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Abstract. This paper reports correspondence results between input/
output logic and the theory of joining-systems. The results have the
form: every norm (a,z) is logically derivable from a set of norms G if
and only if it is in the space of norms algebraically generated by G.

1 Introduction

In their influential book Normative Systems [1], Alchourroon and Bulygin con-
ceive a normative system as a deductive mechanism, like black boxes which
produce normative statement as output, given we feed them descriptive state-
ments as input. To this tradition belongs as well the input/output logic (I/O
logic) of David Makinson and Leon van der Torre in |6-8] and the theory of
joining-systems(TJS) proposed by Lars Lindahl and Jan Odelsad in e.g. [4, 15].

Although sharing the same ancestor, I/O logic and TJS have evolved quite
separately, and lool very different. I/O logic has a proof theory and a well de-
fined semantics of propositional logic. TJS uses algebra as a tool for modeling
normative systems. In this paper, I will show that, nevertheless the two accounts
essentially give the same results, and can be seen as "two sides of one and the
same coin.” The results will illustrate that proof theory, semantics and algebra,
as three tools to model normative systems, have their own advantage and dis-
advantage. Proof theory is neat and easy to be tracked by computers, but hard
to be manipulated by human beings. Semantics is intuitive but hard to give us
the holistic view of normative systems. Algebra, although it’s neither as neat
as proof theory nor as intuitive as semantics, it can give rise to holistic results
to normative systems in the sense that we can build isomorphisms between the
algebraic representation of normative systems. It is their different features that
motivate us to use all of them.

The layout of this paper is as follows. In section 2T will give a brief introduc-
tion to I/0O logic and TJS. Then, in section BT will present two correspondence
results between I/0 logic and TJS. Section [ is the section for application of
the algebraic tools, illustrating those holistic views we gain by the algebraic rep-
resentation of normative systems. Section ] will present some issues for future
research.
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2 Background

2.1 Input/Output Logic

In a series of papers [7H9], Makinson and van der Torre developed a class of
deontic logic called input/output logic. A gentle and comprehensive introduction
can be found in |10] and [14]. In general, the matured version of I/O logic is the
constrained version from [8]. For simplicity’s sake, the latter one will be put
aside, and only two unconstrained I/0 logics will be considered in this paper. I
start by describing them.

Let P = {po,p1,...} be a countable set of propositional letters and L be
the propositional logic built upon P. Throughout this paper L will be the only
logic language we talk about. Let G be a set of ordered pairs of formulas of
L. A pair (a,z) € G, call it a norm, is read as “given a, it ought to be 2. G
can be viewed as a function from 2 to 2% such that for a set A of formulas,
G(A) ={z: (a,z) € G for some a € A}.

Makison and van der Torre define the operations out; and outs as following:

— out1(G, A) = Cn(G(Cn(A4)))
— outz(G,A) = ({Cn(G(V)) : AC V,V is complete}

Here Cn is the classical consequence operator from propositional logic, and a
complete set is a set of formulas that is either maxi-consistent or equal to L.

out1 (G, A) and oute(G, A) are called simple-minded output and basic output
respectively. In [7], simple-minded reusable output and basic reusable output are
also defined. I leave them as a topic for future research.

outy, and oute can be fiben a proof theoretic characterization. We say that an
ordered pair of formulas is derivable from a set G iff (a, x) is in the least set that
includes G, contains the pair (¢,t), where ¢ is a tautology, and is closed under a
number of rules. The following are the rules we will use:

— ST (strengthening the input): from (a, z) to (b, ) whenever bt a
— WO (weakening the output): from (a, z) to (a,y) whenever x -y
— AND (conjunction of output): from (a, z),(a,y) to (a,z Ay)

— OR (disjunction of input): from (a,x),(b,x) to (a Vb, x)

The derivation system based on the rules SI, WO and AND is called deriv;.
Adding OR to derivi gives derivy. We use (a,z) € deriv;(G), or equivalently
x € deriv;(G,a), to denote the norm (a,z) is derivable from G using rules of
derivation system deriv;. Moreover, for a set A of formulas, we use (A,z) €
deriv;(G), or equivalently x € deriv;(G, A) to denote the fact that there exist
ai...an, € A such that (a1 A ... A ap,z) € deriv;(G). In [7], the following
completeness theorems for out; and outs are given:

Theorem 1 ([7]). Given an arbitrary normative system G and a set A of for-
mulas,

1. z € out1(G, A) iff x € derivi (G, A)
2. x € outa(G, A) iff x € deriva(G, A)
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2.2 Theory of Joining-Systems

An algebraic framework for analyzing normative systems was introduced by Lars
Lindahl and Jan Odelstad in their papers [345, [12, [13]. The most general form
of the theory is called theory of joining-systems(TJS) in [5, [12]. A theory of
joining-systems is a triple (Bi, Ba,J) where B, Bg are two ordered algebraic
structures and J a relation between B; and Bs satisfying some special conditions.
In Lindahl and Odelstad’s work, the algebraic structure is usually a Boolean
quasi-ordering. In this paper I will work with a Boolean algebra.

Definition 1 (Boolean algebra). A structure 2 = (A4,+,-,—,0,1) is a
Boolean algebra iff it satisfies the following identities:

(1) z+y=y+x, z-y=y-x
2)z+y+2)=(@+ty) +z z-(y-2)=(-y) 2

(8) z+0=2z, z-1=zx

(4) x+(—z) =1, z-(—x)=0

(5) 2+ (y-2)=(r+y) (x+2), z-(y+2)=(z-y)+(v-2)

We can order the elements of a Boolean algebra by defining a < b if a -
b = a. Here + can be considered as a disjunction, - as a conjunction and <
as a implication. With this order relation in hand, the narrowness(=<) relation
between two ordered pairs can be naturally defined as (a,z) < (b,y) iff b < a and
x < y. Based on ordered structures, Lindahl and Odelstad define joining-systems
as follows:

Definition 2 (Joining-systems, Lindahl and Odelstad’s version [12]). A
triple (A,B,S), where A = (A, <) and B = (B, <) are ordered structures and
S C A x B, is called a joining-system if S satisfies the following conditions:

1. If (a,x) € S and (a,z) =< (b,y), then (b,y) € S.

2. Forall X C B, ifforallz € X,(a,x) € S, then (a,y) € S forally € glb(X)

3. For oll X C A, if for all x € X, (x,b) € S, then (y,b) € S for all y €
lub(X)

In this paper, the major mathematical tool is the joining-systems of Boolean
algebra, which is a modified version of Lindahl and Odelstad’s joining-systems
in the following sense: we let (1,1) € S and require the set X in item 2 and 3
above to be finite, of Lindahl and Odelstad’s joining-systems.

Definition 3 (Joining-systems of Boolean algebras). A joining-systems of
Boolean algebras is a structure S = (,B,S) such that A,B are Boolean algebras
and S C A x B meets the following conditions:

! Here glb is the abbreviation of greatest lower bound. Formally, glb(X) = {b: Vz €
X,b <z and Va, if Vz € X, a < z, then a < b}

2 Jub is the abbreviation of least up bound. Formally, lub(X) = {a : V2 € X,z < a
and Vb, if Vo € X, < b, then a < b}
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~

(1,1) e S

If (a,z) € S and (a,z) < (b,y), then (b,y) € S.

3. For all finite X C B, if for all x € X,(a,z) € S, then (a,y) € S for all
y € glb(X)

4. For dll finite X C A, if for all x € X, (z,b) € S, then (y,b) € S for all

y € lub(X)

RS

Here we call S a joining-space as Lindahl and Odelstad did in [5]. We can equiv-
alently replace condition (3) and (4) by the following respectively:

3 If (a,z) € S and (a,y) € S, then (a,z-y) €S
4" If (a,z) € S and (b,x) € S, then (a+b,z) € S

Moreover, we can define joining-space using the standard algebraic terminol-
ogy of ideal and filter:

Definition 4 (Ideal). Let A = (A4,+,-,—,0,1) be a Boolean algebra and I a
subset of A. For I to be an ideal of U, it is necessary and sufficient that the
following three conditions be satisfied:

(1) 0eI
(2) forallz,yel, x+yel
(3) forallx €T andy € A, ify<x theny el

Definition 5 (Filter). Let 2 = (A, +,-,—,0,1) be a Boolean algebra and F
a subset of A. For F to be a filter of A, it is necessary and sufficient that the
following three conditions are satisfied:

(1) 1e F
(2) forallz,y € F,x-y€F
(3) forallx € F andy € A, if x <y theny € F

Let F3(X) be the filter generated by X and I (X) be the ideal generated by
X. Then I (X)(F4(X)) is the smallest ideal(filter) containing X, and we have
the following proposition:

Proposition 1. Given a structure S = (A,B,S5), S is a joining space in S if
and only if it satisfies the following conditions:

1. (1,1)es

2. For every finite set X C A, ifVx € X, (z,b) € S, then Yy € I, (X), (y,b) €
S.

3. For every finite set X C B, if Vo € X, (a,z) € S, then Vy € Fy(X),
(a,y) € 5.

Proof:

Assume S is a joining space in S. Then trivially we have (1,1) € S.

For the second condition, let X be an arbitrary finite subset of B. Without loss
of generality, we can let X = {z1,...,2,}. Suppose Vo € X, (a,z) € S. Then by
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applying clause 3’ of Definition Bl finitely many times we have (a,z1-...-2,) € S.
Since for all y € Fy(X), z1 - ...z, <y, therefore (a,y) € S.

Similarly we can prove that the third condition is satisfied.

Now assume S satisfies the three conditions in this proposition. Then obvi-
ously (1,1) € S.

Assume (a,z) € S and (a,z) = (b,y), then x < y and y € Fy(x), hence
(a,y) € S. Moreover we have b < a and b € I} (a), so we have (b,y) € S.

Assume (a,z) € S and (a,y) € S. Since z -y € Fr({z,y}), we know
(a,xz-y) e S.

Similarly we can prove if (a,x) € S and (b,x) € S, then (a+b,z) € S. There-
fore S is a joining space. -

Up to now, we have clearly defined what a joining-system and joining space are.
But does a joining space always exist? The answer is positive. As the following
proposition shows, the largest and the smallest joining space always exists.

Proposition 2. Given two boolean algebra A, B,

1 A x B is the largest joining space of A x B.
2 If {S;li € I} is a collection of joining spaces of A x B, then S* = N;c1S; is
a joining space of A x B.

Proof:

1 It is easy to check that A x B satisfies the definition of joining space and it
is the largest one.

2 For every S;, we have (1,1) € S;, therefore (1,1) € S*.
For every finite set X C A, if for every z € X, (z,b) € S*, then (z,b) € S, for
every i € I. Therefore Yy € I (X), (y,b) € S;. So we must have (y,b) € S*.
Similarly we can prove the third statement of Proposition 1 is true. Therefore
S* = N;erS; is a joining space of A x B.

3 Correspondence between I/0 Logic and TJS

3.1 Basic I/O Logic and TJS

In this section, I will prove that for a set of norms G, a norm (a, ) is entailed by
G in basic I/0 logic, if and only if it is in the joining space generated by G. To
show this, we need to introduce a special Boolean algebra named Lindenbaum-
Tarski algebra.

Let = be the provable equivalence relation on L, i.e. for every formula ¢, € L,
o= iff k¢ < 9. Let L/= be the equivalence classes that = induces on L.
For any formula ¢ € L, let [¢] denote the equivalence class contains ¢.

Definition 6 (Lindenbaum-Tarski algebra). The Lindenbaum-Tarski alge-
bra for a logic L is a structure £ = (L/=,+,-,—,0,1) where [¢] + [¢] = [¢ V ¢],
(9] - W] = [¢ Al =[] = [¢].0 = [L] and 1 =[T].
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For more details of Lindenbaum-Tarski algebra, readers can consult chapter
5 of |2]. It is not hard to check that every Lindenbaum-Tarski algebra is a
Boolean algebra. Let G be a set of ordered pairs of formulas of L. Let G= =
{([a], [z])|(a,x) € G}. Let S = (£, £, S) be a joining-systems such that G= C S.
By Proposition 21 we know such joining system always exist. Moreover, there
must be a smallest joining space G* such that G= C G* and for every joining
space S that extends G=, G* C S. Such a G* is the joining space generated by
G=, and it satisfies following property:

Proposition 3. For every ([a], [z]) € G*, at least one of the following holds:

(1) ([al [x]) 4s ([1], [1])

(2) for some ([b} ) € G, ([b); [y)) = ([al, [x])

(3) there exist ([a], [v]), ([a], [2]) € G* such that [x] = [y] - [#]
(4) there exist ([b], [x]), ([c], [z]) € G* such that [a] = [b] + [c]

Proof: Suppose ([a], [z]) € G* and satisfies none of the above four clause, then
we can prove G' = G* —{([a], [z])} is a joining system. This contradicts the fact
that G* is the smallest joining system.

With proposition[3lin hand, we can now prove one main correspondence result:

Theorem 2. The following three propositions are equivalent:

1 (a,z) € derive(G)
2 (la], [z]) € G
3 x € oute(G,a)

Proof:

1 = 2: This can be proved simply by induction one the length of derivation.

2 = 3: Assume ([al, [x]) € G*. By proposition ] we need to deal with four cases.
(2) If ([a], [=]) is ([1],[1]), we need to prove T € N{Cn(G*(V)) : a € V,V is
complete},which is obviously true.

(13) If for some ([B], [y]) € G*, ([b], [y]) =< ([a], [=]). Then by induction hypotheses
we know y € N{Cn(G*(V)) : b € V,V is complete}. Since [a] < [b] and [y] < [z]
we know = € Cn(y). Hence z € N{Cn(G*(V)) : b € V, V is complete}. Moreover,
every complete set V' contains @ must contain b, therefore N{Cn(G*(V)) : b €
V,V is complete} € N{Cn(G*(V)) : a € V,V is complete}. Therefore z €
{Cn(G*(V)) : a € V,V is complete}, x € outz(G, a).

(791) If there exist ([a],[y]), ([a],[2]) € G* such that [x] = [y] - [z]. Then by
induction hypotheses we know y € N{Cn(G*(V)) : a € V,V is complete} and
z € N{Cn(G*(V)) : a € V,V is complete}. Therefore y Az € N{Cn(G*(V)) : a €
V,V is complete}. That is, y A z € outa(G, a),x € oute(G, a).

(iv) If there exist ([b],[x]), ([c],[z]) € G* such that [a] = [b] + [¢]. Then by
induction hypotheses we know x € N{Cn(G*(V)) : b € V,V is complete} and
x € N{Cn(G*(V)) : ¢ € V,V is complete}. For every complete set V' such that
bVc € V, it must be that either b € V or ¢ € V. Therefore, for every complete set
V that contains bV ¢, x € Cn(V'), which means x € "N{Cn(G*(V)): bVce V.V
is complete}, i.e. z € outa(G,bV c), x € outa(G,a).

3 = 1: This is a special case of observation 2 of [7].
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3.2 Simple-Minded I/0 Logic and TJS

The previous section proved a correspondence result between basic I/0 logic and
TJS. In fact, we can prove a similar result between simple-minded I/0 logic and
a weaker version of TJS.

Definition 7 (Weak joining-systems). A weak joining-systems of Boolean
algebras is a structure S = (A, B, S7) such that A B are boolean algebras and
S™ C A x B satisfies the first three conditions of a joining space. Here we call
S~ the weak joining space of S.

Similar to Proposition Bl we can prove the existence of the largest and the
smallest weak joining space.

Proposition 4. Given two Boolean algebra 2,8,

1. A X B is the largest weak joining space of A and B.
2. If {S;|i € I} is a collection of weak joining spaces of A and B, then S* =
Nic1S; 18 a weak joining space of A and B.

Let G be a set of ordered pairs of formulas of L and £(®) be the Lindenbaum-
Tarski algebra of L. Let G= = {([a], [z])|(a, ) € G} where [a], [z] are the equiva-
lence classes in £(®P) respective contains a and . By Proposition 4 we know that
there exists a unique smallest weak joining-systems extends G=. If we denote it
as G, then we have the following:

Proposition 5. For every ([a], [z]) € GT, at least one of the following holds:

(1) ([al [x]) s ([1], [1])
(2) for some ([ . ) € G*, (bl [y]) = (lal, [2])
(8) there exists ([a], [y]), ([a ] [z]) € GT such that [x] = [y] - [2]

Proof: Similar to the proof of proposition 2

With Proposition [ in hand, we can prove the following correspondence result:
Theorem 3. The following three proposition is equivalent:
1 (a,x) € derivi(G)

2 ([a], [2]) € G*
3 x € out1(G,a)
Proof:

1 =-2: This can be proved simply by induction one the length of derivation.

2 = 3: Assume ([al, [z]) € GT.

(2) If ([a], [=]) is ([1], [1]), we need to prove T € N{Cn(G(T"))},which is obviously
true.

(i7) If for some ([b], [y]) € G, ([b], [y]) = ([a], [#]). Then by induction hypothesis
we know y € Cn(G(b)). Since [a] < [b] and [y] < [x] we know x € Cn(y). Hence
x € Cn(G(b)).

(i17) If there exists ([al, [y]), ([a],[2]) € GT such that [z]
induction hypotheses we know y € Cn(G(a))} and z € Cn(
y Az € Cn(G(a)). That is, y A z € out1 (G, a),x € out1(G,a).
3 = 1: This is a special case of observation 1 of [7].

[y] - [2]. Then by
G(a))}. Therefore
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4 Application

In this section, we discuss some of the insights obtained from the algebraic
approach to normative systems.

4.1 The Core of a Normative System

In section [2:2] the narrowness relation =< is defined as (a,x) < (b,y) iff b < a and
x < y. We can further define the strict narrowness relation < as (a,z) < (b,y)
iff (a,z) % (b,y) and not (b,y) < (a,z). A norm (a,z) is minimal in a joining-
systems, or normative system, S iff there is no (b, y) € S such that (b,y) < (a,x).
In [11], such a minimal norm is called a connection from A to B.

As noticed by [11], the set of all minimal elements of a joining-systems can
be viewed as the core of the system. If the joining space is finite, then the whole
joining-systems is uniquely determined by its minimal norms. If we know the
core of the system, we can logically deduce the whole system. Let for a joining-
systems S, let core(S) = {(a,z) € S|(a,z) is minimal in S} denote the set of all
its minimal norms. The following are formal statements about the properties of
the core of finite joining-systems.

Observation 1. For all joining-systems S = (A, B,S). If S is finite, then
core(S) # 0

Proof: The proof is trivial. Due to the fact that S is finite, there is no infinite
descending chain on <.

Observation 2. For all joining-systems S = (A, B, S), if S is finite, then for
any (a,x) € S, there exists (b,y) € core(S) such that (b,y) < (a,z).

Proof: Let (a,z) be an arbitrary norm in S. If (a,x) € core(S), then (a,z) <
(a,x) and we are done. If (a,x) ¢ core(S), then (a,x) is not a minimal norm.
Hence there exist some (b, y) such that (b,y) < (a,z). If (b,y) € core(S) then we
are done. If not, then there exist some (¢, z) such that (¢, z) < (b,y). Since S is
finite, this procedure will stop at some point. Then by transitivity of =<, there
must exist some (a’,z") € core(S) such that (a,z) < (a’,2).

Observation 3. For any joining-systems S = (A4, B,S) and S’ = (A, B, S’),if
both S and S’ are finite, then core(S) = core(S') iff S =5".

Proof: The right to left direction is trivial. For the left to right direction. Assume
core(S) = core(S'). For any (a,z) € S, by Observation 2 there exist (b,y) €
core(S) such that (b,y < (a,z)). By assumption we know (b,y) € core(S').
Then by the definition of joining space we know (a,z) € S’. Therefore S C 5’
Similarly we can prove S O S".
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4.2 Harshness of Normative Systems

Suppose there are two norms (a,x) and (a,x A y), it is reasonable to say that
the latter is harsher than the former because the latter demand us to do more
than the former under the same situation. For illustration we can let a represent
“you are invited to a dinner”, x represent “you dress your suit” and y represent
“you wash your hair”. For similar reasons we can consider (aVb, z) to be harsher
than (a, ).

In general, (a,z) < (b,y) can intuitively be read as (a,z) is “harsher” than
(b,y). Moreover, we can lift this harshness concept to the level of normative
system as long as we use joining-systems to represent them.

Definition 8 (Harshness). Let S = (A,B,S) and ' = (A,B,S’) be two
joining-systems, S is harsher than S', denote as S <'S', iff for all (a, x) € core(S)
there exist (b,y) € core(S') such that (a,z) < (b,y) and for all (b,y) € core(S')
there exist (a,x) € core(S) such that (a,x) < (b,y).

Observation 4. For any joining-systems S = (A, B,S) and S' = (A4, B, S’),if
S, then 8" C S.

Prove: Assume (a,x) € S’, then there exist (b,y) € core(S’) such that (b,y)
(a, x). By the definition of harshness there exist (¢, z) € core(S) such that (¢, z)
(b,y). There fore (¢, z) < (a,z) and (a,x) € S.

This observation shows the more obligation a normative system contains, the
harsher it is. Such a result coincides with our intuition quite well.

=
<

4.3 Structural Similarity of Normative Systems

For two algebraic structures A and B, if they are isomorphic then they are essen-
tially the same. We can extend the isomorphism of Boolean algebra to joining-
systems. But before we do this, we first review the isomorphism of Boolean
algebra.

Definition 9 (Isomorphism of Boolean algebra). For two Boolean algebras
A=(A+,-,—,0,1) and A" = (A", +,-,—,0,1) and h a map from A to A’. We
say that h is an isomorphism from A to A’ iff for any x,y € A, h satisfies the
following conditions:

1. h is bijective

2. h(z+y) = h(z) + h(y)
3. Wz -y) =h(z) - h(y)
4. h(1) =1

Given an isoporphism h from 2l to ', it is easy to check that for all z,y € A
and z’,y € A" if h(z) = 2’ and h(y) =y, then z < y iff 2’ < y'.
Now we extend isomorphism to joining-systems.
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Definition 10 (Isomorphism of joining-systems). For two joining-systems
S=(A4,B,S) andS' = (A’,B’,S") and h a map from AUB to A’ UB’. We say
that h is an isomorphism from S to S’ iff h satisfies the following conditions:

1. h is bijective
2. the restriction of h on A is an isomorphism from A to A’
3. the restriction of h on B is an isomorphism from B to B’

4. (a,z) € core(S) iff (h(a),h(x)) € core(S')

If there exist some isomorphism form S to §’, then we say S and S’ are isomorphic.
Two isomorphic joining-systems can naturally be understood as structurally the
same. Although in the last item of the above definition we restrict ourselves to
the core of a joining-systems, the correspondence in fact covers the whole system.
That is, we have the following observation:

Observation 5. For any joining-systems S = (A4, B,S) and S’ = (A, B, S’),if
h is an isomorphism from S to S, then for any (a,z) € A x B, (a,z) € S iff
(h(a),h(x)) € 5.

5 Conclusion and Future Work

The main contribution of this paper is a correspondence result between in-
put/output logic and the theory of joining-system. These results illustrate that
normative systems can be equivalently analyzed using three different tools, proof
theory, semantics and algebra. Each tool will give us some special insights of nor-
mative systems.

There are a lot of future workto be done. A natural direction is to build a
correspondence result between constrained I/0 logic and TJS. Another direction
is to use more advanced logic and algebra to relate I/O logic and TJS. For
example, temporal logic can serve as the basis of I/0 logic and Boolean algebra
with temporal operator can be the underlying algebra of TJS. Then we can build
another correspondence result between the new I/0 logic and TJS.

Acknowledgments. The author thanks Leon van der Torre, Xavier Parent and
three anonymous referees of the LORI committee for their valuable suggestions
and comments.
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