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Abstract: Increasing demand of high-speed data rate is leading to a challenging task to provide services to the users within
exponentially growing market for wireless multimedia services. Subsequently, the available radio resources are becoming
scarce because of different factors such as spectrum segmentation and dedicated frequency allocation to existing wireless
standards. Exploring new techniques for enhancing the spectral efficiency in wireless communication has been an important
research challenge. In this study, the enhancement of spectral efficiency of wireless communication systems is considered. A
framework is proposed to implement the concept of compressive sampling (CS) for compressing the natural random signals.
The performance of proposed framework is evaluated in the context of multiple input multiple output orthogonal frequency
division multiplexing system. Simulation-based results show that 25% of resources can be saved by marginal trade-off with
the quality of service (QoS) requirement applying CS to the natural random signals. Furthermore, it can be claimed that this
QoS trade-off can be optimised with dynamic selection of random measurement matrices.
1 Introduction

The rapid development of wireless networks and technologies
has caused the appearance of plenty of wireless and mobile
devices as well as applications, that attracts more users to
demand more radio resources from the network. The
spectrum resource is scarce and it is becoming congested
because of new applications emerging day by day.
Exploring efficient techniques for enhancing spectrum
efficiency assuring the satisfied quality of service (QoS) has
become an open research challenge.
Recently, compressive sampling (CS) has been a topic of

extensive research in various areas such as digital image
processing [1], wireless channel estimation [2, 3], radar
imaging [4], cognitive radio [5] etc. In CS, a significantly
reduced number of measurements is obtained from the
incoming data stream and is expected to be reconstructable
from these small number of measurements [6]. This
technique basically combines two key concepts: sparse
representation with a choice of a linear basis for the class of
desired signal and incoherent measurements of the
considered signal to extract the maximum information using
the minimum number of measurements [7]. Mathematical
models required to implement CS include the development
of new types of linear bases, l1-optimisation to recover the
sparse representations and the design of optimal dual
measurements [8]. However, reconstructability of the
signals exploiting CS is dependent on the following two
principles: sparsity and incoherence nature of the signals
[1]. The sparsity measure of natural continuous or discrete
time signal provides the indication of information content
sensitivity as well as the measure of degree of freedom of
the signal. Incoherence indicates the duality between time
and frequency, hence provides the concept that signals
having sparse representations must be spread out in the
domain in which they are acquired.
CS was originally used for efficient storage and

compression of digital images [1, 6]. CS theory states that
certain signals can be recovered from far fewer samples or
measurements than the samples required by traditional
methods [9]. In sparse signals, most of the signal energy is
concentrated in few non-zero coefficients. To apply CS
theory, it is not necessary for the signal itself to be sparse,
but can be compressible within sparse representations of the
signal in known transform domain. According to the nature
of signals as an example, smooth signals are sparse in the
Fourier basis, whereas piecewise smooth signals are sparse
in a wavelet basis [1]. The concept of quantisation in
compressive measurements has been introduced in [10] and
the reconstruction from CS measurements quantised to 1 bit
per measurement has been considered. Different techniques
for applying CS in various applications have been
addressed in [11]. CS has been considered from a Bayesian
perspective in [12] and it has been claimed that the results
from Bayesian analysis are often sparser than previous CS
solutions. In [13], CS technique has been applied to single
target tracking and the feasibility of using compressively
sensed and processed waveforms for reliable target tracking
has been investigated. In [2], CS technique has been
applied for sparse channel estimation and multi-carrier
underwater acoustic communications, where the channel
features are considered to be sparse. CS technique has also
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been applied for pilot-based channel estimation to reduce the
pilot overhead burden by exploiting the coherent sparsity of
the radio channels [14].
Design of appropriate transform matrices plays an

important role in accurate recovery of the compressed
signal. A new framework to construct fast and efficient
sensing matrices for practical compressive sensing, called
structurally random matrix, has been introduced in [15]. A
greedy algorithm, called orthogonal matching pursuit
(OMP), has been presented in [16]. A sorted random
measurement matrix has been proposed in [17] to apply
OMP in image signal recovery applications. Subspace
pursuit algorithm for reconstruction of sparse signals with
and without noisy perturbations has been proposed in [18].
In [19], significant performance gain has been demonstrated
by exploiting more realistic signal models than the simple
sparse and compressible models considered in much
literature.
In digital communication systems, natural random signals

generated by the users are non-sparse in nature. However,
the most important aspect of being able to apply CS in
digital communication is to investigate the practical
feasibility of reconstruction of such natural non-sparse
signal from compressive measurements. Then it would be
feasible to perform other kinds of statistical signal
processing at the receiver such as detection, estimation etc.
Practically, in the majority of applications, data acquisition
is based on Nyquist sampling theorem [20]. Since the
signal bandwidth requirement is significantly high in case
of video applications, the technology is not cost effective to
achieve necessary processing rates in order to satisfy the
Nyquist theorem. The existing practical solutions bandlimit
the signals while preventing aliasing. Furthermore, there is
a significant class of digital signals that are compressible,
that is, it is not necessary to transmit all the data in order to
get acceptable representation of the original information
signal. Practical solutions introduce lossy compressive
processing at the source level [21].
In the existing literature, CS techniques have been used for

different applications which mainly deal with sparse signals
[7–11]. In this paper, a framework is proposed to apply CS
technique for natural non-sparse random signals in the
context of practical applications to digital communication.
To evaluate the performance of the proposed framework, a
multiple input multiple output orthogonal frequency
division multiplexing (MIMO-OFDM) system with CS is
considered. Within the assumed model, MIMO system
exploits the spatial multiplexing technique by creating
independently faded paths between transmit and receive
antennas as in [22]. OFDM is a multi-carrier modulation
technique, which provides higher spectral efficiency in
comparison with the traditional modulation schemes [23].
MIMO-OFDM has been considered as an important
technology in upcoming high data rate systems such as 4G,
IEEE 802.16, IEEE 802.11n, WiMax Mobile, WiMax
Fixed and 3GPP LTE [24]. In the context of a
MIMO-OFDM system, a CS-based channel estimation
method for MIMO-OFDM systems over frequency-selective
fading channel has been presented in [3], and it has been
claimed that the proposed method outperforms the
conventional least square method and greatly decreases the
pilot overhead burden. In this paper, we apply the CS
technique with the objective of enhancing spectrum
efficiency of the wireless communication systems.
In [25], code division multiplexing (CDM) technique has

been applied in the transmitter side and reverse process has
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been performed in the receiver side of the MIMO-OFDM
system. In contrast to the principle applied in [25], we
apply reverse process, that is, compression in the transmitter
side and decompression in the receiver side in this work. A
measurement matrix based on Hadamard matrix is proposed
to carry out CS for natural random signals. The main
contribution of this research work is the exploration of a
new random measurement matrix to perform CS with lower
degradation in QoS, so that the possibility of the occurrence
of ambiguous conditions at the receiver is eliminated.
According to authors’ knowledge, no contributions have
been reported in the literature using this concept. Finally,
the performance evaluation of the proposed framework is
carried out in terms of bit error rate (BER) against bit
energy-to-noise ratio (Eb/No) and the normalised spectrum
efficiency against Eb/No.
The rest of this paper is organised as follows: Section 2

provides general overview of the CS technique. Section 3
provides theoretical basis on compressibility of natural
random signals and then defines the proposed framework to
implement CS on to a natural random signal. Section 4
provides the analysis of the conditional probability on
accurate detectability of the signals. Section 5 presents a
system-level evaluation of the proposed framework to
obtain a measure of compressibility of natural digital signal
for an acceptable QoS considering a simple MIMO-OFDM
system. Simulation model and numerical results are
presented in Section 6. Section 7 concludes this paper.
1.1 Notation

Throughout the formulations of this paper, boldface upper
and lower case letters are used to denote matrices and
vectors, respectively, E[ · ] denotes expectation, R denotes
the real plane, (·)T denotes the transpose, (·)H denotes the
conjugate transpose and I denotes the identity matrix.
2 Overview of CS

Sampling is one of the fundamental steps carried out at
modern digital communication receiver. According to
Nyquist sampling theorem, no information loss is expected
with the reconstructed signal if sampling rate is twice the
bandwidth or maximum frequency component of the signal
depending on whether the signal is bandpass or bandlimited
[20]. There are different sampling trends emerging in this
field such as faster sampling, larger dynamic range,
higher-dimensional data, lower energy consumption and
new sampling modalities such as CS [7]. The CS technique
performs sampling at a rate less than the Nyquist rate and
reconstructs the original signal back from significantly
lower number of compressive measurements. The CS
theory states that certain signals can be recovered from far
fewer samples or measurements than the samples required
by traditional methods [9]. To apply CS theory, it is not
necessary for the signal itself to be sparse and it can be
applied by transforming a non-sparse signal into a sparse
form in some known transform domain. If an
N-dimensional signal can be converted to a sparse form
with only K non-zero coefficients and K≪N , the signal can
be regarded as a K-sparse signal. In other words, if the
largest K coefficients in the sparse form can retrieve an
acceptable approximation of the signal and K≪N , the
signal can be considered as a compressible signal. Such
compression schemes can reduce the dimensionality of an
559
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N-dimensional sparsely represented signal x from the natural
set of coefficients α in a basis expansion x =Ψα, with Ψ an
N ×N basis matrix [19], where every set of N coefficients
{ai}

N
i=1 can be represented in terms of a signal vector

x [ RN within a given basis matrix Ψ.
Suppose �x be a measurement vector of size M and it is

represented with fewer samples in terms of signal vector x
of size N (M <N ) through some random projection, where
M is constrained by M≤ K log N [21], and K is the number
of non-zero coefficients, the measurement vector �x can be
written as

�x = Fx = FCa (1)

where Φ is a M ×N random measurement matrix and it must
obey uniform uncertainty principle to guarantee the
reconstruction of the signal [26]. The measurement matrix
is unstructured and universally incoherent to the basis
matrix Ψ and with every measurement, fractional
information about the sparse coefficients can be obtained.
Hence, it does not have to match any structure of the signal
but looks more like random noise than any feature of the
signal vector [1]. Standard CS theory dictates that robust
signal recovery is possible from M =O [K log(N/K )]
measurements [19]. Many contributions related to CS till
date have been carried out for sparse signals [6, 21, 27]. In
this paper, the application of CS for natural non-sparse
random information signal for digital wireless
communication is considered.

3 Proposed compression algorithm

3.1 Compressibility of natural random signals

A signal, which can be represented with a fewer number of
samples, less than the length of the signal can be
considered as a compressed signal. These types of signals
are pervasive in real applications. Natural signals such as
audio and speech signals are highly compressible. Image,
music, speech compression algorithms and coders are
important parts of software in many technologies, from
desktop computers to MP3 players. Many types of
automatically generated signals are also highly redundant
[28]. As defined in the earlier section, a set of K-sparse
signal implies that only K(≪N ) of the coefficients α are
non-zero. On the other hand, compressibility implies that
coefficients α, when sorted, decay rapidly enough to zero so
that α can be represented with K number of samples which
are reconstructable in N dimensions.
Recent results have shown that a relatively small number of

random projections of a signal can contain most of its salient
information [19]. Many natural and man-made signals are not
purely sparse, but can be approximated as compressible.
Natural signals or images are sparse (or compressible) in
the discrete cosine transform (DCT) domain, that is, many
DCT coefficients are zero or small enough to be
approximated by zero.
Let us consider a natural signal vector x whose coefficients,

when sorted in order of decreasing magnitude in transform
domain S, decay according to the following power law [19]

∣∣xI (q)∣∣ ≤ Sq−1/r, q = 1, 2, . . . , N (2)

where I indexes the sorted coefficients and r is the order of
the decay. Owing to the rapid decay of their coefficients,
560
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such signals are well approximated as K-sparse signals [19]
by considering only K number of the highest coefficients to
be non-zero in the signal vector. Let xK ∈ ΣK represent the
best K-term approximation of x, which is obtained by
keeping only the first K-terms in xI (q) in (2). The error of
this approximation can be denoted as σK, which in the
lp-norm can be written as

sK (x)p = ||x− xK ||p (3)

where the lp-norm of the vector x is defined as

||x||p =
∑N

q=1 |xq|p
( )1/p

for 0 , p , 1, p being order of

normalisation. Then the above equation can be rewritten as
[19]

sK (x)p ≤ (rs)−1/pSK−s, for r , p (4)

with s = (1/r)− (1/p). In terms of lp-norm, the signal’s best
approximation error has a power-law decay with exponent s
as K increases. The natural random signal which satisfies
(4) can be said to be s-compressible [19].
The approximation of compressibility of the natural signals

for digital communication solely depends on the selection of
transform domain basis for sparse representation of the signal.
In this proposed framework, full N-sample signal x can be
acquired. The product of the orthogonal basis along with
the measurement matrix is assumed to be a subset of
Hadamard matrix, that is, Hc =ΦΨ in relation to (1).
Therefore natural random signals can be compressed by
representing them in the proposed transform domain.
3.2 Proposed compressive transmission
framework (CTF)

Many contributions related to CS have been carried out for
sparse signals [1, 6, 21]. As stated earlier, the compression
of a non-sparse signal depends on the proper selection of
measurement matrix. In this work, a subset of Hadamard
matrix has been used as an orthogonal compressing
measurement matrix. The chip rate to generate an
N-dimensional Hadamard matrix, denoted as H, is assumed
to be the same as bit rate.
From this point, we consider x to be a binary information

sequence vector of size (N × 1) arriving at the transmitter
and xc be the compressed signal vector of dimension (M ×
1) obtained after multiplying the incoming sequence with
the compressive measurement matrix Hc of dimension (M ×
N ), which is a subset of H, that is, Hc∈H, where M <N.
The compressed information sequence xc that is to be
transmitted can be written as

xc = Hcx (5)

This compressed signal can be passed through channel using
different transmission techniques. The noisy received signal
after passing through Gaussian channel can be written as

y = xc + w (6)

where w is Gaussian noise vector. At the receiver, the
information signal can be recovered by passing through a
zero forcing (ZF) or minimum mean square error (MMSE)
IET Signal Process., 2013, Vol. 7, Iss. 7, pp. 558–564
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detectors.

x̂ = 1

N
Gy (7)

where G = HH
c Hc

( )−1
HH

c and G = HH
c Hc + s2

wI
( )−1

HH
c

for ZF and MMSE detectors.
In case of non-sparse signals, the above estimation results

are ambiguous for the case of the input sequence to be all
1’s and all 0’s. Hence, a new operator has been introduced
to avoid such ambiguity. This proposed operator is to be
generated from a lower triangular matrix with its all
non-zero components as 1’s denoted as L, of dimension
(N ×N ). The inverse of this lower triangular matrix yields
the difference matrix (D), that is, D = L − 1. The modified
compressive measurement matrix is denoted by Hd and can
be defined as

Hd = DH c (8)

Then, the compressive signal with modified measurement
matrix can be written as: xdc = Hdx. Hence the noisy
received signal is expressed as

y = xdc + w = Hdx+ w (9)

At the receiver, information signal can be recovered using the
following relation.

�x = 1

N
�Gy (10)

where �G = HH
dHd

( )−1
HH

d and �G = HH
dHd + s2

wI
( )−1

HH
d

for ZF and MMSE detectors.

4 Symbol detection reliability test

For the sake of simplicity, the detection reliability of the
signal at the receiver is analysed with generalised likelihood
ratio test (GLRT) with first-order statistics [29]. The
Gaussian probability density function for a random variable
x can be defined as

p(x) = 1������
2ps2

√ exp − 1

2s2
(x− m)2

[ ]
,

−1 , x , 1 (11)

where μ is the mean and σ2 is the variance of x. It is denoted
by N m, s2( )

. Let H0 and H1 denote the hypotheses of
noise-only case and signal plus noise case, respectively. For
the detection of a signal in additive white Gaussian noise
channel, Neyman–Pearson (NP) criterion can be used to
design an optimum detection problem of distinguishing
between two hypotheses in the following way

H0:y[k] = w[k], k = 0, 1, . . . , N − 1

H1:y[k] = x[k]+ w[k], k = 0, 1, . . . , N − 1
(12)

where the signal amplitude of x[k] is assumed to be known,
y[k] is the kth observation of received noisy signal, w[k] is
the white noise with variance σ2. w[k] can be taken as a
zero-mean Gaussian noise process with autocorrelation
IET Signal Process., 2013, Vol. 7, Iss. 7, pp. 558–564
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function

rww[k] = E(w[k]w[k + n]) = s2d[n] (13)

where δ[n] is the discrete delta function. The NP detector for a
deterministic signal vector y decides H1 if the likelihood ratio
exceeds a dynamically controlled threshold γ. That is

L[x] = p(y; H1)

p(y; H0)
. g (14)

where y = [y(0), y(1), . . . , y(N − 1)]T. The conditional
probabilities p(y; H1) and p(y; H0) can be written as

p(y; H1) =
1

(2ps2)N/2 exp − 1

2s2

∑N−1

k=0

(y[k]− x[k])2
[ ]

(15)

p(y; H0) =
1

(2ps2)N/2 exp − 1

2s2

∑N−1

k=0

y2[k]

[ ]
(16)

Combining (14), (15) and (16), we can obtain the following
equation

L(y) = exp − 1

2s2

∑N−1

k=0

(y[k]− x[k])2 −
∑N−1

n=0

y2[k]

( )[ ]
. g

(17)

In ideal decision rule, it can be considered that all the
parameters are known and the problem reduces to decide
between one of the following two complex Gaussian
hypotheses [30]

H0:y � N 0, diag s2
1, . . . , s

2
K

( )( )
H1:y � N 0, diag t21, . . . , t

2
K

( )( ) (18)

Applying above threshold equation to this scenario, the
following ideal decision equation can be obtained

L(y) =
∑K
k=1

1

2

s2
k

t2k
− 1

( )
2|yk |2
s2
k

− ln
s2
k

t2k

[ ]
(19)

where yk is the kth component of observation vector y. If the
true parameters s2

k and t2k are known, the GLRT can be used.
In this scenario, the maximum likelihood estimates of these
parameters are substituted into optimal rule in place of
unknown values. Let S2k1 =

∑Ns
l=1 |vk,l|2 and

S2k0 =
∑NT

l=1 |wk,l|2, where vk,l and wk,l represent the kth
components of observations drawn under H1 and H0,
respectively, and Ns and NT denotes the number of samples
under respective hypothesis. Then, 2NsS

2
k1
/s2

k and
2NTS

2
k0
/s2

k follow χ2 distributions with 2Ns and 2NT

degrees of freedom, respectively. Let us denote the kth
observation of a received symbol with Sk0 and Sk1 for null
and alternate hypothesis, respectively. The average noise
power is denoted by s2

w, the variances of the transmitted
sequence without and with the CTF are denoted as
s2
x and s2

xc
, respectively. Assuming unity degree of

freedom, the plug in decision parameter for the kth
observation of transmitted signal without compression,
561
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denoted by Lk, can be written as

Lk =
s2
w

Sk1
− s2

w

Sk0

( )
s2
x

s2
w
− ln

Sk0
Sk1

( )[ ]
_

H1
H0

g (20)

The decision parameter on the detectability of the signal,
while using the proposed CTF with compression ratio M/N,
denoted by Lck , can be written as

Lck =
M

N

s2
w

Sk1
− s2

w

Sk0

( )
s2
xc

s2
wc

− ln
Sk0
Sk1

( )[ ]
_

H1
H0

g (21)

Let p
(
Hi, Hj

)
denote the probability of deciding Hi when Hj

is true with {i, j}∈ {0, 1}. Then the term p H1, H0

( )
indicates

the probability of deciding H1 when H0 is true, referred to as
probability of false detection (pfa). For optimum detection,
p H0, H1

( )
needs to be minimised, that is, 1− p H0, H1

( )
termed as probability of detection (pd), needs to be
maximised. Therefore pd can be written as

pd = p H1; H1

( ) = Pr Lck . g; H1

{ }
(22)

where Pr{·} indicates the probability.

5 System-level evaluation of proposed
framework

A MIMO-OFDM system with NT transmit and NR receive
antennas is considered. The block diagrams of simple
MIMO-OFDM transmitter and receiver in the context of
proposed compressive framework are shown in Figs. 1
and 2, respectively. Similar communication model has been
considered in [25]. A data stream of length J is divided in
to P number of sub-blocks, each of length N symbols and
each data stream is denoted by matrix
S = [ s1 s2 · · · sP ] of dimension (N × P), where the
information symbol sub-block si = [ si(1) si(2) · · ·
si(N )]T with i∈ {1, 2, …, P}. For compression purpose,
each data sub-block is multiplied with compressive
measurement matrix Hd of dimension (Q ×N ) as defined in
(8), where Q <N. This results in a compressed information
symbol matrix X = [ x1 x2 · · · xP ] with
xi = [ xi(1) xi(2) · · · xi(Q) ]

T. Hence

xi = Hdsi (23)

Subsequently, the total data stream of J(N × P) is compressed
into J1(Q × P) number of symbols; then mapped into J1/Nc

blocks, each of the length Nc. It is assumed to have Nc

number of sub-carriers within each OFDM symbol. The
Fig. 1 System model for the proposed transmitter
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resulting compressed symbols are interleaved before serial
to parallel converter, followed by conversion to OFDM
symbol for each of NT transmit antennas. Furthermore,
within each OFDM symbol, a cyclic prefix of length Cp is
inserted to avoid intersymbol interference and intercarrier
interference. The length of the cyclic prefix is assumed to
be longer than maximum delay spread of the radio channel.
The MIMO channel matrix considered in this work can be

expressed as: �H = �h1 �h2 · · · �hNR

[ ]T
, where each

vector �hj can be written as: �hj = h j1 h j2 · · · h jNT

[ ]
,

where hj,k represents the channel fading coefficient between
kth transmit antenna and jth receive antenna. The received
symbol vector at lth block of received symbols can be
denoted by rl = rl(1) rl(2) · · ·[

rl(NR)]T, where l∈ {1,
2, …, P} and a received symbol corresponding to a symbol
of lth transmitted block can be written as

rl(n) =
∑NR

j=1

h jlxl(n)+ wl(n) (24)

where xl(n) is nth symbol of lth block of transmitted symbols
and wl = wl(1) wl(2) · · · wl(NR)

[ ]T
is the Gaussian

noise vector for lth block of received symbols. The
independent and identically distributed Gaussian noise is
with zero mean and variance s2

w, so that E wlw
H
l

[ ] = s2
wI .

Besides that the input data-stream is uncorrelated with the
property E sis

H
i

[ ] = I . Hence the overall received symbol
matrix becomes R = rT1 rT2 · · · rTP

[ ]
in response to the

initial targeted data block S. Therefore the received symbol
matrix R can also be written as

R = �HX +W

= �HHdS +W

= CS +W (25)

where C = �HHd. In a MIMO receiver, each antenna receives
signal from all transmitting antennas and different combining
techniques can be used to combine signals received by
different antennas. At each receiving antenna branch, the
received signal is passed through radio frequency down
converter to bring down the high frequency into lower one.
Then the signal is passed through digital-to-analogue
converter to generate a digital bit stream of the received
signal. For simplicity, a ZF equaliser has been used to
detect and reconstruct the original transmitted signal. The
reconstructed signal matrix Ŝ can be written as

Ŝ = 1

N
�GR (26)

where R is the received signal matrix and �G is ZF equaliser
coefficient given by; �G = (CHC)−1CH with C = �HHd.
IET Signal Process., 2013, Vol. 7, Iss. 7, pp. 558–564
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Fig. 4 Comparison of proposed framework with and without FEC
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6 Simulation and results

The performance of the proposed framework in the context of
a simple MIMO-OFDM system has been evaluated in terms
of BER against (Eb/No). The proposed system has been
simulated with a forward error correction (FEC) code and
without a FEC code. A convolution code with 1/2 rate has
been used for FEC purpose. The dimensions of H and Hd

are assumed to be (4 × 4) and (4 × 3), respectively, to obtain
25% compression. The chip rate of Hadamard matrix is
considered to be equal to the bit rate considered.
Furthermore, compression with compression ratio of 3/4 has
been applied to the incoming data stream. Randomly
generated frames with 30 bits/frame are encoded using a
convolutional encoder.
The proposed compressive transmission scheme has been

compared with traditional amplitude shift keying (ASK) and
frequency shift keying (FSK) schemes. Phase shift keying
(PSK) modulation scheme has been considered for the
evaluation of proposed compressive framework because of
its simplicity. Fig. 3 shows the comparative result of BER
performance of the proposed CTF with traditional ASK and
FSK transmission schemes. From the same figure it is
observed that the proposed compressive transmission
scheme without FEC requires only 1.5 dB more Eb/No in
comparison with the traditional ASK and PSK at BER
value of 10–3.
Fig. 4 shows comparative results of the proposed CTF with

FEC and the CTF without FEC. From the simulation results,
it can be observed that almost 4 dB more Eb/No is needed in
case of the proposed framework as compared with the
Fig. 3 Comparison of compressive technique with traditional
transmission schemes

IET Signal Process., 2013, Vol. 7, Iss. 7, pp. 558–564
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traditional conventional PSK transmission scheme at BER
value of 10− 3. This difference remains consistent in both
cases with and without FEC beyond the required value of
10− 2. From the simulation results, it can be claimed that
the proposed CTF scheme can achieve 25% saving in
spectrum by sacrificing almost 4 dB Eb/No. By varying the
nature of measurement matrix Hd chosen in this work, this
QoS trade-off can be optimised since the gain in spectrum
efficiency and requirement of more energy depends on the
selection of matrix Hd.
Fig. 5 Comparison of normalised spectral efficiency for different
transmission schemes

563
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Furthermore, the normalised spectral efficiency of CS

technique has been compared with spectral efficiency of
OFDM transmission technique and basic binary phase shift
keying transmission scheme. The comparison result has
been shown in Fig. 5. From the simulation result, it can be
noted that the proposed compressive scheme can provide
25% enhanced spectral efficiency for a bandwidth constraint
application, trading off with 4 dB Eb/No for 10

− 3 BER.

7 Conclusion

A CTF exploiting the basis of CS has been proposed in the
context of practical implementation feasibility within
wireless communication systems. The proposed framework
has been evaluated in the context of a simple
MIMO-OFDM system. The simulation results show that the
proposed framework can achieve 25% saving in spectrum
with the cost of 4 dB Eb/No at BER value of 10− 3. The
proposed framework can also save 25% hardware resources
if the data rate required is to be the same. Furthermore, it
has been noted that this result is consistent with channel
coding and without channel coding. It can be concluded
that the proposed transmission scheme can achieve
spectrum as well as hardware resources (e.g. number of
transmit/receiver antennas) saving by sacrificing some
amount of transmitted power. Therefore this technique can
be used effectively in the spectrum limited applications.
Designing an adaptive measurement matrix remains an open
challenge for the proposed framework. Analysing the
compressibility of non-sparse signals and the extension of
this model using different channel coding, efficient channel
estimation and detection techniques can be the future work
in this area.
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