÝÑ xxLabyy

op
MM

: Lab ZÑ QOpN

The core Al is divided in two syntactic groups: expressions Exp are side-effect free and simply evaluate to a
value; they are used inside statements Stmt that actually alter the model under execution. This simplification
is not new (Aho, Sethi, and Ullman 1986; Pollet 2004; Stark, Borger, and Schmid 2001) and is convenient to
clarify the semantics of Oo languages.

Expressions are of four kinds: the null expression; scalar expressions ScalarExp; instance expressions
InstExp; or collection expressions.

A scalar expression is either a literal Literal or an instanceof expression. The terminal Literal abstracts from
the actual representation of literal and associated operations. An instanceof expression consists of an instance
expression and a declared class in the form of a package name and a class name, thus reflecting in the grammar
the definition of PClassN.

Instance expressions have values that designate “assignable” entities: either self, or a left-hand side expres-
sion. Left-hand side expressions Lhs are either a variable / parameter access, or a property access at the level
of the superclass or by navigating through an instance.

Collection expressions consists in an instance expression that designates a collection, and a native expression,
which is one of the following: size() that returns the size of a collection; isEmpty() that returns true iff a collection
is empty; or at(exp) that returns an element in an ordered collection at the position given by the expression.

The syntactic set LocalN formally captures the definition of local names (as already used in Section 7.2.1,
although it is not, strictly speaking, necessary for defining core Al’s grammar.

Statements are of five kinds: conditional, cast and assignment, instance creation, operation call manage-
ment, and collection statements. A conditional CondStmt is reduced to a conditional branching statement. An
assignment AssignStmt assigns an expression to a left-hand side expression. A cast CastStmt casts an expression
to a variable. An instance creation NewInstStmt assigns to a variable a fresh instance of a specified class, again
through the form of a PClassN. A return ReturnStmt is either the simple keyword return, or this keyword used
with a return expression. An operation call CallStmt is either a simple call, or it can return a value which is
assigned to a variable. A collection statement CollStmt consists in a call expression (before the .) that designates
a collection, on which one of the following native statement is applied: add(exp) or del(exp) respectively adds
or removes an element given by the parameter expression (between parentheses).

7.2.3 Control Flow

Notice first that our core Al does not possess any structuring statement, but rather uses only one conditional
branching statement CondStmt. This simplification allows us to avoid well-studied issues that traditionally occur

1Consider a metamodel MM “ pp, c, e, prop, oq PM where for example oppkgqpcqpopq “ p_,_,_,_,Bodyq. From the definition
in Fig. 5.5, we consider that Body “ xxlab1, . . . , labnyy. Then labs and op are reverse functions, i.e. labsppkg, c, opq “ Body ðñ

@i, opplabiq “ ppkg, c, opq.

118



7.2. Definition

Lab
While Flattened If-then-else

C.F Original Representation Original C.F
0 p1, n`1q while(. . . ){ if(. . . ){ if(. . . ){ p1, n`1q

1 p2,Kq stm1 stm1 stm1 p2,Kq

. . . . . . . . . . . . . . .
n p0,Kq stmn stmn stmn pn`m`1,Kq

} }else{
n+1 pn`2,Kq stmǹ 1 stmǹ 1 stmǹ 1 pn`2,Kq

. . .
n+m pn`m`1,Kq stmǹ m stmǹ m stmǹ m pn`m`1,Kq

}
n+m+1 stmǹ m̀ 1 stmǹ m̀ 1 stmǹ m̀ 1

Table 7.1 – Common representation of traditional while/if-then-else statements with CondStmt.

when using imperative constructions like iterative (while, do, for) or conditional (if-then-else) statements
(Aho, Sethi, and Ullman 1986; Pollet 2004; Stark, Borger, and Schmid 2001), such as variable scopes and nested
control flows. Instead, statements contained in such constructions are flattened.

Definition 7.2 (Control Flow). The control flow function nxt
MM

attached to a metamodel MM is a function
that associates to each label of the metamodel the next labels to proceed.

nxt
MM

: Lab ÝÑ Labˆ Lab
K

Consider a labeled statement lab : stmt P Stm. Most statements have exactly one following statement, the
following one in the declaration order: in such case, nxtplabq “ plab1,Kq. If stmt P ReturnStmt is a return
statement, the control flow escapes from the operation and no following statement is expected: nxtplabq “ pK,Kq.
If stmt P CondStmt is a conditional statement, two following statements are possible, depending on the value of
the condition: nxtplabq “ plab1, lab2q, where lab’ (resp. lab”) is the statement to which to proceed if evaluated
to true (resp., false).

Table 7.1 shows how our single branching statement CondStmt acts as a normal form for the classical while
and if-then-else: they have a common representation but differ only in the definition of their associated
control flow function nxt (columns CF showing nxtplabq, where lab is given in first column). Other iterative
statements like do or for can syntactically be reduced to a while (cf. (Aho, Sethi, and Ullman 1986)).

7.2.4 Example

Figure 7.3 shows how the body of the fire operation is transformed into our core Al (the accept operation
uses the same statements, namely conditionals, loops and assignments). First, all declarations are shifted (and
renamed if necessary) to the beginning of the body. Second, Kermeta’s loops are translated into while loops;
and result assignments are replaced by corresponding return statements. Third, loops are flattened according
to Table 7.1; and statements are labeled and the corresponding control flow is computed.

Let L
fire
Ď Lab be the set of labels used in the fire operation. The fire local environment’s domain

is Dom pλ
FSM
pFSM,State, fireqq “ ttrans, current, i, self, letteru. If we remember that o

FSM
pFSMqpStateqpfireq “

pK,K, xxpletter, p0, 1,K,Stringqqyy, p0, 1,K,Stateq, b
fire
q, then we have the following definitions:
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var trans: oset Transition [0..*]

var current: Transition

var i: Integer

01: trans := self.out

02: current := trans.at(0)

03: i := 0

04: if(trans == null) {

05: return null

}else{

06: while(i == trans.size() or

trans.at(i).label == letter){

07: i := i+1

}

08: if(current == null) {

09: return null

}else{

10: return current.tgt

}

}

var trans: oset Transition [0..*]

var current: Transition

var i: Integer

01: trans := self.out

02: current := trans.at(0)

03: i := 0

04: if(trans == null)

05: return null

06: if(i == trans.size() or

trans.at(i).label == letter)

07: i := i+1

08: if(current == null)

09: return null

10: return current.tgt

L
fire

nxt

01 p02,Kq

02 p03,Kq

03 p04,Kq

04 p05, 06q

05 pK,Kq

06 p07, 08q

07 p06,Kq

08 p09, 10q

09 pK,Kq

10 pK,Kq

Figure 7.3 – The fire operation’s body: at the left, declarations and associated initialisations are shifted at the
beginning, and loops and result statements are transformed; in the middle, statements are flattened, according
to Tab. 7.1; at the right, the control flow is explicited.

@lab P L
fire
, opplabq “ pFSM,State, fireq

λpFSM,State, fireqptransq “ p0, ‹,OSet,Transitionq

λpFSM,State, fireqpcurrentq “ p1, 1,K,Transitionq

λpFSM,State, fireqpiq “ p1, 1,K, Integerq

λpFSM,State, fireqpletterq “ p0, 1,K,Stringq

λpFSM,State, fireqpselfq “ p1, 1,K,Stateq

7.3 Type-Checking System

A Type-Checking system (Cardelli 2004) defines rules ensuring that statements in an operation’s body are
consistent with the metamodel MM PM and local λ

MM
declarations.

In order to have a sound type system, the definition of Type has to be extended to take care of the null
value, which was not part of the Structural Language. From now on, the following definitions replace the ones
given in Def. 6.2:

Definition 7.3 (Extended Types). A type in the set of (basic) types Type is either a primitive type, or a class
name or an enumeration name declared in the scope of a package, or the special type Null, wich contains only
one value, null. The extended order ď

Type
is redefined for making Null specialising any other type.

Type
4
“ PClassNY DataTypeY tNullu

@t, t1 P Type, t ď
Type

t1
4
ðñ t “ Null_ t ď

Class
t1 _ t ď

Prim
t1
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7.3.1 Expressions

A judgement “λ ‚ qop $MM
Exp

exp � t” means that in MM, the expression exp P Exp appears in the body of the
operation qop “ ppkg, c, opq P QOpN with local declarations λ, and is of type t P CType.

The judgement $
Exp

is defined by structural induction. The following rules just transfer into specific rules
for each kind of expression: scalar expressions should be typed by a DataType; instance expressions should be
typed by a class PClassN. The null expression has obviously the type Null.

Exp ::= null | scalarExp | instExp | collExp

λ ‚ qop $
Exp

null � pK,Nullq

λ ‚ qop $
Scalar

scalarExp � pK, tq
t P DataType

λ ‚ qop $
Exp

scalarExp � pK, tq
λ ‚ qop $

Inst
instExp � ct P CType

λ ‚ qop $
Exp

instExp � ct

λ ‚ qop $
Coll

collExp � ct P CType

λ ‚ qop $
Exp

collExp � ct

Scalar Expressions. The type of a literal expression is straightforward. The type of an instanceof expression
is Boolean if the type of its instance expression is a class type that specialises the declared class.

ScalarExp ::= literal | instanceExp instanceof className

λ ‚ qop $
Scalar

lit � τM,MM
plitq

λ ‚ qop $
Inst

instExp � c

c ď ppkgN, classNq

λ ‚ qop $
Scalar

instExp instanceof (pkgN, classN) � pK,Booleanq

Instance Expressions. The type of self is the declared type in the local environment λ
MM

in op’s scope. The
type of a left-hand side expression is computed by a specific judgment $

Lhs
.

instExp ::= self| lhs

p_, ctq “ λpqopqpselfq
λ ‚ qop $

Inst
self� ct

λ ‚ qop $
Lhs

lhs � ct

λ ‚ qop $
Inst

lhs � ct

The type of a variable/parameter access is also the declared type in λ
MM

in op’s scope.

Lhs ::= varN | paramN | . . .

name P VarNY ParamN

p_,_, ctq “ λpqopqpnameq

λ ‚ qop $
Lhs

name � ct

The type of a property access depends on the target expression. First, the class c’ corresponding to the
target is computed. Then, it depends of the fact that propN is ambiguous or not in the context of c’ (given by
from value). If not, then there must be a class c” in the inheritance hierarchy of c that has propN in its scope,
i.e either declares it or inherits it (which fact is encapsulated in π). If it is ambiguous, then there must exist a
disambiguation class c” from which the property declaration is retrieved (also through π).
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Lhs ::= . . . | super.propN | instExp.propN

fromppkgqpcqppropNq “ K

c1 P superppkg, cq

propN P Dom pπppkgqpc1qq

p_,_, p_, ctq,_q “ πppkgqpc1qppropNq

λ ‚ ppkg, c, opq $
Lhs
super.propN � ct

λ ‚ ppkg, c, opq $
Inst

instExp � c1

fromppkgqpc1qppropNq “ K

c2 P superppkg, cq

propN P Dom pπppkgqpc2qq

p_,_, p_, ctq,_q “ πppkgqpc2qppropNq

λ ‚ ppkg, c, opq $
Lhs

instExp . propN � ct

fromppkgqpcqppropNq “ c1

p_,_, p_, ctq,_q “ πppkgqpc1qppropNq

λ ‚ ppkg, c, opq $
Lhs
super.propN � ct

λ ‚ ppkg, c, opq $
Inst

instExp � c1

fromppkgqpc1qppropNq “ c2

p_,_, p_, ctq,_q “ πppkgqpc2qppropNq

λ ‚ ppkg, c, opq $
Lhs

instExp . propN � ct

Collection Expressions. Let instExp.nativeExp P CollExp. First, instExp must have a collection type with an
actual collection. Then, the type of isEmpty() is Boolean, the type of size() is Integer. The type of at is instExp
basic type if the associated expression’s type is Integer and instExp collection kind specialises List (i.e. must be
ordered to enable indexed access).

CollExp ::= exp.isEmpty() | exp.size() | exp.at(exp)

λ ‚ qop $Exp exp � pC,_q
C ‰ K

λ ‚ qop $Exp exp.isEmpty() � pK,Booleanq

λ ‚ qop $Exp exp � pC,_q
C ‰ K

λ ‚ qop $Exp exp.size() � pK, Integerq

λ ‚ qop $Exp exp1 � pK, Integerq

λ ‚ qop $Exp exp � pC, tq
C ‰ K

C ď List

λ ‚ qop $Exp exp.at(exp1) � pK, tq

7.3.2 Statements

A judgement “λ ‚ qop $MM
Stm

stm” means that the statement stm P Stm appears inside the body of the operation
qop P QOpN, and is well-formed.

A statement stm is well-formed if its inner statement stmt is well-formed and its labels are consistent, i.e.
stm’s execution proceeds to statements within the same operation’s body.

Stm ::= lab: stmt

λ ‚ qop $
Stmt

stmt

nxtplabq “ plab1, lab2q

opplab1q “ qop

opplab2q “ qop

λ ‚ qop $
Stm

lab : stmt

The previous rule uses a judgement $
Stmt

defined by structural induction. A conditional statement is well-formed
if its expression’s type is Boolean.

CondStmt ::= if exp

λ ‚ qop $
Exp

exp � pK,Booleanq

λ ‚ qop $
Stmt

if exp

An instance creation statement is well-formed if the created instance’s type specialises the class type decla-
ration.
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NewInstStmt ::= var = new PClassN

λ ‚ qop $
Exp

var � pK, cq
c P PClassN

c ď ppkgN, classNq

λ ‚ qop $
Stmt

var = (pkgN, classN).new

A return statement with (resp. without) an expression is well-formed if it appears inside the body of an
operation whose return type specialises its expression’s type (resp. is void).

ReturnStmt ::= return | return exp

typepqopq “ pK,K,Kq

λ ‚ qop $
Stmt

return

typepqopq “ pK,K, tq

λ ‚ qop $
Exp

exp � t1

t1 ď t

λ ‚ qop $
Stmt

return exp

Assignment and Casting statements are similar. An assigment statement is well-typed if the type of the
right-hand side expression specialises the type of the left-hand side expression. A cast statement is well-typed
if the types of the left-hand side and the right-hand side are comparable (i.e. they have a "common supertype"
(Drey et al. 2009, §2.9.2.1).

AssignStmt ::= lhs = exp CastStmt ::= varN ?= exp

λ ‚ qop $
Exp

lhs � t

λ ‚ qop $
Exp

exp � t1

t1 ď t

λ ‚ qop $
Stmt

lhs = exp

λ ‚ qop $
Exp

varN � t

λ ‚ qop $
Exp

exp � t1

t1 ď t _ t ď t1

λ ‚ qop $
Stmt

varN ?= exp

An Operation Call statement is typed in two steps. The first step assumes another judgement $
Call

explained
hereafter. A call without assignment is well-typed if the call expression is well-typed and the operation has no
return type; and a call with assignment is well-typed if the call expression is well-typed and the return type of
the operation specialises the type of the assigned variable.

CallStmt ::= target.opN(exp˚) CallStmt ::= varN = target.opN(exp˚)

λ ‚ qop $
Call

target.opNpexp˚q

typepqopq “ K

λ ‚ qop $
Stmt

target.opNpexp˚q

λ ‚ qop $
Call

target.opNpexp˚q

λ ‚ qop $
Exp

varN � t

typepopNq ď t

λ ‚ qop $
Stmt

varN “ target.opNpexp˚q

The following set of rules deals with the call itself (for the judgement $
Call
). First, the type of the target

expression should denote a class (which is obviously the case for super). Second, all expressions for effective
parameters are also well-typed. Third, the type-checking follows the same schema as for property access because
it depends on the target and the possible multiply inherited method name: if the method name is ambiguous,
then the method call is well-typed if there exists a method with the same name in the inheritance hierarchy of
the disambiguated class; if it is not, then the method call is well-typed if there exists one class in the inheritance
hierarchy that declares a method with the same name. The class from which the method name is looked for
depends on the target: if the target is super, then the method name is looked for from the superclass; otherwise,
it is looked from the class to which the instance target is typed. Finally, the types of the effective parameters
expressions must specialise the formal parameters’ types (in order).
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Call ::= instExp.opN(exp˚)

@i, λ ‚ ppkg, c, opq $Exp expi � ti

λ ‚ ppkg, c, opq $Exp instExp � c1

fromppkg, c1, opNq “ K

opN P Dom pωppkgqpc1qq

partypesppkg, c1, opNq “ xxp_,_, ct11q, . . . , p_,_, ct1nqyy

@i, cti ď ct1i

λ ‚ ppkg, c, opq $Call instExp.opNpexp1, . . . , expnq

@i, λ ‚ ppkg, c, opq $Exp expi � ti

λ ‚ ppkg, c, opq $Exp instExp � c1

fromppkg, c1, opNq “ c2

opN P Dom pωppkgqpc2qq

partypesppkg, c1, opNq “ xxp_,_, ct11q, . . . , p_,_, ct1nqyy

@i, cti ď ct1i

λ ‚ ppkg, class, opq $Call instExp.opNpexp1, . . . , expnq

Call ::= super.opN(exp˚)

@i, λ ‚ ppkg, c, opq $Exp expi � cti

fromppkg, c, opNq “ K

c1 P superppkg, cq

opN P Dom pωppkgqpc1qq

partypesppkg, c1, opNq “ xxp_,_, ct11q, . . . , p_,_, ct1nqyy

@i, cti ď ct1i

λ ‚ ppkg, c, opq $Call super.opNpexp1, . . . , expnq

@i, λ ‚ ppkg, c, opq $Exp expi � ti

fromppkg, c, opNq “ c1

opN P Dom pωppkgqpc1qq

partypesppkg, c1, opNq “ xxp_,_, ct11q, . . . , p_,_, ct1nqyy

@i, cti ď ct1i

λ ‚ ppkg, c, opq $Call super.opNpexp1, . . . , expnq

The two collection statements are typed the same way. They are well-formed if their application expression’s
type has an actual collection kind, and if their parameter expression’s basic type specialises the application
expression’s one.

CollStmt ::= exp.add(exp’) | exp.del(exp’)

λ ‚ qop $
Exp

exp � pC, tq
λ ‚ qop $

Exp
exp1 � pK, t1q

C ‰ K

t1 ď t

λ ‚ qop $
Stmt

exp.___pexp1q

7.4 Semantics

A Structural Operational Semantics Sos specifies the semantics by means of a labeled transition system de-
scribing the abstract execution of a transformation. A semantic domain interprets the syntactic constructions,
and is further enriched with the necessary information to describe the dynamics of the execution, resulting in
an execution state, or configuration that represents the state of the transition system. Then, the transitions are
simply rewriting rules between configurations (Winskel 1993).

7.4.1 Semantic Domain and Operations

The semantic domain is formally a set pD, top
i
u
iPI
q that gives the meaning of all syntactic constructions of the

language, i.e. a way to unambiguously interpret what the language describes. It generally comes with operations
that facilitate the manipulation of this domain’s element.

Definition 7.4 (Semantic Domain — Target). The semantic domain D is the set of pairs consisting of a model
and a local (store) environment. A local store environment L is a function mapping local names to values. A
target is either a local name, or a pair consisting of an object and a property name.

L 4
“ LocalN ZÑ V

D 4
“ Mˆ L

T 4
“ LocalNY pOˆ PropNq
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Default
MM

Coll
: Collection ÝÑ V

Bag ÞÑ rs

Set ÞÑ H

List ÞÑ x y

OSet ÞÑ xx yy

Default
MM

Prim
: PrimType ÝÑ V

Boolean ÞÑ K

Integer ÞÑ 0

Real ÞÑ 0.0

String ÞÑ “2

Default
MM

Enum
: PEnumN ÝÑ V
ppkg, enumq ÞÑ fstpeppkgqpenumqq

Default
MM

Class
: PClassN ÝÑ V
ppkg, classq ÞÑ null

Figure 7.4 – Functions computing default values for all collection types

A target t P T designates a element in the semantic domain that carries a value: it is either a local name, stored
in the local environment; or a property within an object, stored inside the model. We then use a functional
notation to access transparently these elements from the semantic domain: if d “ pM, lq P D is an element
of the semantic domain, we note dptq the value stored for t, i.e. dptq

4
“ lptq if t P LocalN, and dptq

4
“σo

M
ppq if

t “ po, pq P O ˆ PropN. Similarly, we note drt ÞÑ vs the update of t by v in d, i.e. drt ÞÑ vs
4
“ lrt ÞÑ vs if

t P LocalN, and drt ÞÑ vs
4
“σo

M
rp ÞÑ vs if t “ po, pq P Oˆ PropN.

7.4.1.1 Default Values and Instances

When calling an operation (i.e. executing a CallStmt statement), it is necessary to build a new environment
where local variables are associated with default values. Similarly, when creating a new instance (i.e. executing
a NewInstStmt statement), it is necessary to build a “new” valid object of the correct type.

The function Default
MM

associates to each collection type the corresponding default value, by following the
structural definition of CType (and as usual, we omit to mention the concerned metamodel MM when clear from
context):

Default
MM

: CType ÝÑ V
pK, ptq ÞÑ Default

MM

Prim
pptq if pt P PrimType

pK, eq ÞÑ Default
MM

Enum
peq if e P PEnumN

pK, cq ÞÑ Default
MM

Class
pK, cq if c P PClassN

pC,_q ÞÑ Default
MM

Coll
pCq if C P Collection

The definition distinguishes the cases when the collection type has a collection or not. If there is a collection,
the default value is simply the corresponding “empty” collection (emty bag for Bag, empty set for Set and so on)
independently from the basic type. If there is no collection, then it depends on the basic type. For primitive
types, the default value is predefined independently from any metamodel: it is the false value for Boolean, the
zero value for Integer, and so on; for enumeration types, the default value is the first enumeration literal declared
for this enumeration; for class types, the default value for a class is simply the null value. Figure 7.4 gives the
definitions of all intermediary default functions.

The function Initialise
MM

builds a fresh “initial” instance, valid for a given class type ppkg, cq P PClassN: its
type is ppkg, cq and its state is a function s0 that associates to each accessible property its default value.
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Initialise
MM

: PClassN ÝÑ PClassNˆ State

ppkg, cq ÞÑ pppkg, cq, s0q

where

#

Dom ps0q “ Dom pπppkgqpcqq

s0ppkg, c, propNq “ Default
MM
ptypepπppkg, c, propNqqq

7.4.1.2 Operation Call Initialisation

Calling an operation requires to build a new local environment in order to execute the called operation’s body.
The function Start has as result a domain that corresponds to the starting state of a given operation: it builds
a “new” local store environment and keeps the old model.

Start : QOpN ÝÑ Vˆ xVy ZÑ D ZÑ D
Startppkg, c, opqpvself , xv1, . . . , vnyqpm, lq ÞÑ pm, l1q

where Dom pl1q “ Dom pλppkg, c, opqq and

l1 “

$

’

&

’

%

this ÞÑ vthis

pi ÞÑ vi @pi P parnamesppkg, c, opq

varN ÞÑ Defaultpctq with λpppkg, c, varNqq “ p_,_, ctq

,

/

.

/

-

Basically, the new local store environment respects the local declarations of the operation, and maps parameters
to the corresponding value (in the order of their declaration) and variables to their default value.

7.4.1.3 Expression / Target Evaluation

As most of the statements are composed of expressions, it is necessary to provide a mechanism to properly
evaluate them. Recall first that an expression is either the null expression, a scalar expression or an instance
expression. Since expressions are designed to be side-effect free, it is possible to define a function that computes
the associated value of an expression, when evaluated in the context of an model.

We first assume the existence of two functions whose effect is abstracted from any particular implementation
that directly depends on the execution platform: the function J‚K

Lit
computes the value of literals and associated

operators; the function J‚K
Conv

adequately converts primitive types between each others (e.g. JRealK
Conv

p1q

converts the integer value 1 into the corresponding real value 1.0).

J‚KLit : Literal ZÑ V
J‚KConv : PrimType ÝÑ V ZÑ V

The function J‚K
Lit

is undefined if one of its parameters is not properly initialised or undefined. Consider as an
example, the addition operator: it is defined through J‚K

Lit
to correctly handle operands of compatible types

(e.g. adding an integer value with a real value returns a real value). These definitions are classic and well-known,
but cumbersome to be fully defined.

Let us consider now an expression taking place in a statement stm P Stm inside an operation qop P QOpN.
Notice first that expressions and statements are supposed to be well-typed. From the grammar defining ex-
pressions in Fig. 7.2, we notice that evaluating expressions requires determining the target of an instance
expression. As a consequence, the function J‚K for evaluating expressions’ values and the function J‚K

T
for

evaluating instance expressions’ target are mutually recursive.
The target of a local name (either a variable or a parameter name, or self) is the local name itself. The

target of property access is defined only if its associated target denotes a valid instance in the domain. In this
case, the target is composed of the object corresponding to the instance expression’s target (either super or
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Figure 7.5 – Assignment of objects in a reference. Dashed/plain arrows represent the situation before/after
assignment. Plain circles denote current object’s containers; empty ones a container’s reset.

a general instExp) and of the property given by the expression. The class where the property is declared is
computed based on the class returned by the type-checking of the target expression.

J‚KT : InstExp ÝÑ D ZÑ T
JselfKTpdq ÞÑ self
JvarNK

T
pdq ÞÑ varN

JparamNK
T
pdq ÞÑ paramN

Jsuper.propNK
T
pdq ÞÑ po,declpppkg, c1q, propNqq if o “ dpselfq

and τ ‚ qop $
Exp

super.propN � ppkg, c1q

JinstExp.propNKTpdq ÞÑ po,declpppkg, c1q, propNqq if o “ JinstExpKpdq
and τ ‚ qop $

Exp
instExp.propN � ppkg, c1q

The evaluation of the null expression and of literal expressions is straightforward, considering the dedicated
function J‚KLit . The value of the instanceof test depends on the value of its instance expression: it is true if
the type of the instance expression specialises the class declaration. Notice that if this value is undefined, then
the result is also undefined. The value of an instance expression is the value associated in the domain with the
instance expression’s target.

J‚K : Exp ÝÑ D ZÑ V
JnullKpdq ÞÑ null

JlitKpdq ÞÑ JlitK
Lit

JinstExp instanceof ppkg cqKpdq ÞÑ typepJinstExpKpdqq ď ppkg, cq

JinstExpKpdq ÞÑ dpJinstExpKTpdqq

7.4.1.4 Updating

The assignment statement is crucial to the behavior of the Al: it ensures that object integrity is preserved during
updating. Since assignments can transparently update a variable, a reference, an association or a containment,
its behavior must ensure the global consistency and the containment uniqueness property of models.

Suppose an assignment statement lhs = exp evaluated in a domain d P D, for which expression exp evaluates
to the value v P V, and left-hand side (Lhs) lhs refers to the target t P Target whose type is type (formally
speaking, JexpKpdq “ v, JlhsKTpdq “ t and λ ‚ op $

Exp
lhs � type). The effect of the assignment depends on both

the type and the nature of the Lhs involved (Fleurey 2006, Appendix A).
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(i) type P DataType If the target’s type is a DataType, it does not deal with containment and t’s value is simply
replaced by v after properly converting it in case of numerical values.

(ii) type R DataType If not, then t represents an object o and there is two cases:

(ii-1) t P LocalN either t refers to a local name and the assignment has the usual effect of replacing the
current object’s value by the the object denoted by v;

(ii-2) t “ po, pq P Oˆ PropN is a property access and it depends on the collection nature of p. The case
without collection is depicted in Fig. 7.5: in this case, v is assigned to t, the container of the previous
object x4

“ dptq pointed by o is reset; and in case of bidirectional reference, the opposite property q is
set to o to preserve consistency. If there is a collection, then this process is repeated for each object
within the collection.

The definition of the assignment function J‚, ‚K reflects these remarks and addresses the situation with
collection values: here, the update is done on each target object t1 of all objects contained within the collection
value v, i.e. t1 4“po1, oppppqq @o1 P objspvq, where the function objs : V Ñ ℘pOq retrieves all objects contained
in a collection value.

J‚, ‚K : Lhsˆ Exp ZÑ D ÝÑ D

plhs, expqpdq ÞÑ

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

drt ÞÑ Jt, vK
Conv

s if piq

drt ÞÑ pvqs if pii´ 1q

d

»

—

–

t ÞÑ v

t1 ÞÑ p_, oq
x ÞÑ p_,Kq

fi

ffi

fl

if pii´ 2q

objs : V ÝÑ ℘pOq

v ÞÑ

#

v if typepvq P p_,PClassNq

H otherwise

7.4.2 Configuration

A configuration γ P Γ consists of the label denoting the statement under execution, a stack storing the infor-
mation between operation calls, and the semantic domain. A stack is a sequence whose elements comprise the
label where to resume after completing the execution of a call, the local environment of the call, and eventually
the variable to which the result of the call needs to be assigned.

Γ
4
“ Labˆ xEnvy ˆ D

Env
4
“ pLabˆ Lq Y pLabˆ Lˆ VarNq

Suppose now that a Kermeta transformation is launched from the platform, i.e. a main operation op
main

inside a main class Cmain “ ppkgmain , cmainq (cf. Appendix A.2) is called with correct effective parameter value
list pvparamq, where param P Dom pλppkgmain , cmain , opmainqq. From this information, we build an initial configuration
γ0 P Γ that starts the execution, which consists of the following: the first label of op

main
’s (non-empty) body, an

empty stack environment, and a domain where the model m0 contains only one object of type Cmain for which all
properties are initialised to their default value, and a local environment where each parameter param is bound
to the corresponding value vparam and each variable to its default value.
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γ0 “ plab0, x y, pm0, l0qq with

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

m0 “ Initialiseppkgmain , cmainq

@param P Dom pl0q, l0pparamq “ vparam

@var P Dom pl0q, l0pvarq “ Defaultpctvarq

with λppkgmain , cmain , opmainqpvarq “ p_,_, ctvarq

xxlab0, . . . , labnyy “ labspppkg, c, opqq

7.4.3 Semantic Rules

The rewriting system defining the Sos for Kermeta takes the form of a set of rewriting rules as below:

C

γ
stm
ÝÑ γ1

It means that the configuration γ P Γ is rewritten in γ1 when executing the statement stm P Stm under the
(possibly empty) set of conditions C. We consider that all conditions in C are performed atomically before
another semantic rule can fire. Notice that inside the rules, we explicitly recall the label to bind the statement
with the control flow. From the initial configuration γ0, the rewriting system proceeds infinitely, or stops when
there is no more statements to execute2.

7.4.3.1 Conditional Statement

A conditional statement CondStmt only changes the label to the adequate one, according to the boolean value
of its expression.

v “ JexpKpdq
plab1, lab2q “ nxtplabq

v ùñ labres “ lab1

 v ùñ labres “ lab2

plab, S, dq
lab: if exp

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plabres , S, dq

7.4.3.2 Instance Creation Statement

An instance creation statement NewInstStmt adds to the model a fresh initial object, and associates it to the
variable in the local environment. The execution proceeds to the next label.

o R Dom pmq

m1 “ mY po ÞÑ Initialiseppkg, cqq

l1 “ lrvar ÞÑ os

plab1,_q “ nxtplabq

plab, S, pm, lqq
lab: var “ new ppkg cq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, pm1, l1qq

7.4.3.3 Assignment and Cast Statements

An assignment AssignStmt has to preserve the integrity of objects. Since we already defined a function for this
purpose, the rule simply applies it and proceeds to the next label.

pm1, l1q “ Jlhs, expKpm, lq
plab1,_q “ nxtplabq

plab, S, pm, lqq
lab: lhs “ exp

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, pm1, l1qq

2Actually, the rewriting system can stop because no rule fires: this is not supposed to happen for an Sos, whose rules are
triggered by the statements of an Abstract Syntax Tree.
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A cast statement CastStmt essentially behaves like an assignment: it assigns the right expression to the
variable, except that it has to carefully handle the dynamic types. In the case of primitive values, a cast
statement simply behaves as a conversion. In the case of instances, the right-hand side’s dynamic type must
specialise the left-hand side’s static type.

qop “ opplabq

λ ‚ qop $
Exp

varN � t P pK,PrimTypeq

v “ JexpKpdq
d1 “ JvarN, JtK

Conv
pvqKpdq

plab, S, dq
lab: varN?=exp

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, d1q

qop “ opplabq

λ ‚ qop $
Exp

varN � t P pK,PClassNq

v “ JexpKpdq
τpvq ď t

d1 “ JvarN, vKpdq

plab, S, dq
lab: varN?=exp

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, d1q

7.4.3.4 Operation Management

We include in this Section three kind of statements: the operation calls, the return statement and the collection
statements. The two first manipulate the stack, whereas the last only delegates the execution to predefined
operations of the semantic domain.

A return statement ReturnStmt proceeds to the label stored in the top element of the stack and changes the
current local environment with the stored one, then removes the top element. If the return statement has an
expression, it is evaluated in the context of the stored local environment and assigned to the variable stored in
the top element.

s “ plab1, l1q

plab, s :: S, pm, lqq
lab: return

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, pm, l1qq

s “ plab1, l1, varq

pm1, l2q “ Jvar, expKpm, l1q

plab, s :: S, pm, lqq
lab: return exp

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, pm1, l2qq

An operation call without assignment of the form target.oppexp1, . . . , expnq proceeds as follows. First, the
target’s value is computed and ensured by the type-checking system to denote an instance. Then, all effective
parameters’ values are computed. Then, the operation’s body is looked up, based on the dynamic type of the
target. The Start function then builds the new domain based on the parameters values and the old domain.
The label where to continue the execution is saved in the stack as well as the current environment.

v
this

“ JtargetKpm, lq
@i, vi “ JexpiKpm, lq

pK, ppkg, cqq “ τpv
this
qpm, lq

p_, params,_, bq “ ωppkgqpcqpopq

pm1, l1q “ Startppkg, c, opqpv
this
, xxv1, . . . , vnyyqpm, lq

pm1, l1q “ Jlhs, expKpm, lq
xxlab0, . . .yy “ labsppkg, c, opq

plab1,_q “ nxtplabq

plab1, lq “ s0

plab, S, pm, lqq
lab: target.oppexp1,...,expnq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab0, s0 :: S, pm1, l1qq

An operation call with assignment of the form varN “ target.oppexp1, . . . , expnq proceeds the same as previ-
ously, except that it has to save the variable into the store.
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v
this

“ JtargetKpm, lq
@i, vi “ JexpiKpm, lq

pK, ppkg, cqq “ τpv
this
qpm, lq

p_, params,_, bq “ ωppkgqpcqpopq

pm1, l1q “ Startppkg, c, opqpv
this
, xxv1, . . . , vnyyqpm, lq

pm1, l1q “ Jlhs, expKpm, lq
xxlab0, . . .yy “ labsppkg, c, opq

plab1,_q “ nxtplabq

plab1, l, varNq “ s0

plab, S, pm, lqq
lab: varN “ target.oppexp1,...,expnq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab0, s0 :: S, pm1, l1qq

A collection statement CollStmt first computes the collection corresponding from the call expression and
the updating element from the parameter expression, then updates the collection accordingly to the native
statement and proceeds to the next statement. Notice that the type checking system ensures that the element
can effectively update the collection, since its type specialises the collection’s type.

v “ JexpKpdq
v1 “ Jexp1Kpdq
d1 “ drv ÞÑ v ‘ v1s

plab1,_q “ nxtplabq

plab, S, dq
lab: exp.add(exp)

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, d1q

v “ JexpKpdq
v1 “ Jexp1Kpdq
d1 “ drv ÞÑ v a v1s

plab1,_q “ nxtplabq

plab, S, dq
lab: exp.del(exp)

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ plab1, S, d1q

7.5 Discussions

This Section starts by discussing some syntactic aspects of Kermeta’s Al in comparison with our core Al, and
then compares with related works in the domain of Als in particular and model transformations in general.

7.5.1 Syntactic aspects & Restrictions

Returning from an operation’s body (result). As the running example presented in Chapter 5 and the
way it is transformed in Fig. 7.3 suggest, Kermeta’s keyword result is equivalent in our formalisation to
return.

File Dependency (require). We did not take into account the way Kermeta deals with file dependency since
it is a pure static consideration: it only affects how a complete Kermeta specification is obtained, which can be
handled by adequate pre-transformations.

Derived Properties are in Mof a special kind of property whose value is computed from other properties.
As a matter of fact, it is not per se a concrete element as it depends on others. The value of derived properties
usually depends on other properties’ value: Kermeta allows to attach a getter for retrieving the value, and
eventually a setter to modify it, so that their value is automatically updated if other values they depend on
are. We did not address this feature, since it is possible to fully mimic this capacity by using normal operations
(which is the way they are implemented in).

Value Casting. Kermeta possesses two constructions for value casting. The conditional cast statement := is
part of our Al (cf. Sec. 7.2.2 and 7.4). Our semantics distinguishes the casting of values (that are statically
decidable) from the casting of instances (that can sometimes fail). In this latter case, Kermeta assigns the
special value void (or equivalently in our Al, null). However, this scenario is not taken into account because
the core Al does not handle exceptions and the semantic rules only rewrite correct configurations. Notice also
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that because primitive types are meta-represented in Kermeta (cf. Discussion Sec. 6.6), only the second rule
on instances matters; the first was given for soundness and completeness purpose.

Kermeta also proposes the asType() operation (cf. (Drey et al. 2009, §2.9.2.2)) that avoids using an
intermediate variable. The only difference resides in the error cases handling: when impossible to cast, asType
raises an exception instead of silently failing by assigning void.

Collection Api. Without a proper representation of generic classes and associated functionals, we equipped our
core Al with only the basic capabilities for manipulating collections: testing collection emptiness or computing
size, adding/removing an element, and accessing an element at a given index within an ordered collection. It is
still possible to extend collections capabilities with new ones by following the same process: defining a dedicated
operation on Abstract Datatypes (as defined in Section 5.4.2) that is later used within semantic rules. As a
concrete example, we already defined downward/upward conversion operators in Definition 5.4: these operators
can be directly used to handle the semantics of specialised cast operations in Kermeta’s Collection Api for
converting a collection to another (these operations are named asXxx(), where Xxx stands for the name of a
collection, e.g. asSequence()).

7.5.2 Related Works

Two transformation languages are directly comparable to Kermeta’s Al: Epsilon (Kolovos et al. 2012) and xOcl
(Clark, Sammut, and Willans 2008). They include Oo features as well as queries and more complicated behavior
like State Machines, but to the best of our knowledge, a formal specification in terms of Action Semantics only
exists for Uml (Yang, Michaelson, and Pooley 2008). Approaches like Asmkw and Gb take advantage of the
target workspace to perform the transformations, which require from the user knowledge about it (cf. the work
of Combemale, Crégut, et al. (2009) for a comprehensive review). Our approach contrasts with these by formally
specifying the framework itself, making formal any Dsml whose semantics is expressed with Kermeta directly
in the Kermeta workspace, instead of relying on target languages. Fleurey outlined in his pioneering work about
Kermeta (Fleurey 2006) almost the same Al subset as ours. Nevertheless, his work is questionable in several
outcomes: the structuring concepts used for the Al lack a formal counterpart; he uses a big-step semantics,
which is not directly executable; and his Al subset lacks a formal type system.
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Formal Verification of Kermeta
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In this Part, we show how a possible implementation of the reference semantics can be performed in Maude.
Maude appears to be an interesting verification domain: from a specification viewpoint, the algebraic speci-
fications and the rewriting logic constitute an adequate formalism to embed the set-theoretic and structural
operational semantics formalisation without too much effort; from a verification viewpoint, Maude offers sev-
eral capabilities, from lightweight analysis techniques such as simulation and reachability analysis, to heavier
techniques like model-checking and theorem-proving.

Two Chapters constitute this Part: Chapter 8 is an introduction to Maude, and Chapter 9 describes how
the semantic bridges between the formal semantics to Maude is performed.





8
Maude In a Nutshell

We have selected Maude as a semantic target for the formal verification of Kermeta model transformations.
This preliminary Chapter presents the basics of Maude by first describing the fundamental material upon which
Maude is built (Equational and Rewriting Logics in Section 8.1, then presenting the specific constructions used
for Object Orientation in Section 8.2, on which our own Kermeta specification is based. Section 8.3 finishes
the Chapter by demonstrating how Maude can be used for specifying the semantics of a simple imperative
programming language, summarising the methodology for expressing an operational semantics as a rewriting
system.

8.1 Equational & Rewriting Logic

Maude is a wide spectrum programming language based on two logics: the Membership Equational Logic is
an equational theory on top of which a Rewriting Logic allows to represent changes within terms. As a conse-
quence, Maude offers an equational style for functional programming with rewriting logic computations. This
combination, paired with an efficient rewriting engine and metalanguage capabilities, has the capability of being
able to represent many models of computation using non-determinism (like those based on concurrency) and
time, making Maude an interesting platform for creating executable environments for different logics, but also
for programming and transformation languages.

This Section presents the basics of Maude, namely the logics it is based on. Since in this Thesis, Maude is
used as a backend for formal verification, i.e. as a tool for model-checking model transformations in Kermeta,
we follow a pragmatic presentation guided by small examples, rather than presenting the rich and sometimes
complex mathematical foundations of the language (the interested reader can start from Clavel et al. 2007).

8.1.1 Functional Modules for Equational Theories

Membership Equational Logic (Mel) is a Horn logic whose atomic sentences are declared inside functional
modules using fmod ... endfm. A functional module computationally describes an equational theory pΣ, Eq. Σ

specifies the algebraic signature of the theory: basic “types”, called sorts are declared with the keywords sort

or sorts; whereas operators, introduced with keyword op, are declared together with their signature, i.e. their
arguments’ and result’s types. Additionally, sorts include an order relation, declared using the keyword subsort,
which roughly corresponds to subtypes: it enables overloading operators with different signatures. By combining
sorted variables and operators, it becomes possible to define terms, that may possess many different sorts due
to the subsort and operator overloading mechanisms. Fortunately, under some convenient requirements, a term
has a least sort.

Two types of sentences exist in Mel: membership assertions, introduced with the keyword mb, have the
form t : S and mean that term t has sort S; and equalities, introduced with the keyword eq, have the form
t “ t1 and state that terms t and t’ have the same meaning. Both sentences admit a conditional version
(introduced respectively with keywords cmb and ceq): such a sentence is computed only if the conditional holds;
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and conditions are conjunctions (noted /\) of equations and memberships.
As an example, consider the module defining the natural numbers in Peano notation (extracted from Clavel

et al. 2007).
1 fmod NATURAL i s
2 sorts NzNat Nat .

subsort NzNat < Nat .
4 op 0 : -> Nat [ctor] .

op s_ : Nat -> NzNat [ctor] .
6 op _+_ : Nat Nat -> Nat [assoc comm id:0] .

vars M N : Nat .
8 eq 0 + N = N .

eq s N + M = s (N + M) .
10 endfm

The sorts Nat and NzNat define natural and non-null naturals. The Peano notation relies on two constructors
(denoted with the attribute ctor): the constant 0 has no parameter (before ->), and the successor operation s_ has
one Nat parameter, used where the placeholder _ appears. The addition operation _+_ is defined, and its behavior
specified using equations specifying that the addition with a successor is the successor of the addition. Notice
that + is defined with three axioms: assoc, comm and id stipulate that + is respectively associative, commutative,
and admits 0 as identity element (i.e. 0 is idempotent).

In a functional module, computations occur by using equations as simplification rules from left to right,
until a canonical form is reached. Consider for example the term s 0 + s 0, the equivalent of 1 ` 1 in usual
notation. Applying the second equation reduces to s (0 + s 0); then applying the first equation reduces to s s

0. This last term is canonical: it is solely composed of operators declared as constructors. Maude performs
simplificationsmodulo axioms (for addition, commutativity, associativity and identity): these axioms are handled
at low level to avoid non-termination and non-determinism (typically, an equation such as eq N + M = M + N for
the addition, expressing commutativity, is non-terminating). Termination and determinism ensure the existence
and uniqueness of canonical forms (Bouhoula, Jouannaud, and Meseguer 2000).

Maude allows parameterised, or generic, modules i.e. modules using other modules as parameters whose
requirements are also defined by an equational theory. Consider for example building a datatype for sets with
the following module.

1 fth TRIV i s
2 sort Elt .
endfth

4

fmod SET{X :: TRIV} i s
6 sort Set{X} .

subsort X\$Elt < Set{X} .
8 op empty : -> Set{X} [ctor] .

op _,_ : Set{X} Set{X} -> Set{X} [ctor assoc comm id:empty] .
10 vars E : Set{X} .

eq E, E = E .
12 endfm

14 view Nat from TRIV to NAT i s
sort Elt to Nat

16 endv

The module SET provides a sort Set{X} of sets over a given sort of elements, specified by the Elt sort in the
TRIV theory. It defines the empty constant for empty sets and an associative, commutative and empty-idempotent
operator \_,\_ for set union. This way, thanks to the subsort declaration in Line 7, a singleton can be simply
defined with the element itself. Line 9 provides the syntax for sets: elements are separated by commas. Notice
without the equation of Line 11, this specification actually defines a multiset: by removing duplicate elements,
we ensure that a comma-separated list of elements is indeed a set.

The paramter X :: TRIV provides a name X for the formal generic parameter; it has to be instantiated with a
sort that fulfills the requirements of the theory TRIV1. Sorts and operators of the parameter can be used within

1The theory TRIV is defined in Maude’s prelude, which is automatically loaded when Maude starts. This theory defines only a
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the parameterised theory in a qualified form X$Elt. To instantiate a parameterised module, a view (introduced
by the keyword view) maps sorts and operations in such a way that the requirement axioms are provable in the
target module. In our example, the view Nat maps TRIV to NAT by mapping the sort Elt in TRIV to the sort
Nat in NAT. After that, it becomes possible to refer to the set of natural numbers with the module expression
SET{Nat}, and to use the corresponding instantiated sort name Set{Nat}.

8.1.2 System Modules for Rewrite Theories

Rewrite Logic (Rl) is a logic whose atomic sentences are declared inside system modules using mod ... endm. A
system module is basically a functional module allowing a new kind of sentences, namely (conditional) rewriting
rules of the form rl [lab] : t => t’ or, in its conditional form, crl [lab] : t => t’ if Cond.

Computationally, a rule specifies a local concurrent transition that can take place in a system if the pattern
of the rule’s left-hand side t matches a piece of the system’s state, and, if present, the rule’s condition Cond

is satisfied. When that happens, the matched fragment is transformed into the corresponding instance of the
right-hand side t’. Note that each rule is [lab]elled.

Usually, a system comprises a static and a dynamic part, just like Dsls do. As a small illustration, consider
a blackboard where a set of natural numbers is written, and one is allowed to erase any two of them to replace
them by their quotient (adapted from Clavel et al. 2007). We will simply instantiate our previous view for sets
of natural numbers SET{Nat} to directly reuse the predefined addition _+_ and the quotient _quo_ operations on
natural numbers.

1 mod BOARD i s
2 pr Set{Nat} .

vars N M : Nat .
4 rl [replace] : N, M => (N + M) quo 2 .
endfm

The static part simply consists of the set definition, imported here using pr (which means protected). The desired
behaviour is defined by the replace rule. Note that the rewriting actually occurs modulo the equations and
attributes attached to the set definition (i.e. modulo associativity, commutativity, identity and idempotency of
_,_, meaning for example that 6 3 and 3 6 represent the same set, as expected).

The rewrite command can then be used to execute the system, for example on the following set 6, 3, 2, using
the Maude interpreter, which applies the system rules until none is applicable.

1 Maude > rewrite 6, 3, 2 .
2 result NzNat: 4

As one would do it by hand, the result highly depends on the way pairs of numbers are non-deterministically
chosen: system rules are not required to be terminating, nor confluent. In our case, subterm 3 2 (or its commu-
tative equivalent 2 3) has been first rewritten into term 2, then the resulting term 6 2 or 2 6 has been rewritten
into 4.

The search command allows the exploration of the computation graph. In our case, it shows that there is
only two final results.

1 Maude > search 6, 3, 2 =>! N:Nat .
2 Solution 1 (state 4)

N --> 4
4 Solution 2 (state 5)

N --> 3
6 No more solutions.

sort Elt with no constraints
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Figure 8.1 – The Bank Account Class Diagram and a simple Object Diagram.

8.2 Object-Oriented Maude

Maude allows the specification of object-oriented systems by means of object-oriented modules introduced by
omod ... endom. Such modules have a dedicated syntax to declare classes containing typed “attributes”. Class
inheritance can be defined with the usual meaning, simply by exploiting the subsort relation. We show here on
an example how class diagrams can easily be mapped into Maude’s dedicated syntax. Then, we elaborate more
on how object diagrams can be represented in Maude, since our formalisation of Kermeta is directly inspired
from Maude’s syntax for describing objects.

Consider the small class diagram depicted in Figure 8.1. A Person, characterised by its name and age,
possesses exactly one Account, which has a balance. Furthermore, a special kind of account, Savings, is charac-
terised by its rate.

1 (omod BANK -ACCOUNT i s
2 pr STRING .

class Person | name : String,
4 age : Nat,

account : Oid .
6 class Account | bal : Int .

class Savings | rate : Float .
8 subclass Savings < Account .

endom)

The module BANK-ACCOUNT encapsulates the class diagram, and declares three classes Person, Account and Savings with
the keyword class. Each class possesses a set of (comma-separated) typed attributes. In particular, account, which
corresponds to a reference in the class diagram, is typed with the sort Oid: this corresponds to object identifiers.
Subclasses are simply declared with the keyword subclass, using the subsort relation between class names.

Consider now the object diagram in Figure 8.1. The person named John is associated to an account whose
balance equals 120. This would corresponds to the following Maude system:

1 < J : Person | name : ‘‘John ’’, age : ‘‘42’’, account: A-1 >
2 < A1 : Account | bal : 120 >

At runtime, the state of an object-oriented system basically consists of a soup of objects, that capture the
state of each object in the system. When Maude starts, it automatically imports the module CONFIGURATION that
contains all the necessary definitions. Here is an extract:

1 mod CONFIGURATION i s
2 sorts Object Msg Configuration .

subsorts Object Msg < Configuration .
4

op none : -> Configuration [ctor] .
6 op __ : Configuration Configuration -> Configuration [ctor assoc comm id: none] .

8 sort Oid Cid .
sorts Attribute AttributeSet .

10 subsorts Attribute < AttributeSet .

12 op none : -> AttributeSet [ctor] .
op _,_ : AttributeSet AttributeSet -> AttributeSet [ctor assoc comm id: none] .

14 op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object] .
endm
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As we can see on Lines 2–6, a Configuration is a multiset2 of objects and messages that represents a snapshot
of a possible system state. Configurations are formed by multiset union (using the empty syntax __). Lines
8–14 declare an object syntax corresponding to the notation we used earlier for expliciting BANK-ACCOUNT Object
Diagram. Four sorts are introduced: Oid are object identifiers; Cid are class identifiers, Attribute corresponds to
an element of an object’s state, and AttributeSet just gathers attributes in a multiset structure. Objects interact
in different ways, including message passing (we do not insist on messages since we will not use them).

Internally, object-oriented modules are just syntactic sugar: when computations occur over object-oriented
modules, Maude simply translates them into plain system modules. For example, the previous BANK-ACCOUNT module
is equivalently represented with the following:

1 sort Person .
2 subsorts Person < Cid .
op Person : -> Person .

4 op name_ : String -> Attribute .
op age_ : Int -> Attribute .

6

sort Account .
8 subsorts Account < Cid .
op Account : -> Account .

10 op bal_ : Int -> Attribute .

12 sort Savings .
subsorts Savings < Cid .

14 subsort Savings < Account .
op Savings : -> Savings .

16 op rate_ : Float -> Attribute .

The reader is refered to (Clavel et al. 2007; Durán 1999) for the details on how the translation is performed.

8.3 Example: The Simple Language

After the tutorial introduction to Maude, this Section demonstrates on a simple example one possible translation
from mathematical definitions of languages (syntax and semantics) to Maude specifications. We have chosen
Simple, a toy imperative programming language often used in Maude classes3. The purpose is at the same
time to illustrate basic translation mechanisms, but also to explain basic Maude constructions by means of a
well-known language.

The rest of the Section proceeds as follows: Simple syntax and semantics are first explained using the
classical mathematical tools (a Bnf grammar and a structural operational semantics), then the Maude equivalent
is presented, the code being extensively commented to help reading.

8.3.1 Syntax

As its name indicates, the Simple programming language contains the main features encountered in most
imperative languages. A Simple program is a sequence of statements (separated by ;) among the following:
an empty statement skip, a variable assignment, a while...do...od loop, a conditional if...then...else...fi (the form
without else can be emulated by using skip). Statements are build over BooleanExpressions and numeral Ex-
pressions, that both contains only a minimal set of (unary and binary operators). A Variable can be seen as a
string; and a Numeral represents integers. Figure 8.2 summarises Simple’s Bnf syntax.

In Maude, Numerals are non-empty strings of Digits (i.e. the symbols 0 ... 9). The concatenated representation
(so-called empty syntax _ _) imposes to use spaces between digits.

2Notice that the definition for Configuration is very similar to the definition of SET at the end of Section 8.1.1: except for the
syntax (for sets, elements were separated by a comma whereas configurations use an empty syntax), a Configuration does not possess
an equation to erase duplicate elements as for sets: it is therefore a multiset.

3During the Isr 2012 Summer School (International School on Rewriting), Simple was used as a tutorial language. Thanks
to Marwane El Kharbili, we noticed that it is actually a simplified version of Winskel’s IMP language (Winskel 1993).
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Assignable ::= Variable
Expression ::= Assignable | Numeral | - Expression

| Expression + Expression
| Expression - Expression
| Expression * Expression

BooleanExpression ::= true | false
| BooleanExpression < BooleanExpression
| BooleanExpression == BooleanExpression
| not BooleanExpression
| BooleanExpression and BooleanExpression

BasicProgram ::= Assignable := Expression
Program ::= skip | BasicProgram | Program ; Program

| if BooleanExpression then Program else Program fi
| while BooleanExpression do Program od

Figure 8.2 – Syntax for Simple. Terminals are in bold. A Variable is represented as a String; and a Numeral
represents integers.

1 fmod NUMERAL i s
2 sort Digit .

ops 0 1 2 3 4 5 6 7 8 9 : -> Digit [ctor] .
4 sort Numeral .

subsort Digit < Numeral .
6 op _ _ : Numeral Digit -> Numeral [ctor prec 2] .
endfm

Then, it becomes possible to define Expressions. For variables, we simply use predefined identifiers (from
module QID).

1 mod EXPRESSIONS i s
2 *** Use "Quoted Identifiers" for variables.

*** The module QID in the standard prelude declares a sort Qid
4 *** of LISP -like quoted identifiers. These are just strings preceded

*** by a closing single -quote (’). For example , ’a, ’b, ’ab, etc.
6 *** We rename the sort name "Qid" to "Variable", as this name is more

*** appropriate for defining a programming language.
8 ***

pr QID * (sort QID to Variable) .
10 pr NUMERAL .

sort Expression Assignable .
12 *** Variables can be assigned integer values

***
14 *** <Assignable > ::= <Variable >

***
16 subsort Variable < Assignable .

*** All assignables and numerals are expressions:
18 ***

*** Expression ::= Assignable | Numeral
20 ***

subsort Assignable Numeral < Expression .
22 *** Binary infix addition operation.

***
24 *** Expression ::= Expression + Expression

*** Expression ::= Expression - Expression
26 *** Expression ::= Expression * Expression

***
28 op _+_ : Expression Expression -> Expression [ctor prec 20] .

op _*_ : Expression Expression -> Expression [ctor prec 16] .
30 op _-_ : Expression Expression -> Expression [ctor prec 19] .

*** Unary prefix minus operation.
32 ***

*** Expression ::= - Expression
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34 ***
op -_ : Expression -> Expression [ ctor prec 3 ] .

36 endfm

It is interesting to notice, for example in Lines 16 and 21, how the Bnf construction is translated into subsorting
in Maude. This is not surprising, since Bnf has a sort-based semantics. Notice also the use of precedence for
arithmetic operators to allow correct parsing (e.g., multiplication has priority over addition and substraction).

Defining BooleanExpressions does not differ much, since the same constructions (infix binary operators and unary
operators) are used.

1 fmod BOOLEAN_EXPRESSIONS i s
2 pr EXPRESSIONS .

sort BooleanExpression .
4 *** Constants:

***
6 *** BooleanExpression ::= true | false

***
8 ops true false : -> BooleanExpression [ctor] .

*** Comparison: equality test and less -than
10 ***

*** BooleanExpression ::= Expression == Expression
12 *** BooleanExpression ::= Expression < Expression

***
14 op _==_ : Expression Expression -> BooleanExpression [ctor prec 25] .

op _<_ : Expression Expression -> BooleanExpression [ctor prec 25] .
16

*** Logical operators
18 ***

*** BooleanExpression ::= BooleanExpression and BooleanExpression
20 *** BooleanExpression ::= not BooleanExpression

***
22 op _and_ : BooleanExpression BooleanExpression -> BooleanExpression [ctor prec 30] .

op not_ : BooleanExpression -> BooleanExpression [ctor prec 29] .
24 endfm

Defining Programs follows again the same principles: each Bnf construction is translated according to the
previous schemas. Notice here that we encounter a small disagreement: fi is already a Maude keyword, making
it impossible to use in Simple’s syntax; instead, it is replaced by another usual conditional terminator endif.

1 fmod PROGRAMS i s
2 pr BOOLEAN_EXPRESSIONS .

4 *** Basic programs are assignments.
***

6 sort BasicProgram .

8 *** Assignment
***

10 *** BasicProgram ::= Variable := Expression
***

12 op _:=_ : Assignable Expression -> BasicProgram [ctor prec 50] .

14 sort Program .
*** All basic programs are programs.

16 ***
*** <Program > ::= <BasicProgram >

18 ***
subsort BasicProgram < Program .

20

*** The "do nothing" program.
22 ***

*** Program ::= skip
24 ***

op skip : -> Program [ctor] .
26

*** Sequential composition.
28 ***

*** Program ::= Program ; Program
30 ***
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pσ, pstm ; Sqq
stm 4

“ skip
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pσ, Sq

pσ, pq ÝÑ pσ1,_q

pσ, pstm ; Sqq
stm 4

“ p ; p’
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pσ1, pp’ ; Sqq

JexpKσ “ n P N
σ1 “ σrvar ÞÑ ns

pσ, pstm ; Sqq
stm 4

“ var:=exp

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pσ1, Sq

JcKσ “ J

pσ, pstm ; Sqq
stm 4

“ if c then p else p’ fi
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pσ, pp ; Sqq

JcKσ “ K

pσ, pstm ; Sqq
stm 4

“ if c then p else p’ fi
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pσ, pp’ ; Sqq

JcKσ “ J

pσ, pstm ; Sqq
stm 4

“while c do p od
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pσ, pp ; stm ; Sqq

JcKσ “ K

pσ, pstm ; Sqq
stm 4

“while c do p od
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pσ, Sq

Figure 8.3 – Simple Semantics

op _;_ : Program Program -> Program [ctor assoc prec 60] .
32

*** Conditionals & Loops
34 *** Program ::= if BooleanExpression then Program else Program fi

*** Program ::= while BooleanExpression do Program od
36 ***

*** Since "fi" is a keyword in Maude , we slightly change the syntax
38 *** and use "endif" instead.

***
40 op if_then_else_endif : BooleanExpression Program Program -> Program [ctor prec 65] .

op while_do_od : BooleanExpression Program -> Program [ctor prec 62] .
42 endfm

Thanks to the flexible syntax of Maude, translating Bnf grammars into equivalent Maude constructions is easy.
Like for Simple, it is often necessary to slightly adapt the syntactic constructions in Maude due to predefined
keywords, or difficulty to correctly parse grammar sentences.

8.3.2 Semantics

The semantics of Simple follows the intuitive meaning of such constructions in an imperative language like
Pascal (Wirth 1971). A program manipulates integer and boolean values, which constitutes the definition of the
set V of values. An environment σ : Variable ÝÑ V stores the variables values along the program’s execution. A
function J‚Kσ : BooleanExpression Y Expression ÝÑ V allows the evaluation of both types of expressions, whose
precise definition is straightforward. Notice that for enabling variables’ value retrieving, this function needs to
depend on σ. A configuration for the operational semantics has the form pσ, Sq, where S P Program.

Operational rules are described in Figure 8.3. Executing skip just do nothing. Executing a BasicProgram
modifies the value associated to the Assignable in σ, after having evaluated the Expression. Executing a sequence
simply executes the first Program, then the other. Executing a conditional or a loop just behaves the normal
way, by transferring the control adequately according the the BooleanExpression evaluation.

The first task to perform when translating such a semantics into Maude is to take care of the extra mate-
rial necessary for expressing the operational semantics, namely the environment and the evaluation function.
Fortunately, since Simple’s semantic domain only consists of boolean and integer values, we can simply build
up over native Bool and Int native Maude sorts. Notice how the construction for store updating is conveniently
translated in Maude (Lines 70 – 71) following its mathematical definition (cf. 5.4.1).

1 fmod STORE i s
2 *** Importing necessary modules
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***
4 pr PROGRAMS .

pr INT .
6

*** Declaring the sort for the Store
8 ***

sort Store .
10

*** Initial values for stored variables.
12 ***

op initial : -> Store .
14

16 *** "Look up" the value of a variable.
*** In fact , rather than declaring this as an operation

18 *** of type Store Variable -> Int ,
*** we generalise this by saying we can evaluate any Expression ,

20 *** not just a variable.
***

22 op _[[_]] : Store Expression -> Int [prec 75] .

24

*** "Update" a state (by assigning to a variable).
26 ***

op _<-_ : Store BasicProgram -> Store [prec 70] .
28

var S : Store .
30 vars V V’ : Variable .

vars E E’ : Expression .
32

*** Initially , all variables store 0:
34 ***

eq initial [[ V ]] = 0 .
36

38 *** evaluate binary operations , by evaluating their operands
*** and combining the results (by addition , multiplication , etc.)

40 *** evaluate unary minus by evaluating the operand , then taking the minus
***

42 eq S [[ E + E’ ]] = (S [[ E ]]) + (S [[ E’ ]]) .
eq S [[ E * E’ ]] = (S [[ E ]]) * (S [[ E’ ]]) .

44 eq S [[ E - E’ ]] = (S [[ E ]]) - (S [[ E’ ]]) .
eq S [[ (- E) ]] = - (S [[ E ]]) .

46

*** evaluate digits in the obvious way ...
48 ***

eq S [[ 0 ]] = 0 .
50 eq S [[ 1 ]] = 1 .

eq S [[ 2 ]] = 2 .
52 eq S [[ 3 ]] = 3 .

eq S [[ 4 ]] = 4 .
54 eq S [[ 5 ]] = 5 .

eq S [[ 6 ]] = 6 .
56 eq S [[ 7 ]] = 7 .

eq S [[ 8 ]] = 8 .
58 eq S [[ 9 ]] = 9 .

60 var N : Numeral .
var D : Digit .

62

*** ...and use the place system to evaluate numerals
64 ***

eq S [[ N D ]] = 10 * (S[[ N ]]) + (S[[ D ]]) .
66

*** an assignment updates the value associated with the variable ...
68 *** and only that variables (others don ’t change).

***
70 eq S <- V := E [[ V ]] = S [[ E ]] .

ceq S <- V := E [[ V’ ]] = S [[ V’ ]] i f V =/= V’ .
72 endfm
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The following module SEMANTICS implements Simple’s semantics following the rules of Figure 8.3. The evalu-
ation of BooleanExpressions is handled simply by overloading the operator _[[_]], and mapping the effect of boolean
operators to their corresponding ones within the Maude built-in Bool sort (notice for example, how the equality
test is translated as a membership in Line 19). The configuration definition for operational rules is exactly the
same as the mathematical one (except that it uses ; as a separator instead of a comma). Notice how rules with
preconditions are translated into conditional equations.

1 fmod SEMANTICS i s
2 protecting PROGRAMS .

including STORE .
4

*** To evaluate boolean expressions
6 *** Results are of Maude ’s built -in sort Bool ,

*** from the built -in module BOOL
8 ***

op _[[_]] : Store BooleanExpression -> Bool [prec 75] .
10

12 var S : Store .
vars E1 E2 : Expression .

14 vars T1 T2 : BooleanExpression .

16 *** evaluation of boolean expressions
***

18 eq S [[ E1 < E2 ]] = (S [[ E1 ]]) < (S [[ E2 ]]) .
eq S [[ E1 == E2 ]] = (S [[ E1 ]]) i s (S [[ E2 ]]) .

20 eq S [[ T1 and T2 ]] = (S [[ T1 ]]) and (S [[ T2 ]]) .
eq S [[ not T1 ]] = not (S [[ T1 ]]) .

22 eq S [[ true ]] = true .
eq S [[ false ]] = false .

24

26 *** Run program P in a store S to obtain new store S ; P .
*** ErrorStore is used to allow for non -terminating programs.

28 ***
op _;_ : Store Program -> Store [prec 70] .

30

32 var T : BooleanExpression .
var P1 P2 : Program .

34

*** skip has no effect on Stores
36 ***

eq S ; skip = S .
38

*** Sequential composition:
40 *** do first program , then do the next

***
42 eq S ; (P1 ; P2) = (S ; P1) ; P2 .

44 *** Conditionals:
*** if test is true , execute the then -clause ...

46 ***
ceq S ; i f T then P1 else P2 endif = S ; P1 i f S[[T]] .

48

*** ... otherwise , execute the else -clause
50 ***

ceq S ; i f T then P1 else P2 endif = S ; P2 i f not(S[[T]]) .
52

*** While -loops:
54 *** if guard is true , execute the body , and repeat ...

***
56 ceq S ; while T do P1 od = S ; P1 ; while T do P1 od i f S[[T]] .

58 *** ... otherwise , exit the loop (do nothing)
***

60 ceq S ; while T do P1 od = S i f not(S[[T]]) .
endfm
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9
KMV: Verifying Kermeta with Maude

We showed in Chapter 3 that no tools are currently available for formally analysing or verifying metaprogrammed
model transformations. A natural possibility would consist of implementing such a tool from scratch, thus
building an ad hoc tool specialised for our formally specified Action Language subset. However, this task is
difficult, error-prone, and requires time to reach the maturity necessary to handle our subset correctly so that
it reasonably scales for the size of model transformations that represent the current practice.

This Chapter shows how a bridge from the reference semantics of Kermeta (presented in Part II) into Maude
(Clavel et al. 2007) can be defined. Maude has been chosen as a verification domain for three reasons:

• Maude’s mathematical background (Membership Equational Logics and Rewriting Logics) is very close to
the mathematical tools we used for specifying the semantics of Kermeta: this reduces the semantic gap
between the reference semantics and this implementation, allowing one to manually check the implemen-
tation’s correctness;

• Maude’s specifications are executable: this implementation offers a lightweight executable framework for
the formalised subset of the Action Language, and a good basis for handling more features;

• Maude comes equipped with two verification tools, namely model-checking and theorem-proving: this
enables transformation designers to address a larger variety of properties within a single tool.

After providing an overview of the implementation strategy, we organise the Chapter the same way the formal
specification of Part II was built: the Structural and Action Languages are described in Sections 9.2 and 9.3,
respectively. Each one is illustrated with the Fsm example, to show how the specifications are used at the
model level, and how to execute a specification with Maude. Section 9.5 describes Kmv, as a tool integrated
into Eclipse, as well as its current limitations.

9.1 Overview

Instead of providing a novel Maude specification for metamodels and models, which takes a long time and is
subject to errors, we decided to base our tool on existing specifications that were already tested and validated.
We first explain how we selected an adequate specification, then the assumptions for our tool to work regarding
the Kermeta specification considered as input.

9.1.1 mOdCL & Maudeling

Among all existing specifications for handling metamodelling in Maude (Boronat and Meseguer 2008; Mokhati
and Badri 2009; Rivera, Durán, and Vallecillo 2009; Rusu 2011), Kmv is built on top of two existing Maude
specifications: mOdcl and Maudeling1. This solution was preferred for the following reasons:

1Both tools are developed by the Atenea Team, hosted at the University of Málaga: http://atenea.lcc.uma.es/.
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Figure 9.1 – Dependencies between mOdcl, Maudeling and Kmv: each colored box represents one tool with
its components. mOdcl is included into Maudeling, and both tools are reused by Kmv.

Encompassing current limitations We showed in Section 8.2 that the built-in object-oriented Maude models
are not sufficient for our purpose, i.e. representing metamodels, packages and Mde-specific constructions
(like multiplicities, Mof properties and their typing information). On the contrary, mOdcl and Maudeling
propose dedicated constructions that simplify the representation of Kermeta’s constructions.

Avoiding Full Maude Some implementations (among which, the ones proposed by Boronat and Meseguer
(2008) and Mokhati and Badri (2009)) as well as the built-in object-oriented modules make calls to Full
Maude, thus requiring a performance overhead that becomes cumbersome for execution purposes which
perform recurrent basic operations on metamodels. In contrast, mOdcl and Maudeling work at the level
of Core Maude, enhancing the overall performance of our tool dramatically.

Figure 9.1 depicts the interactions between mOdcl, Maudeling and Kermeta. mOdcl complies with the Ocl
syntax (Object Management Group 2010), and provides an expression evaluator that successfully passes existing
Ocl benchmarks (e.g. the one proposed by Kuhlmann et al. 2013). The Ocl evaluator allows on the one hand
to validate the static syntax of Uml models, i.e. what is called in metamodelling, model constraints (Durán,
Gogolla, and Roldán 2011), but also to dynamically validate such constraints on an executable Uml specification
whose behaviour is defined by means of Activity and Sequence Diagrams (Object Management Group 2011a),
with multithread support (Durán and Roldán 2011).

However, the language for representing Ocl expressions is limited regarding metamodelling activities as
perceived in Mof: several constructions in Mof need to be manipulated as first-class concepts, instead of being
directly represented as built-in components. For example, the data types and collection types need to appear
syntactically in a Mof specification to enable conformance checking, as well as the notion of metamodel. For
these reasons, Maudeling extends the mOdcl type and value system to support these features, without breaking
the underlying evaluation capabilities. Maudeling also defines the structure of metamodels in a way that is
fully compatible with Mof, making the previous notions explicit. Besides, Maudeling offers a conformance
checking predicate that can serve as a basis for checking conformance for Kermeta specifications, and a parser
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to create Maude representation of Mof models from Xmi descriptions, the native representation of the Eclipse
implementation of Mof, ECore (Steinberg et al. 2009).

Kmv is built on top of the mOdcl and the Maudeling specification in Maude. For specifying Kermeta’s
Structural Language, Kmv extends the specification already available in Maudeling:

• Kermeta requires the from clause to disambiguate properties and operations names that are multiply
inherited, and enabling a full static type checking of the Action Language (cf. discussion in Section 5.2.1);

• Obviously, Kermeta requires the definition of operations (cf. Section 6.3.5) present in Mof but not spec-
ified in Maudeling because transformations were defined using Graph-Based Transformations techniques;

• This new elements imposes that the conformance checking is modified accordingly, to check for example
that operations defined as abstract do not possess a body and are contained in an abstract class.

The previous elements are purely syntactic and describes the structure of model specifications in Kermeta.
Kmv’s originality resides in the dynamic part, i.e. the control flow and execution rules necessary to perform
transformations’ execution, as described in Section 9.3.

9.1.2 Assumptions

Both Kermeta and Maude, through the Maude Development Tool2, are integrated within Eclipse. As a nat-
ural continuation, Kmv is itself developed within Eclipse as a plugin that can be integrated in the Kermeta
Perspective.

Figure 9.2 depicts the interactions between Kmv and Eclipse, highlighting the assumptions made by Kmv
regarding Kermeta input models that it is capable of analysing:

Preprocessing On the one hand, Maude relies on algebraic specifications, meaning that each term is unique
up to an entire Maude specification; on the other hand, Kermeta makes use of names whose scope depends
on their location (e.g. the scope of a class name is the entire metamodel; the scope of a property name is
its containing class, which prevents operation parameters to be named identically). Kmv has to maintain
a bi-directional correspondence between Kermeta names and Maude terms, that is computed during a
preprocessing phase prior to any analysis.

Compiled Validated Models Kmv assumes that analysed models successfully pass the compilation and val-
idation phases without raising errors: indeed, models are expected to be conforming and type correct.
Kmv currently works directly on the Abstract Syntax Tree used as an internal representation for Kermeta
specifications in order to avoid computing information (like the qualified names of entities that are used
with the require/uses clauses) that the compiler already does. By doing so, Kmv is able to handle
aspects, since the Abstract Syntax Tree represents the full specification where the aspects are already
resolved.

The preprocessing assumption results both from historical reasons (to enforce the reuse of mOdcl and Maudel-
ing) and from the inevitable abstractions necessary when a mathematical reference semantics has to be imple-
mented in a real-life programming language: by reusing the target language’s built-in representation mechanisms
(namely, algebraic terms), one gives priority to the tool scalability and performance over the strict compliance
with the mathematical definitions. This point is further discussed in Section 9.5.2.

The compiled validated models assumption seems to be reasonable to ensure the rapid prototyping of Kmv,
and can be improved in the future. However, it acts as an abstraction layer that prevents Kmv from having
to evolve accordingly to the Kermeta platform: this decouples Kmv from the possible future evolutions of the

2Maude Development Tool (Mdt) Website: http://mdt.sourceforge.net/
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Figure 9.2 – The kmt2maude transformation assumes that a Kermeta specification successfully compiles.

Kermeta platform, forcing only the Translation transformation from a model of the Abstract Syntax Tree into
the entry format of Kmv to be maintained.

We now proceed to the description of the implementation of the formal semantics in Maude. It is not possible
to formally ensure the correctness of this kind of implementation for two reasons: the reference semantics,
although mathematical (and thus, having a “formal” semantics, as the meaning commonly understood for
mathematics themselves), is not supported by a tool, which is required for a mechanical proof of correction;
any proof would be complicated anyway by the fact that implementation choices, abstractions and “tricks”
that a good programmer will adopt to enhance the readability or the performance of the implementation are
always difficult to formalise. However, we will follow literate programming principles (Knuth 1992) to facilitate
a manual checking of the correctness of the implementation.

9.2 Specifying Kermeta’s Structural Language

The structural part of Kmv is an extension of Maudeling, which is itself built on top of mOdcl (cf. Section
9.1.1 and Figure 9.1): Kmv adds to Maudeling Kermeta’s specificities for metamodelling, namely operation
declarations and the from clause.

The reference semantics of Part II relies on a set-theoretical framework that makes an extensive use of partial
functions: Definitions 6.4 and 6.5 have defined metamodels and models as a tuple of partial functions that
captured the meaning of their constituting parts. Unfortunately, Maude does not support such a mechanism
for creating tuples. For example for a package function p : PkgN ZÑ ℘pPkgNq ˆ ℘pClassNq ˆ ℘pEnumNq P

P, that associates to a package its subpackages, classes and enumerations, it is not possible to define an
algebraic operation that straightforwardly mimic this set-theoretic construction, something like op p : @Package

-> Set{@Package} Set{@Class} Set{Enumeration}.
A simple solution would consist of creating an extra sort, say @PackageResult, that represents p’s image, and

then define appropriate accessors accordingly. This way, p P P would then have an equivalent Maude constructor
op p defined as follows:

1 sort @PackageResult .
2 op packageResult : Set{@Package} Set{@Class} Set{Enumeration} -> @PackageResult .

op p : @Package -> @@PackageResult .

This solution is theoretically perfectly acceptable, but leads to numerous problems: if a codomain (or some
parts of it), like packageResult, is shared by several partial functions, it becomes quickly ambiguous to parse;
furthermore, semantic rewritings, as defined in Chapter 7, often occur in limited places in the codomain, forcing
to instanciate many variables to represent a valid term of the codomain, which in return forces to match many
information that is ultimately never really used.
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Instead, we adopted another solution that is better regarding both the performance and the readability (and
also appears to be more convenient to manipulate in Maude): we defined “projector ” operators, just like the
auxiliary functions that we defined over qualified names (cf. Section 6.3). As an example, to retrieve the set of
subpackages for the package pkg, one will invoke an operator as follows: subpackages(pkg).

Before jumping to the systematic description of the components of a metamodel, we detail how the common
components for names, types and values are built.

9.2.1 Names, Types, and Values

We provided a formal definition for names (Definition 6.1), types (Definition 6.2) and values (Definition 6.3).
As we recalled earlier, we need a meta-representation of types, and then a explicit link between values and their
syntactic type (cf. Definition 6.6). This will give the possibility to perform (ontological) conformance based on
this meta-representation.

Names were defined in Definition 6.1 as a sorted set Name
4
“pNameeq where e P Element ranges over the set

of named metamodel elements. To represent them in Maude, we define a sort for each indexed set (i.e. Name
PkgN

becomes @Package, Name
ClassN

becomes @Class, and so on). The subsort declarations follows the Mof inheritance
relations between the classes: for example, Line 13 expresses the fact that all metamodel elements inherits from
NamedElement; and Line 14 establishes that Classes and DataTypes are different sorts of Classifiers. Note that
the sort @Operation is declared as a @StructuralFeature, in order to handle its return type.

1 sort @NamedElement .
2 sort @Metamodel .

sort @Package .
4 sort @Classifier .

sort @StructuralFeature .
6 sort @Attribute .

sort @Reference .
8 sort @Operation .

sort @Parameter .
10 sort @DataType .

sort @Enumeration .
12

subsorts @Metamodel @Package @Classifier @StructuralFeature < @NamedElement .
14 subsorts @Class @DataType < @Classifier .

subsorts @Attribute @Reference @Parameter @Operation < @StructuralFeature .
16 subsort @Enumeration < @DataType .

18 op name : @NamedElement -> String .

A string, representing the name as it is specified in Kermeta, is associated to any term typed as @NamedElement

(cf. example below). Notice that most of the sort names are prefixed by @ to avoid conflict with already defined
sorts in Maude.

Example 9.1 (Declaring named elements). Let us see how to declare the FSM package, the Label
class and its label attribute, as well as how the correspondence with Kermeta’s names is ensured.

1 op FSM : -> @Package .
2 eq name(FSM) = "FSM" .

4 sort Label@FSM .
subsort Label@FSM < @Class .

6 op Label@FSM : -> Label@FSM .
eq name(Label@FSM) = "Label" .

8

op label@Label@FSM : -> @Attribute .
10 eq name (label@Label@FSM) = "label" .
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A first important point concerns the naming conventions. To obtain an unique term name, we
use a form of qualified names by concatenating nested elements names, separated with the special
character @: this way, the term representing the label attribute becomes label@Label@FSM, where we
recognise the name of the attribute, concatenated with the name of its containing class, with the
name of its containing package. Given the name constraints in Kermeta, this schema ensures term
names unicity while still easily reversible.

We showed how things are declared for an attribute, a class and a package, but other metamodel
elements follow the same pattern: a model element is declared as a constant operator (Lines 1, 6 and
9) for building terms of the appropriate sort. Then, the term is linked to the original Kermeta name
using an equation (Lines 2, 7 and 10). Classes are treated slightly differently in order to benefit from
the built-in subsorting mechanism: each class sort is declared to be a subsort of @Class.

Specifying types and values is straightforward. First, recall from Definition 6.2 that syntactic types are built
on top of DataTypes, defined as the union of PrimType and EnumN (i.e. a primitive type is also a datatype).
This is simply translated using constants with well-chosen names (enumerations will be defined later).

1 op @String : -> @DataType .
2 op @Int : -> @DataType .

op @Bool : -> @DataType .
4 op @Float : -> @DataType .

Then, we need to build collection and multiple types, by defining collections and multiplicities (cf. Definition
6.2). To facilitate their manipulation, and ensure better compatibility with Uml-based models (as well as ECore
models), things are separated to allow a finer manipulation, with the help of projector functions. Remember
that upperbounds can represent a finite, undefined value ‹ encoded as the value -1, and this supposes to redefine
the associated order <=Card on naturals.

1 op lowerBound : @StructuralFeature -> Int .
2 op upperBound : @StructuralFeature -> Int .

op isOrdered : @StructuralFeature -> Bool .
4 op isUnique : @StructuralFeature -> Bool .

6 op * : -> Int .
eq * = -1 .

8

op maxCard : Int Int -> Int [comm] .
10 eq maxCard(-1, I1) = -1 .

eq maxCard(I1 , I2) = max(I1, I2) [owise] .
12 op minCard : Int Int -> Int [comm] .

eq minCard(-1, I1) = I1 .
14 eq minCard(I1 , I2) = min(I1, I2) [owise] .

16 op _<=Card_ : Int Int -> Bool .
eq I1 <=Card -1 = true .

18 eq -1 <=Card I2 = (I2 == -1) .
eq I1 <=Card I2 = I1 <= I2 [owise] .

20

op isMany : @StructuralFeature -> Bool .
22 eq isMany(SF) = (2 <=Card upperBound(SF)) .

op isRequired : @StructuralFeature -> Bool .
24 eq isRequired(SF) = (1 <=Card lowerBound(SF)) .

Two extra operators isMany and isRequired will be useful for the conformance: isMany indicates that the multiplicity
requires a collection (because its upperbound is greater than 2); whereas isRequired indicates that at least one
element is necessary.

Example 9.2 (Multiplicity Types). In the Fsm, the label attribute in class Label has multiplicity
1:1, and is represented as a Set collection (since it should be unique).

1 eq lowerBound (label@Label@FSM) = 1 .
2 eq upperBound (label@Label@FSM) = 1 .

eq isOrdered (label@Label@FSM) = false .
4 eq isUnique (label@Label@FSM) = true .
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9.2.2 Metamodel

We follow a systematic presentation for each metamodel element: after recalling the corresponding definition
from Section 6.3, we show how the projector operators are defined with respect to the formal definition, then
provide sample examples extracted from the Fsm example. Appendix A.4 provides the full Maude specification
for our running example.

A generic list datatype (with empty syntax) is used for representing the codomain elements of of partial
functions using powersets (those constructed with ℘¨). This definition will enable a transparent treatment of all
components in the metamodel, e.g. when defining the conformance. This generic datatype is then instantiated
with sort @NamedElement (which all others are subsort of) and renamed MyList3.

1 fmod MGLIST{X :: TRIV} i s
2 sort EmptyList MGNeList{X} MGList{X} .

subsort EmptyList MGNeList{X} < MGList{X} .
4 subsort X$Elt < MGNeList{X} .

6 op nil : -> EmptyList [ctor] .
op __ : X$Elt MGList{X} -> MGList{X} [ctor prec 25] .

8

op append : EmptyList EmptyList -> EmptyList .
10 op append : MGList{X} MGList{X} -> MGList{X} .

12 op occurs : X$Elt MGList{X} -> Bool .

14 op reverse : EmptyList -> EmptyList .
op reverse : MGList{X} -> MGList{X} .

16 endfm $

9.2.2.1 Package

This is the first time projector functions are used: we will detail here how the translation between the mathe-
matical definition and the Maude specification is performed. Since it is quite natural, we will only sketch these
details for future definitions, and count on the intuition based on the projector names to properly map both
representations.

Section 6.3.1 defined what a package function p P P looks like: it maps an existing package (name) pkg to
the set of subpackages P , classes C and enumerations E, i.e. pppkgq “ pP,C,Eq. For each component in the
codomain, a projector operator (named subPackages, classes and enumerations) is introduced:

1 op subPackages : @Package -> MyList . --- Of @Package
2 op classes : @Package -> MyList . --- Of @Class

op enumerations : @Package -> MyList . --- Of @Enumeration

These operators map terms sorted over @Package to the list structure MyList. Let pkg P PkgN such that pkg P

Dom ppq, and pkg : @Package. The equivalence between the mathematical notation and the Maude definitions is

pppkgq “ pP, C, Eq
4
ðñ

$

’

&

’

%

subpackageppkgq“P

classesppkgq“C

enumerationsppkgq“E

Additionally, we define three helper operators, which are not strictly required for defining a metamodel, but
help computing information about the package structure: allSubPackages retrieves all subpackages recursively (i.e.
finds the subpackages within subpackages of a given package); allClasses retrieves all classes declared within a
package similarly; and superPackage is the inverse of the subPackage operator.

3This implementation choice is also the consequence of the language’s learning curve: MyList is defined as a view from a list-
like module, whose effective parameter is @NamedElement, which makes it usable for any metamodel element. This also marks the
very difference between mathematical specification, whose goal is conciseness and precision, and implementation, whose goal is
convenience and efficiency. Lists of @NamedElements are seamlessly treated at the expense of not catching mistyped lists. However,
since we consider type-correct Kermeta specification, this has a minor impact.
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1 op allSubPackages : MyList -> MyList . --- Of @Package (both) .
2 eq allSubPackages(nil) = nil .

eq allSubPackages(P) = (subPackages(P) allSubPackages(subPackages(P))) .
4 eq allSubPackages ((P L)) = (allSubPackages(P) allSubPackages(L)) .

6 op allClasses : @Package -> MyList . --- Of @Class
eq allClasses(P) = (classes(P) classesAux(allSubPackages(P))) .

8

op classesAux : MyList -> MyList . --- Of @Package , @Class
10 eq classesAux(nil) = nil .

eq classesAux(P L) = (classes(P) classesAux(L)) .
12

op superPackage : @Package -> Maybe{@Package} .

Here, allSubPackages and allClasses are computed by structural induction, taking advantage of the empty syntax
for list (i.e. the list constituted by E1 and E2 is simply noted (E1 E2)).

Example 9.3 (The FSM Package). It is obviously named FSM, and has no sub- or super-package.

1 eq name(FSM) = "FSM" .
2 eq superPackage(FSM) = null .

eq subPackages(FSM) = nil .
4 eq classes(FSM) = __(FSM@FSM , Label@FSM , State@FSM , Transition@FSM) .

9.2.2.2 Class

Section 6.3.3 defined the structure of a class function c P C. It maps an existing class (name) c within a
package (name) pkg to a boolean (indicating if c is abstract) and the set of c’s superclasses: cppkgqpcq “

pabs, tppkg, c1q, ppkg, cnquq. The corresponding Maude specification simply follows the same scheme as for pack-
ages, by defining the corresponding projectors superTypes and isAbstract.

1 op superTypes : @Class -> MyList . --- Of @Class
2 op isAbstract : @Class -> Bool .

op package : @Classifier -> Maybe{@Package} .
4 op references : @Class -> MyList . --- Of @Reference

op attributes : @Class -> MyList . --- Of @Attribute

Additionally, we need to handle the fact that a class is eventually contained within a package (operator package,
with as result a term of sort Maybe{@Package} indicating the optional enclosing package), and that references and
attributes are also enclosed within a class (operators references and attributes respectively). Similarly to the
previous Section, we can establish the following equivalences between both notations:

Dom ppropppkgqpcqq “ LREFSY LATTS
4
ðñ

#

referencespCq“LREFS

attributespCq“LATTS

cppkgqpcq “ pabs, Cq
4
ðñ

$

’

&

’

%

isAbstractpcq“abs

packagepcq“pkg

superTypepcq“C

The order relation ă
Class
Ď PClassN ˆ PClassN, induced by the inheritance hierarchy, needs to be captured by

an operator subTypeOf: it follows a definition by structural induction over @Classifiers, and needs to computes the
superclass transitive closure, which is captured by the operator allSuperTypes.

1 op subTypeOf : @DataType @DataType -> Bool .
2 eq subTypeOf(DT , @DataType) = true .

eq subTypeOf(DT , DT) = true .
4 eq subTypeOf(DT , DT2) = false [owise] .

6 op subTypeOf : @Class @Class -> Bool .
eq subTypeOf(C, C2) = superTypeOf(C2, C) .

8

op allSuperTypes : MyList -> MyList . --- Of @Class (both)
10 eq allSuperTypes(nil) = nil .

eq allSuperTypes(C) = (superTypes(C) allSuperTypes(superTypes(C))) .
12 eq allSuperTypes(C L) = (allSuperTypes(C) allSuperTypes(L)) .
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Example 9.4 (The Label and FSM Classes). We illustrate the declaration of classes on Label and
FSM. Note the translation for FSM, which inherits from Label.

1 eq name(Label@FSM) = "Label" .
2 eq isAbstract(Label@FSM) = true .

eq package(Label@FSM) = FSM .
4 eq superTypes (Label@FSM) = nil .

eq references (Label@FSM) = nil .
6 eq attributes (Label@FSM) = label@Label@FSM .

8 eq name(FSM@FSM) = "FSM" .
eq isAbstract(FSM@FSM) = false .

10 eq package(FSM@FSM) = FSM .
eq superTypes (FSM@FSM) = Label@FSM .

12 eq references (FSM@FSM) = __(states@FSM@FSM , transitions@FSM@FSM) .
eq attributes (FSM@FSM) = alphabet@FSM@FSM .

9.2.2.3 Enumeration

Section 6.3.2 defined the structure of an enumeration function e P E . It maps an enumeration (name) enum
within a package (name) pkg to an order list of enumeration literals: eppkgqpenumq “ xxelit1, . . . , elitnyy. We just
introduce an operator for that purpose.

1 subsort @EnumerationInstance < @DataTypeInstance .
op literals : @Enumeration -> List{@EnumerationInstance} .

Here, the sort @EnumerationInstance represents our enumerations literals, i.e. elements belonging to E, declared to
be a subsort of @DataTypeInstance, the sort representing elements of PrimType.

Example 9.5 (The Kind Enumeration). The KIND enumeration within the Fsm just declares three
values for the possible kinds of states. Therefore, after creating a sort for representing the enu-
meration itself, three operators create exactly one constant for each enumeration value. The usual
information for metamodel components is also required: the enumeration name, the containment in-
formation (metaAux and package and literals). The defaultValue is set to the first enumeration found on
the list.

1 sort Kind@FSM .
2 subsorts Kind@FSM < @EnumerationInstance .

op Kind@FSM : -> @Enumeration .
4 op NORMAL@Kind@FSM : -> Kind@FSM .

op START@Kind@FSM : -> Kind@FSM .
6 op STOP@Kind@FSM : -> Kind@FSM .

eq metaAux( X:Kind@FSM ) = Kind@FSM .
8 eq name( Kind@FSM ) = "Kind" .

eq package( Kind@FSM ) = FSM .
10 eq defaultValue( Kind@FSM ) = NORMAL@Kind@FSM .

eq literals( Kind@FSM ) = __( NORMAL@Kind@FSM , START@Kind@FSM , STOP@Kind@FSM ) .

9.2.2.4 Property

Section 6.3.4 defined the structure of a property function prop P Prop. It maps a property (name) prop to
a boolean indicating if it is contained, a disambiguation clause, a multiple type, and an eventual opposite:
propppkgqpcqppropq “ pcnt, from,mt, oppq. It also satisfies well-formedness rules that constrain the multiple
type according to the property’s nature, and the opposite to adequately be represented in both sides.

1 op type : @StructuralFeature -> @Classifier .
op type : @Attribute -> @DataType [ditto] .

3 op type : @Reference -> @Class [ditto] .
op from : @StructuralFeature -> Maybe{@Class} .

5 op opposite : @Reference -> Maybe{@Reference} .
op isContainment : @Reference -> Bool .

7

op isContainer : @Reference -> Bool .
9 eq isContainer(REF)= isContainment(opposite(REF)) .
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We delay the opposite checking to the conformance checking: it is easier to specify it directly with a model at
hand. However, the constraint on features’ types is in Maude elegantly expressed using operators overloading:
an @Attribute’s (resp. @Reference)type is always a @DataType (resp. @Class). Notice the use of Maybe{@Class}: it corresponds
to the notation Class

K
extending a set with one extra element K. The module on the right proceeds the same

way by introducing a (generic) sort Maybe{X} containing any term of sort X.

Example 9.6 (References in the Transition Class). We illustrate the declarations of properties with
the Transition class, that only contains references (it equally applies to attributes).

1 op src@Transition@FSM : -> @Reference .
2 eq name (src@Transition@FSM) = "src" .

eq opposite (src@Transition@FSM) = out@State@FSM .
4 eq type (src@Transition@FSM) = State@FSM .

eq lowerBound (src@Transition@FSM) = 1 .
6 eq upperBound (src@Transition@FSM) = 1 .

eq containingClass (src@Transition@FSM) = Transition@FSM .
8 eq isOrdered (src@Transition@FSM) = true .

eq isUnique (src@Transition@FSM) = true .
10 eq isContainment (src@Transition@FSM) = false .

12 op tgt@Transition@FSM : -> @Reference .
eq name (tgt@Transition@FSM) = "tgt" .

14 eq opposite (tgt@Transition@FSM) = in@State@FSM .
eq type (tgt@Transition@FSM) = State@FSM .

16 eq lowerBound (tgt@Transition@FSM) = 1 .
eq upperBound (tgt@Transition@FSM) = 1 .

18 eq containingClass (tgt@Transition@FSM) = Transition@FSM .
eq isOrdered (tgt@Transition@FSM) = true .

20 eq isUnique (tgt@Transition@FSM) = true .
eq isContainment (tgt@Transition@FSM) = false .

Notice how it becomes necessary, due to the subsorting mechanism, to define the value of all operators
relevant for @Reference: because @Reference is a subsort of @StructuralFeature, the multiplicity and collection
must receive an equational definition.

9.2.2.5 Operation

Section 6.3.5 defined the structure of an operation function o P O. It maps an operation (name) op within
a class (name) c to a boolean indicating if it is abstract, a disambiguation clause, the (ordered) list of
its parameters if any, a multiple type corresponding to the result’s type, and its body: oppkgqpcqpopq “

pabs, from, paramlist,mt, bodyq.

1 sort @Operation @Parameter .
2 subsort @Operation @Parameter < @StructuralFeature .

op isAbstract : @Operation -> Bool .
4 op from : @StructuralFeature -> Maybe{@Class} .

op containingOperation : @Parameter -> @Operation .
6 op parameters : @Operation -> MyList . --- of @Parameter

We declared sorts @Operation and @Parameter as subsorts of @StructuralFeature for defining their multiplicity type (which
corresponds to the result type for @Operation). We define a pair of operators containingOperation and parameters as
usual for contained metamodel elements. Since a from clause can be optional, the operator from builts a term
of sort Maybe{@Class} that corresponds to our mathematical notation Class

K
. Operation bodies will be defined in

Section 9.3, when dealing with Al’s specification.

9.2.2.6 Metamodel

From Definition 6.4 MM PM, a metamodel is defined by gathering all previous metamodel functions: MM “

pp, c, e, prop, oq. We introduce a sort @Metamodel to represent metamodels explicitly: it is required by the object-
oriented style in Maude (cf. Section 8.2).
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1 sort @Metamodel .
2 subsort @Metamodel < @NamedElement .

op packages : @Metamodel -> MyList . --- Of @Package

Example 9.7 (The FSM Metamodel). We can finally define the entire FSM Maude representation
(the full definition is available in Appendix A.4.

1 mod FSM -MM i s
op FiniteStateMachine : -> @Metamodel .

3 eq name(FiniteStateMachine) = "FSM" .
eq packages (FiniteStateMachine) = FSM .

5 *** Other package , class , enumerations ,
*** properties and operations definitions

7 endfm

Several helper operations are defined to retrieve information by traversing a metamodel’s structure back and
forth. The operator metamodel attaches a package, a classifier or a feature to its container metamodel; note that for
@Classifier and @StructuralFeature, it is computed from the metamodel’s declarations. Operators allPackages, allClasses
, allAttributes, allReferences and allCcontainingReferences retrieve the corresponding information from a metamodel,
by also recursively examining substructures (e.g., subpackages for allPackages, or superclasses for allReferences).

1 op metamodel : @Package -> @Metamodel .
2

var MM : @Metamodel .
4 var CLF : @Classifier .

var SF : @StructuralFeature .
6

op metamodel : @Classifier -> Maybe{@Metamodel} .
8 eq metamodel(CLF) = i f (package(CLF) == null) then null else metamodel(package(CLF)) fi .

eq metamodel(CLF) = metamodel(package(CLF)) .
10

op metamodel : @StructuralFeature -> @Metamodel .
12 eq metamodel(SF) = metamodel(package(containingClass(SF))) .

14 op allPackages : @Metamodel -> MyList . --- Of @Package
eq allPackages(MM) = (packages(MM) allSubPackages(packages(MM))) .

16

op allClasses : @Metamodel -> MyList . --- Of @Class
18 eq allClasses(MM) = classesAux(allPackages(MM)) .

9.2.3 Model

Section 6.4.1 defined accessible features for properties π
MM

and operations ω
MM

for a metamodel MM: it gathered
features by traversing up the class inheritance hierarchy. We defined two specialised operatorsallAttributes and
allReferences (and also allContainingReferences, doing the same job as allReferences but filtering out non-containment
references); and another one, allStructuralFeatures, that just gather both.

1 op allReferences : MyList -> MyList . --- Of @Class , @Reference
2 eq allReferences(nil) = nil .

eq allReferences(C) = (references(C) allReferences(superTypes(C))) .
4 eq allReferences(C L) = (allReferences(C) allReferences(L)) .

6 op containmentReferences : @Class -> MyList . --- Of @References
eq containmentReferences(C) = containmentReferences(allReferences(C)) .

8 op containmentReferences : MyList -> MyList . --- Of @References (both)
eq containmentReferences(nil) = nil .

10 eq containmentReferences(REF L)
= i f (isContainment(REF))

12 then (REF containmentReferences(L))
else containmentReferences(L) fi .

14

op allAttributes : MyList -> MyList . --- Of @Class , @Attribute
16 eq allAttributes(nil) = nil .

eq allAttributes(C) = (attributes(C) allAttributes(superTypes(C))) .
18 eq allAttributes(C L) = (allAttributes(C) allAttributes(L)) .
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op allOperations : MyList -> MyList . --- Of @Class , @Operation
20 eq allOperations(nil) = nil .

eq allOperations(C) = (operations(C) allOperations(superTypes(C))) .
22 eq allOperations(C L) = (allOperations(C) allOperations(L)) .

24 op allStructuralFeatures : @Class -> MyList . --- Of @StructuralFeature
eq allStructuralFeatures(C) = (allAttributes(C) allReferences(C) allOperations(C)) .

Section 6.4.2 defined the structure of models as a function associating an object to its type (i.e. its class) and
its state, i.e. the value of each accessible property. We explain how models are represented by starting from the
innermost constituant elements. The first step is to represent pairs of attribute/value or reference/value. The
following constructor operators define the corresponding notions of @ReferenceInstance and @AttributeInstance using
the classical notation in Object-Oriented Maude:

1 sort @AttributeInstance @ReferenceInstance @StructuralFeatureInstance .
2 subsort @AttributeInstance @ReferenceInstance < @StructuralFeatureInstance .

4 op _:_ : @Attribute OCL -Type -> @AttributeInstance [ctor ditto] .
op _:_ : @Reference OCL -Type -> @ReferenceInstance [ctor ditto] .

The second step consists in gathering several such pairs to build a full model’s state. This is done using set
constructions of the previous sorts, using # as a separator.

1 sort Set{@AttributeInstance} .
2 subsort @AttributeInstance < Set{@AttributeInstance} < Set{@StructuralFeatureInstance} .

op _#_ : Set{@AttributeInstance} Set{@AttributeInstance} -> Set{@AttributeInstance} [ctor ditto] .
4

sort Set{@ReferenceInstance} .
6 subsort @ReferenceInstance < Set{@ReferenceInstance} < Set{@StructuralFeatureInstance} .

op _#_ : Set{@ReferenceInstance} Set{@ReferenceInstance} -> Set{@ReferenceInstance} [ctor ditto] .
8

sort EmptySet .
10 subsorts EmptySet < Set{@ReferenceInstance} Set{@AttributeInstance} .

op _#_ : EmptySet EmptySet -> EmptySet [ctor ditto] .
12 op empty : -> EmptySet [ctor ditto] .

The third step consists in defining how an object is represented. We declare a new sort @Object and just reuse
the classical notation already available for objects in Object-Oriented Maude:

1 sort @Object .
2 op <_:_|_> : Oid @Class @Set{StructuralFeature} -> @Object [ctor] .

4 sort Set{@Object} .
subsort @Object < Set{@Object} < Configuration .

6 op __ : Set{@Object} Set{@Object} -> Set{@Object} [ctor ditto] .
op none : -> Set{@Object} [ctor ditto] .

Example 9.8 (An initial State). We illustrate how to build an object with the initial state of our
Fsm model M

abc
. This state was named 1 and its mathematical representation was the following:

σ1
plabelq “ ”1”

σ1
pkindq “ START
σ1
pinq “ xxbyy

σ1
poutq “ xxayy

σ1
pfsmq “ abc

Recalling that each property name is represented with all the enclosing information (e.g., the at-
tribute label of class Label, inherited by State, is named label@Label@FSM), we obtain the following
definition:

1 < ’one : State@FSM | label@Label@FSM : "1" #
2 fsm@State@FSM : ’fsm #

kind@State@FSM : START@Kind@FSM #
4 in@State@FSM : Set {’b} #

out@State@FSM : Set {’a} >

Notice that object identifiers are terms of sort Oid that are required to be prefixed by ’.
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Finally, it remains to define the structure of a model: we introduce a new sort @Model, and define the curly
braced notation as follows:

1 sort @Model .
2 op _‘{_‘} : @Metamodel Set{@Object} -> @Model [ctor] .

Example 9.9 (The FSM Model). Putting all previous definitions together, we would define the
representation of our Fsm model as follows:

1 op FSMModel : -> @Model .
2 eq FSMModel = FiniteStateMachine {

...
4 < ’one : State@FSM | ... >

...
6 } .

Two helper operators retrieve an object’s type and value of a specific property, just as the functions type
M
poq

and σo
M
in the mathematical notation.

1 var C : @Class .
2 var OBJ : @Object .

var O : Oid .
4 var SFI : @StructuralFeatureInstance .

var SFIS : Set{@StructuralFeatureInstance} .
6 var VALUE : OCL -Type .

8 op meta : @Object -> @Class .
eq meta(< O : C | SFIS >) = C .

10

op get : @Object @StructuralFeature -> OCL -Type .
12 eq get(< O : C | (SF : VALUE # SFIS) >, SF) = VALUE .

eq get(OBJ , SF) = null [owise] .

9.2.4 Conformance

The Maude definition of conformance closely follows its mathematical definition. A model conforms to its
metamodel if all objects it contains are valid. An object is conform if its constituting attributes and references
are valid.

1 op conformsTo : @Model -> Bool .
eq conformsTo(MODEL) = validObject(MODEL , MODEL) .

3

op validObject : @Model @Model -> Bool .
5 eq validObject(MM { none }, MODEL) = true .

eq validObject(MM { < O : C | (ATTIS # REFIS) > OBJSET }, MODEL) =
7 validReferences(allReferences(C), < O : C | REFIS >, MODEL)) and -then

validAttributes(allAttributes(C), < O : C | ATTIS >)) and -then
9 validObject(MM { OBJSET }, MODEL)) .

eq validObject(MM { OBJSET }, MODEL) = false [owise] .

A model conforms to its metamodel if all objects it contains are valid. This is achieved by induction on the
list of objects within the model’s representation: the empty model is valid; otherwise, it is possible to extract
one object < O : C | (ATTIS # REFIS)>. This object is valid if all attributes and references it contains are valid.
This is achieved using specialised operators validAttributes and validReferences. Notice that the checking can stop
immediately after an error is discovered, thus the use of the boolean operator and-then.

A list of attributes is valid if all its attributes are valid (again, a structural induction). An attribute ATT : VALUE

is valid if its declared multiplicity and collection match those of its value, and if the VALUE’s type is a subtype
of the declared ATT’s type. Notice that because VALUE can be a collection value (constituted of many elementary
values), we need to perform the check for each of them (notice that an empty collection of value always satisfies
the required subtyping).
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1 op validAttributes : MyList @Object -> Bool .
2 eq validAttributes(nil , < O : C | empty >) = true .

eq validAttributes ((ATT ATTS), < O : C | (ATT : VALUE # ATTIS) >) =
4 ((((((( isUnique(ATT) == isUnique(VALUE))

and -then (isOrdered(ATT) == isOrdered(VALUE)))
6 and -then (isMany(ATT) == isMany(VALUE)))

and -then (lowerBound(ATT) <=Card size(VALUE)))
8 and -then (size(VALUE) <=Card upperBound(ATT)))

and -then (<< VALUE -> asSequence () -> isEmpty () >> or -else
10 subTypeOf(meta(VALUE), type(ATT))))

and -then validAttributes(ATTS , < O : C | ATTIS >)) .
12 eq validAttributes(ATTS , < O : C | ATTIS >) = false [owise] .

Checking the validity of a list of references is almost the same, except that instead of a subtyping checking on
datatypes, it happens for references for classes: we introduce the operator validRefType for that purpose. Another
notable difference resides in handling the opposites. We introduce an extra operator validOpposites that checks
that all opposite objects are eventually included in a SRC collection value.

1 op validReferences : MyList @Object @Model -> Bool .
2 eq validReferences(nil , < O : C | empty >, MODEL) = true .

eq validReferences ((REF REFS), < O : C | (REF : VALUE # REFIS) >, MODEL) =
4 (((((((( isUnique(REF) == isUnique(VALUE))

and -then (isOrdered(REF) == isOrdered(VALUE)))
6 and -then (isMany(REF) == isMany(VALUE)) )

and -then (lowerBound(REF) <=Card size(VALUE)))
8 and -then (size(VALUE) <=Card upperBound(REF)))

and -then validRefType( << VALUE -> asSequence () >>, type(REF), MODEL))
10 and -then (( opposite(REF) == null) or -else

validOpposites(<< VALUE -> asSequence () >>, opposite(REF), O, MODEL)))
12 and -then validReferences(REFS , < O : C | REFIS >, MODEL)) .

eq validReferences(REFS , < O : C | REFIS >, MODEL) = false [owise] .
14

op validRefType : Sequence @Class @Model -> Bool .
16 eq validRefType(Sequence{mt-ord}, C, MODEL) = true .

eq validRefType(Sequence{O # LO}, C’, MM { < O : C | SFS > OBJSET }) =
18 (isSubClass(C, C’)

and -then validRefType(Sequence{LO}, C’,
20 MM { < O : C | SFS > OBJSET })) .

eq validRefType(SEQ , C, MODEL) = false [owise] .
22

op validOpposites : Sequence @Reference Oid @Model -> Bool .
24 eq validOpposites(Sequence{mt -ord}, REF , SRC , MODEL) = true .

eq validOpposites(Sequence{O # LO}, REF , SRC ,
26 MM { < O : C | (REF : VALUE # SFS) > OBJSET }) =

(<< VALUE -> asSequence () -> includes(SRC) >>
28 and -then validOpposites(Sequence{LO}, REF , SRC ,

MM { < O : C | (REF : VALUE # SFS) > OBJSET })) .
30 eq validOpposites(SEQ , REF , O, MODEL) = false [owise] .

9.3 Specifying Kermeta’s Action Language

The Maude specification for the Action Language of Kermeta closely follows the mathematical definitions given
in Chapter 7. The specification consists of building a syntax for the elements needed as components of the Sos
rules (control flow, local environment, semantic domain and rule configurations), as well as the Bnf syntax
itself, in order to be able to parse Kermeta statements.

As already mentioned, Maude has a very flexible parser that allows the definition of customised syntaxes
for representing and manipulating data structures (Quesada Moreno 1997, 1999). Nevertheless, we tried in
our specification to follow as closely as possible the mathematical syntax, customising data structures only to
avoid too much ambiguities for the parser: in particular, we have not followed the usual mathematical syntax
for tuples because it was raising too much parsing problems and subject to errors when writing even small
examples4. Therefore, all parenthesised structure has some “variations” (e.g., brackets, chunks, etc.) to remind

4Beyond the flexible syntax, Maude’s algebraic specifications rely on order-sorted terms, which is very powerful, but at the same
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the reader the original syntax while suppressing parsing issues. This kind of parsing issues is fixable in Maude
for obtaining a “perfect” syntax, but asks for too much effort only due to technicalities. This was one of the
main reasons why Part II uses mathematics instead of a particular tool: the mathematical syntax does not need
so much explanation.

We present the elements constituting the Action Language in the same order as in the reference semantics:
we start with the local variables, then the statement syntax, and finish by the semantic domain and the rule
configurations. A last section describes the semantic rules by means of equations.

9.3.1 Local Variables

Local variables were defined in Section 7.2.1: they are located inside a particular operation, and possess a
multiple type. In Maude, we introduce a sort @Variable and treat variables just like any other structural feature
contained within a class: an operation variables associates to an operation the list of its variables; and an
operation containingOperation allows to retrieve the operation a variable is defined into.

1 sort @Variable @LocalVariable .
2 subsort @LocalVariable < @StructuralFeature .

subsort @LocalVariable < Vid .
4 op containingOperation : @Variable -> @Operation .

op variables : @Operation -> MyList . --- of @Variable

Note that we also use a sort @LocalVariable, just as in the Bnf of Figure 7.2: @LocalVariable will represent a supersort
for both variables and parameters, and is declared as a subsort of the mOdcl sort Vid in order to be evaluated
properly within expressions.

Example 9.10 (Local Variables in the accept operation). Let us consider the operation accept in
class FSM, which contains a variable toEval declared as follows: var toEval : seq String[0..*]. This variable
would be specified as follows (a similar construction is applied for operation parameters):

1 sort toEval@accept@FSM@FSM .
2 op toEval@accept@FSM@FSM : -> toEval@accept@FSM@FSM [ctor] .

subsort toEval@accept@FSM@FSM < @Variable .
4 eq name(toEval@accept@FSM@FSM) = "toEval" .

eq type(toEval@accept@FSM@FSM) = @String .
6 eq lowerBound(toEval@accept@FSM@FSM) = 0 .

eq upperBound(toEval@accept@FSM@FSM) = * .
8 eq isOrdered(toEval@accept@FSM@FSM) = true .

eq isUnique(toEval@accept@FSM@FSM) = false .
10 eq containingOperation(toEval@accept@FSM@FSM) = accept@FSM@FSM .

The same construction as for metamodel elements is adopted here: for each variable, a sort named
with the “qualified” name of the variable is defined with @ as a separator (Line 1) and declared as
being a subsort of @Variable (Line 3), as well as a constructor operator with the same “qualified” name
(Line 2). is declared as a subsort of @Variable, together with its corresponding constructor (Lines
1–3). Then, several equations capture the variable declarations (name and type in Line 4 and 5, and
multiplicity in Lines 6–9). Finally, the sort is bound to its containing operation (Line 10).

9.3.2 Statement Syntax

The Bnf of Section 7.2.2 needs a representation in Maude. Here, it is possible to fully reuse the syntax for mOdcl
expressions, since we have clearly separated expressions from statements. Note how some of the constructions

time very tricky from a syntactic viewpoint. Consider for example a binary operator op ‘(_,_‘): A B -> C that follows the usual
mathematical syntax for pairs. Then, if we need another pair for building a different element D from completely different sorts, we
would similarly define op ‘(_,_‘): D E -> F. This works perfectly fine in Maude, if sorts A, B, D, E are order-sorted, this becomes
very ambiguous and very difficult to debug.
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do not strictly follow our Bnf of Figure 7.2: the conditional statement (Line 16) and the assignment symbol
(Lines 17, 18 and 24), which clashes with predefined constructions in Maude; and the parenthesis of operation
calls (Lines 22–23), which are too ambiguous, are replaced by chunks. However, we preserved the syntactic
groups (Line 7) to facilitate the recognition of the operators, thus helping to match Bnf terminals to their
representation in Maude.

1 mod KERMETA -AL i s
2 pr KERMETA -STMT -PREP .

pr KERMETA -SL .
4 pr METAMODEL -PROP .

pr MGMAYBE{@Operation} .
6

sort @CondStmt @AssignStmt @InstanceCreationStmt @Call @CallStmt @ReturnStmt @Statement .
8 sort @CollItem .

subsort @Call < @CallStmt .
10 subsort @CondStmt @AssignStmt @InstanceCreationStmt @CallStmt @ReturnStmt < @Statement .

12 ops bag
set

14 seq
oset : -> @CollItem .

16 op iff_ : OCL -Exp -> @CondStmt [ctor] .
op _.:=._ : OCL -Exp OCL -Exp -> @AssignStmt [ctor] .

18 op _.:=. new ‘(_‘) : @Variable @Classifier -> @InstanceCreationStmt [ctor] .
op _.:=. new ‘(_,_‘) : @Variable @CollItem @Classifier -> @InstanceCreationStmt [ctor] .

20 op return : -> @ReturnStmt [ctor] .
op return_ : OCL -Exp -> @ReturnStmt [ctor] .

22 op _._<> : OCL -Exp String -> @Call [ctor] .
op _._<_> : OCL -Exp String List{OCL -Exp} -> @Call [ctor] .

24 op _.:=._ : OCL -Exp @Call -> @CallStmt [ctor] .
--- [...]

26 endm

9.3.3 Control Flow

In Section 7.2.3, we defined a function nxt
MM

(cf. Definition 7.2) for capturing a transformation’s control
flow, under the following assumptions: an label uniquely identify each statement of the metamodel; variable
declarations inside an operation body are shifted at its beginning; and blocks are flattened.

We define a sort @Label constructed in a specific way (Line 1–2) to ensure label uniqueness: we use the
sort names for packages, classes and operations, which are unique up to their respective scope, and an integer
denoting the statement’s rank in an operation body. The nxt

MM
function has a cartesian product as a codomain,

translated in Maude with a new constructor <_,_> that builds terms of sort @LabelNxt from a pair of @Labels (Line
5). This way, the corresponding operator nxt has the exact same definition as the function nxt

MM
. Note that an

operation labels allows to list all labels of statements contained in a given operation (Line 7), and an operation
statements defines the statements attached to each label within a metamodel as a map (Line 8).

1 sort @Label @LabelNxt .
2 op [_,_,_,_] : @Package @Class @Operation Nat -> @Label [ctor] .

--- default label
4 op [] : -> @Label .

op <_,_> : @Label @Label -> @LabelNxt [ctor] .
6 op nxt : @Label -> @LabelNxt .

op labels : @Operation -> MyList . --- of @Label
8 op statements : @Metamodel -> Map{@Label , @Statement} .

The default label [] is necessary to handle the case where no actual label is needed. For example for a ReturnStmt,
no next statement is needed: we represent that as nxt([pkg, c, op, _])= <[],[]>.

Example 9.11 (Statements & Control Flow). We provide now the encoding of the body of the
getStart operation in class FSM (remember that this code is obtained after the restructurations of
explained in Section 7.2.3).
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1

2 eq statements(FiniteStateMachine) =
[FSM , FSM@FSM , getStart@FSM@FSM , 1] |-> i@getStart@FSM@FSM .:=. 0,

4 [FSM , FSM@FSM , getStart@FSM@FSM , 2] |-> i@getStart@FSM@FSM .:=. i@getStart@FSM@FSM + 1,
[FSM , FSM@FSM , getStart@FSM@FSM , 3] |-> iff( (i@getStart@FSM@FSM .=. states@FSM@FSM -> size()) or

6 (states@FSM@FSM -> at(i@getStart@FSM@FSM) . kind@State@FSM .=. START@Kind@FSM)),
[FSM , FSM@FSM , getStart@FSM@FSM , 4] |-> iff(i@getStart@FSM@FSM > states@FSM@FSM -> size()),

8 [FSM , FSM@FSM , getStart@FSM@FSM , 5] |-> return null ,
[FSM , FSM@FSM , getStart@FSM@FSM , 6] |-> return (states@FSM@FSM -> at(i@getStart@FSM@FSM)),

10 --- [mapping for other statements]
.

Note here that the calls for built-in collection operations (size() at in Lines 3 and 5 and at() at Line 9) is
done with -> instead of the Kermeta dot notation: this comes from mOdcl, which follows the syntax of Ocl.
The control flow that corresponds to these statements is the following (remember that this code comes from
a flattened size()do...| loop): only statements with specific flow are defined explicitly, the “normal” statements
just jump to the next label (Line 8).

1 var N : Nat .
2 eq nxt([FSM , FSM@FSM , getStart@FSM@FSM , 3]) = <[FSM , FSM@FSM , getStart@FSM@FSM , 4],

[FSM , FSM@FSM , getStart@FSM@FSM , 2]> .
4 eq nxt([FSM , FSM@FSM , getStart@FSM@FSM , 4]) = <[FSM , FSM@FSM , getStart@FSM@FSM , 5],

[FSM , FSM@FSM , getStart@FSM@FSM , 6]> .
6 eq nxt([FSM , FSM@FSM , getStart@FSM@FSM , 5]) = <[], []> .
eq nxt([FSM , FSM@FSM , getStart@FSM@FSM , 6]) = <[], []> .

8 eq nxt([FSM , FSM@FSM , getStart@FSM@FSM , N]) = <[FSM , FSM@FSM , getStart@FSM@FSM , (N + 1)], []> [owise] .

9.3.4 Configuration

It remains to define how elements of the sets of semantic domains D and of configurations Γ (cf. Sections 7.4.1
and 7.4.2, respectively) are defined: the Maude specifications just mimic the mathematical definitions except
for Γ:

1 mod KERMETA -DOMAIN i s
2 pr MGmOdCL .

pr METAMODEL -PROP .
4 pr KERMETA -SL-CTORS .

6 sort Domain .
op <_##_> : @Model Set{VarPair} -> Domain [ctor] .

8 endm

10 mod KERMETA -CONFIGURATION i s
pr KERMETA -SL .

12 pr STACK{StackEntry} .
pr KERMETA -DOMAIN .

14 pr OCL -TYPE .

16 sort KConfig .
op <|_,_,_,_|> : @Label Stack{StackEntry} Domain Nat -> KConfig [ctor] .

18 op isStop : KConfig -> Bool .
eq isStop(<| [], NOPE , D, N |>) = true .

20 eq isStop(<| LAB , S, D, N |>) = false [owise] .
endm

The sort KConfig (the name has been changed to avoid conflicts with the predefined Configuration sort) has a slightly
different constructor (Line 18): an extra element of sort Nat acts like a global variable that enables the creation
of fresh identifiers, a functionality needed for the NewInstStmt statement. The sort Set{VarPair}corresponds to
our local environment set L (cf. Definition 7.4): imported from mOdcl, it maps @Variable to an OCL-Type value.

The construction of a KConfig term necessitates a Stack element: we use a syntax-customised version of this
classical datastructure (cf. Martí-Oliet, Palomino, and Verdejo 2005). An element of this stack corresponds to
the sort StackEntry, which basically corresponds to elements of the set Env (cf. Section 7.4.2).

163



Chapter 9. KMV: Verifying Kermeta with Maude

1 mod KERMETA -STACK i s
2 pr KERMETA -SL .

pr KERMETA -STATEMENTS -MAP .
4 pr MGMAYBE{@LocalVariable} .

6 sort StackEntry .
op ‘(|_,_,_|‘) : @Label Set{VarPair} Maybe{@LocalVariable} -> StackEntry .

8 endm

10 fmod STACK{X :: TRIV} i s
protecting BOOL .

12

sorts NeStack{X} Stack{X} .
14 subsort X$Elt < NeStack{X} < Stack{X} .

16 op NOPE : -> Stack{X} [ctor] .
op _!!!_ : X$Elt Stack{X} -> NeStack{X} [ctor right id: NOPE] .

18

var E : X$Elt .
20 var S : Stack{X} .

22 op isEmpty_ : Stack{X} -> Bool .
eq isEmpty(NOPE) = true .

24 eq isEmpty(S) = false [owise] .
endfm

26

view StackEntry from TRIV to KERMETA -STACK i s
28 sort Elt to StackEntry .

endv

Several examples will be given in the next Section, where domains and configurations are used within rules that
define the effect of each statement.

9.3.5 Semantics

Once all the machinery is ready for representing the semantics components, comes the time to translate into
Maude the semantic rules of Section 7.4.3. We first explain how expressions are evaluated, then specify the rules
for executing each statement.

9.3.5.1 Evaluating Expressions

The expressions defined in Section 7.2 share a lot with Ocl expressions: a natural idea would then consist in
simply reusing mOdcl evaluator. This requires to adapt the evaluator to our datastructures since they differ
from the ones at the basis of mOdcl, which are customised for Uml.

We provide two operators for evaluating expressions: the first one simply takes an expression to be evaluated
in the context of a model; whereas the second one adds an environment that binds local variables with their
values.

1 op <<_;_>> : OclExp @Model -> OclExp .
eq << EXP:OclExp ; MM { OBJSET } >> = .

3 eval -aux(EXP:OclExp , env(empty) OBJSET , none ) .

5 --- The second argument are the context variables
op <<_;_;_>> : OclExp Msg @Model -> OclExp .

7 eq << EXP:OclExp ; env(VARS:Set{VarPair }) ; MM { OBJSET } >> =
eval -aux(EXP:OclExp , env(VARS:Set{VarPair }) OBJSET , none ) .

The first one is equivalent to the second, since it evaluates an expression under an empty environment (actually,
an environment always maps the local variable self to the current object). The second one is very simple: it
calls the mOdcl dedicated operator eval-aux with the proper values, i.e. it extracts the set of objects OBJSET

constituting the metamodel and passes it to the mOdcl evaluator.
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Example 9.12 (Evaluating Expressions). Let us evaluate two expressions extracted from the condi-
tion of the first conditional instruction in the body of the Kermeta operation getStart: this expression
is actually extracted from the loop that goes through the set of states contained in the FSM, looking
for a state whose kind is START.

1 reduce in FSM -MODEL : << states@FSM@FSM -> size() ;
2 env(putVar(i@getStart@FSM@FSM <- 1, putVar(self <- ’fsm , empty))) ;

FSMModel >> .
4 rewrites: 27 in 5479628793 ms cpu (0ms real) (0 rewrites/second)
result NzNat: 3

6

reduce in FSM -MODEL :
8 << (i@getStart@FSM@FSM .=. states@FSM@FSM -> size()) or

(states@FSM@FSM -> at(i@getStart@FSM@FSM) . kind@State@FSM .=. START@Kind@FSM) ;
10 env(putVar(i@getStart@FSM@FSM <- 0, putVar(self <- ’fsm , empty))) ;

FSMModel >> .
12 rewrites: 68 in 5506796793 ms cpu (0ms real) (0 rewrites/second)

result Bool: false
14

reduce in FSM -MODEL :
16 << (i@getStart@FSM@FSM .=. states@FSM@FSM -> size()) or

(states@FSM@FSM -> at(i@getStart@FSM@FSM) . kind@State@FSM .=. START@Kind@FSM) ;
18 env(putVar(i@getStart@FSM@FSM <- 3, putVar(self <- ’fsm , empty))) ;

FSMModel >> .
20 rewrites: 68 in 5506796793 ms cpu (0ms real) (0 rewrites/second)

result Bool: true

We recognise in the first reduction the three elements required by the evaluation operator: the
expression on Line 1; the environment in Line 2 and the current model in Line 3. After a few
rewriting, we get the expected answer of i@getStart@FSM@FSM, which corresponds to the number of states
of our model.

The second reduction evaluates the actual condition of the loop: it compares the kind of the state
stored at the position i@getStart@FSM@FSM to see if it has a START@Kind@FSM. Unfortunately, it appears that
it is not at position 0, but at position 3, value that is assigned to the variable i@getStart@FSM@FSM at the
beginning of the environment.

9.3.5.2 Executing Statements

We define an operation op exec_ : KConfig -> KConfig . for representing one execution step: this mimics the trigger
of one rule in the Sos of Section 7.4.3, which rewrites a configuration into another one. The translation follows
the core principle of an Sos: at each time, exactly one rule should be triggered, the one corresponding to
the statement to-be-executed. The conditions also define what is traditionally written in the premisse of Sos
rules, so that Maude equations look very like the mathematical definitions. We take advantage of Maude
matching capabilities to bind variables with their adequate values to avoid expanding too many elements from
the configuration.

9.3.5.2.1 Conditional Statement After having matched the statement’s form5, the rule simply rewrites
the configuration into an identical one, except for the label: it depends on the value of the conditional expression
E (Line 5 and 12) that helps select the appropriate label defined by nxt (Line 4 and 11).

1 ceq exec( <| LAB , S, < M ## VPSET >, N |> ) = <| LABTHEN , S, < M ## VPSET >, N |>
2 -------------------------------------------------------------------------------------

i f iff( E ) := statements( meta(M) ) [ LAB ] /\
4 < LABTHEN , LABELSE > := nxt(LAB) /\

true = << E ; env(VPSET) ; M >>
6 .

5From now on, we will not repeat that!
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8 ceq exec(<| LAB , S, < M ## VPSET >, N |>) = <| LABELSE , S, < M ## VPSET >, N |>
-------------------------------------------------------------------------------------

10 i f iff( E ) := statements( meta(M) ) [ LAB ] /\
< LABTHEN , LABELSE > := nxt(LAB) /\

12 false = << E ; env(VPSET) ; M >>
.

9.3.5.2.2 New Instance Creation The rule rewrites into a configuration where the label corresponds to
the left-hand side of the value stored in nxt, the stack stays the same, and the domain is updated: if the creation
concerns a @DataType (Lines 1–6), then only the variable in the local store is updated with the new value; if it
concerns a simple @Classifier (Lines 7–12), then the variable is updated with a new object that is added to the
model; if it concerns a @Classifier with a collection (Lines 13–17), then again only the variable is updated with
the corresponding default value.

1 ceq exec(<| LAB , S, < MM { OBJSET } ## VPSET >, N |>) =
2 <| LABNxt , S, < MM { OBJSET } ## (putVar(MYVAR <- defaultValue(CLASSIFIER), VPSET)) >, N |>

i f MYVAR .:=. new ( CLASSIFIER ) := statements( MM ) [ LAB ] /\
4 < LABNxt , LABNULL > := nxt(LAB) /\

CLASSIFIER :: @DataType
6 .

ceq exec(<| LAB , S, < MM { OBJSET } ## VPSET >, N |>) =
8 <| LABNxt , S, < MM { complete(< newOid(N) : CLASSIFIER | empty >) OBJSET } ## (putVar(MYVAR <-

newOid(N), VPSET)) >, (N + 1) |>
i f MYVAR .:=. new ( CLASSIFIER ) := statements( MM ) [ LAB ] /\

10 < LABNxt , LABNULL > := nxt(LAB) /\
CLASSIFIER :: @Class

12 .
ceq exec(<| LAB , S, < MM { OBJSET } ## VPSET >, N |>) =

14 <| LABNxt , S, < MM { OBJSET } ## (putVar(MYVAR <- default(COLLITEM , CLASSIFIER), VPSET)) >, N |>
i f MYVAR .:=. new ( COLLITEM , CLASSIFIER ) := statements( MM ) [ LAB ] /\

16 < LABNxt , LABNULL > := nxt(LAB)
.

The operations defaultValue (Line 2) and default (Line 14) just implement theDefault function of Section 7.4.1.1.
In Line 8, the operation newOid creates a fresh Maude object identifier of the form oN, and N is incremented to
ensure uniqueness (Line 9). The fresh object is then set to its default value through the operation complete, which
implements the function Initialise defined in Section 7.4.1.1, and assigned to MYVAR.

1 op newOid : Nat -> Oid .
2 var N : Nat .

eq newOid(N) = qid("O" + string(N, 10)) .

9.3.5.2.3 Return Statement The rules for the ReturnStmt are complicated by the fact that they are in
charge of detecting that the execution terminates, i.e. there is no more statements to execute (cf. Section 7.4.3).
Lines 1–11 correspond to “normal” statements whereas Lines 12–21 correspond to execution termination: both
are similar in their principle. We aligned the configurations to help the reading: we can see that the top element
of the stack is removed, and the execution is transfered to the label LABNxt that was contained in it; the old local
store VPSETT is eventually updated with the value resulting from evaluating the return value E (Lines 10 and 20).

1 ceq exec(<| LAB , (| LABNxt , VPSETT , null |) !!! S, < M ## VPSET >, N |>) =
2 <| LABNxt , S, < M ## VPSETT >, N |>

-------------------------------------------------------------------------------------
4 i f return := statements( meta(M) ) [ LAB ]

.
6 ceq exec(<| LAB , (| LABNxt , VPSETT , MYVAR |) !!! S, < M ## VPSET >, N |>) =

<| LABNxt , S, < M ## putVar( MYVAR <- RES , VPSETT) >, N |>
8 -----------------------------------------------------------------------------------------------------

i f return( E ) := statements( meta(M) ) [ LAB ] /\
10 RES := << E ; env(VPSET) ; M >>

.
12 ceq exec(<| LAB , NOPE , < M ## VPSET >, N |>) =

<| [] , NOPE , < M ## VPSET >, N |>
14 -------------------------------------------------------------------------------------

i f return := statements( meta(M) ) [ LAB ]
16 .
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ceq exec(<| LAB , NOPE , < M ## VPSET >, N |>) =
18 <| [] , NOPE , < M ## putVar( KRESULT <- RES , VPSET) >, N |>

i f return( E ) := statements( meta(M) ) [ LAB ] /\
20 RES := << E ; env(VPSET) ; M >>

.
22 op KRESULT : -> @LocalVariable .

When a transformation terminates, we return a KConfiguration with a default label [] and a special variable KRESULT

containing the last computed value: this would correspond to the value the Kermeta main operation would have
returned. The resulting model is still accessible inside the last KConfiguration.

9.3.5.2.4 Call Statement For CallStmt, the Maude implementation follows the rule split defined in Section
7.4.3.4 two rules for operation calls: one for a simple call (Lines 1–15) and another for storing the value of a
call inside a variable (Lines 16–30), except that the implementation has to match whether the parameter list is
empty or not. The rules are pretty similar, so we only explain the most complicated one (Lines 23–30).

1 ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =
2 <| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] , (| LABNxt , VPSET , null |)

!!! S, < MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP))) >,
N |>

i f INST . OPNAME <> := statements( MM ) [ LAB ] /\
4 < LABNxt , LABNULL > := nxt(LAB) /\

OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\ OID :: Oid /\
6 OP := lookup(OPNAME , CLASS)

.
8 ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =

<| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] , (| LABNxt , VPSET , null |)
!!! S, < MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP, LEXP)
)) >, N |>

10 i f INST . OPNAME < LO > := statements( MM ) [ LAB ] /\
< LABNxt , LABNULL > := nxt(LAB) /\

12 LEXP := eval -EL(LO, env(VPSET), none) /\
OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\ OID :: Oid /\

14 OP := lookup(OPNAME , CLASS)
.

16 ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =
<| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] , (| LABNxt , VPSET , MYVAR |)

!!! S, < MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP))) >,
N |>

18 i f MYVAR .:=. INST . OPNAME <> := statements( MM ) [ LAB ] /\
< LABNxt , LABNULL > := nxt(LAB) /\

20 OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\ OID :: Oid /\
OP := lookup(OPNAME , CLASS)

22 .
ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =

24 <| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] , (| LABNxt , VPSET , MYVAR |)
!!! S, < MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP, LEXP)
)) >, N |>

i f MYVAR .:=. INST . OPNAME < LO > := statements( MM ) [ LAB ] /\
26 < LABNxt , LABNULL > := nxt(LAB) /\

LEXP := eval -EL(LO, env(VPSET), none) /\
28 OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\ OID :: Oid /\

OP := lookup(OPNAME , CLASS)
30 .

In Line 28, the parameter list is evaluated, returning a list LEXP of expressions. In Line 28, we retrieve the
instance OID on which the call is performed. Line 29 performs the dynamic lookup of the appropriate operation
OP. The KConfiguration is rewritten with the following elements: the label corresponds to the first statement found
in the body of OP (the label is properly build using the helper operations containingClass and package, Line 24); an
element formed with the the following label LABNxt, the current local environment VPSET and the left-hand side
MYVAR is pushed on the stack (Line 24); and a new local environment is build, binding self to the evaluated caller
object OID with proper default values bound to the local variables (Line 25, where createLocalEnv corresponds to
the function Start defined in Section 7.4.1.2). The lookup operation implements the lookup of the appropriate
operation term based on the name OPNAME provided in the call: in Kermeta, we have to look in the entire class
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hierarchy (due to multiple inheritance) but fortunately, there is no operation overloading so that an operation
name in unique inside a class (details can be found in Appendix B: lookup is not detailed since it is very long
because it uses many intermediate operators for implementing those various aspects).

9.3.5.2.5 Assignment Statement For AssignStmt, we used in Section 7.4.3.3 an auxiliary function J‚, ‚K
that was defined in Section 7.4.1.4: J‚, ‚K filters on the type of the left-hand side to provide the appropriate
behaviour, thus ensuring model consistency. We define three rules that basically corresponds to the function
cases: when the left-hand side is a local variable (Lines 1–6 corresponding to case (ii-1) in Section 7.4.1.4); when
it is a DataType (Lines 7–14 for case (i)) for accessing an attribute; and finally when it is a reference (Lines
15–22 for case (ii-2), the most complicated).

1 ceq exec(<| LAB , S, < MM { OBJSET } ## (( MYVAR <- OLD) # VPSET) >, N |>) =
2 <| LABNxt , S, < MM { OBJSET } ## (putVar(MYVAR <- RES , VPSET)) >, N |>

i f MYVAR .:=. E := statements( MM ) [ LAB ] /\
4 < LABNxt , LABNULL > := nxt(LAB) /\

RES := << E ; env((MYVAR <- OLD) # VPSET) ; MM { OBJSET } >>
6 .

ceq exec(<| LAB , S, < MM { < O : CLASS | ATT : OLD # SFIS > OBJSET } ## VPSET >, N |>) =
8 <| LABNxt , S, < MM { < O : CLASS | ATT : RES # SFIS > OBJSET } ## VPSET >, N |>

i f INST . ATT .:=. E := statements( MM ) [ LAB ] /\
10 < LABNxt , LABNULL > := nxt(LAB) /\

O := << INST ; env(VPSET) ; MM { < O : CLASS | ATT : OLD # SFIS > OBJSET } >> /\
12 O :: Oid /\

RES := << E ; env(VPSET) ; MM { < O : CLASS | ATT : OLD # SFIS > OBJSET } >>
14 .

ceq exec(<| LAB , S, < MM { < O : CLASS | REF : OLD # SFIS > OBJSET } ## VPSET >, N |>) =
16 <| LABNxt , S, < update(MM { < O : CLASS | REF : RES # SFIS > OBJSET }, O, REF , RES) ## VPSET >,

N |>
i f INST . REF .:=. E := statements( MM ) [ LAB ] /\

18 < LABNxt , LABNULL > := nxt(LAB) /\
O := << INST ; env(VPSET) ; MM { < O : CLASS | REF : OLD # SFIS > OBJSET } >> /\

20 O :: Oid /\ --- not(isMany(REF)) /\ opposite(REF) == null /\
RES := << E ; env(VPSET) ; MM { < O : CLASS | REF : OLD # SFIS > OBJSET } >>

22 .

In the first case (Lines 1–6), if the left-hand side MYVAR matches a variable inside the local environment, it is
simply updated by RES, the value returned by the evaluation of the right-hand side E (Line 5). Otherwise, we
have to match a dotted expression as a left-hand side. Here, Maude matching mechanism and sorting system
becomes handy: we easily know what kind of property is navigated thanks to the sort of the dotted element
and the following variable declarations var ATT : @Attribute and var REF : @Reference. The rest is straightforward:
we evaluated INST to retrieve the object O being navigated (Lines 11–12 and 19–20) and update the navigated
property inside the model (Lines 8 and 16–17). Notice the use of the operation update for references (Line 16)
that implements the specificities corresponding to case (ii-2) depicted in Figure 7.5.

1 op update : @Model Oid @Reference OCL -Exp -> @Model .
2

vars MM : @Metamodel .
4 vars O O’ X Y : Oid .

var SFIS SFISO SFISO ’ SFISX SFISY : Set{@StructuralFeatureInstance} .
6 var CLASSO CLASSO ’ CLASSX CLASSY : @Class .

vars P Q : @Reference .
8 var OBJSET : Set{@Object} .

var VALO ’ VALX VALY : OCL -Exp .
10

ceq update(MM{< O : CLASSO | P : X # SFISO > OBJSET}, O, REF , O’) =
12 MM{< O : CLASSO | P : O’ # SFISO > OBJSET}

i f not(isMany(REF)) /\ null = opposite(REF) .
14

ceq update(MM{< O : CLASSO | P : X # SFISO >
16 < Y : CLASSY | P : O’ # SFISY >

< X : CLASSX | Q : VALX # SFISX > OBJSET}, O, REF , O’) =
18 MM{< O : CLASSO | P : O’ # SFISO >

< Y : CLASSY | P : null # SFISY >
20 < X : CLASSX | Q : null # SFISX > OBJSET}

i f not(isMany(P)) /\ not(isContainment(P)) /\ Q := opposite(P) .
22
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ceq update(MM{< O : CLASSO | P : X # SFISO >
24 < O’ : CLASSO ’ | Q : VALO ’ # SFISO ’ >

< Y : CLASSY | P : O’ # SFISY >
26 < X : CLASSX | Q : VALX # SFISX > OBJSET}, O, REF , O’) =

MM{< O : CLASSO | P : O’ # SFISO >
28 < O’ : CLASSO ’ | Q : O # SFISO >

< Y : CLASSY | P : null # SFISO ’ >
30 < X : CLASSX | Q : null # SFISX > OBJSET}

i f not(isMany(P)) /\ isContainment(P) /\ Q := opposite(P) .
32

ceq update(MM{< O : CLASSO | P : X # SFISO >
34 < Y : CLASSY | P : O’ # SFISY >

< X : CLASSX | Q : VALX # SFISX > OBJSET}, O, REF , O’) =
36 MM{< O : CLASSO | P : O’ # SFISO >

< Y : CLASSY | P : null # SFISY >
38 < X : CLASSX | Q : null # SFISX > OBJSET}

i f not(isMany(P)) /\ isContainer(P) /\ Q := opposite(P) .

9.4 Simulating a Model Transformation

The purpose of the previous Section was the definition of the operator exec for performing one rewriting step of
the mathematical rewriting system defined in Section 7.4.2 according to the semantic rules of Section 7.4.3. To
obtain an interpreter for Kermeta, and therefore becoming able to simulate Kermeta transformations, it remains
to “chain” this operator with itself to execute it recursively starting from an initial configuration, until reaching
the last statement (cf. Section 7.4.2). We defined an operator run that recursively call itself by applying exec

until the final KConfigurigation is reached (detected through isStop, defined in Section 9.3.4), in which case the
final KConfigurigation is returned (from which the user can extract the resulting model).

1 op run : KConfig -> KConfig .
2 eq run(K) = i f isStop(K) then K else run(exec(K)) fi .

Example 9.13 (Executing the Fsm). Let us experiment with the execution of the Fsm with various
initial configurations. We check that the Fsm does not accept the empty word, but accepts words
of the form pb aq‹ c.

1 reduce in FSM -MODEL : run(<| [FSM , FSM@FSM , accept@FSM@FSM , 1] , (||), < FSMModel ,
putVar(word@accept@FSM@FSM <- Set{} , empty) , 0 |>) .

2 rewrites: 31 in 5496924793 ms cpu (0ms real) (0 rewrites/second)
result Bool: false

4

reduce in FSM -MODEL : run(<| [FSM , FSM@FSM , accept@FSM@FSM , 1] , (||), < FSMModel ,
putVar(word@accept@FSM@FSM <- Set{"a" ; "b" ; "a" ; "b"} , empty) , 0 |>) .

6 rewrites: 186 in 5496924793 ms cpu (0ms real) (0 rewrites/second)
result Bool: false

8

reduce in FSM -MODEL : run(<| [FSM , FSM@FSM , accept@FSM@FSM , 1] , (||), < FSMModel ,
putVar(word@accept@FSM@FSM <- Set{"a" ; "b" ; "a" ; "b" ; "c"} , empty) , 0 |>) .

10 rewrites: 218 in 5496924793 ms cpu (0ms real) (0 rewrites/second)
result Bool: true

12

reduce in FSM -MODEL : run(<| [FSM , FSM@FSM , accept@FSM@FSM , 1] , (||), < FSMModel ,
putVar(word@accept@FSM@FSM <- Set{"a" ; "b" ; "a" ; "b" ; "a" ; "b" ; "a" ; "b" ;
"c"} , empty) , 0 |>) .

14 rewrites: 23042 in 5496924793 ms cpu (0ms real) (0 rewrites/second)
result Bool: true

As expected, the number of rewrites grows with the size of the word, showing that more Fsm states
are visited during the checking for acceptance.
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Figure 9.3 – Integration of Kmv in Eclipse.

9.5 The KMV Tool

This Section elaborates on the integration of Kmv within the Eclipse Integrated Development Environment,
and discusses the current limitations of the tool.

9.5.1 Eclipse Integration

Since Kermeta and Maude (through the Maude Development Tool6) are both integrated into Eclipse, we started
developing Kmv also in Eclipse to ensure a better integration.

Eclipse can easily be extended with different features. Two possibilities are currently under study. The
first would consist of extending the Kermeta Perspective with new features for translating Kermeta code into
Maude: this approach has the advantage to let designers and modellers work in their natural environment; but
it requires to evolve along with Kermeta, forcing to constantly update it to follow the subsequent versions of
Kermeta. The second one would consist of developing a brand new Eclipse Perspective with dedicated plugins,
which presents the opposite advantages and drawbacks than the previous one. Note that for the moment, only
translation from Kermeta to Maude works (cf. next Section).

9.5.2 Limitations

The first task required to enable a better experience with Kmv is to complete the automatic translator from
Kermeta into the Maude syntax, as defined in Section 9.3.2: this translation is currently performed with Kermeta
itself, since a metamodel for Kermeta and for Maude (Rivera, Durán, and Vallecillo 2008) already exist in Ecore.

6Maude Development Tool (Mdt) Website: http://mdt.sourceforge.net/
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However, transparently handling such a translation still needs improvements: for now, the translator generates
an intermediate file in the same directory than the original Kermeta file, which imposes that the Kermeta
specification is included in a single file.

The second point is the specification of properties. Currently, the specification has to be performed directly
on the Maude representation, which somehow breaks the principle of “staying at the modelling level”: the de-
signer has to understand partially understand how the translation works in order to correctly specify properties.
Invariants can easily be expressed in Kermeta under the form of contracts invariants based on Ocl expressions.
Since an evaluator for Ocl expressions is embedded into Kmv through mOdcl, invariants can easily be trans-
lated into Maude. However, some Maude-specific constructions need an equivalent representation in Kermeta
to be exploited by designers. Similarly, Ltl expressions have to be defined at a higher level to provide designers
a way to express their safety properties appropriately. We are currently investigating how to provide a general
framework for this purpose.

We are also currently studying how it is possible to programmatically collect Maude traces in order to relay
them at the level of the Kermeta code (still under the single-file assumption). This will help the user to better
locate specification errors instead of inspecting the Maude traces.
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10
Conclusion

This Thesis tries to bring closer two usually separated worlds: modelling and formal verification. Mde should
become a full engineering discipline: beyond simply providing model browsers and editors, the Mde community
should work on tackling all aspects of the software lifecycle, from simulation and debugging, to software quality
evaluation and formal verification.

In this concluding Chapter, we first summarise the contributions of the Thesis, in the perspective of the
challenges we enunciated in the Introduction. Then, we explore the limits of our work, as well as possible
perspectives and future work.

10.1 Contributions Summary

We first argued that it was necessary, as a community effort, to guide transformation designers in the process of
formal verification. This is necessary because knowledge about transformation techniques and tools and about
formal analysis in general is usually difficult to acquire, but is becoming nowadays necessary since Mde reaches
maturity and tends to apply on more application domains, among which some are critical.

To address this point, we proposed a methodology consisting of a mapping between transformation intents
and characteristic properties. The notion of intent captures what the transformation is achieving, beyond the
form it adopts. This semantic shift allows to better identify property classes that characterise all transformations
fitting under the same intent. We precisely defined such mappings for five different intents among the most
represented and most used in Mde. We concretised some of these intents with a specific transformation borrowed
from a large case study, and studied how the property classes operate in practice.

We also argued that it should be interesting to address formal analysis at the level of transformation frame-
works, instead of developing analysis methodologies on a per -Dsl basis. By doing that, all Dsls written with
a transformation engine would directly benefit from the already implemented analysis, allowing to capitalise
the efforts of identification and implementation of new analysis applications. Of course, such a shift requires
to accurately identify relevant abstractions for each analysis, which can only be enabled if a full, precise formal
semantics of the transformation framework is available. In the Thesis, we have chosen Kermeta as a transforma-
tion engine: Kermeta is a popular, object-oriented transformation language, fully aligned with Omg standards,
that benefits from a large user community and has an industrial relevance.

To demonstrate the feasibility of this argument, we defined a formalisation of the semantics of Kermeta, from
which we derived a mapping into a specific verification domain, Maude. The formalisation is tool-independent: it
only uses mathematical tools (i.e. set theory and structural operational semantics) that constitute the common
background of engineers and computer scientists. Maude was chosen for two main reasons. On the one hand,
it provides a natural executable semantic domain, which makes the semantic gap from the formal semantics
specification smaller: set theory is simply mapped to multi-sorted algebraic specifications, whereas structural
operational semantics is naturally expressed using Maude’s rewriting logic. On the other hand, Maude comes
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equipped with several powerful analysis capabilities (reachability analysis, model-checking and theorem-proving),
which allows to prove several classes of properties for a large set of transformation intents.

10.2 Perspectives & Future Work

Several lines of work can interestingly continue the work initiated in this Thesis. We present them in this
Section, grouped by topics that follow the development of the Thesis.

10.2.1 Description Framework

The contribution of Chapter 4 admits several limitations that could be addressed in future work. As an
immediate continuation, the framework can be completed with the description of other intents on the basis of
the case study we presented, or based on other transformation intents that are not represented in the case study.
This may reveal the need for additional intents, or properties leading to an extension of the framework.

We already discussed the relevance of our work to research on the “intent-specific” specification, implemen-
tation and analysis of model transformations. In this context, it would be interesting to explore the potential
connections with recent work on the formal specification, testing, formal verification of model transformations
(Büttner, Egea, Cabot, and Gogolla 2012; Guerra, De Lara, et al. 2013; Selim, Cordy, and Dingel 2012a; Selim,
Cordy, and Dingel 2012b; Vallecillo and Gogolla 2012): for example, to what extent can existing techniques be
used, or extended, to help developers verify properties associated with a transformation’s intent?

We briefly mentioned the use of time and concurrency for model transformations (in particular for the
Simulation intent). By following the same steps, it should be possible to explore the characteristic properties
of concurrent and real-time transformations, and sketch an equivalent framework specific to these domains. An
interesting starting point could be the Omg Uml-based standard Marte (Object Management Group 2011b),
for which C. André, Mallet, and de Simone (2007) already explored the notions of time that can cope with
Marte.

On a longer term, yet practical side, the true utility of our notion of intent for industrial model-driven
software development still remains to determined: inputs from industrial Mde practitioners might be helpful
to conduct systematic experiments on the applicability of the Description Framework.

10.2.2 Formal Semantics

The contribution of Part II providing an interesting basis for the formal specification of Kermeta. Several
extensions could pave the way towards a fully specified transformation language if the remaining parts of the
language receive better attention: genericity and aspects, but also adding the Constraint Language (Cl) and
the notion of model type.

10.2.2.1 Genericity

This is a well-known specification mechanism, currently available in many programming languages. A natural
way to handle this feature would consist in selecting an execution/verification domain that natively provide
an equivalent mechanism. This is perfectly acceptable, and in favour of a better execution and verification
efficiency. However, following our motivation of providing a tool-/syntax- independent formalisation, this point
should be mathematically clarified to enable powerful abstractions for properties of interest not directly linked
to genericity. This could constitute an interesting result: defining genericity in the context of object-orientation
is known to be a difficult task (Castagna and Xu 2011), but Kermeta offers an interesting combination of
object-oriented features: multiple inheritance, overriding, but not overloading. It is interesting to study how
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this particular combination could lead to a full mathematical definition that overcomes the existing difficulty
for genericity notions like in Java or Eiffel.

10.2.2.2 Aspects

From a specification viewpoint, aspects are interesting to cleanly separate orthogonal concerns in a model,
or during a transformation execution. Kermeta offers a simplified aspect mechanism that is purely syntactic:
extensions to existing classes can be specified within different metamodels, that will be merged together (based
on name equality) to produce a full, legal Kermeta metamodel before execution, assuming there are no conflicts.
These extensions consist of either structural features (attributes or references, but also operations, which is
useful to keep the structural and behavioural definitions of a Dsl separated) or contracts. Aspects do not
directly influence the execution since models are executed after a legal metamodel is obtained from the base and
the possible extensions: the main challenge is rather to adequately capture the type-checking rules to properly
discard the conflicting cases.

10.2.2.3 Constraint Language (Cl)

A Cl is useful for at least two purposes: enabling structural constraints that restrict the number of models
conforming to a given metamodel; and extending the Al with contracts, i.e. pre-/ and post-conditions for
operations, and class invariants, that prevent executing operations when violated (in Kermeta, this violation
leads to a runtime exception that can be caught for appropriate recovery). This feature seems to be easy,
mostly because the Cl and the Al share some of their constructions. The notable complication comes from
functional expressions (e.g., select(...) or iterate(...)): we discarded them because their evaluation requires a
proper specification of genericity. However, as explained before, it suffices to define an executable and analysable
implementation that takes advantage of native genericity. In Maude, this is even facilitated by the existence of
an implementation of the Omg Ocl language (cf. mOdcl by Durán, Gogolla, and Roldán 2011; Durán and
Roldán 2011), on which Kermeta’s Cl is aligned.

10.2.2.4 Model Type

Originally introduced by J. R. ( Steel (2007), model typing was thought as the natural extension of the notion
of type to models (J. Steel and Jézéquel 2007). A type is a classification of values sharing strong characteristics:
the operations applicable on the value, the way they are internally stored and represented (i.e. their concrete
syntax), and of course their meaning. The usual, so-called “primitive” types (booleans, numerals, characters and
strings, dates, and so on) have been extended into more complex datastructures in object-oriented programming
through classes: a class basically glues together several of these primitive types, and provides some operations
(or methods) applicable on their instances. To reach the next level, the idea would consist of gluing classes
together in a stronger way than they are in object-orientation, which is the purpose of (meta-)models: naturally
then comes the idea of (meta-)model operations applicable to metamodel instances, i.e. models. Unfortunately,
the way metamodelling is currently conceived (and so is the formalisation presented in Section 6) prevents to
define the appropriate machinery to think about all we know about operations, i.e. subtyping, polymorphism,
etc. at the metamodel level.

Recently, Guy (2013) studied this question and proposed to replace the conformance relation by a different
relation binding models to one (or several) interface(s) that exposes the model elements and associated model
transformations: this interface is the model type. Furthermore, model types enjoy subtyping and inheritance
relations that, depending on the axioms these relations satisfy, constitute a typing system for model orientation.

It should be possible to extend and adapt the Structural Language formalised in Chapter 6 for specifying a
family of typing systems that a user can freely select depending on the needs of certain (meta-)models. Similarly,
the Action Language of Chapter 7 can also be adapted to handle model type transformations: since only the
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structure of model interfaces are different, but model type transformations work with the same set of statements,
it becomes possible to reuse Kmv to propose formal analysis of such such metamodels.

10.2.2.5 Towards a Fully Formalised Kermeta

Software systems are required to be certified in critical application domains like avionics, aerospace or even
automotive. Since the Kermeta language is ultimately compiled into Java1, reaching an acceptable certification
level requires to look into this compilation scheme to ensure its correctness (more precisely, to establish a
refinement relation between the Kermeta specification and the Java Virtual Machine execution). This is a great
deal of effort that is worth it only if Kermeta becomes involved in such application domains, but this task is
feasible: Börger and Stärk (2003) already provided a formal proof that Java specifications behave correctly
regarding their execution on the Virtual Machine; it remains to conduct a similar proof between Kermeta and
Java specifications.

10.2.3 Kmv

Our technical contribution in Part III resulted in Kmv, a prototype tool that demonstrates the feasibility of
our proposal. However, this tool is not mature enough at this stage, and several improvements are required to
make it easier to use. Furthermore, plain maturity can only be gained when dealing with concrete case studies:
a common issue for software, especially in the domain of formal analysis, is the scalability. We discuss possible
lines of improvements for Kmv and features that we are currently working on.

Eclipse Integration. The automatic translation from Kermeta to Maude is necessary for transformation
designers to transparently use our tool. We are currently working on the following aspects:

• A pre-processing phase that identifies “wrong” Kermeta transformations, i.e. transformations using con-
structions that are not currently handled. This would let the choice for the designer to express the
transformation differently (for example, by using loops instead of functionals for traversing the structure
of models);

• A transformation from the metamodel of Kermeta into the metamodel of Maude (Rivera, Durán, and
Vallecillo 2008), from which a pretty-printer already exists to feed Maude. Although this step would be
convenient (and can be handled by Kermeta, since Maude’s metamodel is based on ECore), it complicates
the backward traceability necessary for helping the designer to identify the locations of its errors.

A full integration into Eclipse would allow transformation designer to use Kmv directly from their natural
transformation framework. Such an integration is expected in the near future.

Tradeoff between Backward Traceability & Performance. Tracing analysis results back to the original
program, or in the context of Mde, model, has always represented a crucial challenge in the computer-aided
verification field. Generally, one has to deal with a tradeoff between a translation that maximise the performance
of the target verification domain tool, and that minimise the effort to trace results back to the original artefacts.
Another solution would let the designers inspect Maude traces themselves (as it is often the case when the
semantic gap between the analysed language and the analysing tool is too high, for example for model-checking
with Spin).

Currently, we designed Kmv in such a way that backward traceability is facilitated: we use one rule for each
statement, and a rule firing is precisely determined by the statement at hand. Replaying the scenarios that

1The first versions of Kermeta were compiled into Java. By the time we finished our Thesis, a new version was released (the
so-called Kermeta 2 ) that is now compiled into Scala, which provides a better support for genericity and functionals. These features
were planned to be integrated into Java 8, whose public release is scheduled for March 2014. Would then be Kermeta reimplemented
in Java?
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violate a property is therefore easy, although one has to deal with the different operation calls. However, this
scheme may be insufficient when manipulating very big models, because the resulting actions can become heavy
to handle. We are currently investigating two research paths for improving the model-checking of Kermeta
transformations:

1. JavaFan (Farzan et al. 2004) is an analysis tool for multithreaded Java programs that present acceptable
performance: we are currently studying the specificities of the Maude specification in this tool, since Java
possess a core object-oriented language very close to Kermeta. This will probably require to refund the
algebraic specifications for the structural part to obtain efficient data structures for the model-checker.

2. An interesting property of our work is that it should be possible to amalgamate the effect of several
statements during a transformation, so that the resulting changes are considered as a black box regarding
the properties one is interested to prove. Basically, this defines an abstract interpretation for the Kermeta
Action Language: the effect of non-relevant statements are abstracted away (and this is what the rewriting
equations suggest), and only the ones that have an influence on the property (i.e. either impacting a
relevant property or value; or transferring a parameter to an operation that has such an impact) would
be retained in the analysis. This opens many theoretical research paths for improving analysis techniques
on languages such as Kermeta.

10.2.4 Real-Time Kermeta

Even with the Al subset presented in Part II of this Thesis, Kermeta is a Turing-complete transformation
framework: Kermeta can possibly simulate any possible computation. However, it would be more convenient
to have at our disposal explicit notions of time, as required by the various time models used for embedded
systems (C. André, Mallet, and de Simone 2007). A common solution to overcome this issue consists of giving
transformation designers the possibility to build their own notion of time, based on the expressive power of
their transformation framework. But this solution comes with several drawbacks: time becomes specific to each
Dsl. This solution limits the possibility of exchanging models for which the notion of time differs or worst,
hinders their use if they are incompatible. As a consequence, verification techniques, which are already difficult
to handle due to their intrinsic complexity, become difficult to handle due to these different time semantics.

Building upon Kmv, it should be interesting to equip Kermeta with Real-Time capabilities in order to
provide engineers using Kermeta a built-in explicit capability for handling different notions of time. However,
mixing real-time with object-orientation is known to be difficult from a semantic viewpoint, and consequently,
from a verification viewpoint (Selic, Gullekson, and Ward 1995). Interestingly, our work can be a good starting
point for extending Kermeta and enabling formal verification using Maude, since a real-time extension for Maude
already exists (Ölveczky and Meseguer 2007).

This idea is directly inspired from other projects and contributions. In Mde, Multi-Paradigm Modelling
(Mosterman and Vangheluwe 2004) (also known as heterogeneous modelling, Hardebolle 2008) promotes the
modelling of all parts of a system, at the most appropriate level(s) of abstraction, using the most appropriate
formalism(s), to reduce the accidental complexity. We were recently aware of the GeMoC project2, an open
initiative to explore how to enable the support of global software engineering. This project focuses on three
design and validation issues for software systems: multiple concerns, handled by multiple Dsls; heterogeneous
parts and their integration, supported by various models of computations; and software evolution and openness
to react to changes. The project already investigated how to combine Kermeta transformations with various
models of concurrency (Combemale, Deantoni, et al. 2013; Combemale, Hardebolle, et al. 2012).

2http://gemoc.org
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A
The Finite State Machine Example

Throughout this Thesis, we used a toy example, the Finite State Machine (Fsm), as a running example. Although
relatively simple, this example is however illustrative enough for our purpose: its behavioural semantics is simple,
and well-known from computer scientists because Fsms constitute a core formalism for describing computations,
but its specification as a Kermeta transformation makes use of the whole core Action Language (cf. Chapter
7), the subset of the Kermeta Action Language we isolated for formalisation. Besides, it is a classical example
in Kermeta literature (see e.g. the official Manual of Drey et al. 2009)

The Fsm running example showed how to specify Domain-Specific Languages in Kermeta, and illustrated
both the formal specification and its Maude implementation. This Appendix aims at summarising these various
facets of the Fsm: Section A.1 recalls the metamodel and the model we have chosen; Section A.2 presents
its full specification using Kermeta’s textual representation; Section A.3 summarises and completes its formal
representation used in Part II, and finally Section A.4 show the corresponding code in Maude.

A.1 Metamodel and Model
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A.2 Kermeta Full Textual Definition

1 @mainClass "FSM::FSM"
@mainOperation "accept"

3

package FSM;
5 require kermeta

using kermeta :: standard
7

enumeration Kind {NORMAL;START;STOP;}
9

11 class Label{
attribute label: String

13 }

15 class FSM inherits Label{
// FSM assumes there is only one START and one FINAL State

17 attribute alphabet: set String [1..*]
reference states: seq State [1..*] # fsm

19 reference transitions: seq Transition [0..*]# fsm

21 operation getStart (): State i s do
var i : Integer init 1

23 from i := 1
until i == states.size() or states.at(i).kind == Kind.START

25 loop
i := i+1

27 end
i f i == states.size() then

29 result := void
else

31 result := self.states.at(i)
end

33 end

35 operation getFinal (): State i s do
var i : Integer init 1

37 from i := 1
until i == states.size() or states.at(i).kind == Kind.STOP

39 loop
i := i+1

41 end
i f i == states.size() then

43 result := void
else

45 result := self.states.at(i)
end

47 end

49 operation accept(word: seq String [0..*]) : Boolean i s do
var current: State init self.getStart ()

51 var final : State init self.getFinal ()
var toEval : seq String [0..*] init word

53 var isNull : Boolean init false

55 from var i : Integer init 1
until i == toEval.size() or isNull

57 loop
current := current.fire(toEval.at(i))

59 i f (current.isVoid) then
isNull := true

61 end
i := i+1

63 end
result := (current == final)

65 end
}

67

class State inherits Label{
69 attribute kind: Kind
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reference fsm: FSM # states
71 reference in: Transition [0..*] # tgt

reference out: Transition [0..*] # src
73

operation fire(letter: String): State [0..1] i s do
75 var trans: seq Transition [0..*] init self.out.asSequence ()

77 i f (trans.isVoid) then
// no output transitions: return what is suitable for no state (card = 0)

79 result := void
else

81 var current: Transition init trans.at(0)
// head only reads the head , do not modify the sequence

83

from var i : Integer init 0
85 until i == trans.size() or trans.at(i).label == letter //(current.isVoid) or (current.label ==

letter)
loop

87 i := i+1
end

89 i f (current.isVoid) then
result := void

91 else
result := current.tgt

93 end
end

95 end
}

97

class Transition inherits Label{
99 reference fsm: FSM # transitions

reference tgt: State [1..1] # in
101 reference src: State [1..1] # out

}

A.3 Mathematical Representation

A.3.1 The FSM Metamodel MM
FSM

Let us call MM
FSM

“ pp, c, e, prop, oq P M the mathematical representation of the metamodel depicted in
Section A.1. Because the mathematical framework uses partial functions, we have to specify the functions’
domains first: Dom ppq “ Dom pcq “ Dom ppropq “ Dom poq “ tFSMu (only one package); Dom pcpFSMqq “

Dom pproppFSMqq “ Dom popFSMqq “ C
FSM

with C
FSM

“ tLabel,FSM,State,Transitionu, i.e. the classes con-
tained inside the FSM package; and Dom pepFSMqq “ E

FSM
with E

FSM
“ tKindu. The domains for prop and

o are build by gathering all properties and operations respectively: Dom pproppFSMqpLabelqq “ tlabelu and
Dom popFSMqpLabelqq “ H; Dom pproppFSMqpFSMqq “ talphabet, states, transitionsu and Dom popFSMqpFSMqq “

tgetStart, getFinal, acceptu; Dom pproppFSMqpStateqq “ tfsm, kind, in, outu and Dom popFSMqpStateqq “ tfireu; and
finally Dom pproppFSMq pTransitionqq “ tfsm, src, tgtu and Dom popFSMqpTransitionqq “ H.

We then have to define all the component functions of MM
FSM

. Let us start with the simplest ones, namely
the package, class and enumeration functions.

ppFSMq “ pH,CFSM ,EFSMq

epFSMqpKindq “ xxNORMAL,STOP, STARTyy

cpFSMqpLabelq “ pJ,Hq

cpFSMqpFSMq “ pK, tLabeluq

cpFSMqpStateq “ pK, tLabeluq

cpFSMqpTransitionq “ pK, tLabeluq

Let us now proceed with the property and operation functions, class by class.

proppFSMqpLabelqplabelq “ pJ,K, p1, 1,K,Stringq,Kq
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proppFSMqpFSMqpalphabetq “ pJ,K, p1, ‹, Set, Stringq,Kq

proppFSMqpFSMqpstatesq “ pJ,K, p1, ‹,OSet,Stateq, fsmq

proppFSMqpFSMqptransitionsq “ pJ,K, p0, ‹,OSet,Transitionq, fsmq

opFSMqpFSMqpacceptq “ pK,K, xxpword, p0, ‹, List, Stringqqyy, p1, 1,K,Booleanq, bacceptq

opFSMqpFSMqpgetStartq “ pK,K, xxyy, p1, 1,K, Stateq, bgetStartq

opFSMqpFSMqpgetFinalq “ pK,K, xxyy, p1, 1,K, Stateq, bgetFinalq

proppFSMqpStateqpkindq “ pJ,K, p1, 1,K,Kindq,Kq

proppFSMqpStateqpfsmq “ pK,K, p1, 1,K,FSMq, statesq

proppFSMqpStateqpinq “ pK,K, p0, ‹, List,Transitionq, tgtq

proppFSMqpStateqpoutq “ pK,K, p0, ‹, List,Transitionq, srcq

opFSMqpStateqpfireq “ pK,K, xxpletter, p1, 1,K, Stringqqyy, p0, 1,K, Stateq, bfireq

proppFSMqpTransitionqpfsmq “ pK,K, p1, 1,K,FSMq, transitionsq

proppFSMqpTransitionqpsrcq “ pK,K, p1, 1,K,Stateq, outq

proppFSMqpTransitionqptgtq “ pK,K, p1, 1,K, Stateq, inq

A.3.2 The FSM Model Mabc

Let us now call Mabc P M the representation of the model depicted in Section A.1. Using the names as
object identifiers, we have Dom pMabcq “ tabc, 1, 2, 3, a, b, cu. We obviously have typepabcq “ pFSM,FSMq,
typep1q “ typep2q “ typep3q “ pFSM,Stateq and typepaq “ typepbq “ typepcq “ pFSM,Transitionq. We only
describe the state of the necessary instances for the conformance proof.

σabcplabelq “ ”pabq ` c”

σabcpalphabetq “ t”a”, ”b”, ”c”u

σabcpstatesq “ xx1, 2, 3yy

σabcptransitionsq “ xxa, b, cyy

σaplabelq “ ”a”

σapsrcq “ 1

σaptgtq “ 2

σapfsmq “ abc

σ1plabelq “ ”1”

σ1pkindq “ START
σ1pinq “ xxbyy

σ1poutq “ xxayy

σ1pfsmq “ abc

σbplabelq “ ”b”

σbpsrcq “ 2

σbptgtq “ 1

σbpfsmq “ abc

A.3.3 Does Mabc conform to MM
FSM

?

We now prove the conformance, i.e. Mabc � MM
FSM

. The conformance predicate holds if certain conditions hold
on all objects of the model. Since it is a repetitive task, we only demonstrate for one object of each type, letting
the reader infer what is missing for the rest of the objects.

The first condition is easy to check from the definition of Mabc itself: each object has a type that appears in
MM

FSM
, and each accessible property of each object possess a value.

It then remains to prove that each accessible property of each object has a valid value regarding the property
declared type, and so do opposites. We only select one object per type, i.e. the object already presented when
describing Mabc.

FSM An FSM instance has four accessible properties: Dom pπpFSMqpFSMqq “

tlabel, alphabet, states, transitionsu. We go through all of them, since they all have different types:

label From the previous definitions, we have σabcplabelq “ ”pabq ` c” and proppFSMqpLabelqplabelq “

pJ,K, p1, 1,K,Stringq,Kq.
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• Since typep”pabq ` c”q “ pK,Stringq, it implies that typep”1”q ď pK,Stringq;

• Since | ”pabq ` c” |“ 1, it implies that 1 ď| ”pabq ` c” |ď 1;

• label does not declare an opposite so the last check is irrelevant.

alphabet We have σabcpalphabetq “ t”a”, ”b”, ”c”u with proppFSMqpFSMqpalphabetq “ pJ,K,

p1, ‹,Set,Stringq,Kq.

• Since typept”a”, ”b”, ”c”uq “ pSet,Stringq, it implies that typept”a”, ”b”, ”c”uq ď pSet,Stateq;

• Since | t”a”, ”b”, ”c”u |“ 3, it implies that 1 ď| t”a”, ”b”, ”c”u |ď ‹;

• alphabet does not declare an opposite so the last check is irrelevant.

states We have σabcpstatesq “ xx1, 2, 3yy and proppFSMqpFSMqpstatesq “ pK,K, p1, ‹,OSet,Stateq, fsmq.

• Since typepxx1, 2, 3yyq “ pOSet, pFSM,Stateqq, it implies that typepxx1, 2, 3yyq ď pOSet,Stringq;

• Since | xx1, 2, 3yy |“ 3, it implies that 1 ď| xx1, 2, 3yy |ď ‹;

• We have σ1pfsmq “ abc and proppFSMqpStateqpfsmq “ pK,K, p1, 1,K,FSMq, statesq and effectively,
abc P σ1pfsmq (same holds for 2’s and 3’s values).

transitions We have σabcptransitionsq “ xxa, b, cyy and proppFSMqpFSMqptransitionsq “

pK,K, p0, ‹,OSet,Transitionq, fsmq.

• Since typepxxa, b, cyyq “ pOSet, pFSM,Stateqq, it implies that typepxxa, b, cyyq ď pOSet,Stringq;

• Since | xxa, b, cyy |“ 3, it implies that 1 ď| xxa, b, cyy |ď ‹;

• We have σapfsmq “ abc and proppFSMqpTransitionqpfsmq “ pK,K, p1, 1,K,FSMq, transitionsq and
effectively, abc P σapfsmq (same holds for a’s and b’s values).

State A State instance has five accessible properties: Dom pπpFSMqpStateqq “ tlabel, kind, in, out, fsmu. Proper-
ties in and out only differ for their opposite, therefore we only consider in.

label We have σ1plabelq “ ”1” and proppFSMqpLabelqplabelq “ pJ,K, p1, 1,K,Stringq,Kq.

• Since typep”1”q “ pK,Stringq, it implies that typep”1”q ď pK,Stringq;

• Since | ”1” |“ 1, it implies that 1 ď| ”1” |ď 1;

• label does not declare an opposite so the last check is irrelevant.

kind We have σ1pkindq “ START and proppFSMqpStateqpkindq “ pJ,K, p1, 1,K,Kindq,Kq.

• Since typepSTARTq “ pK,Kindq, it implies that typepSTARTq ď pK,Kindq;

• Since | START |“ 1, it implies that 1 ď| START |ď 1;

• kind does not declare an opposite so the last check is irrelevant.

in We have σ1pinq “ xxbyy and proppFSMqpStateqpinq “ pK,K, p0, ‹, List,Transitionq, tgtq.

• Since typepxxbyyq “ pOSet,Transitionq, it implies that typepxxbyyq ď pOSet,Transitionq;

• Since | xxbyy |“ 1, it implies that 0 ď| xxbyy |ď ‹;

• We have σbptgtq “ 1 and proppFSMqpTransitionqptgtq “ pK,K, p1, 1,K,Stateq, inq and effectively,
1 P σbptgtq.

fsm We have σ1pfsmq “ abc and proppFSMqpTransitionqpfsmq “ pK,K, p1, 1,K,FSMq, transitionsq.

• Since typepabcq “ pK, pFSM,FSMqq, it implies that typepabcq ď pK, pFSM,FSMqq;

• Since | abc |“ 1, it implies that ď| abc |ď 1;

• We already saw that σabcptransitionsq “ xxa, b, cyy and proppFSMqpFSMqptransitionsq “ pK,K,

p0, ‹,OSet,Transitionq, fsmq and effectively, b P σabcptransitionsq.

Transition A Transition has four accessible properties: Dom pπpFSMqpTransitionqq “ tlabel, src, tgt, fsmu. Prop-
erties src and tgt only differ for their opposite, therefore we only consider tgt (as the opposite of property
in for type State).
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label We have σbplabelq “ ”b” and proppFSMqpLabelqplabelq “ pJ,K, p1, 1,K,Stringq,Kq.

• Since typep”b”q “ pK,Stringq, it implies that typep”b”q ď pK,Stringq;

• Since | ”b” |“ 1, it implies that 1 ď| ”b” |ď 1;

• label does not declare an opposite so the last check is irrelevant.

tgt We have σbptgtq “ 1 and proppFSMqpTransitionqptgtq “ pK,K, p1, 1,K,Stateq, inq.

• Since typep1q “ pK, pFSM,Stateqq, it implies that typep1q ď pK, pFSM,Stateqq;

• Since | 1 |“ 1, it implies that ď| 1 |ď 1;

• We already saw that σ1pinq “ xxbyy with proppFSMqpStateqpinq “ pK,K, p0, ‹, List,Transitionq, tgtq

and effectively, b P σ1pinq.

A.4 Maude Representation

1 mod FSM -MM i s
2 protecting MAUDELING .

4 *** Metamodel & Package ***

6 --- Metamodel declaration
op FiniteStateMachine : -> @Metamodel .

8 eq name(FiniteStateMachine) = "FiniteStateMachine" .
eq packages (FiniteStateMachine) = FSM .

10

--- Package declaration
12 op FSM : -> @Package .

eq name(FSM) = "FSM" .
14 eq metamodel(FSM) = FiniteStateMachine .

eq superPackage(FSM) = null .
16 eq subPackages(FSM) = nil .

eq classes(FSM) = __(FSM@FSM , Label@FSM , State@FSM , Transition@FSM) .
18

*** Enumerations ***
20 --- Kind

22 sort Kind@FSM .
subsorts Kind@FSM < @EnumerationInstance .

24 op Kind@FSM : -> @Enumeration .
op NORMAL@Kind@FSM : -> Kind@FSM .

26 op START@Kind@FSM : -> Kind@FSM .
op STOP@Kind@FSM : -> Kind@FSM .

28 eq metaAux( X:Kind@FSM ) = Kind@FSM .
eq name( Kind@FSM ) = "Kind" .

30 eq package( Kind@FSM ) = FSM .
eq defaultValue( Kind@FSM ) = NORMAL@Kind@FSM .

32 eq literals( Kind@FSM ) = __( NORMAL@Kind@FSM , START@Kind@FSM , STOP@Kind@FSM ) .

34

36 *** Classes ***

38 --- Label

40 sort Label@FSM .
subsort Label@FSM < @Class .

42 op Label@FSM : -> Label@FSM .
eq name(Label@FSM) = "Label" .

44 eq isAbstract(Label@FSM) = true .
eq package(Label@FSM) = FSM .

46 eq superTypes (Label@FSM) = nil .
eq references (Label@FSM) = nil .

48 eq attributes (Label@FSM) = label@Label@FSM .

50 op label@Label@FSM : -> @Attribute .
eq name (label@Label@FSM) = "label" .
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52 eq type (label@Label@FSM) = @String .
eq lowerBound (label@Label@FSM) = 1 .

54 eq upperBound (label@Label@FSM) = 1 .
eq containingClass (label@Label@FSM) = Label@FSM .

56 eq isOrdered (label@Label@FSM) = true .
eq isUnique (label@Label@FSM) = true .

58 eq isId (label@Label@FSM) = true .

60 --- FSM

62 sort FSM@FSM .
subsort FSM@FSM < Label@FSM .

64 op FSM@FSM : -> FSM@FSM .
eq name(FSM@FSM) = "FSM" .

66 eq isAbstract(FSM@FSM) = false .
eq package(FSM@FSM) = FSM .

68 eq superTypes (FSM@FSM) = Label@FSM .
eq references (FSM@FSM) = __(states@FSM@FSM , transitions@FSM@FSM) .

70 eq attributes (FSM@FSM) = alphabet@FSM@FSM .

72 op alphabet@FSM@FSM : -> @Attribute .
eq name (alphabet@FSM@FSM) = "alphabet" .

74 eq type (alphabet@FSM@FSM) = @String .
eq lowerBound (alphabet@FSM@FSM) = 1 .

76 eq upperBound (alphabet@FSM@FSM) = * .
eq containingClass (alphabet@FSM@FSM) = FSM@FSM .

78 eq isOrdered (alphabet@FSM@FSM) = false .
eq isUnique (alphabet@FSM@FSM) = true .

80 eq isId (alphabet@FSM@FSM) = false .

82 op states@FSM@FSM : -> @Reference .
eq name (states@FSM@FSM) = "states" .

84 eq opposite (states@FSM@FSM) = fsm@State@FSM .
eq type (states@FSM@FSM) = State@FSM .

86 eq lowerBound (states@FSM@FSM) = 1 .
eq upperBound (states@FSM@FSM) = * .

88 eq containingClass (states@FSM@FSM) = FSM@FSM .
eq isOrdered (states@FSM@FSM) = false .

90 eq isUnique (states@FSM@FSM) = true .
eq isContainment (states@FSM@FSM) = true .

92

op transitions@FSM@FSM : -> @Reference .
94 eq name (transitions@FSM@FSM) = "transitions" .

eq opposite (transitions@FSM@FSM) = fsm@Transition@FSM .
96 eq type (transitions@FSM@FSM) = Transition@FSM .

eq lowerBound (transitions@FSM@FSM) = 0 .
98 eq upperBound (transitions@FSM@FSM) = * .

eq containingClass (transitions@FSM@FSM) = FSM@FSM .
100 eq isOrdered (transitions@FSM@FSM) = false .

eq isUnique (transitions@FSM@FSM) = true .
102 eq isContainment (transitions@FSM@FSM) = true .

104 --- Transition

106 sort Transition@FSM .
subsort Transition@FSM < Label@FSM .

108 op Transition@FSM : -> Transition@FSM .
eq name(Transition@FSM) = "Transition" .

110 eq isAbstract(Transition@FSM) = false .
eq package(Transition@FSM) = FSM .

112 eq superTypes (Transition@FSM) = Label@FSM .
eq references (Transition@FSM) = __(src@Transition@FSM , tgt@Transition@FSM ,

114 fsm@Transition@FSM) .
eq attributes (Transition@FSM) = nil .

116

op src@Transition@FSM : -> @Reference .
118 eq name (src@Transition@FSM) = "src" .

eq opposite (src@Transition@FSM) = out@State@FSM .
120 eq type (src@Transition@FSM) = State@FSM .

eq lowerBound (src@Transition@FSM) = 1 .
122 eq upperBound (src@Transition@FSM) = 1 .
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eq containingClass (src@Transition@FSM) = Transition@FSM .
124 eq isOrdered (src@Transition@FSM) = true .

eq isUnique (src@Transition@FSM) = true .
126 eq isContainment (src@Transition@FSM) = false .

128 op tgt@Transition@FSM : -> @Reference .
eq name (tgt@Transition@FSM) = "tgt" .

130 eq opposite (tgt@Transition@FSM) = in@State@FSM .
eq type (tgt@Transition@FSM) = State@FSM .

132 eq lowerBound (tgt@Transition@FSM) = 1 .
eq upperBound (tgt@Transition@FSM) = 1 .

134 eq containingClass (tgt@Transition@FSM) = Transition@FSM .
eq isOrdered (tgt@Transition@FSM) = true .

136 eq isUnique (tgt@Transition@FSM) = true .
eq isContainment (tgt@Transition@FSM) = false .

138

op fsm@Transition@FSM : -> @Reference .
140 eq name (fsm@Transition@FSM) = "fsm" .

eq opposite (fsm@Transition@FSM) = transitions@FSM@FSM .
142 eq type (fsm@Transition@FSM) = FSM@FSM .

eq lowerBound (fsm@Transition@FSM) = 1 .
144 eq upperBound (fsm@Transition@FSM) = 1 .

eq containingClass (fsm@Transition@FSM) = Transition@FSM .
146 eq isOrdered (fsm@Transition@FSM) = true .

eq isUnique (fsm@Transition@FSM) = true .
148 eq isContainment (fsm@Transition@FSM) = false .

150

--- State
152

sort State@FSM .
154 subsort State@FSM < Label@FSM .

op State@FSM : -> State@FSM .
156 eq name(State@FSM) = "State" .

eq isAbstract(State@FSM) = false .
158 eq package(State@FSM) = FSM .

eq superTypes (State@FSM) = Label@FSM .
160 eq references (State@FSM) = __(in@State@FSM , out@State@FSM ,

fsm@State@FSM) .
162 eq attributes (State@FSM) = kind@State@FSM .

164 op in@State@FSM : -> @Reference .
eq name (in@State@FSM) = " in" .

166 eq opposite (in@State@FSM) = tgt@Transition@FSM .
eq type (in@State@FSM) = Transition@FSM .

168 eq lowerBound (in@State@FSM) = 0 .
eq upperBound (in@State@FSM) = * .

170 eq containingClass (in@State@FSM) = State@FSM .
eq isOrdered (in@State@FSM) = false .

172 eq isUnique (in@State@FSM) = true .
eq isContainment (in@State@FSM) = false .

174

op out@State@FSM : -> @Reference .
176 eq name (out@State@FSM) = "out" .

eq opposite (out@State@FSM) = src@Transition@FSM .
178 eq type (out@State@FSM) = Transition@FSM .

eq lowerBound (out@State@FSM) = 0 .
180 eq upperBound (out@State@FSM) = * .

eq containingClass (out@State@FSM) = State@FSM .
182 eq isOrdered (out@State@FSM) = false .

eq isUnique (out@State@FSM) = true .
184 eq isContainment (out@State@FSM) = false .

186 op fsm@State@FSM : -> @Reference .
eq name (fsm@State@FSM) = "fsm" .

188 eq opposite (fsm@State@FSM) = states@FSM@FSM .
eq type (fsm@State@FSM) = FSM@FSM .

190 eq lowerBound (fsm@State@FSM) = 1 .
eq upperBound (fsm@State@FSM) = 1 .

192 eq containingClass (fsm@State@FSM) = State@FSM .
eq isOrdered (fsm@State@FSM) = true .
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194 eq isUnique (fsm@State@FSM) = true .
eq isContainment (fsm@State@FSM) = false .

196

op kind@State@FSM : -> @Attribute .
198 eq name (kind@State@FSM) = "kind" .

eq type (kind@State@FSM) = Kind@FSM .
200 eq lowerBound (kind@State@FSM) = 1 .

eq upperBound (kind@State@FSM) = 1 .
202 eq containingClass (kind@State@FSM) = State@FSM .

eq isOrdered (kind@State@FSM) = true .
204 eq isUnique (kind@State@FSM) = true .

eq isId (kind@State@FSM) = false .
206 endm

1 mod FSM -MODEL i s
2 protecting MAUDELING .

protecting FSM -MM .
4

*** Set{mt} for
6 *** Set separator is ;

*** No references = nil
8

op FSMModel : -> @Model .
10 eq FSMModel = FiniteStateMachine {

< ’fsm : FSM@FSM | label@Label@FSM : "(ab)+c" #
12 alphabet@FSM@FSM : Set {"a" ; "b" ; "c" } #

states@FSM@FSM : Set {’one ; ’two ; ’three} #
14 transitions@FSM@FSM : Set {’a ; ’b ; ’c} >

16 < ’one : State@FSM | label@Label@FSM : "1" #
fsm@State@FSM : ’fsm #

18 kind@State@FSM : START@Kind@FSM #
in@State@FSM : Set {’b} #

20 out@State@FSM : Set {’a} >

22 < ’two : State@FSM | label@Label@FSM : "2" #
fsm@State@FSM : ’fsm #

24 kind@State@FSM : NORMAL@Kind@FSM #
in@State@FSM : Set {’a} #

26 out@State@FSM : Set {’b ; ’c} >

28 < ’three : State@FSM | label@Label@FSM : "3" #
fsm@State@FSM : ’fsm #

30 kind@State@FSM : STOP@Kind@FSM #
in@State@FSM : Set {’c} #

32 out@State@FSM : Set {mt} >

34 < ’a : Transition@FSM | label@Label@FSM : "a" #
fsm@Transition@FSM : ’fsm #

36 src@Transition@FSM : ’one #
tgt@Transition@FSM : ’two >

38

< ’b : Transition@FSM | label@Label@FSM : "b" #
40 fsm@Transition@FSM : ’fsm #

src@Transition@FSM : ’two #
42 tgt@Transition@FSM : ’one >

44 < ’c : Transition@FSM | label@Label@FSM : "c" #
fsm@Transition@FSM : ’fsm #

46 src@Transition@FSM : ’two #
tgt@Transition@FSM : ’three >

48 } .
endm
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1 view @Class from TRIV to METAMODEL -CTORS i s
sort Elt to @Class .

3 endv

5 mod KERMETA -STMT -PREP i s
sort @Statement .

7 endm

9 mod KERMETA -SL-CTORS i s
pr METAMODEL -PROP .

11 pr MGLIST{@NamedElement} * (sort MGList{@NamedElement} to MyList) .

13 pr MGMAYBE{@Class} .

15 --- Operation & Parameters signature
sort @Operation @Parameter @Variable @LocalVariable .

17 subsort @Variable @Parameter < @LocalVariable < Vid .
subsort @Operation @Parameter @LocalVariable < @StructuralFeature .

19 op self : -> @LocalVariable .
op KRESULT : -> @LocalVariable .

21 op operations : @Class -> MyList . --- of @Operation
op isAbstract : @Operation -> Bool .

23 op from : @StructuralFeature -> Maybe{@Class} .
op containingOperation : @Parameter -> @Operation .

25 op containingOperation : @Variable -> @Operation .
op parameters : @Operation -> MyList . --- of @Parameter

27 op variables : @Operation -> MyList . --- of @Variable

29 --- Label
sort @Label @LabelNxt .

31 op [_,_,_,_] : @Package @Class @Operation Nat -> @Label [ctor] .
--- default label

33 op [] : -> @Label .
op <_,_> : @Label @Label -> @LabelNxt [ctor] .

35 op nxt : @Label -> @LabelNxt .
op labels : @Operation -> MyList . --- of @Label

37

var LV : @LocalVariable .
39 op defaultValue : @LocalVariable -> OCL -Type .

eq defaultValue(LV) =
41 i f isMany(LV) then

i f isOrdered(LV) then
43 i f isUnique(LV) then

OrderedSet {}
45 else

Sequence {}
47 fi

else
49 i f isUnique(LV) then

Set{}
51 else

Bag{}
53 fi

fi
55 else
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i f type(LV) :: @DataType then
57 defaultValue(type(LV))

else
59 null

fi
61 fi .

endm
63

view @Label from TRIV to KERMETA -SL-CTORS i s
65 sort Elt to @Label .

endv
67

view @Statement from TRIV to KERMETA -STMT -PREP i s
69 sort Elt to @Statement .

endv
71

view @Operation from TRIV to KERMETA -SL-CTORS i s
73 sort Elt to @Operation .

endv
75

view @LocalVariable from TRIV to KERMETA -SL-CTORS i s
77 sort Elt to @LocalVariable .

endv
79

view OCL -Type from TRIV to MGmOdCL i s
81 sort Elt to OCL -Type .

endv
83

mod KERMETA -STATEMENTS -MAP i s
85 pr MAP{@Label , @Statement} .

pr MAP{@LocalVariable , OCL -Type} .
87 endm

89 mod KERMETA -SL i s
pr KERMETA -SL-CTORS .

91 pr KERMETA -STATEMENTS -MAP .
op statements : @Metamodel -> Map{@Label , @Statement} .

93 endm

95 --- ------------------------------------------------------------------------------------
--- Action Language Syntax

97 ---
--- Body ::= [Stm]+

99 --- Stm ::= lab: Stmt
--- Stmt ::= condStmt

101 --- | assignStmt | castStmt
--- | instanceCreationStmt

103 --- | collStmt
--- | returnStmt | callStmt

105 --- CondStmt ::= < i f > exp
--- AssignStmt ::= lhs := exp

107 --- InstanceCreationStmt ::= var := exp
--- ReturnStmt ::= <return > | <return > exp

109 --- CallStmt ::= call | var := call
--- Call ::= target.op(exp*)

111 --- ------------------------------------------------------------------------------------
mod KERMETA -AL i s

113 pr KERMETA -STMT -PREP .
pr KERMETA -SL .

115 pr METAMODEL -PROP .
pr MGMAYBE{@Operation} .

117

sort @CondStmt @AssignStmt @InstanceCreationStmt @Call @CallStmt @ReturnStmt .
119 subsort @Call < @CallStmt .

subsort @CondStmt @AssignStmt @InstanceCreationStmt @CallStmt @ReturnStmt < @Statement .
121 sort @CollItem .

123 ops bag set seq oset : -> @CollItem .
op iff_ : OCL -Exp -> @CondStmt [ctor] .

125 op _.:=._ : OCL -Exp OCL -Exp -> @AssignStmt [ctor] .
op _.:=. new ‘(_‘) : @Variable @Classifier -> @InstanceCreationStmt [ctor] .
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127 op _.:=. new ‘(_,_‘) : @Variable @CollItem @Classifier -> @InstanceCreationStmt [ctor] .
op return : -> @ReturnStmt [ctor] .

129 op return_ : OCL -Exp -> @ReturnStmt [ctor] .
op _._<> : OCL -Exp String -> @Call [ctor] .

131 op _._<_> : OCL -Exp String List{OCL -Exp} -> @Call [ctor] .
op _.:=._ : OCL -Exp @Call -> @CallStmt [ctor] .

133

var CLASSIFIER : @Classifier .
135 op default(_,_) : @CollItem @Classifier -> OCL -Exp .

eq default(bag , CLASSIFIER) = Bag{} .
137 eq default(set , CLASSIFIER) = Set{} .

eq default(seq , CLASSIFIER) = Sequence {} .
139 eq default(oset , CLASSIFIER) = OrderedSet {} .

141 var ON : String .
var C : @Class .

143 var O : @Operation .
var L VALLIST PARAMLIST : MyList .

145 var LV VAL PARAM : @LocalVariable .
vars VPAIRS VPAIRSS VPSET : Set{VarPair} .

147 var VPELT : VarPair .
var LEXP : List{OCL -Exp} .

149 var EXP : OCL -Exp .

151 op createLocalEnv : @Operation -> Set{VarPair} .
eq createLocalEnv(O) = createLocalEnv$(variables(O)) .

153

op createLocalEnv : @Operation List{OCL -Exp} -> Set{VarPair} .
155 eq createLocalEnv(O, LEXP) = createParamBindings(parameters(O), LEXP) # createLocalEnv$(variables(O)) .

157 op createLocalEnv$ : MyList -> Set{VarPair} . --- of @Variable
eq createLocalEnv$(nil) = empty .

159 eq createLocalEnv$(LV L) = putVar(LV <- defaultValue(LV), createLocalEnv$(L)) .

161 op createParamBindings : MyList List{OCL -Exp} -> Set{VarPair} .
eq createParamBindings(nil , mt-ord) = empty .

163 eq createParamBindings(LV L, EXP # LEXP) = putVar(LV <- EXP , createParamBindings(L, LEXP)) .

165

op lookup : String @Class -> @Operation .
167 eq lookup(ON , C) =

i f (not ( getByName(ON , C) == null )) then
169 getByName(ON , C)

else
171 findByName(ON , allSuperTypes(C) )

fi
173 .

175 op findByName : String MyList -> @Operation . --- of @Class
eq findByName(ON , C) = getByName(ON , C) .

177 eq findByName(ON , C L) =
i f (not (getByName(ON , C) == null)) then

179 getByName(ON , C)
else

181 findByName(ON , L)
fi

183 .

185 op getByName : String @Class -> Maybe{@Operation} .
eq getByName(ON , C) = getByName$(ON , operations(C)) .

187

op getByName$ : String MyList -> Maybe{@Operation} . --- of @Operation
189 eq getByName$(ON , nil) = null .

eq getByName$(ON , O L) =
191 i f (ON == name(O)) then

O
193 else

getByName$(ON , L)
195 fi

.
197 endm
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Appendix B. Maude Specification for Kermeta Semantics

mod KERMETA -DOMAIN i s
199 pr MGmOdCL .

pr METAMODEL -PROP .
201 pr KERMETA -SL-CTORS .

---pr MAP{@LocalVariable , OclType} .
203 sort Domain .

op <_##_> : @Model Set{VarPair} -> Domain [ctor] .
205 endm

207 mod KERMETA -STACK i s
pr KERMETA -SL .

209 pr KERMETA -STATEMENTS -MAP .
pr MGMAYBE{@LocalVariable} .

211

sort StackEntry .
213 op ‘(|_,_,_|‘) : @Label Set{VarPair} Maybe{@LocalVariable} -> StackEntry .

endm
215

fmod STACK{X :: TRIV} i s
217 protecting BOOL .

219 sorts NeStack{X} Stack{X} .
subsort X$Elt < NeStack{X} < Stack{X} .

221

op NOPE : -> Stack{X} [ctor] .
223 op _!!!_ : X$Elt Stack{X} -> NeStack{X} [ctor right id: NOPE] .

225 var E : X$Elt .
var S : Stack{X} .

227

op isEmpty_ : Stack{X} -> Bool .
229 eq isEmpty(NOPE) = true .

eq isEmpty(S) = false [owise] .
231 endfm

233 view StackEntry from TRIV to KERMETA -STACK i s
sort Elt to StackEntry .

235 endv

237 mod KERMETA -CONFIGURATION i s
pr KERMETA -SL .

239 pr STACK{StackEntry} .
pr KERMETA -DOMAIN .

241

sort KConfig .
243 op <|_,_,_,_|> : @Label Stack{StackEntry} Domain Nat -> KConfig .

245 var LAB : @Label .
var S : Stack{StackEntry} .

247 var N : Nat .
var D : Domain .

249

op isStop : KConfig -> Bool .
251 eq isStop(<| [], NOPE , D, N |>) = true .

eq isStop(<| LAB , S, D, N |>) = false [owise] .
253 endm

255 mod KERMETA i s
pr KERMETA -AL .

257 pr KERMETA -CONFIGURATION .

259 --- Create a "fresh" Oid (i.e. not present in a model ’s config)
--- Intended to be called with the "N" param in the config

261 op newOid : Nat -> Oid .
var N : Nat .

263 eq newOid(N) = qid("O" + string(N, 10)) .

265 --- update(M, O, REF , EXP) updates object O in model M
--- with value EXP , preserving reference integrity

267 op update : @Model Oid @Reference OCL -Exp -> @Model .
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269 vars MM : @Metamodel .
vars O O’ X Y : Oid .

271 var SFIS SFISO SFISO ’ SFISX SFISY : Set{@StructuralFeatureInstance} .
var CLASSO CLASSO ’ CLASSX CLASSY : @Class .

273 vars P Q : @Reference .
var OBJSET : Set{@Object} .

275 var VALO ’ VALX VALY : OCL -Exp .

277 ceq update(MM{< O : CLASSO | P : X # SFISO > OBJSET}, O, REF , O’) =
MM{< O : CLASSO | P : O’ # SFISO > OBJSET}

279 i f not(isMany(REF)) /\ null = opposite(REF) .

281 ceq update(MM{< O : CLASSO | P : X # SFISO >
< Y : CLASSY | P : O’ # SFISY >

283 < X : CLASSX | Q : VALX # SFISX > OBJSET}, O, REF , O’) =
MM{ < O : CLASSO | P : O’ # SFISO >

285 < Y : CLASSY | P : null # SFISY >
< X : CLASSX | Q : null # SFISX > OBJSET}

287 i f not(isMany(P)) /\ not(isContainment(P)) /\ Q := opposite(P) .

289 ceq update(MM{< O : CLASSO | P : X # SFISO >
< O’ : CLASSO ’ | Q : VALO ’ # SFISO ’ >

291 < Y : CLASSY | P : O’ # SFISY >
< X : CLASSX | Q : VALX # SFISX > OBJSET}, O, REF , O’) =

293 MM{ < O : CLASSO | P : O’ # SFISO >
< O’ : CLASSO ’ | Q : O # SFISO >

295 < Y : CLASSY | P : null # SFISO ’ >
< X : CLASSX | Q : null # SFISX > OBJSET}

297 i f not(isMany(P)) /\ isContainment(P) /\ Q := opposite(P) .

299 ceq update(MM{< O : CLASSO | P : X # SFISO >
< Y : CLASSY | P : O’ # SFISY >

301 < X : CLASSX | Q : VALX # SFISX > OBJSET}, O, REF , O’) =
MM{< O : CLASSO | P : O’ # SFISO >

303 < Y : CLASSY | P : null # SFISY >
< X : CLASSX | Q : null # SFISX > OBJSET}

305 i f not(isMany(P)) /\ isContainer(P) /\ Q := opposite(P) .

307 vars LAB LABNxt LABELSE LABTHEN LABNULL : @Label .
vars VPSET VPSETT : Set{VarPair} .

309 vars S : Stack{StackEntry} .
vars M MP : @Model .

311

vars E RES INST OLD EXP : OCL -Exp .
313 var OID : Oid .

vars VAR MYVAR : @Variable .
315 var MAYBEVAR : Maybe{@LocalVariable} .

var CLASS : @Class .
317 var CLASSIFIER : @Classifier .

var SE : StackEntry .
319 var COLLITEM : @CollItem .

var OPNAME : String .
321 var OP : @Operation .

var LO LEXP : List{OCL -Exp} .
323 var K : KConfig .

var ATT : @Attribute .
325 var REF : @Reference .

327 op run : KConfig -> KConfig .
eq run(K) = i f isStop(K) then K else run(exec(K)) fi .

329

op exec : KConfig -> KConfig [iter] .
331

--- CondStmt
333 ceq exec( <| LAB , S, < M ## VPSET >, N |> ) = <| LABTHEN , S, < M ## VPSET >, N |>

-------------------------------------------------------------------------------------
335 i f iff( E ) := statements( meta(M) ) [ LAB ] /\

< LABTHEN , LABELSE > := nxt(LAB) /\
337 true = << E ; env(VPSET) ; M >>

.
339
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ceq exec(<| LAB , S, < M ## VPSET >, N |>) = <| LABELSE , S, < M ## VPSET >, N |>
341 -------------------------------------------------------------------------------------

i f iff( E ) := statements( meta(M) ) [ LAB ] /\
343 < LABTHEN , LABELSE > := nxt(LAB) /\

false = << E ; env(VPSET) ; M >>
345 .

--- ReturnStmt
347 ceq exec(<| LAB , (| LABNxt , VPSETT , null |) !!! S, < M ## VPSET >, N |>) =

<| LABNxt , S, < M ## VPSETT >, N |>
349 -------------------------------------------------------------------------------------

i f return := statements( meta(M) ) [ LAB ]
351 .

ceq exec(<| LAB , (| LABNxt , VPSETT , MYVAR |) !!! S, < M ## VPSET >, N |>) =
353 <| LABNxt , S, < M ## putVar( MYVAR <- RES , VPSETT) >, N |>

-----------------------------------------------------------------------------------------------------
355 i f return( E ) := statements( meta(M) ) [ LAB ] /\

RES := << E ; env(VPSET) ; M >>
357 .

ceq exec(<| LAB , NOPE , < M ## VPSET >, N |>) =
359 <| [] , NOPE , < M ## VPSET >, N |>

-------------------------------------------------------------------------------------
361 i f return := statements( meta(M) ) [ LAB ]

.
363 ceq exec(<| LAB , NOPE , < M ## VPSET >, N |>) =

<| [] , NOPE , < M ## putVar( KRESULT <- RES , VPSET) >, N |>
365 i f return( E ) := statements( meta(M) ) [ LAB ] /\

RES := << E ; env(VPSET) ; M >>
367 .

--- NewInstStmt: depends on the object ’s type created
369 ceq exec(<| LAB , S, < MM { OBJSET } ## VPSET >, N |>) =

<| LABNxt , S, < MM { complete(< newOid(N) : CLASSIFIER | empty >) OBJSET } ##
371 (putVar(MYVAR <- newOid(N), VPSET)) >, (N + 1) |>

i f MYVAR .:=. new ( CLASSIFIER ) := statements( MM ) [ LAB ] /\
373 < LABNxt , LABNULL > := nxt(LAB) /\

CLASSIFIER :: @Class
375 .

ceq exec(<| LAB , S, < MM { OBJSET } ## VPSET >, N |>) =
377 <| LABNxt , S, < MM { OBJSET } ## (putVar(MYVAR <- defaultValue(CLASSIFIER), VPSET)) >, N |>

i f MYVAR .:=. new ( CLASSIFIER ) := statements( MM ) [ LAB ] /\
379 < LABNxt , LABNULL > := nxt(LAB) /\

CLASSIFIER :: @DataType
381 .

ceq exec(<| LAB , S, < MM {OBJSET} ## VPSET >, N |>) =
383 <| LABNxt , S, < MM {OBJSET} ## (putVar(MYVAR <- default(COLLITEM , CLASSIFIER), VPSET)) >, N |>

i f MYVAR .:=. new ( COLLITEM , CLASSIFIER ) := statements( MM ) [ LAB ] /\
385 < LABNxt , LABNULL > := nxt(LAB)

.
387 --- CallStmt

ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =
389 <| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] ,

(| LABNxt , VPSET , null |) !!! S,
391 < MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP))) >, N |>

i f INST . OPNAME <> := statements( MM ) [ LAB ] /\
393 < LABNxt , LABNULL > := nxt(LAB) /\

OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\
395 OID :: Oid /\

OP := lookup(OPNAME , CLASS)
397 . --- Having O : CLASS in the to-be -rewritten KConfig causes Maude trying to match ALL

--- objects in the model before giving up
399 ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =

<| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] ,
401 (| LABNxt , VPSET , null |) !!! S,

< MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP, LEXP))) >, N
|>

403 i f INST . OPNAME < LO > := statements( MM ) [ LAB ] /\
< LABNxt , LABNULL > := nxt(LAB) /\

405 LEXP := eval -EL(LO , env(VPSET), none) /\
OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\

407 OID :: Oid /\
OP := lookup(OPNAME , CLASS)

409 .
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ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =
411 <| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] ,

(| LABNxt , VPSET , MYVAR |) !!! S,
413 < MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP))) >, N |>

i f MYVAR .:=. INST . OPNAME <> := statements( MM ) [ LAB ] /\
415 < LABNxt , LABNULL > := nxt(LAB) /\

OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\
417 OID :: Oid /\

OP := lookup(OPNAME , CLASS)
419 . --- Having O : CLASS in the to-be -rewritten KConfig causes Maude trying to match ALL

--- objects in the model before giving up
421 ceq exec(<| LAB , S, < MM { < OID : CLASS | SFIS > OBJSET } ## VPSET >, N |>) =

<| [ package(containingClass(OP)) , containingClass(OP) , OP , 1 ] ,
423 (| LABNxt , VPSET , MYVAR |) !!! S,

< MM { < OID : CLASS | SFIS > OBJSET } ## (putVar(self <- OID , createLocalEnv(OP, LEXP))) >, N |>
425 i f MYVAR .:=. INST . OPNAME < LO > := statements( MM ) [ LAB ] /\

< LABNxt , LABNULL > := nxt(LAB) /\
427 LEXP := eval -EL(LO , env(VPSET), none) /\

OID := << INST ; env(VPSET) ; MM { < OID : CLASS | SFIS > OBJSET } >> /\
429 OID :: Oid /\

OP := lookup(OPNAME , CLASS)
431 .

--- AssignStmt
433 ceq exec(<| LAB , S, < MM { OBJSET } ## (( MYVAR <- OLD) # VPSET) >, N |>) =

<| LABNxt , S, < MM { OBJSET } ## (putVar(MYVAR <- RES , VPSET)) >, N |>
435 i f MYVAR .:=. E := statements( MM ) [ LAB ] /\

< LABNxt , LABNULL > := nxt(LAB) /\
437 RES := << E ; env((MYVAR <- OLD) # VPSET) ; MM { OBJSET } >>

.
439 ceq exec(<| LAB , S, < MM { < O : CLASS | ATT : OLD # SFIS > OBJSET } ## VPSET >, N |>) =

<| LABNxt , S, < MM { < O : CLASS | ATT : RES # SFIS > OBJSET } ## VPSET >, N |>
441 i f INST . ATT .:=. E := statements( MM ) [ LAB ] /\

< LABNxt , LABNULL > := nxt(LAB) /\
443 O := << INST ; env(VPSET) ; MM { < O : CLASS | ATT : OLD # SFIS > OBJSET } >> /\

O :: Oid /\
445 RES := << E ; env(VPSET) ; MM { < O : CLASS | ATT : OLD # SFIS > OBJSET } >>

.
447 ceq exec(<| LAB , S, < MM { < O : CLASS | REF : OLD # SFIS > OBJSET } ## VPSET >, N |>) =

<| LABNxt , S, < update(MM { < O : CLASS | REF : RES # SFIS > OBJSET }, O, REF , RES) ## VPSET >, N
|>

449 i f INST . REF .:=. E := statements( MM ) [ LAB ] /\
< LABNxt , LABNULL > := nxt(LAB) /\

451 O := << INST ; env(VPSET) ; MM { < O : CLASS | REF : OLD # SFIS > OBJSET } >> /\
O :: Oid /\ --- not(isMany(REF)) /\ opposite(REF) == null /\

453 RES := << E ; env(VPSET) ; MM { < O : CLASS | REF : OLD # SFIS > OBJSET } >>
.

455 endm
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Summary of Publications

This Appendix provides a comprehensive list of all our publications, sorted by publication kind. The list
highlightings the relationship between the publication entries, and explains how each publication is related to
this Manuscript content.

Journal

[J1] This publication provides a survey, articulated around a simple taxonomy of characteristics for evaluating
the impact, relevance and usability of existing Model-Driven Security approaches. It also sketches some
directions about how an ideal Model-Driven Security would look like. This complements the work presented
in [C1].

Levi Lúcio, Zhang Qin, et al. (2014). “Advances in Model-Driven Security”. In: Advances in Computer
Science, (submitted, under review)

[J2] This publication is at the basis of Chapter 4, and significantly extends [W1].

Moussa Amrani et al. (2013). “Model Transformation Intents and Their Properties”. In: Journal of
Software And Systems (SoSyM), (submitted, under review)

[J3] This publication is an extended version of [W3].

Moussa Amrani et al. (2014). “A Survey of Formal Verification Techniques for Model Transformations:
A Tridimensional Classification”. In: Journal of Technology (JoT), (submitted, under review)

Book Chapter

[B1] This double-blind, double rounded reviewed publication contains the formal semantics of Kermeta, from
which Chapters 6 and 7 are directly inspired.

Moussa Amrani (2013). “A Formal Semantics of Kermeta”. In: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments. Ed. by Marjan Mernik. Igi Global. Chap. 10, pp. 270–309

Conference

[C1] This paper presents a policy-based approach named Security@Runtime for automating the integration
of security mechanisms into Java-based business applications. This work complements the topic of the
Ph.D by defining an real-life Domain-Specific Language for specifying security configurations by means
of authorisations, obligations and reactions, which are enforced using the classical Pep/Pdp (Policy
Enforcement/Decision Points) approach.
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Yehia Elrakaiby, Moussa Amrani, and Yves Le Traon (2014). “Security@Runtime: A Flexible MDE
approach to Enforce and Manage Fine-grained Advanced Security Policies”. In: Proceedings of the Inter-
national Symposium on Engineering Secure Software and Systems (ESSoS)

Workshop

[W1] This paper is a preliminary exploration of the concepts of intent and property mapping developed in
Chapter 4, demonstrated with only one intent.

Moussa Amrani et al. (2012a). “Towards a Model Transformation Intent Catalog”. In: Proceedings of the
First Workshop on Analysis of Model Transformations (Amt)

[W2] Levi Lúcio, Eugene Syriani, et al. (2012). “Invariant Preservation In Iterative Modeling”. In: Workshop
on Models and Evolution (Me)

[W3] This paper first started as a state-of-the-art in the domain of formal verification of model transformations,
from which Chapter 3 is directly inspired. It will be extended as a Journal paper in [J3].

Moussa Amrani et al. (2012b). “A Tridimensional Approach for Studying the Formal Verification of
Model Transformations”. In: Proceedings of the First Workshop on Verification And Validation of Model
Transformations

Technical Report

[T1] The following Report is an extended version of [W2]: it provides full details of the mathematical proofs,
as well as complete specifications of the running example used in [W2].

Moussa Amrani, Levi Lúcio, Eugene Syriani, et al. (2013). Invariant Preservation In Iterative Modeling.
(Extended Version). Tech. rep. TR-LASSY-12-13. Laboratory of Advanced Software and Systems (Lassy)

[T2] This Report completes [B1] with the missing details of the semantics specification that were omitted for
space reasons, as well as an extended state-of-the-art on the formalisation of Kermeta’s languages.

Moussa Amrani (2011). A Formal Semantics of Kermeta. Tech. rep. TR-LASSY-12-12. Available at.
University of Luxembourg

[T3] This work reports on a preliminary effort to specify Kermeta’s Structural Language, using Z (Spivey 1992)
as a validation tool. However, this path was stopped because it was difficult to obtain a fully executable
specification needed as a prerequisite for formal verification of dynamic properties.

Moussa Amrani and Nuno Amálio (2011). A Set-Theoretic Formal Specification of the Semantics of
Kermeta. Tech. rep. TR-LASSY-11-03. Available at http://bit.ly/ju4NcG. University of Luxembourg

198

http://bit.ly/ju4NcG


Bibliography

Adrion, W. Richards, Martha A. Branstad, and John C. Cherniavsky (1982). “Validation, Verification, and
Testing of Computer Software”. In: ACM Comput. Surv. 14.2, pp. 159–192 (cit. on p. 52).

Agrawal, Aditya, Gabor Karsai, Zsolt Kalmar, Sandeep Neema, Feng Shi, and Attila Vizhanyo (2006). “The
Design of a Language for Model Transformations”. In: Software and Systems Modeling 5.3, pp. 261–288
(cit. on p. 56).

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman (1986). Compilers: Principles, Techniques, and Tools. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 0-201-10088-6 (cit. on pp. 117–119).

Akehurst, David H., Stuart Kent, and Octavian Patrascoiu (2003). “A Relational Approach to Defining Trans-
formations in a Metamodel”. In: Proceedings of the 5th International Conference on The Unified Modeling
Language (Uml). Vol. 2. 4, pp. 215–239 (cit. on pp. 40, 42, 78, 79).

Alanen, Marcus and Ivan Porres (2003). A Relation Between Context-Free Grammars and Meta-Object Facility
Metamodels. Tech. rep. TUCS Turku Center for Computer Science (Finland) (cit. on p. 28).

Amrani, Moussa (2011). A Formal Semantics of Kermeta. Tech. rep. TR-LASSY-12-12. Available at. University
of Luxembourg (cit. on pp. 89, 198).

— (2013). “A Formal Semantics of Kermeta”. In: Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments. Ed. by Marjan Mernik. Igi Global. Chap. 10, pp. 270–309 (cit. on pp. 89, 197).

Amrani, Moussa and Nuno Amálio (2011). A Set-Theoretic Formal Specification of the Semantics of Kermeta.
Tech. rep. TR-LASSY-11-03. Available at http://bit.ly/ju4NcG. University of Luxembourg (cit. on pp. 89,
198).

Amrani, Moussa, Jürgen Dingel, Leen Lambers, Levi Lúcio, Rick Salay, Gehan Selim, Eugene Syriani, and
Manuel Wimmer (2012a). “Towards a Model Transformation Intent Catalog”. In: Proceedings of the First
Workshop on Analysis of Model Transformations (Amt) (cit. on pp. 9, 49, 85, 198).

— (2013). “Model Transformation Intents and Their Properties”. In: Journal of Software And Systems (SoSyM)
(cit. on pp. 9, 60, 197).

Amrani, Moussa, Levi Lúcio, Gehan Selim, Benoît Combemale, Jürgen Dingel, Hans Vangheluwe, Yves Le
Traon, and James R. Cordy (2012b). “A Tridimensional Approach for Studying the Formal Verification of
Model Transformations”. In: Proceedings of the First Workshop on Verification And Validation of Model
Transformations (cit. on pp. 9, 17, 51, 52, 86, 198).

— (2014). “A Survey of Formal Verification Techniques for Model Transformations: A Tridimensional Classifi-
cation”. In: Journal of Technology (JoT) (cit. on p. 197).

199

http://bit.ly/ju4NcG


Bibliography

Amrani, Moussa, Levi Lúcio, Eugene Syriani, Qin Zhang, and Hans Vangheluwe (2013). Invariant Preservation
In Iterative Modeling. (Extended Version). Tech. rep. TR-LASSY-12-13. Laboratory of Advanced Software
and Systems (Lassy) (cit. on p. 198).

Anastasakis, Kyriakos, Behzad Bordbar, and Jochen M. Küster (2007). “Analysis of Model Transformations via
Alloy”. In: MoDeVVa, pp. 47–56 (cit. on pp. 44, 46).

André, Charles, Frédéric Mallet, and Robert de Simone (2007). “Modeling Time(s)”. In: ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems (MoDELS/Uml). Vol. 4735.
Lecture Notes on Computer Science. Springer, pp. 559–573 (cit. on pp. 174, 177).

André, Sylvain (2004). “Model-Driven Architecture: Principles and State of the Art”. (in French). MA thesis.
Conservatoire National d’Arts et Metiers (cit. on p. 1).

Arendt, Thorsten, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer (2010). “Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transformations”. In: International Conference on
Model Driven Engineering Languages and Systems (MoDELS). Ed. by Dorina C. Petriu, Nicolas Rouquette,
and Øystein Haugen. Vol. 6394. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 121–135
(cit. on p. 29).

Asztalos, Márk, László Lengyel, and Tihamer Levendovszky (2010). “Towards Automated, Formal Verification
of Model Transformations”. In: Icst (cit. on pp. 44, 46).

Asztalos, Márk, Eugene Syriani, Manuel Wimmer, and Marouane Kessentini (2011). “Simplifying Model Trans-
formation Chains By Rule Composition”. In: Models in Software Engineering - Workshops and Symposia at
MODELS 2010, Reports and Revised Selected Papers. Vol. 6627. Lncs, pp. 293–307 (cit. on p. 56).

Atkinson, Colin and Thomas Kühne (2002a). “Profiles in a Strict Metamodeling Framework”. In: Science of
Computer Programming 44.1, pp. 5–22 (cit. on p. 12).

— (2002b). “Rearchitecting the UML Infrastructure”. In: ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS) 12.4, pp. 290–321 (cit. on p. 12).

— (2007). “A Tour of Language Customization Concepts”. In: Advances in Computers 70, pp. 105–161 (cit. on
p. 26).

(Atl), The Atlas Transformation Language. Available at http://www.eclipse.org/m2m/atl/ (cit. on p. 20).

Bae, Jung Ho, KwangMin Lee, and Heung Seok Chae (2008). “Modularization of the UML Metamodel Using
Model Slicing”. In: ITNG’08. IEEE, pp. 1253–1254 (cit. on p. 62).

Baresi, Luciano, Reiko Heckel, Sebastian Thöne, and Dániel Varró (2006). “Style-Based Modeling and Refine-
ment of Service Oriented Architectures”. In: Journal of Software and Systems Modeling 5 (2), pp. 187–207
(cit. on p. 64).

Barišic, Ankica, Vasco Amaral, Miguel Goulão, and Bruno Barroca (2014). “Evaluating the Usability of Domain-
Specific Languages”. In: Formal and Practical Aspects of Domain-Specific Languages: Recent Developments.
Ed. by Marjan Mernik. Igi Global. Chap. 14, pp. 386–407 (cit. on p. 26).

Barroca, Bruno, Levi Lúcio, Vasco Amaral, Roberto Félix, and Vasco Sousa (2010). “DslTrans: A Turing-
Incomplete Transformation Language”. In: Sle (cit. on pp. 38, 39, 42, 43, 46).

Becker, Basil, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling (2006). “Symbolic Invariant Verifi-
cation For Systems With Dynamic Structural Adaptation”. In: Icse. Shanghai, China. isbn: 1-59593-375-1
(cit. on pp. 41, 42, 44, 46).

200

http://www.eclipse.org/m2m/atl/


Bibliography

Berdine, Josh, Byron Cook, Dino Distefano, and Peter W. O’Hearn (2006). “Automatic Termination Proofs for
Programs with Shape-Shifting Heaps”. In: Computer-Aided Verification (Cav). Vol. 4144. Lncs, pp. 386–400
(cit. on pp. 38, 42).

Bergmann, Gábor, Zoltán Ujhelyi, István Ráth, and Dániel Varró (2011). “A Graph Query Language for EMF
Models”. In: Proceedings of the 4th International Conference on Theory and Practice of Model Transforma-
tions ( Icmt). Vol. 6707. Lncs. Springer, pp. 167–182 (cit. on p. 55).

Bertot, Yves and Pierre Castéran (2004). Interactive Theorem Proving and Program Development — Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (cit. on p. 34).

Bettini, Lorenzo (2013). Implementing Domain-Specific Languages with Xtext and Xtend. Learn To Implement
a DSL with Xtext and Xtend using easy-to-understand examples and best practices. PackT Publishing.
342 pp. (cit. on p. 19).

Bézivin, Jean, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev, and Arne Lindow (2006). “Model
Transformations? Transformation Models!” In: MoDELS (cit. on pp. 18, 39, 45, 66).

Biermann, Enrico (2011). “Local Confluence Analysis of Consistent Emf Transformations”. In: EcEasst 38,
pp. 68–84 (cit. on pp. 38, 42).

Biermann, Enrico, Karsten Ehrig, Claudia Ermel, and Jonas Hurrelmann (2009). “Generation of Simulation
Views for Domain Specific Modeling Languages Based on the Eclipse Modeling Framework”. In: Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software Engineering, pp. 625–629 (cit. on
p. 71).

Biermann, Enrico, Claudia Ermel, and Gabriele Taentzer (2008). “Precise Semantics of EMF Model Transfor-
mations by Graph Transformation”. In: Proceedings of the 11th international conference on Model Driven
Engineering Languages and Systems. MoDELS ’08. Berlin, Heidelberg: Springer-Verlag, pp. 53–67. url:
http://dx.doi.org.proxy.bnl.lu/10.1007/978-3-540-87875-9%5C_4 (cit. on p. 114).

Biggerstaff, Ted James (1998). “A Perspective of Generative Reuse”. In: Annals of Software Engineering 5,
pp. 169–226 (cit. on p. 24).

Bohlen, Matthias, Chad Brandon, Martin West, Carlos Cuenca, Peter Friese, Naresh Bhatia, Steve Jerman,
Joel Kozikowski, Bob Fields, Michail Plushnikov, and Vance Karimi. The AndroMda Website. url: http:
//www.andromda.org (cit. on p. 19).

Boocock, Paul. The Jamda Website. url: http://jamda.sourceforge.net (cit. on p. 19).

Börger, Egon and Robert Stärk (2003). Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer-Verlag (cit. on pp. 28, 70, 176).

Boronat, Artur (2007). “MoMent: A Formal Framework for Model manageMent”. PhD thesis. University of
Valencia (cit. on pp. 39, 42).

Boronat, Artur and José Meseguer (2008). “An Algebraic Semantics For MOF”. In: FASE’08/ETAPS’08: Pro-
ceedings of the Theory and Practice of Software, 11th International Conference on Fundamental Approaches
to Software Engineering. Berlin, Heidelberg: Springer-Verlag, pp. 377–391 (cit. on pp. 114, 147, 148).

Bouhoula, Adel, Jean-Pierre Jouannaud, and José Meseguer (2000). “Specification and Proof in Membership
Equational Logic”. In: Theoretical Computer Science 236.1, pp. 35–132 (cit. on p. 138).

Boulanger, Jean-Louis, ed. (2011). Static Analysis of Software – The Abstract Interpretation. Wiley (cit. on
p. 2).

201

http://dx.doi.org.proxy.bnl.lu/10.1007/978-3-540-87875-9%5C_4
http://www.andromda.org
http://www.andromda.org
http://jamda.sourceforge.net


Bibliography

Bruggink, H.J. Sander. (2008). “Towards a Systematic Method for Proving Termination of Graph Transforma-
tion Systems”. In: Entcs 213(1) (cit. on pp. 38, 42).

Brunelière, Hugo, Jordi Cabot, Cauê Clasen, Frédéric Jouault, and Jean Bézivin (2010). “Towards Model Driven
Tool Interoperability: Bridging Eclipse and Microsoft Modeling Tools”. In: European Conference on Modelling
Foundations and Applications (Ecmfa). Vol. 6138. Lecture Notes in Computer Science (Lncs), pp. 32–47
(cit. on p. 66).

Bryant, Barrett R., Jeff Gray, Marjan Mernik, Peter J. Clarke, Robert B. France, and Gabor Karsai (2011).
“Challenges and Directions in Formalizing the Semantics of Modeling Languages”. In: Journal of Computer
Science and Information Systems 8.2 (Special Issue on Advances in Formal Languages, Modeling and Ap-
plications), pp. 225–253 (cit. on p. 28).

Büttner, Fabian, Marina Egea, and Jordi Cabot (2012). “On Verifying ATL Transformations Using ’off-the-
shelf’ SMT Solvers”. In: International Conference on Model-Driven Engineering Languages and Systems
(MoDELS). Springer, pp. 432–448 (cit. on p. 78).

Büttner, Fabian, Marina Egea, Jordi Cabot, and Martin Gogolla (2012). “Verification of ATL Transformations
Using Transformation Models and Model Finders”. In: 14th International Conference on Formal Engineering
Methods ( Icfem). LNCS 7635. Springer, pp. 198–213 (cit. on pp. 78, 79, 174).

Cabot, Jordi, Robert Clarisó, Esther Guerra, and Juan de Lara (2010). “Verification and Validation of Declar-
ative Model-to-Model Transformations Through Invariants”. In: Journal of Systems and Software 83(2),
pp. 283–302 (cit. on p. 67).

Calegari, Daniel and Nora Szasz (2013). “Verification of Model Transformations: A Survey of the State-of-the-
Art”. In: Electronic Notes in Theoretical Computer Science 292, pp. 5–25 (cit. on pp. 48, 51, 52, 86).

Cardelli, Luca (2004). “Type Systems”. In: The Computer Science and Engineering Handbook. CRC Press (cit.
on p. 120).

Cariou, Éric, Nicolas Belloir, Franck Barbier, and Nidal Djemam (2009). “OCL Contracts For The Verification
Of Model Transformations”. In: EcEasst 24 (cit. on p. 78).

Castagna, Giuseppe and Zhiwu Xu (2011). “Set-Theoretic Foundation of Parametric Polymorphism and Subtyp-
ing”. In: 16th ACM SIGPLAN International Conference on Functional Programming ( Icfp) (cit. on pp. 94,
174).

Chechik, Marsha, Shiva Nejati, and Mehrdad Sabetzadeh (2011). “A Relationship-Based Approach to Model
Integration”. In: Isse 7 (cit. on pp. 40, 42).

Chen, Kai, Janos Sztipanovits, and Sandeep Neema (2005). “Toward a Semantic Anchoring Infrastructure
for Domain-Specific Modeling Languages”. In: Proceedings of the 5th ACM International Conference on
Embedded Software. EMSOFT ’05. Jersey City, NJ, USA: ACM, pp. 35–43. isbn: 1-59593-091-4. doi: http:
//doi.acm.org.proxy.bnl.lu/10.1145/1086228.1086236. url: http://doi.acm.org.proxy.bnl.lu/
10.1145/1086228.1086236 (cit. on p. 28).

Cheung, Shing Chi and Jeff Kramer (1999). “Checking Safety Properties Using Compositional Reachability
Analysis”. In: Acm Transactions on Software Engineering Methodologies 8.1, pp. 49–78 (cit. on p. 84).

Cicchetti, Antonio, Davide Di Ruscio, R Eramo, and Alfonso Pierantonio (2008). “Automating co-evolution
in model-driven engineering”. In: International IEEE Enterprise Distributed Object Computing Conference.
IEEE Computer Society, pp. 222–231 (cit. on p. 56).

202

http://dx.doi.org/http://doi.acm.org.proxy.bnl.lu/10.1145/1086228.1086236
http://dx.doi.org/http://doi.acm.org.proxy.bnl.lu/10.1145/1086228.1086236
http://doi.acm.org.proxy.bnl.lu/10.1145/1086228.1086236
http://doi.acm.org.proxy.bnl.lu/10.1145/1086228.1086236


Bibliography

Clark, Tony, Andy Evans, Paul Sammut, and James Willans (2004). Applied Metamodelling: A Foundation for
Language Driven Development. Ceteva, Sheffield (cit. on p. 71).

Clark, Tony, Paul Sammut, and James Willans (2008). Superlanguages: Developing Languages and Applications
with Xmf. Ceteva (cit. on p. 132).

Clarke, Edmund M., Orna Grumberg, and Doron A. Peled (1999). Model-Checking. The MIT Press (cit. on
pp. 2, 81).

Clarke, Edmund M. and Jeannette M. Wing (1996). “Formal methods: state of the art and future directions”.
In: ACM Comput. Surv. 28.4, pp. 626–643 (cit. on p. 52).

Clavel, Manuel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, Jose Meseguer, and Carolyn
Talcott (2007). All About Maude. A High-Performance Logical Framework. Vol. 4350. Lecture Notes in
Computer Science (Lncs). Springer (cit. on pp. 29, 70, 137–139, 141, 147).

Combemale, Benoit, Xavier Crégut, Pierre-Loïc Garoche, and Xavier Thirioux (2009). “Essay on Semantics
Definition in MDE. An Instrumented Approach for Model Verification”. In: Journal of Software 4.9, pp. 943–
958. url: http://www.academypublisher.com/ojs/index.php/jsw/article/view/0409943958 (cit. on
pp. 28, 29, 41, 132).

Combemale, Benoit, Julien Deantoni, Matias Vara Larsen, Fr’ed’eric Mallet, Olivier Barais, Benoit Baudry, and
Robert France (2013). “Reifying Concurrency for Executable Metamodeling”. In: International Conference
on Software Language Engineering (Sle). Ed. by Richard F. Paige Martin Erwig and Eric van Wyk. Lecture
Notes in Computer Science. Springer-Verlag (cit. on p. 177).

Combemale, Benoit, C’ecile Hardebolle, Christophe Jacquet, Fr’ed’eric Boulanger, and Benoit Baudry (2012).
“Bridging the Chasm between Executable Metamodeling and Models of Computation”. In: International
Conference on Software Language Engineering (Sle). Lecture Notes in Computer Science. Springer (cit. on
p. 177).

Costagliola, Gennaro, Andrea Delucia, Sergio Orefice, and Giuseppe Polese (2002). “A Classification Framework
to Support the Design of Visual Languages”. In: Journal of Visual Languages & Computing 13.6, pp. 573–600
(cit. on p. 27).

Cousot, Patrick and Radhia Cousot (2010). “Logics and Languages for Reliability and Security”. In: ed. by
Javier Esparza, Orna Grumberg, and Manfred Broy. Nato Series III: Computer and Systems Sciences. IOS
Press. Chap. A Gentle Introduction to Formal Verification of Computer Systems by Abstract Interpretation,
pp. 1–29 (cit. on pp. 31, 35).

Czarnecki, Krzysztof and Simon Helsen (2006). “Feature-Based Survey of Model Transformation Approaches”.
In: Ibm Systems J. 45(3), pp. 621–645 (cit. on pp. 19, 21, 37, 49, 51, 54, 85).

Dalal, S. R., A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M. Horowitz (1999).
“Model-based testing in practice”. In: International Conference on Software Engineering. Los Angeles: ACM
Press, pp. 285–294 (cit. on p. 56).

Darlington, John and R.M. Burstall (1976). “A System Which Automatically Improves Programs”. In: Acta
Informatica 6.1, pp. 41–60 (cit. on p. 20).

De Lara, Juan, Esther Guerra, Artur Boronat, Reiko Heckel, and Paolo Torrini (2010). “Graph Transformation
for Domain-Specific Discrete Event Time Simulation”. In: International Conference on Graph Transformation
( Icgt), pp. 266–281 (cit. on p. 71).

203

http://www.academypublisher.com/ojs/index.php/jsw/article/view/0409943958


Bibliography

De Lara, Juan and Gabriele Taentzer (2004). “Automated Model Transformation and its Validation Using
AToM3 and AGG”. In: Diagrammatic Representation and Inference (Diagrams, pp. 182–198 (cit. on p. 67).

De Lara, Juan and Hans Vangheluwe (2002). “Using AToM3 as a Meta-Case Tool”. In: Iceis, pp. 642–649
(cit. on p. 20).

— (2004). “Defining Visual Notations and their Manipulation Through Meta-Modelling and Graph Transfor-
mation”. In: Journal of Visual Languages & Computing 15.3 – 4, pp. 309–330 (cit. on p. 70).

— (2010). “Automating the Transformation-Based Analysis of Visual Languages”. In: Fac 22(3-4), pp. 297–326
(cit. on pp. 28, 44, 46).

De Roever, Willem-Paul, Frank de Boer, Ulrich Hanneman, Jozef Hooman, Yassine Lakhnech, Mannes Poel,
and Job Zwiers (2001). Concurrency Verification: Introduction to Compositional and Non-Compositional
Methods. Cambridge University Press (cit. on p. 84).

Deltombe, Gaëtan, Olivier Le Goaer, and Franck Barbier (2012). “Bridging KDM and ASTM for Model-Driven
Software Modernization”. In: International Conference on Software Engineering & Knowledge Engineering
(Seke), pp. 517–524 (cit. on pp. 16, 66).

Denil, Joachim (2013). “Design, Verification and Deployment of Software-Intensive Systems: A Multi-Paradigm
Modelling Approach”. PhD thesis. Antwerp University (cit. on pp. 73, 75).

Denil, Joachim, Antonio Cicchetti, Matthias Biehl, Paul De Meulenaere, Romina Eramo, Serge Demeyer, and
Hans Vangheluwe (2012). “Automatic Deployment Space Exploration Using Refinement Transformations”.
In: Recent Advances in Multi-paradigm Modelling. 50 (cit. on p. 55).

Dorf, Richard C. (2011). Modern Control Systems. 12th. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc. (cit. on p. 75).

Drey, Zoé, Cyril Faucher, Franck Fleurey, Vincent Mahé, and Didier Vojtisek (2009). Kermeta Language —
Reference Manual. University of Rennes, Triskell Team (cit. on pp. 93, 95, 97, 109–111, 114–116, 123, 132,
179).

D’Silva, Vijay, Daniel Kroening, and Georg Weissenbacher (2008). “A Survey of Automated Techniques for
Formal Software Verification”. In: IEEE Trans. on CAD of Integrated Circuits and Systems 27.7, pp. 1165–
1178 (cit. on p. 52).

Ducasse, Stéphane and Tudor Gîrba (2006). “Using Smalltalk as a Reflective Executable Meta-language”. In: Pro-
ceedings of the International Conference on Model Driven Engineering Languages and Systems (MoDELS),
pp. 604–618 (cit. on p. 71).

Duffy, David A. (1991). Principles of Automated Theorem-Proving. Wiley & Sons (cit. on p. 2).

Durán, Francisco (1999). “A Reflective Module Algebra with Application to the Maude Language”. PhD thesis.
University of Málaga (Spain) (cit. on p. 141).

Durán, Francisco, Martin Gogolla, and Manuel Roldán (2011). “Tracing Properties of Uml and Ocl Models
With Maude”. In: Proceeding of the Second International Workshop on Algebraic Methods in Model-based
Software Engineering (Ammse). Ed. by Francisco Durán and Vlad Rusu. Vol. 56. Electronic Proceedings in
Theoretical Computer Science (cit. on pp. 148, 175).

Durán, Francisco and Manuel Roldán (2011). “Dynamic Validation of Ocl Constraints with mOdCL”. In:
Proceedings of the International Workshop on Ocl and Textual Modelling. Ed. by Jordi Cabot, Robert
Clarisó, Martin Gogolla, and Burkhart Wolff (cit. on pp. 148, 175).

204



Bibliography

Ehrig, Hartmut, Karsten Ehrig, Gabriele Taentzer, Juan de Lara, Dániel Varró, and Szilvia Varró-Gyapai
(2005). “Termination Criteria for Model Transformation”. In: Fase (cit. on pp. 38, 42, 43, 46).

Ehrig, Hartmut and Bernd Mahr (1985). Fundamentals of Algebraic Specifications. Springer-Verlag (cit. on
p. 99).

Elrakaiby, Yehia, Moussa Amrani, and Yves Le Traon (2014). “Security@Runtime: A Flexible MDE approach
to Enforce and Manage Fine-grained Advanced Security Policies”. In: Proceedings of the International Sym-
posium on Engineering Secure Software and Systems (ESSoS) (cit. on p. 198).

Engel, Klaus-D., Richard Paige, and Dimitrios Kolovos (2006). “Using a Model Merging Language for Reconciling
Model Versions”. In: Model Driven Architecture-Foundations and Applications. Ed. by Arend Rensink and
Jos Warmer. Vol. 4066. LNCS. Springer, pp. 143–157 (cit. on p. 57).

Engels, Gregor, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer (2000). “Dynamic Meta Modeling:
A Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML”. In: International
Conference on The Unified Modeling Language — Advancing the Standard, pp. 323–337 (cit. on pp. 67, 71,
72).

Ermel, Claudia and Hartmut Ehrig (2008). “Behavior-Preserving Simulation-to-Animation Model and Rule
Transformations”. In: Electronic Notes in Theoretical Computer Science 213.1, pp. 55–74 (cit. on pp. 56,
71).

Fabro, Marcos Didonet Del and Patrick Valduriez (2009). “Towards the efficient development of model trans-
formations using model weaving and matching transformations”. In: Software and System Modeling 8.3,
pp. 305–324 (cit. on p. 57).

Farzan, Azadeh, Feng Chen, José Meseguer, and Grigore Rosu (2004). “Formal Analysis of Java Programs in
JavaFAN”. In: Proceedings of Computer-aided Verification (Cav). Ed. by Rajeev Alur and Doron Peled.
Lecture Notes in Computer Science 3114, pp. 501–505 (cit. on p. 177).

Fischer, Thorsten, Jörg Niere, Lars Turunski, and Albert Zündorf (2000). “Story diagrams: A new graph rewrite
language based on the Unified Modelling Language and Java”. In: Theory and Application of Graph Trans-
formations. Ed. by Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Vol. 1764.
LNCS. Paderborn: Springer-Verlag, pp. 296–309 (cit. on p. 55).

Fleurey, Frank (2006). “Language and Method for Trustable Modeling Engineering”. (in french). PhD thesis.
University of Rennes (France) (cit. on pp. 127, 132).

Fowler, Martin (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley, p. 464 (cit. on
p. 57).

Gabmeyer, Sebastian, Petra Brosch, and Martina Seidl (2013). “A Classification of Model Checking-Based
Verification Approaches for Software Models”. In: Proceedings of the 2nd International Workshop on the
Verification of Model Transformation (VOLT) (cit. on p. 86).

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 0-201-
63361-2 (cit. on pp. 19, 50).

Gardner, Tracy, Catherine Griffin, Jana Koehler, and Rainer Hauser (2003). “A review of OMG MOF 2.0 Query
/ Views / Transformations Submissions and Recommendations towards the final standard”. In: Proceedings
of the MetaModelling for MDA Workshop, pp. 178–197 (cit. on p. 62).

205



Bibliography

Gargantini, Angelo, Elvinia Riccobene, and Patrizia Scandurra (2008). “Model-Driven Language Engineering:
The ASMETA Case Study”. In: Proceedings of the Third International Conference on Software Engineering
Advances (ICSEA ’08). Washington, DC, USA: IEEE Computer Society, pp. 373–378. isbn: 978-0-7695-
3372-8. doi: http://dx.doi.org/10.1109/ICSEA.2008.62 (cit. on p. 114).

— (2009). “A Semantic Framework for Metamodel-Based Languages”. In: Ase 16.3–4, pp. 415–454 (cit. on
pp. 28, 114).

— (2010). “Combining Formal Methods and Mde Techniques for Model-Driven System Design and Analysis”.
In: JaS 3.1–2, pp. 1–18 (cit. on pp. 41, 70).

Gessenharter, D (2008). “Mapping the UML2 Semantics of Associations to a Java Code Generation Model”. In:
International Conference on Model Driven Engineering Languages and Systems. Ed. by K. et al. Czarnecki.
Vol. 5301. Lecture Notes in Computer Science. Springer-Verlag, pp. 813–827 (cit. on p. 56).

Ghosh, Sudipto, ed. (2010). Models in Software Engineering, Workshops and Symposia at MODELS 2009,
Denver, CO, USA, October 4-9, 2009, Reports and Revised Selected Papers. Vol. 6002. Lecture Notes in
Computer Science. Springer. isbn: 978-3-642-12260-6.

Giese, Holger, Sabine Glesner, Johannes Leitner, Wilhelm Schäfer, and Robert Wagner (2006). “Towards Verified
Model Transformations”. In: MoDeVVa, pp. 78–93 (cit. on pp. 44, 46).

Giese, Holger, Tihamer Levendovszky, and Hans Vangheluwe (2007). “Summary of the Workshop on Multi-
Paradigm Modeling: Concepts and Tools”. In: Models in Software Engineering: Workshops and Symposia at
MoDELS 2006, Reports and Revised Selected Papers. Vol. 4364. Lncs. Springer (cit. on pp. 55, 65).

Gogolla, Martin and Antonio Vallecillo (2011). “Tractable Model Transformation Testing”. In: Proceedings of the
7th European Conference on Modelling Foundations and Applications (ECMFA). Vol. 6698. Lncs. Springer,
pp. 221–235 (cit. on p. 78).

Graf, Susanne, Bernhard Steffen, and Gerald Lüttgen (1996). “Compositional Minimisation of Finite-State
Systems Using Interface Specifications”. In: Formal Aspects of Computing 8.5, pp. 607–616 (cit. on p. 84).

Griswold, William G. (1991). “Program Restructuring as an Aid to Software Maintenance”. PhD thesis. Univer-
sity of Washington (cit. on p. 57).

Grønmo, Roy, Ragnhild Runde, and Birger Møller-Pedersen (2011). “Confluence of Aspects For Sequence Dia-
grams”. In: SoSyM, pp. 1–36 (cit. on pp. 38, 42).

Guerra, E., J. De Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and W. Schwinger
(2013). “Automated Verification of Model Transformations based on Visual Contracts”. In: Automated Soft-
ware Engineering 20.1, pp. 5–46 (cit. on pp. 78, 174).

Guerra, Esther and Juan de Lara (2006). “Model ViewManagement with Triple Graph Transformation Systems”.
In: International Conference on Graph Transformation. Vol. 4178. LNCS. Springer-Verlag, pp. 351–366 (cit.
on p. 57).

— (2007). “Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages”. In: Journal
on Software and Systems Modeling 6.6, pp. 317–347 (cit. on p. 56).

Guy, Clément (2013). “Facilités de Typage pour l’Ingénierie des Modèles”. PhD thesis. University of Rennes
(France) (cit. on p. 175).

Hardebolle, Cécile (2008). “Composition de Modèles pour la Modélisation Multi-Paradigme du Comportement
des Systèmes”. PhD thesis. Université Paris-Sud XI — École Supérieure d’Électricité (cit. on p. 177).

206

http://dx.doi.org/http://dx.doi.org/10.1109/ICSEA.2008.62


Bibliography

Harel, David and Bernhard Rumpe (2000). Modeling Languages: Syntax, Semantics and All That Stuff, Part I:
The Basic Stuff. Tech. rep. Weizmann Institute Of Sience (cit. on pp. 55, 57).

— (2004). “Meaningful Modeling: What’s the Semantics of "Semantics"?” In: Computer 37.10, pp. 64–72. issn:
0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2004.172 (cit. on p. 27).

Harman, Mark, David Binkley, and Sebastian Danicic (1997). “Amorphous Program Slicing”. In: Software Focus.
IEEE Computer Society Press, pp. 70–79 (cit. on p. 62).

Heckel, Reiko, Jochen M. Küster, and Gabriele Taentzer (2002). “Confluence of Typed Attributed Graph Trans-
formation Systems”. In: Icgt (cit. on p. 38).

Iacob, Maria-Eugenia, Maarten W. A. Steen, and Lex Heerink (2008). “Reusable Model Transformation Pat-
terns”. In: Proceedings of EDOCW’08, pp. 1–10 (cit. on pp. 54, 85).

Izquierdo, Javier L.C and Jesús García Molina (2012). “Extracting Models from Source Code in Software Mod-
ernization”. In: Software & Systems (SoSyM), pp. 1–22 (cit. on p. 66).

Jackson, Daniel (2011). Software Abstractions (cit. on pp. 2, 34).

Jia, Yue and Mark Harman (2010). “An Analysis and Survey of the Development of Mutation Testing”. In: Ieee
Transactions of Software Engineering 37 (5), pp. 649–678 (cit. on p. 2).

Jurack, Stefan and Gabriele Taentzer (2010). “A Component Concept for Typed Graphs With Inheritance and
Containment Structures”. In: Icgt (cit. on pp. 19, 114).

Kabore, Eveline Chantal (2008). “Contribution à l’Automatisation d’un Processus de Construction
d’Abstractions de Communication par Transformations Successives de Modèles”. PhD thesis. École Nationale
Supérieure des Télécommunications de Bretagne / Université de Rennes (cit. on p. 2).

Kastenberg, Harmen and Arend Rensink (2006). “Model Checking Dynamic States in Groove”. In: Model
Checking Software (Spin). Vol. 3925. Lecture Notes on Computer Science, pp. 299–305 (cit. on p. 70).

Katz, Shmuel (2006). “Aspect Categories and Classes of Temporal Properties”. In: Taosd 3880, pp. 106–134
(cit. on pp. 40, 42).

Kelly, Steven and Juha-Pekka Tolvanen (2008). Domain-Specific Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society. url: http://www.worldcat.org/isbn/0470036664 (cit. on pp. 19, 26).

Kelsen, Pierre, Qin Ma, and Christian Glodt (2011). “Models within Models: Taming Model Complexity Using
the Sub-model Lattice”. In: Proceedings of the International Conference on the Foundational Approaches to
Software Engineering (FASE). Springer, pp. 171–185 (cit. on p. 63).

Kern, Heiko (2009). “The Interchange of (Meta)Models Between MetaEdit+and Eclipse EMF Using M3-Level-
Based Bridges”. In: Workshop on Domain-Specific Modeling (Dsm) (cit. on p. 66).

Kern, Heiko, Axel Hummel, and Stefan Kühne (2011). “Towards a Comparative Analysis of Meta-Metamodels”.
In: Workshop on Domain-Specific Modeling (Dsm) (cit. on p. 66).

Kern, Heiko and Stefan Kühne (2007). “Model Interchange between ARIS and Eclipse EMF”. In: Workshop on
Domain-Specific Modeling (Dsm) (cit. on p. 66).

— (2009). “Integration of Microsoft Visio and Eclipse Modeling Framework Using M3-Level-Based Bridges”.
In: ECMDA Workshop on Model-Driven Tool & Process Integration (cit. on pp. 66, 68).

Kilov, Haim (1990). “From semantic to object-oriented data modeling”. In: First International Conference on
System Integration, pp. 385–393 (cit. on p. 54).

207

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2004.172
http://www.worldcat.org/isbn/0470036664


Bibliography

Kleppe, Anneke (2009). Software Language Engineering: Creating Domain-Specific Languages Using Metamod-
els. Upper Saddle River, NJ: Addison-Wesley (cit. on p. 28).

Kleppe, Anneke G., Jos Warmer, and Wim Bast (2003). MDA Explained: The Model Driven Architecture:
Practice and Promise. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 032119442X
(cit. on pp. 17, 25, 55, 64, 65).

Knuth, Donald E. (1992). Literate Programming. University of Chicago Press (cit. on p. 150).

Koch, Nora, Alexander Knapp, Gefei Zhang, and Hubert Baumeister (2008). “UML-based web engineering”. In:
Web Engineering: Modelling and Implementing Web Applications, pp. 157–191 (cit. on p. 62).

Kolovos, Dimitrios, Louis Rose, Antonio García-Domínguez, and Richard Paige (2012). The Epsilon Book. The
Eclipse Foundation. url: http://www.eclipse.org/epsilon (cit. on pp. 19, 71, 132).

König, Barbara and Vitali Kozioura (2008). “Augur 2: A New Version of a Tool for the Analysis of Graph
Transformation Systems”. In: Electronic Notes in Theoretical Computer Science (ENTCS) 211, pp. 201–210
(cit. on p. 67).

Krishnan, P. (2000). “Consistency Checks For Uml”. In: Proceedings of the Seventh Asia-Pacific Software
Engineering Conference (Apsec) (cit. on p. 114).

Kuhlmann, Mirco, Lars Hamann, Martin Gogolla, and Fabian Büttner (2013). “A Benchmark for Ocl Engine
Accuracy, Determinateness and Efficiency”. In: Journal of Software and Systems (SoSyM) (cit. on p. 148).

Kühne, Thomas (2006). “Matters of (Meta-) Modeling”. In: Software and Systems Modeling (SoSyM) 5 (4),
pp. 369–385. issn: 1619-1366. url: http://dx.doi.org/10.1007/s10270-006-0017-9 (cit. on pp. 12, 13,
25, 84).

Kühne, Thomas, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel Wimmer (2009). “Systematic
Transformation Development”. In: EcEasst 21 (cit. on pp. 39, 42, 67).

— (2010). “Explicit Transformation Modeling”. In:MODELS 2009 Workshops. Ed. by Sudipto Ghosh. Vol. 6002.
LNCS. Denver: Springer, pp. 240–255 (cit. on pp. 56, 80).

Küster, Jochen Malte (2006). “Definition and Validation of Model Transformations”. In: SoSyM 5(3), pp. 233–
259 (cit. on pp. 38, 42, 43, 46).

Lambers, Leen, Hartmut Ehrig, and Fernando Orejas (2006). “Efficient Detection of Conflicts in Graph-based
Model Transformation”. In: Entcs 152 (cit. on pp. 38, 42).

Lano, Kevin and Shekoufeh Kolahdouz Rahimi (2011). “Slicing Techniques for UML Models”. In: Journal of
Technology 10, pp. 1–49 (cit. on p. 62).

Levendovszky, Tihamér, László Lengyel, and Tamás Mészáros (2009). “Supporting Domain-Specific Model Pat-
terns With Metamodeling”. In: SoSyM 8(4) (cit. on pp. 39, 42).

Lions, Jacques-Louis (1999). Ariane 5 Flight 501 Failure — Inquiry Board Report. Tech. rep. European Spatial
Agency (cit. on p. 2).

Lúcio, Levi, Bruno Barroca, and Vasco Amaral (2010). “A Technique for Automatic Validation of Model Trans-
formations”. In: MoDELS (cit. on pp. 40, 42, 44, 46).

Lúcio, Levi, Joachim, Sadaf Mustafiz, and Hans Vangheluwe (2012). An Overview of Model Transformations
for a Simple Automotive Power Window. Tech. rep. SOCS-TR-2012.1. McGill University (cit. on p. 75).

208

http://www.eclipse.org/epsilon
http://dx.doi.org/10.1007/s10270-006-0017-9


Bibliography

Lúcio, Levi, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, and Maris Jukss (2013). “FTG+PM: An In-
tegrated Framework for Investigating Model Transformation Chains”. In: System Design Languages (Sdl)
Forum: Model-Driven Dependability Engineering. Vol. 7916. Lncs. Springer, pp. 182–202 (cit. on p. 81).

Lúcio, Levi, Zhang Qin, Phu H. Nguyen, Moussa Amrani, Jacques Klein, Hans Vangheluwe, and Yves Le Traon
(2014). “Advances in Model-Driven Security”. In: Advances in Computer Science (cit. on p. 197).

Lúcio, Levi, Eugene Syriani, Moussa Amrani, Qin Zhang, and Hans Vangheluwe (2012). “Invariant Preservation
In Iterative Modeling”. In: Workshop on Models and Evolution (Me) (cit. on p. 198).

Lúcio, Levi and Hans Vangheluwe (2013a). “Model Transformations to Verify Model Transformations”. In:
Proceedings of the 2nd Workshop on Verification of Model Transformations (Volt) (cit. on pp. 55, 69, 71).

Lúcio, Lévi and Hans Vangheluwe (2013b). Symbolic Execution for the Verification of Model Transformations.
Tech. rep. SOCS-TR-2013.2. http://msdl.cs.mcgill.ca/people/levi/files/MTSymbExec.pdf. Mon-
tréal, Canada: McGill University (cit. on pp. 78, 79).

Mannadiar, Raphael and Hans Vangheluwe (2010). “Modular Synthesis of Mobile Device Applications from
Domain-Specific Models”. In: Model-based Methodologies for Pervasive and Embedded Software workshop
(cit. on pp. 55, 64–66).

Martí-Oliet, Narcisso, Miguel Palomino, and Alberto Verdejo (2005). “A Tutorial on Specifying Data Structures
in Maude”. In: Electronic Notes in Theoretical Computer Science 137, pp. 105–132 (cit. on p. 163).

Massoni, Tiago, Rohit Gheyi, and Paulo Borba (2005). “Formal Refactoring for UML Class Diagrams”. In:
Bsse, pp. 152–167 (cit. on pp. 41–43, 46).

Mayerhofer, Tanja, Philip Langer, and Manuel Wimmer (2012). “Towards xMOF: Executable DSMLs Based
on fUML”. In: Proceedings of the 12th Workshop on Domain-Specific Modeling (DSM’12) (cit. on p. 71).

Mc Brien, Peter and Alexandra Poulovassi (1999). “Automatic Migration and Wrapping of Database Applica-
tions - A Schema Transformation Approach”. In: Conceptual Modeling ER’99. Ed. by Jacky Akoka, Mokrane
Bouzeghoub, Isabelle Comyn-Wattiau, and Elisabeth M’etais. Vol. 1782. LNCS. London: Springer-Verlag,
pp. 99–114 (cit. on p. 56).

Mens, Tom and Pieter Van Gorp (2006). “A Taxonomy Of Model Transformation”. In: Electronic Notes in
Theoretical Computer Science (Entcs) 152, pp. 125–142 (cit. on pp. 17, 21, 37, 49, 54, 85).

Mernik, Marjan, ed. (2013). Formal and Practical Aspects of Domain-Specific Languages: Recent Developments.
Igi Global. 677 pp.

Mokhati, Farid and Mourad Badri (2009). “Generating Maude Specifications from Uml Use Case Diagrams”.
In: Journal of Object Technology 8.2, pp. 119–136 (cit. on pp. 147, 148).

Molderez, Tim, Hans Schippers, Dirk Janssens, Haupt Michael, and Robert Hirschfeld (2010). “A Platform for
Experimenting with Language Constructs for Modularizing Crosscutting Concerns”. In: WASDeTT (cit. on
pp. 40, 42).

Mosterman, Pieter J. and Hans Vangheluwe (2004). “Computer Automated Multi-Paradigm Modeling: An
Introduction”. In: Simulation: Transactions of The Society for Modeling and Simulation International 80.9,
pp. 433–450 (cit. on pp. 75, 177).

Muller, Pierre-Alain, Franck Fleurey, and Jean-Marc Jézéquel (2005). “Weaving Executability into Object-
Oriented Meta-Languages”. In: Proceedings of MODELS/UML’2005. Vol. 3713. LNCS. Montego Bay, Ja-
maica: Springer, pp. 264–278 (cit. on pp. 71, 91, 115).

209

http://msdl.cs.mcgill.ca/people/levi/files/MTSymbExec.pdf


Bibliography

Muller, Pierre-Alain, Frédéric Fondement, Benoît Baudry, and Benoît Combemale (2010). “Modeling modeling
modeling”. In: Software and Systems Modeling 11, pp. 1–13 (cit. on pp. 84, 85).

Muller, Pierre-Alain and Michel Hassenforder (2005). “HUTN as a Bridge between ModelWare and Grammar-
Ware — An Experience Report”. In: Workshop in Software Model Engineering Wisme (Satellite Event of
MoDELS 2005) (co-located with MoDELS) (cit. on p. 66).

Mustafiz, Sadaf, Joachim Denil, Levi Lúcio, and Hans Vangheluwe (2012). “The FTG+PM Framework for Multi-
Paradigm Modelling: An Automotive Case Study”. In: Proceedings of the MPM (Multi-Paradigm Modelling)
2012 Workshop, associated with MoDELS. ACM Digital Library (cit. on p. 73).

Narayanan, Anantha and Gabor Karsai (2008a). “Towards Verifying Model Transformations”. In: Electronic
Notes in Theoretical Computer Science 211, pp. 191–200. issn: 1571-0661 (cit. on pp. 41, 42, 44, 46, 67, 68).

— (2008b). “Verifying Model Transformation By Structural Correspondence”. In: EcEasst 10, pp. 15–29 (cit.
on pp. 40, 42, 44, 46, 69).

Naumovich, Gleb and Lori Clarke (2000). “Classifying Properties: An Alternative to the Safety-Liveness Clas-
sification”. In: Proceedings of the 8th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), pp. 159–168 (cit. on p. 61).

Newman, Maxwell Herman Alexander (1942). “On Theories With a Combinatorial Definition of "Equivalence"”.
In: Annals of Mathematics 43(2), pp. 223–243 (cit. on p. 38).

Nipkow, Tobias, Lawrence C. Paulson, and Markus Wenzel (2013). Isabelle/Hol: A Proof Assistant for Higher-
Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer-Verlag (cit. on p. 34).

Object Management Group (2003). MDA Guide (version 1.0.1). Tech. rep. Object Management Group (cit. on
pp. 15, 17, 25).

— (2004). Unified Modeling Language (Uml) — Infrastructure Specification (Version 2). Tech. rep. Object
Management Group (cit. on pp. 15, 25).

— (2006).Meta-Object Facility 2.0 Core Specification (06-01-01). Tech. rep. Object Management Group (cit. on
pp. 11, 14, 25, 91, 93, 101, 102, 104).

— (2008). Mof Qvt: Query / View / Transformation. Tech. rep. Object Management Group (cit. on pp. 20,
67).

— (2010). Object Constraint Language (Ocl) Specification (Version 2.2, formal/2010-02-01). Tech. rep. Object
Management Group (cit. on pp. 61, 148).

— (2011a). OMG / Unified Modeling Language (Uml). Superstructure / Infrastructure. Tech. rep. formal-2011-
08-06. Object Management Group (cit. on pp. 11, 52, 73, 148).

— (2011b). Uml Profile for Modeling and Analysis of Real-Time Embedded System (Marte). (formal/2011-
06-02). Tech. rep. Object Management Group (cit. on p. 174).

Ölveczky, Peter Csaba and José Meseguer (2007). “Semantics and Pragmatics of Real-Time Maude”. In: Higher-
Order and Symbolic Computation 20.1–2. Ed. by Springer (cit. on p. 177).

Padberg, Julia (1999). “Categorical Approach to Horizontal Structuring and Refinement of High-Level Re-
placement Systems”. English. In: Applied Categorical Structures 7 (4), pp. 371–403. issn: 0927-2852. doi:
10.1023/A:1008695316594 (cit. on pp. 64, 65).

210

http://dx.doi.org/10.1023/A:1008695316594


Bibliography

Padberg, Julia, Magdalena Gajewsky, and Claudia Ermel (1997). Refinement versus Verification: Compatibility
of Net Invariants and Stepwise Development of High-Level Petri Nets. Tech. rep. Technische Universität
Berlin (cit. on pp. 41–43, 46).

Paige, Richard F., Phillip J. Brooke, and Jonathan S. Ostroff (2007). “Metamodel-Based Model Conformance
and Multi-View Consistency Checking”. In: Acm Tosem 16.3, pp. 1–48 (cit. on pp. 44, 46).

Parnas, David Lorge (1977). “The Use of Precise Specification in the Development of Software”. In: International
Federation for Information Processing World Congress (IFIP). Ed. by Bruce Gilchrist, pp. 861–867 (cit. on
p. 24).

Partsch, H. and R. Steingbrüggen (1983). “Program Transformation Systems”. In: Computing Surveys 15.3,
pp. 199–236 (cit. on p. 20).

Peterson, J. (1977). “Petri Nets”. In: ACM Comput. Surv. 9.3, pp. 223–252. issn: 0360-0300. doi: 10.1145/
356698.356702. url: http://doi.acm.org/10.1145/356698.356702 (cit. on p. 75).

Plump, Detlef (1998). “Termination of Graph Rewriting is Undecidable”. In: Fundamenta Informaticæ 33.2,
pp. 201–209 (cit. on p. 38).

— (2005). “Confluence of Graph Transformation Revisited”. In: Processes, Terms and Cycles: Steps on the Road
to Infinity. Vol. 3838 (cit. on p. 38).

Poernomo, Iman (2006). “The Meta-Object Facility (Mof) Typed”. In: SAC, pp. 1845–1849 (cit. on p. 114).

Pollet, Isabelle (2004). “Towards a Generic Framework For the Abstract Interpretation of Java”. PhD thesis.
Catholic University of Louvain (Belgium) (cit. on pp. 118, 119).

Pretschner, Alexander (2005). “Model-Based Testing”. In: International Conference on Software Engineering
( Icse). Ed. by Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh (cit. on p. 2).

Quesada Moreno, José Francisco (1997). “The Scp Parsing Algorithm Based on Syntactic Constraint Propaga-
tion”. PhD thesis. University of Sevilla (cit. on p. 160).

— (1999). The Scp Parsing Algorithm. Tech. rep. SRI International, Computer Science Laboratory (cit. on
p. 160).

Rahim, Lukman Ab. and Jon Whittle (2013). “A survey of approaches for verifying model transformations”. In:
Software and Systems Modeling (SoSym), pp. 1–26 (cit. on pp. 48, 86).

Ráth, István, András Ökrös, and Dániel Varró (2010). “Synchronization of Abstract and Concrete Syntax
in Domain-Specific Modeling Languages By Mapping Models and Live Transformations”. In: Journal of
Software Systems and Models 9, pp. 453–471 (cit. on p. 27).

Reggio, Gianna, Maura Cerioli, and Egidio Astesiano (2001). “Towards A Rigorous Semantics Of UML Support-
ing Its Multiview Approach”. In: Conference on Fundamental Approaches to Software Engineering (Fase)
(cit. on p. 114).

Rensink, Arend (2003). “The Groove Simulator: A Tool for State Space Generation”. In: Applications of
Graph Transformations with Industrial Relevance (Agtive). Vol. 3062. Lecture Notes in Computer Science,
pp. 479–485 (cit. on p. 70).

Rensink, Arend, Àkos Schmidt, and Dániel Varró (2004). “Model Checking Graph Transformations: A Compar-
ison of Two Approaches”. In: Icgt (cit. on pp. 44, 46).

211

http://dx.doi.org/10.1145/356698.356702
http://dx.doi.org/10.1145/356698.356702
http://doi.acm.org/10.1145/356698.356702


Bibliography

Rivera, José E., Francisco Durán, and Antonio Vallecillo (2008). A Metamodel For Maude. Tech. rep. University
of Málaga (Spain) (cit. on pp. 170, 176).

— (2009). “Formal Specification and Analysis of Domain-Specific Models Using Maude”. In: Simulation: Trans-
actions of the Society for Modeling and Simulation International 85.11/12, pp. 778–792 (cit. on pp. 41, 70,
147).

Rivera, José Eduardo, Francisco Durán, and Antonio Vallecillo (2010). “On the Behavioral Semantics of Real-
Time Domain Specific Visual Languages”. In: 8th International Workshop on Rewriting Logic and its Appli-
cations (Wrla), pp. 174–190 (cit. on pp. 29, 67).

Rivera, José Eduardo, Esther Guerra, Juan de Lara, and Antonio Vallecillo (2009). “Analyzing Rule-Based
Behavioral Semantics of Visual Modeling Languages with Maude”. In: Proceeding of the International Con-
ference on Software Language Engineering (Sle). Ed. by Dragan Gašević, Ralf Lämmel, and Eric Wyk.
Vol. 5452. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 54–73 (cit. on p. 47).

Rivera, José Eduardo and Antonio Vallecillo (2007). “Adding Behavioral Semantics to Models”. In: 11th IEEE
International Enterprise Distributed Object Computing Conference (EDoc), pp. 169–182 (cit. on p. 28).

Rozenberg, Grzegorz, ed. (1997). Handbook of Graph Grammars and Computing by Graph Transformation.
Vol. I (Foundations). River Edge, NJ, USA: World Scientific Publishing Co., Inc. isbn: 98-102288-48 (cit. on
pp. 19, 20, 114).

Rusu, Vlad (2011). “Embedding Domain-Specific Modelling Languages in Maude Specifications”. In: ACM SIG-
SOFT Software Engineering Notes 36.1, pp. 1–8 (cit. on p. 147).

Sánchez Cuadrado, Jesús, Esther Guerra, and Juan de Lara (2011). “Generic Model Transformations: Write
Once, Reuse Everywhere”. In: International Conference on Theory and Practice of Model Transformations
( Icmt). 6707 vols. Lecture Notes in Computer Science. Springer (cit. on p. 4).

Schatz, B., F. Holzl, and T. Lundkvist (2010). “Design-Space Exploration through Constraint-Based Model-
Transformation”. In: International Conference and Workshops on Engineering of Computer Based Systems.
ECBS’10, pp. 173–182 (cit. on p. 56).

Scheidgen, Markus and Joachim Fischer (2007). “Human Comprehensible and Machine Processable Specifica-
tions of operational Semantics”. In: Proceeding of the European Conference on Model-Driven Architecture
Foundations and Applications, pp. 157–171 (cit. on p. 71).

Schmidt, Douglas C. (2006). “Model-Driven Engineering”. In: Ieee Computer 39, pp. 25–31 (cit. on p. 1).

Scholz, Peter (1998). “A Refinement Calculus for Statecharts”. In: Proceedings of the International Conference
on Fundamental Approaches to Software Engineering (FASE). Ed. by Egidio Astesiano. Vol. 1382. Lncs.
Springer, pp. 285–301 (cit. on p. 64).

Schürr, Andy and Felix Klar (2008). “15 Years of Triple Graph Grammars”. In: Icgt, pp. 411–425 (cit. on
pp. 40, 42).

Selic, Bran, Garth Gullekson, and Paul T. Ward (1995). Real-Time Object-Oriented Modeling. John Wiley &
Sons Canada. 560 pp. (cit. on p. 177).

Selim, Gehan M.K., James R. Cordy, and Juergen Dingel (2012a). Analysis of Model Transformations. Tech.
rep. 2012-592. Queen’s University, pp. 1–58 (cit. on p. 174).

Selim, Gehan M.K., James R. Cordy, and Jürgen Dingel (2012b). “Model Transformation Testing: The State
of the Art”. In: Workshop on Analysis of Model Transformations (Amt) (cit. on pp. 2, 174).

212



Bibliography

Sen, Sagar, Naouel Moha, Benoit Baudry, and Jean-Marc Jézéquel (2009). “Metamodel Pruning”. In: Models in
Software Engineering, Workshops and Symposia at MODELS 2009, Denver, CO, USA, October 4-9, 2009,
Reports and Revised Selected Papers. Ed. by Sudipto Ghosh. Vol. 6002. Lecture Notes in Computer Science.
Springer, pp. 32–46. isbn: 978-3-642-12260-6 (cit. on p. 62).

Sendall, Shane and Wojtek Kozaczynski (2003). “Model Transformation: The Heart And Soul Of Model-Driven
Software Development”. In: Ieee Software 20.5, pp. 42–45 (cit. on p. 49).

Shannon, Robert and James D. Johannes (1976). “Systems Simulation: The Art and Science”. In: IEEE Trans-
actions on Systems, Man and Cybernetics SMC-6.10, pp. 723–724 (cit. on p. 71).

Simos, Mark A. (1995). “Organization Domain Modeling (ODM): Formalizing the Core Domain Modeling Life
Cycle”. In: SIGSOFT Software Engineering Notes 20 (SI), pp. 196–205. doi: http://proxy.bnl.lu:
2259/10.1145/223427.211845 (cit. on p. 23).

Society, Ieee Computer (2004). Software Engineering Body of Knowledge. Ed. by Alain Abran, James W. Moore,
Pierre Bourque, and Robert Dupuis (cit. on p. 2).

Song, Dan, Keqing He, Peng Liang, and Wudong Liu (2005). “A Formal Language For Model Transformation
Specification”. In: In Proceedings of the Seventh International Conference on Enterprise Information Systems
( Iceis) (cit. on p. 114).

Soon-Kyeong, Kim and David Carrington (1999). “Formalizing the Uml Class Diagram Using Object-Z”. In:
Second International Conference on Uml’99 (cit. on p. 114).

Spivey, J. Michael (1992). The Z Notation - A Reference Manual (2nd. Ed.) Prentice Hall (cit. on pp. 99, 198).

Spoto, Fausto, Patricia M. Hill, and Étienne Payet (2006). “Path-Length Analysis of Object-Oriented Programs”.
In: Eaai (cit. on pp. 38, 42).

Stachowiak, Herbert (1973). Allgemeine Modelltheorie [General Model Theory]. Springer (cit. on p. 11).

Stahl, Thomas, Markus Voelter, and Krzysztof Czarnecki (2006). Model-Driven Software Development – Tech-
nology, Engineering, Management. John Wiley & Sons (cit. on p. 55).

Stark, Robert F., E. Borger, and Joachim Schmid (2001). Java and the Java Virtual Machine: Definition,
Verification, Validation. Secaucus, NJ, USA: Springer-Verlag New York, Inc. isbn: 3540420886 (cit. on
pp. 118, 119).

Steel, James R.H (Jim) (2007). “Model Typing”. PhD thesis. Université de Rennes I. url: ftp://ftp.irisa.
fr/techreports/theses/2007/steel.pdf (cit. on p. 175).

Steel, Jim and Jean-Marc Jézéquel (2007). “On Model Typing”. In: SoSyM 6(4) (cit. on pp. 39, 175).

Steinberg, David, Frank Budinsky, Marcelo Paternostro, and Ed Merks (2009). EMF: Eclipse Modeling Frame-
work 2.0. Addison-Wesley Professional. isbn: 0321331885 (cit. on pp. 106, 149).

Stenzel, Kurt, Nina Moebius, and Wolfgang Reif (2011). “Formal Verification of QVT Transformations for Code
Generation”. In: MoDELS. Wellington, New Zealand (cit. on p. 46).

Stephenson Arthur, G., Daniel R. Mulville, Frank H. Bauer, Greg A. Dukeman, Peter Norvig, Lia S. LaPiana,
Peter J. Rutledge, David Folta, and Robert Sackheim (1999). Mars Climate Orbiter – Mishap Investigation
Board. Phase I Report. Tech. rep. National Aeronautics and Space Administration (cit. on p. 2).

Syriani, Eugene (2011). “A Multi-Paradigm Foundation for Model Transformation Language Engineering”. PhD
thesis. McGill University (cit. on pp. 17, 18, 20, 54).

213

http://dx.doi.org/http://proxy.bnl.lu:2259/10.1145/223427.211845
http://dx.doi.org/http://proxy.bnl.lu:2259/10.1145/223427.211845
ftp://ftp.irisa.fr/techreports/theses/2007/steel.pdf
ftp://ftp.irisa.fr/techreports/theses/2007/steel.pdf


Bibliography

Syriani, Eugene and Hüseyin Ergin (2012). “Operational Semantics of UML Activity Diagram: An Application
in Project Management”. In: RE 2012 Workshops. Chicago: IEEE (cit. on p. 55).

Syriani, Eugene and Hans Vangheluwe (2008). “Programmed Graph Rewriting with Time for Simulation-Based
Design”. In: Proceedings of the First International Conference on Theory and Practice of Model Transfor-
mations (ICMT). Vol. 5063. Lncs. Springer, pp. 91–106 (cit. on p. 67).

— (2010a). “De-/Re-constructing Model Transformation Languages”. In: Electronic Communication of the Eu-
ropean Association of Software Science and Technology (EcEasst) 29, pp. 1–14 (cit. on p. 4).

— (2010b). “DEVS as a Semantic Domain for Programmed Graph Transformation”. In: Discrete-Event Modeling
and Simulation: Theory and Applications. Boca Raton: CRC Press. Chap. 1, pp. 3–28. isbn: 9781420072334
(cit. on p. 67).

— (2011). “A Modular Timed Model Transformation Language”. In: Journal on Software and Systems Modeling
11, pp. 1–28 (cit. on p. 80).

Taentzer, Gabriele (2000). “Agg: A Tool Environment for Algebraic Graph Transformation”. In: Agtive.
Vol. 1779, pp. 333–341 (cit. on pp. 19, 40).

Thirioux, Xavier, Benoit Combemale, Xavier Crégut, and Pierre-Loïc Garoche (2007). “A Framework to For-
malise the MDE Foundations”. anglais. In: International Workshop on Towers of Models (TOWERS). Ed. by
Richard Paige and Jean Bézivin. Zurich, pp. 14–30 (cit. on p. 15).

Tisi, Massimo, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin (2009). “On the Use of Higher-
Order Model Transformations”. In: Model Driven Architecture - Foundations and Applications (Mda-Fa).
Vol. 5562. Lecture Notes in Computer Science. Springer (cit. on pp. 3, 19, 54, 85).

Torlak, Emina and Daniel Jackson (2007). “Kodkod: A Relational Model Finder”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by Orna Grumberg and Michael Huth. Vol. 4424. LNCS.
Springer, pp. 632–647 (cit. on p. 56).

Tratt, Laurence (2005). “Model Transformation And Tool Integration”. In: SoSyM 4(2), pp. 112–122 (cit. on
p. 17).

Tri, D.Q. and Q.T. Tho (2012). “Systematic Diagram Refinement for Code Generation in SEAM”. In: Knowledge
and Systems Engineering (KSE), 2012 Fourth International Conference on. IEEE, pp. 203–210 (cit. on pp. 55,
64–66).

Troya, Javier, José E. Rivera, and Antonio Vallecillo (2009). “On the Specification of Non-functional Properties
of Systems by Observation”. In: MoDELS Workshops. Ed. by Sudipto Ghosh. Vol. 6002. Lecture Notes in
Computer Science. Springer, pp. 296–309. isbn: 978-3-642-12260-6 (cit. on p. 67).

Troya, Javier, Antonio Vallecillo, Francisco Durán, and Steffen Zschaler (2013). “Model-Driven Performance
Analysis of Rule-Based Domain Specific Visual Models”. In: Information & Software Technology 55.1, pp. 88–
110 (cit. on p. 67).

Vallecillo, Antonio and Martin Gogolla (2012). “Typing Model Transformations Using Tracts”. In: 5th Inter-
national Conference on the Theory and Practice of Model Transformations (ICMT’12). Vol. LNCS 7307.
Springer, pp. 56–71 (cit. on pp. 78, 174).

Van der Straeten, Ragnhild, Viviane Jonckers, and TomMens (2007). “A Formal Approach to Model Refactoring
and Model Refinement”. In: Journal of Software and Systems Modeling 6 (2), pp. 139–162. issn: 1619-1366.
doi: 10.1007/s10270-006-0025-9 (cit. on p. 64).

214

http://dx.doi.org/10.1007/s10270-006-0025-9


Bibliography

Varró, Dániel and András Balogh (2007). “The Model Transformation Language of the VIATRA2 Framework”.
In: Science of Computer Programming 68.3, pp. 214–234 (cit. on p. 20).

Varró, Dániel and András Pataricza (2003). “Automated Formal Verification of Model Transformations”. In:
CSDUml, pp. 63–78 (cit. on pp. 41, 42, 44, 46, 61).

Varró, Dániel, Szilvia Varró-Gyapai, Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer (2006). “Termination
Analysis of Model Transformations by Petri Nets”. In: Icgt. Vol. 4178, pp. 260–274 (cit. on pp. 38, 42, 43,
46, 67).

Viehstaedt, Gerhard and Mark Minas (1995). “DiaGen: A Generator for Diagram Editors Based on a Hypergraph
Model”. In: International Workshop on Next Generation Information Technologies and Systems. Ed. by
Amihai Motro and Moshe Tennenholtz. Naharia, pp. 155–162 (cit. on p. 56).

Visser, Eelco (2005). “A Survey of Strategies in Rule-Based Program Transformation Systems”. In: J. Symbolic
Computation 40(1), pp. 831–873. issn: 0747-7171. doi: 10.1016/j.jsc.2004.12.011 (cit. on pp. 19, 20,
85).

Website, AUTOSAR. http://www.autosar.org (cit. on p. 83).

Weiss, David M. and Chi Tau Robert Lai (1999). Software Product Line Engineering: A Family-Based Software
Development Process. Addison-Wesley Longman Publishing (cit. on p. 31).

Wimmer, Manuel, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck, and Wieland
Schwinger (2009). “Right or Wrong? Verification of Model Transformations using Colored Petri Nets”. In:
Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’09). Helsinki Business School
(cit. on p. 81).

Wimmer, Manuel and Gerhard Kramler (2005). “Bridging Grammarware and Modelware”. In: Proceedings of
MoDELS Satellite Events, pp. 159–168 (cit. on pp. 16, 66).

Winkelmann, Jessica, Gabriele Taentzer, Karsten Ehrig, and Jochen M. Küster (2008). “Translation of Restricted
OCL Constraints into Graph Constraints for Generating Meta Model Instances by Graph Grammars”. In:
Electronic Notes in Theoretical Computer Science 211, pp. 159–170 (cit. on p. 56).

Winskel, Glynn (1993). The Formal Semantics of Programming Languages: An Introduction (Foundations of
Computing). Cambridge, MA (USA): MIT Press, p. 384 (cit. on pp. 115, 124, 141).

Wirth, Niklaus (1971). “The Programming Language Pascal”. In: Acta Informatica 1, pp. 35–63 (cit. on p. 144).

Withall, Stephen (2007). Software Requirement Patterns. Microsoft Press (cit. on p. 85).

Yang, M., G.J. Michaelson, and R.J. Pooley (2008). “Formal Action Semantics for a UML Action Language”.
In: Journal of Universal Computer Science 14.21, pp. 3608–3624 (cit. on p. 132).

Yu, Eric S. and John Mylopoulos (1994). “Understanding “Why” in Software Process Modelling, Analysis, and
Design”. In: International Conference on Software Engineering, pp. 159–168 (cit. on p. 84).

Zhang, Jing, Yuehua Lin, and Jeff Gray (2005). “Generic and domain-specific model refactoring using a model
transformation engine”. In: Volume II of Research and Practice in Software Engineering. Springer, pp. 199–
218 (cit. on p. 57).

215

http://dx.doi.org/10.1016/j.jsc.2004.12.011
http://www.autosar.org

	List of Figures
	List of Tables
	Introduction
	Model-Driven Engineering
	Software Validation
	Towards the Formal Analysis of Model Transformations
	Contributions
	A Description Framework for Model Transformation Intents
	A Formal Specification of Kermeta
	Kmv: a Proof-of-Concept Kermeta Model-Checker

	Thesis Outline

	I Models, Model Transformation & Model Transformation Verification
	Model-Driven Engineering: (Meta-)Models & Transformations
	What is a Model?
	Model Kinds
	Instantiation
	(Meta-)Metamodels
	Discussions

	Model Transformations
	Definitions
	Transformation Languages And Specifications
	Transformation Execution
	Model Transformation Classifications
	Conclusion

	Domain-Specific (Modelling) Languages
	Dsml Features
	Dsmls as Languages: Basic Components

	Conclusion

	Formal Verification
	The Verification Problem
	Characteristics of Formal Verification Approaches
	Common Verification Techniques

	A Tridimensional Approach
	Transformations
	Properties
	Formal Verification Techniques

	Discussion
	Property Kind / Fv Technique (PK/FVT)
	Transformation / Fv Technique (T/FVT)
	Transformation / Property Kind (T/PK)
	Transformation Intent as the glue between dimensions

	Conclusion

	Characteristic Properties of Model Transformations Intents
	Overview & Motivation
	A Description Framework for Model Transformation Intents
	A Metamodel for Intents and their Properties
	A Metamodel for Model Transformation Validation Methods
	Usage Scenarios
	Outline

	The Intents Catalog
	Characteristic Properties
	Fundamental Property
	Property Classes

	Five Examples
	Query
	Refinement
	Translation
	Analysis
	Simulation

	The Power Window Case Study
	Formalism Transformation Graph and Process Model
	Description

	Identifying Transformation Intents within the Pwcs
	Translation
	Simulation
	Overview

	Discussion
	Towards an Intent Taxonomy
	Composing Intents

	Related Work
	Intents in Software Engineering
	Classifications of Model Transformations
	Classifications of Model Transformation Verification Approaches

	Summary


	II Formal Specification of Kermeta
	Kermeta in a Nutshell
	History
	Metamodelling: the Structural Language (Sl)
	Sl Meta-metamodel
	The Fsm Metamodel

	Transformations: the Action Language (Al)
	Al Meta-metamodel
	The Fsm Model & Behaviour

	Mathematical Background
	Functions
	Abstract Datatypes Specifications


	Structural Language
	Structural Semantics Overview
	Names, Types and Values
	Names
	Syntactic Types
	Semantic Values

	Metamodels
	Package
	Enumeration
	Class
	Property
	Operation
	Metamodel

	Models
	Accessible Features
	Model

	Conformance
	Discussions
	Design Choices
	Related Works


	Action Language
	Restrictions
	Definition
	Local Variable Declarations
	Syntax
	Control Flow
	Example

	Type-Checking System
	Expressions
	Statements

	Semantics
	Semantic Domain and Operations
	Configuration
	Semantic Rules

	Discussions
	Syntactic aspects & Restrictions
	Related Works



	III Formal Verification of Kermeta
	Maude In a Nutshell
	Equational & Rewriting Logic
	Functional Modules for Equational Theories
	System Modules for Rewrite Theories

	Object-Oriented Maude
	Example: The Simple Language
	Syntax
	Semantics


	KMV: Verifying Kermeta with Maude
	Overview
	mOdCL & Maudeling
	Assumptions

	Specifying Kermeta's Structural Language
	Names, Types, and Values
	Metamodel
	Model
	Conformance

	Specifying Kermeta's Action Language
	Local Variables
	Statement Syntax
	Control Flow
	Configuration
	Semantics

	Simulating a Model Transformation
	The KMV Tool
	Eclipse Integration
	Limitations


	Conclusion
	Contributions Summary
	Perspectives & Future Work
	Description Framework
	Formal Semantics
	Kmv
	Real-Time Kermeta


	The Finite State Machine Example
	Metamodel and Model
	Kermeta Full Textual Definition
	Mathematical Representation
	The FSM Metamodel MM
	The FSM Model M
	Does M conform to MM?

	Maude Representation

	Maude Specification for Kermeta Semantics
	Summary of Publications
	Bibliography


