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Abstract

Whenever someone makes or receives a call on a mobile telephone, a Call Detail
Record (CDR) is automatically generated by the operator for billing purposes. CDRs
have a wide range of applications beyond billing, from social science to data-driven
development. Recently, CDRs have been increasingly used to study human mobility,
whose understanding is crucial e.g. for planning efficient transportation infrastructure.
A major difficulty in analyzing human mobility using CDR data is that the location of a
cell phone user is not recorded continuously but typically only when a call is initiated
or a text message is sent. In this paper we address this problem, and develop a
method for estimating travel times between cities based on CDRs that relies not on
individual trajectories of people, but their collective statistical properties. We apply
our method to data from Senegal, released by Sonatel and Orange for the 2014 Data
for Development Challenge. We turn CDR mobility traces to estimates on travel times
between Senegalese cities, filling an existing gap in knowledge. Moreover, the
proposed method is shown to be highly valuable for monitoring travel conditions
and their changes in near real-time, as demonstrated by measuring the decrease in
travel times due to the opening of the Dakar-Diamniadio highway. Overall, our results
indicate that it is possible to extract reliable de facto information on typical travel
times that is useful for a variety of audiences ranging from casual travelers to
transport infrastructure planners.

Keywords: data for development; call detail records; mobile phones; travel time
estimation; near real-time monitoring

1 Introduction

Mobile phones are ubiquitous, widely available and used all over the world. They have
also proven to be an invaluable source of high-quality data for studying different aspects
of human societies [1-3], especially for development purposes [4, 5]. Such studies typically
use Call Detail Record (CDR) data that are collected by telecommunication operators for
billing purposes and therefore come with no extra cost or overhead. CDRs contain infor-
mation on communication events such as calls or text messages, including the initiator
and recipient, time of contact, and which cell tower is involved in the contact.

Studying CDRs has been especially helpful for developing and underdeveloped coun-
tries, where there is often a lack of systematic population-level data collection, or in the
aftermath of natural disasters, where individuals are hard to reach or their location is un-
known [6]. In the recent years, global entities like UN Global Pulse have published re-
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ports on use of these data for such purposes [4], and telecommunication companies such
as Orange and Telecom Italia have set up data challenges for scientists to study CDRs for
development purposes [7, 8].

One important line of research applies CDR analysis to study human mobility and trans-
portation and to develop methods that can be used e.g. for urban real-time monitoring [9]
and planning [10], or for optimization of transportation infrastructure [11-14].

The time it takes to travel between different locations is a key constraint (and a key de-
scriptor) of human mobility. Thus, up-to-date information on de facto travel times is not
only of importance to travelers, but also for planning and governance of transport infras-
tructure. For instance, such information could be useful for monitoring road conditions
or assessing access times to hospitals. The importance of de facto travel times is therefore
evident, but their availability is still limited, in particular in developing countries, due to a
lack of available resources required for such monitoring.

In practice, there are many ways to estimate and monitor travel times. Travel time in-
formation can be estimated with different techniques typically used by transportation en-
gineers, ranging from magnetic loop detectors, automatic register plate recognition sys-
tems, and recording of GPS traces to traditional surveying methods [15-17]. Although
some of these methods provide highly accurate real-time estimates on travel speeds and
times, they typically require installation of physical equipment (e.g. magnetic loop detec-
tors) which makes them resource-intensive, or they are labor-intensive (surveys). GPS-
based methods require less resources. In particular, Google or other vendors of smart-
phone operating systems can easily leverage on an existing population of suitable devices
to collect raw data for computing travel time estimates. However, even though mobile
phones are common in developing countries, smartphone penetration is typically low [18],
making the collection of data from GPS-enabled smartphones difficult in practice. Also
there may be no commercial interest in providing detailed, high-quality information on
travel times in developing countries. Furthermore, algorithms used for extracting travel
time estimates from raw data are not typically available.

One alternative approach to estimating travel times is to use data generated by com-
munication between a mobile phone and the cellular network base stations. In developed
countries, the most important use case is to provide accurate real-time information on
traffic conditions and therefore most studies and commercial projects have been focused
on this topic [19-22]. There are two main approaches for estimating travel time informa-
tion using mobile phones and the cellular network. The first uses information generated
when mobile phones move across the coverage areas of cell-towers, which results in hand-
overs and location area change events [23-25]. The second is based on signaling strengths
and delays between a mobile phone and nearby cell towers [26, 27]. When done period-
ically, this results in GPS-like coordinate trajectories which can then be further refined
into travel time distributions between origin-destination (OD) pairs [27].

While many of these systems have also been commercially implemented [19, 28], such
travel time estimation systems are not yet adopted worldwide and even in some developed
countries they are still at the pilot phase [29].

To summarize, in the context of travel time estimation, most studies focus on providing
accurate, real-time estimates on specific road segments while less attention has been given
to the travel times actually experienced by the users on longer trips. Additionally, most
methods are either costly, labor intensive or rely on infrastructures which are non-existent
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in developing countries. Therefore, there is a need for methods which (1) are inexpensive
and are not resource or labor-intensive (2) do not depend on complicated infrastructure
or hardware (3) provide accurate estimates of travel times experienced by users.

In this paper, we show that this can be achieved with the help of CDR data already stored
for billing purposes, without the need for implementing more detailed hand-over or trian-
gulation data analysis pipelines. The benefit of using billing data is that mobile operators
always collect this data in a standardized format; there is even a dedicated software pack-
age for analyzing such data (http://bandicoot.mit.edu/) [30]. However, extracting accurate
travel time information from CDRs is not a straightforward task because the location of
a user is recorded only when the user initiates a call or sends a text message. Therefore, a
single CDR-based mobility trajectory is typically very sparse in time, and cannot directly
be used for estimating travel times between locations. However, when multiple mobility
trajectories are pooled and analyzed as a whole, it turns out it is possible to produce reli-
able travel time estimates.

To this end, we have developed a method for automated extraction of typical travel times
between cities from CDR data. Due to the simplicity and low computational cost of our
method, we are immediately able to scale it up to the country level instead of the more
local scales typical for other methods. The method aims at providing an overall view on
travel times between cities and it enables monitoring of travel times and conditions in the
long term. It has been especially designed for developing countries where reliable infor-
mation on travel times and transport infrastructure is limited or not available at all. Unlike
some of the above-mentioned methods, it is not designed for producing real-time traffic
speed estimates for specific road segments; however, as we show with an example piece of
Senegalese highway, it does allow detecting sudden changes in travel times.

The data we analyze originates from Senegal, for which Orange and Sonatel have pro-
vided anonymized CDR-based mobility data sets in conjunction with the ‘Data for De-
velopment Challenge 2014’ (D4D Challenge) [8]. To show our method’s performance in
practice, we compare our results to existing travel time information available from alter-
native sources, such as the travel times provided by Google. Furthermore, to demonstrate
that the method is capable of monitoring changes in travel condition in near-real-time,
we estimate how much the opening of the Dakar-Diamniadio highway dropped the typi-
cal travel times between the capital Dakar and the nearby city of Pout.

2 Data and methods

2.1 Data

In this study, we have used 25 anonymized mobility data sets provided by Orange and
Sonatel for the 2014 D4D Challenge [8]. Each set contains ~300,000 mobility traces for
a two-week time span; a mobility trace contains the cell tower IDs and time stamps of
calls and text messages made by one anonymized customer. In the provided data set,
users whose traces span less than 75% of the days of in a given two-week period have
been filtered out, together with users who have more than 1,000 weekly events and likely
correspond to non-human users such as machines sending text messages. Both filtering
processes have been performed by the D4D Challenge organizers, i.e. at data source. As
shown in Figure 1(A), after the filtering most users have been observed between 10 and
1,000 times during a two-week time span. Because of privacy and commercial reasons,
only approximate coordinates are given for the locations of the cell towers, and the time
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Figure 1 Mobility trace lengths n; and inter-observation time counts between origin-destination city
pairs. In Panel A, we show the logarithmically binned distribution of the number of data points in the users’
CDR-based mobility traces. The distribution shows that most two-week mobility trajectories have between
10" and 103 data points. In Panel B, we show the complementary cumulative distribution (1-CDF) of the
number of inter-observation counts for all origin-destination city pairs. Note that a large number of city pairs
(~10%) have zero inter-observation times, which is partially due to some cities not being allocated to any
(constantly) active cell tower.

resolution of data is restricted to 10 minutes. For a more detailed description of the data
set, see Ref. [8].

No data are perfect, and this data set is no exception. The biggest problem arises from
the fact that the data only contains the locations of the cell towers at the end of the data
collection period.? Thus, changes in the cell tower or, to be precise, in the locations of the
base transceiver stations during the year can go unnoticed, and cause errors in the data. To
reduce errors caused by cell towers (or their IDs) whose location has changed and by cell
towers that were introduced during the time span of the data set, we have only included
in our analysis those cell towers that were associated with at least one CDR entry on each
day of the time span covered by the data. This white-list of cell towers was created using
another data set that contained the hourly numbers of calls and text messages sent and
received at each cell tower. In total the white list contained 1,093 cell towers out of the
total number of 1,666 provided in the data set. Although this tower-level filtering of the
data has helped to reduce errors, it is still apparent in some of the results that the source
data comes with erroneous tower locations.

Possible problems with tower locations are also mitigated by focusing on cities instead
of individual cell towers. To this end, we obtained a list of 62 major Senegalese cities and
their geo-coordinates from www.tageo.com [31]. With the help of this information and
the provided cell tower locations, we assigned a set of cell towers to each city, such that
each cell tower is assigned to its closest city whenever their distance is at most 10 km. Note
that two cities (Wassadou and Ourossogui) out of the total of 62 cities were not assigned
any cell towers. The locations of the cities and their associated cell towers are displayed in
Figure 2(A).

2.2 Determination of typical travel times

Given two cities i and j and their corresponding sets of cell towers I and J, we say that user
u has made a trip from city i to city j whenever the mobility trajectory of u first contains
one of the cell towers in /, and at a later point one of the cell towers in . Between the
start and end of a trip, a user can visit any other cities and cell towers, but can not visit
any cell towers corresponding to the origin or the destination city. Thus a trip from i to
j consists of a series of time-ordered observations (time, user, tower ID), where the first
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Figure 2 Extraction of typical travel times between Senegalese cities. Panel A: Each set of cell towers
assigned to a city are colored with same color. Black dots indicate cell towers that were not assigned to any
city. Light blue background indicates sea, and white background land. Note also that southern and northern
parts of Senegal are separated by Gambia, for which road data is not shown. Panels B and C: Two examples of
inter-observation time distributions (B: from Kaolack to Tambacounda; C: from Dakar to Ziguinchor). The
empirical inter-observation time distributions are shown with black dots, and the green curve represents our
kernel density estimate of the inter-observation time probability density. The red vertical lines indicate the
estimated typical travel time corresponding to the peak, and the blue vertical lines indicate the lower bound
estimates. In Panel B, we see a typical pattern with a single clear peak that is located at 275 minutes (4 h

35 min). This gives us an estimate of the typical travel time from Kaolack to Tambacounda. In Panel C,
however, there are two peaks. The first peak is located at ~100 minutes and is presumably from air traffic
between Dakar and Ziguinchor. The second peak is located at 870 minutes (= 14 h 30 min), which matches
well with the travel time taken to reach Ziguinchor from Dakar with ferry (15 h).

tower ID belongs to the set I and the last tower ID to the set /. The inter-observation
time corresponding to each trip is then defined simply as the time between the first and
last observation. Note that a user can be simultaneously on multiple trips. A schematic
example of a city-level trajectory, and the resulting inter-observation times are presented
in Figure 3. In Figure 1(B) we show the pooled distribution of the number of extracted
inter-observation times for the 62 x 61 OD-pairs.

To estimate the typical travel time from city i to city j, we pool all inter-observation
times from the mobility trajectories of different users, and investigate their distribution.
In theory, the shortest observed inter-observation time would be indicative of how fast
one can travel between the two cities. However, the shortest inter-observation time may
not represent the typical travel time between these two locations and it is also particularly
sensitive to any errors in the data. Because of this, we focus on the peak of the inter-
observation time distribution instead.

For accurately estimating the location of the peak, some smoothing of the inter-
observation distribution is necessary as the original distribution of data can fluctuate a
lot, even though our data is already binned to 10 minute intervals due to the restricted
temporal resolution of 10 minutes. Smoothing is of most importance when an OD-pair
has a low number of inter-observation times (see Figure 4 for an example).

It is also worth noting that travel can take place using different modes of transportation
which can cause multiple peaks in the inter-observation time distribution. This can clearly
be seen in Figure 2(C), where there is first a peak corresponding to travel by air followed
by a peak corresponding to travel by sea and land. In this study we focus on the most
typical travel modes. As travel by air is not very common within Senegal [32], we focus
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Figure 3 A schematic representation of one user’s mobility trajectory and the resulting
inter-observation times. On the left, the mobility trajectory of one person is visualized both as a spatial
representation (top) and as a timeline (bottom). In the spatial representation each circle corresponds to a city,
and an arrow corresponds to a movement from one city to another. The ordering of the movements is
indicated by ordinal numbers and the times when the user has been observed in each city are shown below
the name of each city. The timeline presentation below shows the same information in a more compact form.
On the right, we have also listed all inter-observation times that can be computed from the trajectory.
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Figure 4 Importance of smoothing. In the figure we show an example OD pair with a low number of
extracted inter-observation times. The black dots show the original distribution of data consisting of in total
1,609 inter-observation times. The green curve shows the smoothed estimate of the probability density
function, while the red vertical line denotes the peak estimate and the blue vertical line denotes the lower
bound estimate. As is evident from the figure, the original data fluctuates a lot and the general trend of the
data is better visible in the smoothed distribution. Furthermore, our decision rule for the peak now selects the
first peak of sufficient magnitude, which is a more reasonable estimate than the even higher peak located
around 750 minutes.

on travel times corresponding to straight-line travel speeds of less than 100 km/h which
should allow for all different travel modes by sea and land but filter out air traffic. Note that
given the typical road and travel conditions and that the limit is on straight-line speeds,
this manually chosen limit is rather generous and will almost certainly not exclude any
actual land travel trips. This thresholding also helps to further filter out some erroneous
results due to irregularities in the source data.

Because of various biases in the data (e.g. different mobile phone usage frequencies lead-
ing to different waiting times before first call is made at destination, or tower location
offsets) there is no guarantee that the location of a peak in an inter-observation time dis-

Page 6 of 16
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tribution would precisely correspond to a typical travel time between two cities. Thus,
information on the peak’s width is also important. The right-hand side of the peak typi-
cally decays slowly as there is no natural limit to a trip’s duration. Therefore we focus on
the left-hand side of the peak and its lower bound. If the position of the peak is considered
as an estimate of the typical travel time, the lower bound measures the best case, travel
under optimal conditions. The lower bound is computed as follows: given a peak’s loca-
tion £, the location of its lower bound ¢; is defined as the largest inter-observation time
such that (i) ¢ < ,, and (ii) the value of the smoothed inter-observation time distribution
is lower than or equal to half the peak height.
In detail, our analysis pipeline for estimating typical travel times between cities is as
follows:
1. Compute inter-observation time distributions
Loop through the CDR data, compute inter-observation times for each
origin-destination city pair, and pool the results into inter-observation distributions.
2. Smooth the distributions
To smooth the inter-observation time distributions, use a standard Gaussian
kernel

1 2

G(t) = e 272 1)

oA2m

with a standard deviation o corresponding to 30 minutes. The bandwidth of

30 minutes was chosen as it was found to allow reasonable travel time estimations
for city pairs with fewer trips, while not oversmoothing the original data. The
smoothed density estimates Ps(¢) can then obtained from the original
inter-observation time distribution P, (¢):

tmax

P(t)=CY _G(t—t)P,(t), (2)
t'=0

where £y is the largest inter-observation time permitted by the data (2 weeks) and
C is a normalization coefficient guaranteeing that the final smoothed distribution
Py(¢) is a valid probability density function. The smoothed density estimates are
evaluated at 1 min intervals.
3. Find all maxima
Find all local maxima of the smoothed probability density functions whose
corresponding straight-line travel speed does not exceed 100 km/h (to filter out air
traffic and errors in the original data). This can be done simply by going through the
elements of the vector of smoothed density estimates: an element is a local
maximum when its value is higher than those of its neighbors.
4. Detect the peak corresponding to typical travel time
From each smoothed probability density functions, select the peak with smallest
travel time such that the height of the peak is at least 0.5 times the height of the
largest peak fulfilling the travel speed restriction. Typically this condition results in
simply choosing the highest peak of the distribution, but with origin-destination
city pairs with a low number of observations this condition was found to provide
more robust results (see Figure 4).
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5. Compute the lower bound estimate
Select the closest point in time smaller than the peak time such that the height of
the distribution at this point is smaller than or equal to half the height of the
detected peak. In case the inter-observation time distribution does not fall to half
peak height on peak’s left hand side, set the value for the lower bound to 0 minutes.
Typically, such cases are due to irregularities in the source data.

Note that because there is no ground-truth calibration data, we are forced to set some
parameters of the method on the basis of reasonable assumptions, instead of adjusting
their values based on calibration. In the following sections, we will nevertheless discuss
possible causes of estimation biases. Especially, we will investigate the biases caused by
varying the smoothing bandwidth.

The code implementing the above analysis pipeline for extracting typical travel times
from CDR data is freely available at https://github.com/rmkujala/d4dttimes.

2.3 Estimation biases

Our peak and lower-bound estimates are, of course, prone to different kinds of biases due
to our definition of inter-observation times. First, each inter-observation time typically
includes not only the actual time of travel but also period before and after, as calls are
not made exactly on departure or arrival. This bias is however difficult to correct, as it
is not known how mobile phone usage and travel behavior are coupled (and inter-call
times are typically very broadly distributed, see e.g. [3]). Moreover, we do not filter out
detours taken by travelers which cause the long tails in the inter-observation times as seen
in Figure 2. On the other hand, the range of cell towers can cover areas that are far from
the location of a city, which can shorten inter-observation times between pairs of cities.
These individual biases can thus sum up to a bias that can be either negative or positive,
and that is difficult to estimate using CDR data alone. However, if calibration data e.g.
based on GPS recordings of individuals were available, it should be possible to correct for
these different biases. Nevertheless, our example cases will show that our estimates tend
to be close to quoted travel times found from literature. In any case, it seems reasonable to
assume that the bias remains relatively constant for any pair of cities, and thus when the

method is used for monitoring changes in travel times, possible biases no longer matter.

2.4 Effect of the number of samples on the estimates

As our method relies on the distribution of inter-observation times between two cities, it
is important to know how much data is required for reliable estimates. To get some idea
of the amount of data required for robust travel time estimation, we investigated how the
estimation error decreases with the number of data points. This was done by bootstrap
resampling the original inter-observation time distributions so that bootstrap sample sizes
ranged from 100 up to the total number of data points in the sample. For each sample
size, we calculated 1,000 bootstrap estimates and computed the median as well as the 5th
and 95th percentiles of the bootstrap estimate distributions. Here, we report the results
obtained for the two city pairs presented in Figure 2 (‘Kaolack to Tambacounda’ and ‘Dakar
to Ziquinchor’). In addition, we also investigated two origin-destination city pairs (‘Dakar
to Thies’ and ‘Dakar to Kaolack’) for which a very large number of inter-observation times

(>10°) were available when data were aggregated over the entire data collection period.
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Figure 5 Dependence of estimation accuracy and bias on the number of data points. Solid lines denote
median estimates, and the shadowed area denotes the 5th and 95th percentiles of the bootstrap estimate
distributions. The circle at the end of each curve denotes the travel time estimate obtained using the full
inter-observation time distribution.

The results are shown in Figure 5, and they illustrate two main points: First, our es-
timates on the location of the peak are relatively unbiased when at least 1,000 inter-
observation data points are available, as the median of the bootstrap estimates remains
close to the final value of the full distribution after this limit. Second, based on the 5th and
95th percentiles of the bootstrap distributions, to reach an acceptable 5 min estimation
accuracy we need of the order of 10,000 data points. In our data set, we find 266 origin-
destination city pairs (6.9% of all origin-destination pairs) that fulfill this criteria when
analyzed over the whole year. For the full distribution on the number of inter-observation
data points, see Figure 1(B).

Naturally, as the shape of inter-observation time distributions differs across city pairs,
the amount of data required for accurate travel-time estimates may vary. As a rough rule of
thumb, we nevertheless conclude that approximately 10,000 inter-observation times are
required for each origin-destination pair for obtaining reliable estimates. It is also worth
stressing that this rule of thumb is specific to this study only, as the mobility data used
here came in two-week chunks limiting the longest possible observable inter-observation
times accordingly.

2.5 Effect of the width of the smoothing kernel
Next, we discuss how the width of the Gaussian kernel used for smoothing the inter-
observation time distributions affects the results. In this work we report results with a
Gaussian kernel of width that corresponds to 30 min in standard deviation, which we
found to yield reasonable results. In general, it would be good to select kernel width adap-
tively e.g. using cross validation. However, given that the time resolution (10 min) of the
data was artificially heavily limited, this would have not been very straightforward.

We have nevertheless investigated how the smoothing bandwidth used affects our re-
sults. To this end, we computed the peak and lower bound estimates with a range of differ-
ent smoothing bandwidths for origin-destination city pairs that had at least 10,000 inter-
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Figure 6 The effect of the smoothing bandwidth on the travel time estimates. In Panel A we show the
distribution of the lower bound estimates normalized by subtracting the lower bound estimate obtained with
smoothing bandwidth of 30 minutes. In Panel B we show the distribution of similarly normalized peak
estimates. In both panels the outer shaded area denotes the 5th and 95th percentile, the inner shaded area
denotes the 25th and 95th percentiles of all estimates, and the solid lines correspond to the median of all the
normalized estimates. In these plots, we only show data for OD pairs with at least 10,000 data points.
Furthermore, the results for the lower bound estimates are only based on those results for which we are able
to identify the lower bound with all different bandwidth values. (With some OD pairs the inter-observation
time distribution never falls to half of the identified peak’s width on the peak’s left hand side due to data
irregularities.) Panel B shows that most peak estimates tend to stabilize when the width of the smoothing
kernel reaches 20 min, as is shown by the 5th percentile of the normalized estimates. Additionally, we note
that smoothing causes a systematic bias to the results: the larger the kernel width, the larger are the peak
estimates and the smaller are the lower bound estimates.

observation times within the time span of the data. We arrived at two main conclusions
(see Figure 6): First, our estimates seem to stabilize when the width of the smoothing ker-
nel reaches 20 min (this becomes more emphasized when the threshold is set to 1,000
inter-observation times). Second, our lower bound estimates tend to decrease and peak
estimates increase when the smoothing bandwidth increases. This is due to the skewness
of the inter-observation time distributions: As the right tail of the distribution is typically
fatter than the left tail, smoothing systematically shifts the peak to the right and the lower-
bound estimate to the left.

3 Results

3.1 City-to-city travel times within Senegal

We begin by reporting results on travel time estimates extracted for all origin-destination
pairs for which at least 10,000 inter-observation times were discovered. In the supple-
mentary web-page (see Additional file 1), we also report our estimates and bootstrap error
bounds for all origin-destination city pairs for which at least 1,000 inter-observation times
were available.

As any official information on times of travel between Senegalese cities is scarce and
hard to find, there is no obvious ground truth available for validating our results. Never-
theless, to give our estimates general credibility, we performed two different sanity checks.
First, the travel time estimates should be symmetric: the estimated travel time from city
i to j should be approximately equal to the travel time from city j to i. As shown in Fig-
ure 7(A), our estimates do generally fulfill this condition. Second, if we take up a simplistic
assumption of constant average travel speed throughout the country, we would expect an
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Figure 7 Symmetricity and scaling of travel time estimates with distance. In Panel A, we present a
scatter plot of estimated travel times from i to j versus times from j to i. It is seen that the estimates are rather
symmetric, as they should. Note that each pair of cities corresponds to a single point in the plot, and the
selection of which of the cities corresponds to i and which to j is made arbitrarily. In Panel B, we show how
the estimates scale with distance. Overall, we can observe an approximately linear trend. There are a few
points that correspond to clearly infeasible estimates due to erroneous data that seem to have very long
travel times (500-800 minutes) even though the distance between city pairs is low (0-150 km).

approximately linear relationship between the estimates and the straight-line (geodesic)
distances between cities. The results shown in Figure 7(B) agree with this hypothesis for
most of our estimates apart from some data points, including a few clearly erroneous ones.
By manual inspection of the source data, we found out that the erroneous estimates are
due to data irregularities: even after our data filtering pipeline some cell towers seem to
suddenly change their location. Thus whenever the data itself is of reasonable quality, these
two sanity checks demonstrate that our method yields sensible results.

To illustrate how well our estimates align with the real world, we consider two examples
where travel time estimates are available from elsewhere. According to Lonely Planet [33],
the travel time from St.-Louis to Dakar is roughly five hours with frequent sept-place taxis.
Our peak estimate of 5 h 7 min matches this extremely well. Furthermore, if we look at
our estimate of the travel time from Dakar to Ziguinchor (also discussed in Figure 2(C))
equals 14 h 30 min, which matches the approximate 15 h travel time to travel from Dakar
to Ziguinchor by ferry [34].

3.2 Comparison with Google’s estimates

To compare our estimates with existing routing engines, we also obtained travel time esti-
mates between all city coordinates from Google’s Distance Matrix API [35] using the de-
fault parameters of the service. The comparison of our and Google’s estimates is shown in
Figure 8. Overall, our results and those obtained through Google’s API are roughly linearly
dependent. Compared to our estimates, Google’s estimates tend to be lower, especially
when longer travel times are considered suggesting that Google may effectively overes-
timate the typical travel speed in Senegal. However, this is difficult to verify, as Google
has not made public how they produce their travel time estimates. It is nevertheless clear
that the baseline for Google’s estimates originates from the road network data that in-
cludes information on road network types and speed limits. In many developed coun-
tries, Google is known to also track and store location data from the users of its mobile

operating system [36]. This however requires that the people in the monitored area have
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Figure 8 Comparison of our estimates with Google’s Distance Matrix APl estimates. Only estimates
based on at least 10,000 inter-observation times are shown. In Panel A, we show our results for the lower
bound estimate, and in Panel B, we show our results for the peak estimate. Google’s estimates tend to be
overall smaller than ours. This is most evident with longer distances, and indicates that Google seems to
systematically overestimate travel speeds in Senegal.

access to smartphones, so that e.g. GPS location data can be transferred from the phone
to Google. In Senegal, smartphone penetration is still low (15% of adult users, 2014 [18]),
which can make it challenging for Google to calibrate their travel time estimates. Naturally,
the differences between our and Google’s travel time estimates can also originate from bi-
ases in our source data due to artifacts such as erroneous cell tower coordinates, varying
coverage ranges of cell towers, and the non-continuous tracking of individuals. Also the
goal for Google’s estimates may be different than ours: Google may focus on providing
estimates the travel time between places without including any additional delays e.g. for
breaks. Thus, due to the lack of established ground-truth data, we can not claim either of
the method to be superior - all that is certain is that there is a systematic difference.

3.3 Travel speed maps help to pinpoint anomalous travel times

To demonstrate how our results could be used for monitoring travel conditions in a coun-
try, we compute the speed of travel between Dakar and other Senegalese cities assuming
that the travel follows straight lines and that the travel times equal the peak estimates. This
we visualize in Figure 9(A). The results show in general that the further the distance from
Dakar, the greater is also the speed of travel. As Dakar is known for its congestion this re-
sult is in line with expectations, although possible systematic biases due to e.g. smoothing
of the distribution can affect the results.

Nevertheless, we can also find an exception to the rule: The travel speed from Dakar to
Ziguinchor is arguably slower than to many other cities that are of same distance from
Dakar. This is most likely due to the ferry travel between these two cities, as land travel
requires one to cross Gambia and travel on bad roads.

3.4 Monitoring travel times: case study on opening of the Dakar-Diamniadio toll
highway

Our method also allows near-real-time monitoring of travel times: all that needs to be

done is periodically feeding CDRs to the peak detection algorithm - say, daily or weekly.

This allows maintaining up-to-date travel time estimates, and in particular, detecting ex-

pected or unexpected changes in travel times.
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Dakar to selected other cities in Senegal. The figure shows that the longer the distance from Dakar, the faster
the speed of travel, except for Ziguinchor to which travel often takes place by ferry resulting in slow travel
speed. The grey network in the background represents Senegal’s road network obtained from Ref. [37]. The
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which road network data is not included. On the right (Panel B) we show a close-up map showing the main
roads close to the capital Dakar that is located on a peninsula. The stretch of the Dakar-Diamniadio highway
that was opened on August 1st 2013 is highlighted with a thick dark blue line. The map image in Panel B is a
modified excerpt from OpenStreetMap (© OpenStreetMap contributors).
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Figure 10 Opening of the Dakar-Diamniadio toll highway shortens travel times between Dakar and
Pout. Daily (Panel A) and monthly (Panel B) travel time estimates between Dakar and Pout. The solid lines
denote the estimated values, and the shaded areas denote the 5th and 95th percentiles of 1,000 bootstrap
estimates. The green vertical line marks the opening date of the highway in both plots.

To demonstrate the potential of the method for this task, we have analyzed the de-
crease of the typical travel time between Dakar and Pout when the last part of the Dakar-
Diamniadio toll highway was opened on August 1st 2013 [38]. The locations of the new
highway stretch, Dakar, and Pout are shown in Figure 9(B).

In Figure 10 we show monthly and daily travel time estimates from Dakar to Pout (both
peaks and lower bounds). From the monthly and daily estimates it becomes clear that
there is a drop of 15 to 20 minutes in the typical travel time around the time when the new
highway was opened. Not surprisingly, the results for the daily estimates are noisier than

the monthly ones as they are based on fewer inter-observation times. Nevertheless, the
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drop in travel times can be pinpointed with high accuracy to match the opening day of the
highway.

4 Discussion

In this paper we have introduced a method for extracting typical travel times between
cities from CDR-based mobility data. To demonstrate the usefulness of the method, we
have applied it to data from Senegal, released for the 2014 D4D Challenge, and shown
that it produces feasible estimates even though the spatial and temporal resolution of the
data has been artificially reduced. Compared to Google’s Distance Matrix API estimates,
our approach yields estimates that are on average longer than those by Google suggesting
the possibility that Google may be overestimating travel speed in Senegal. Also, we have
discussed how the method can be used for monitoring changes in travel speeds in near
real-time, as demonstrated by measuring the impact of opening a new highway on travel
times.

For our method to work properly, a sufficient amount of data is required, especially when
accurate travel time estimates are called for (for monitoring changes only, a higher level of
noise is tolerable). However, even when only using a sample of 300,000 individuals out of
Senegal’s total population of over 14 million inhabitants, we were able to obtain reasonable
travel time estimates between many Senegalese cities. Were the operator’s CDR data to be
used in full, we would have also been able to provide estimates for pairs of cities between
which little traffic takes place.

Our method would also benefit from better spatial and temporal accuracy of data. An
increased spatial resolution would allow better allocation of cell towers to cities, and if the
temporal resolution of the data was improved, also within-city analyses based on individ-
ual cell-towers could become feasible. Note that for CDRs without artificial restrictions
this is typically the case: positions of towers are accurately known, and data is recorded
at a time resolution of one second. Further, were the data augmented with data on hand-
overs, location area changes, and Internet usage data, the estimates would become even
more accurate.

As some of our results point out, errors in data can give rise to corrupted results. While
simple filtering of the data removed some of the errors, others did persist. Most likely these
errors could have been avoided at source: the errors have to do with changing base station
locations, base station ID’s that have been switched between stations, or other technical
issues at the operator’s end.

In addition to improving the quality, amount, and accuracy of the source data, also the
method itself could be tuned for more accurate estimates. For instance, one could make
use of information on road network characteristics or distances between cities and use
them to regularize the estimation problem e.g. using Bayesian methods. Moreover, the
estimation process could also be approached in a more holistic manner using ideas orig-
inating from the triangle inequality: if we know the typical travel times 45 and zc, it is
likely that the typical travel time £4¢ is smaller than or of the same order of magnitude
as typ + tpc. Thus, if there are few trips observed between cities A and C, the travel time
tap + tgc could be used as a soft constraint for estimating the travel time £4¢. This ap-
proach could also help out in automatic detection of erroneous results that are due to
irregularities in the source data.

It is also worth pointing out that the estimates produced by our approach are bound to
suffer from different biases because of reasons ranging from varying cell tower ranges to



Kujala et al. EPJ Data Science (2016) 5:6 Page 150f 16

offset times between cell phone usage and traveling. The effect of these biases could be
diminished with more accurate calibration data on human mobility, such as GPS location
data recorded for a sample of users.

Finally, let us discuss certain benefits of the method. The method is easy to implement,
and it does not require either massive deployments of sensors, GPS traces from smart-
phones, or large-scale computational resources as the analyses can be run even on a stan-
dard desktop computer. The method also avoids privacy concerns that are often associated
with CDR data, as it can operate with chunks of anonymized data (all that is required is
series of locations and times), and produces only aggregate data that does not violate the
privacy of individual users.

The real value of any method comes nevertheless from its use in practice. For travelers,
both locals or tourists, the information on typical travel times is valuable as it helps out in
planning of trips. For transport infrastructure planners, the method provides means for
spotting possible bottlenecks in a transportation network. Also, as the method lends itself
to near real-time monitoring of travel conditions, it can be used for assessing changes in
travel times, either locally or country-wide. Such changes can result locally from special
events, deteriorated (or improved) road conditions, or disturbances such as illegal check
point harassment. On a larger scale, one could envision detecting distruptions to travel
patterns caused by disasters, violent conflicts, or outbreaks.

To summarize, in this work we have demonstrated that it is possible to extract and mon-
itor travel times using CDR data when high quality data are available in sufficient amount.
Given that the cost of applying the method in practice is low and the potential gains re-
main significant, we hope to see our method implemented also in practice - especially in
developing countries where accurate travel time information is not often readily available.
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