
Eur. Phys. J. C (2014) 74:3105
DOI 10.1140/epjc/s10052-014-3105-y

Regular Article - Theoretical Physics

Is the CNMSSM more credible than the CMSSM?

Andrew Fowliea

National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn 10143, Estonia

Received: 22 August 2014 / Accepted: 26 September 2014 / Published online: 15 October 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract With Bayesian statistics, we investigate the full
parameter space of the constrained “next-to-minimal” super-
symmetric standard model (CNMSSM) with naturalness pri-
ors, which were derived in a previous work. In the past,
most Bayesian analyses of the CNMSSM ignored natural-
ness of the electroweak (EW) scale by making prejudicial
assumptions for parameters defined at the EW scale. We test
the CNMSSM against the CMSSM with Bayesian evidence,
which, with naturalness priors, incorporates a penalty for
fine-tuning of the EW scale. With the evidence, we measure
credibility with respect to all measurements, including the
EW scale and LHC direct searches. We find that the evidence
in favor of the CNMSSM versus the CMSSM is “positive” to
“strong” but that if one ignores the μ-problem, the evidence
is “barely worth mentioning” to “positive”. The μ-problem
significantly influences our findings. Unless one considers
the μ-problem, the evidence in favor of the CNMSSM versus
the CMSSM is at best “positive”, which is two grades below
“very strong”. We, furthermore, identify the most probable
regions of the CMSSM and CNMSSM parameter spaces and
examine prospects for future discovery at hadron colliders.

1 Introduction

The standard model (SM) contains a well-known “hierarchy
problem” [1,2]. The problem has two puzzling facets: (1)
Why is the magnitude of the electroweak (EW) scale much
less than the Planck scale, MZ � MP? (2) Why is the EW
scale stable despite massive quadratic corrections, �M2

Z ∼
M2

P?
Weak-scale supersymmetry (SUSY) [3–5] solves the “sta-

bility” aspect of the hierarchy problem by positing a “mir-
ror” of the SM fields with spins differing by one-half. Mas-
sive quadratic corrections from scalars cancel with identical
corrections from fermions see e.g., [6–8]. Because resid-
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ual corrections are similar to the SUSY breaking scale,
�M2

Z ∼ M2
SUSY, the SUSY breaking scale should be close

to the EW scale [9,10].
Minimal SUSY, however, aggravates the “magnitude”

aspect of the hierarchy problem. “Supersymmetrizing” the
SM with minimal field content, the EW scale is a function of
a SUSY breaking scale, m Hu , and a SUSY preserving scale,
μ,

1

2
M2

Z � −μ2 − m2
Hu

|EW (1)

where μ is protected from massive quadratic corrections by
a supersymmetric non-renormalization theorem but is unre-
lated to a symmetry breaking scale, whereas the SUSY break-
ing up-type Higgs mass, m2

Hu
, receives massive radiative cor-

rections proportional to the supersymmetric top (stop) mass,
�m2

Hu
∼ m2

t̃
.1

This is the “μ-problem” [11]. It would be preferable if the
EW scale were a function of only the SUSY breaking scale
so that explaining the magnitude of the EW scale would be
equivalent to explaining the magnitude of the SUSY breaking
scale, which presumably originates from a hidden sector. This
is realized with an extra gauge singlet superfield [12]; the
μ-parameter is generated spontaneously by SUSY breaking
parameters.

This picture is, however, spoiled by experimental results
from the Large Hadron Collider (LHC) that suggest that the
SUSY breaking scale is not close to the EW scale, including
the measurement of the Higgs mass mh � 126 GeV [13–
15] and the absence of SUSY in ATLAS [16] and CMS [17]
searches. In minimal supersymmetric models (see, e.g., [6]),

m2
h � cos2 2β M2

Z + �m2
h, (2)

1 In Eq. (1), m2
Hu

|EW is negative. The quantity m2
Hu

is a parameter in
the soft-breaking Lagrangian; it is not the square of a parameter.
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where tan β = 〈Hu〉/〈Hd〉 and the loop corrections

�m2
h = 3

4π2 cos2 α y2
t m2

t ln

(
m2

t̃

m2
t

)
. (3)

Because mh � 126 GeV, the loop corrections, �mh , and
thus stop masses, mt̃ , must be appreciable. Heavy stops “poi-
son” the prediction for the EW scale in Eq. (1). By contribut-
ing radiatively to m2

Hu
, heavy stops result in −m2

Hu
� M2

Z .
The separation between the SUSY breaking scale and the

EW scale in “next-to-minimal” models, however, could be
smaller than that in minimal models. In “next-to-minimal”
models (see, e.g., [18,19]), there is an additional tree-level
contribution to the Higgs mass;

m2
h � cos2 2β M2

Z + λ2v2 sin2 2β + �m2
h, (4)

where λ originates from a cubic interaction in the superpo-
tential and v � 248 GeV. The loop corrections and thus stop
masses in “next-to-minimal” models could be smaller than
those in minimal models, because of the extra tree-level con-
tribution to the Higgs mass [20–26].

Let us examine both facets of the hierarchy problem,
including the μ-problem, in a “next-to-minimal” and in a
minimal SUSY model in light of LHC results. With Bayesian
statistics, we will calculate whether a “next-to-minimal”
model is more credible than a minimal model, and if so, we
will quantify its superiority with Bayesian evidence. With
the Bayesian posterior density, we will find the most proba-
ble regions of their parameter spaces in light of experimental
data and Bayesian naturalness considerations. We will show
that the μ-problem significantly influences our findings.

2 Models

We consider two models, the CMSSM and the CNMSSM,
defined below to clarify our parameterization. Our notation
is similar to that of Ref. [6].

2.1 CMSSM

Our minimal model is the constrained minimal supersym-
metric SM (CMSSM) [27–29]. The model’s superpotential
is

WMSSM = ū yu Q Hu − d̄ yd Q Hd − ē yeL Hd + μHu Hd .

(5)

The model’s soft-breaking Lagrangian at the grand unifi-
cation (GUT) scale is

LMSSM
soft = − 1

2
m1/2

(
b̃b̃ + W̃ W̃ + g̃g̃ + c.c.

)
− m2

0

(
Q̃† Q̃ + L̃† L̃ + ˜̄u ˜̄u† + ˜̄d ˜̄d†

+˜̄e ˜̄e† + H∗
u Hu + H∗

d Hd

)
− A0

( ˜̄u yu Q̃ Hu − ˜̄d yd Q̃ Hd − ˜̄e ye Q̃ Hd + c.c.
)

− bHu Hd + c.c. (6)

Thus the model is described by five parameters: four
SUSY breaking parameters,

m1/2, m0, A0, and b, (7)

and the μ-parameter in the superpotential.2 In a phenomeno-
logical parameterization of the CMSSM, b and μ2 are traded
for tan β and MZ via EW symmetry breaking conditions.

The CMSSM contains two Higgs doublets with eight real
degrees of freedom. In EW symmetry breaking, the W - and
Z -bosons “eat” three degrees of freedom from the Higgs dou-
blets. The five remaining degrees of freedom are equivalent
to five physical Higgs bosons: a light SM-like Higgs, h, a
heavy neutral Higgs, H , a heavy charged Higgs, H±, and a
neutral CP-odd Higgs, A.

After EW symmetry breaking, off-diagonal masses “mix”
bino, wino, and Higgsino fields into mass eigenstates called
“neutralinos,” χ0. The phenomenology of the four neutrali-
nos is rich. If the lightest neutralino is the lightest supersym-
metric particle (LSP) and if it cannot decay to SM particles,
dark matter (DM) could be the lightest neutralino (see, e.g.,
[30]).

2.2 CNMSSM

Our “next-to-minimal” model is the Constrained “Next-to-
minimal” Supersymmetric SM (CNMSSM or C(M+1)SSM)
with an extra gauge singlet superfield, S (see, e.g., [18,19]).
The superpotential contains extra terms with the singlet
superfield;

WMSSM = WMSSM|μ=0 + λSHu Hd + 1

3
κS3. (8)

The μ-term that was permitted in the MSSM, a singlet
bilinear and a singlet tadpole are forbidden by a discrete Z3

symmetry or classical scale invariance. Because the superpo-
tential is protected by a non-renormalization theorem, such
terms cannot be generated by radiative corrections.

2 The CMSSM is also described by Yukawa couplings in the super-
potential. We consider the Yukawa couplings in the CMSSM and
CNMSSM as “nuisance” parameters: model parameters that are not
of particular interest.
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The model’s soft-breaking Lagrangian at the GUT scale
is

LMSSM
soft = LMSSM

soft |b=0

− m2
S S∗S

− A0

(
λSHu Hd − 1

3
κS3 + c.c.

)
. (9)

Bilinear and tadpole, t S, terms are forbidden by a discrete
Z3 symmetry. A tadpole term would be problematical [31]; if
S were a singlet under all symmetries, radiative corrections
from any heavy fields would result in t � M3

Z . Each trilinear
coupling in the soft-breaking Lagrangian is proportional to
the corresponding trilinear coupling in the superpotential in
analogy with the MSSM in which e.g., au = Au yu.

If the scalar field S obtains a non-zero vacuum expectation
value (VEV), the discrete Z3 symmetry and classical scale
invariance are spontaneously broken, but SUSY is preserved
as the vacuum expectation of the scalar potential remains
zero, and an effective μ-term μeff = λ〈S〉Hu Hd is sponta-
neously generated in Eq. (8). The magnitude of 〈S〉 is deter-
mined from a symmetry breaking constraint, ∂V /∂S = 0.

That the discrete Z3 symmetry is spontaneously broken is
problematic. During spontaneous symmetry breaking, topo-
logically stable field configurations, known as domain walls,
would form at the spatial boundaries of degenerate vacua. The
spatial variation in the field between the degenerate vacua
represents a considerable energy density. Because domain
walls could dominate the energy density of the Universe,
domain walls could spoil successful predictions of inflation
and nucleosynthesis.

The NMSSM’s additional gauge singlet superfield mod-
ifies the neutralino and Higgs sectors of the MSSM with
two on-shell fermionic and two on-shell scalar degrees of
freedom. The two scalar degrees of freedom result in two
extra Higgs bosons and alter the mixing angles between the
physical Higgs bosons and the gauge eigenstates. In general,
the NMSSM Higgs-sector violates CP-symmetry at tree-
level. If, however, complex phases are forbidden, the Higgs
sector respects CP . There are three CP-even neutral Higgs
bosons, H1, H2 and H3; two CP-odd neutral Higgs bosons,
A1 and A2; and one charged Higgs boson, H±. Unlike in the
CMSSM, in the CNMSSM several Higgs bosons could be
near the EW scale. The observed Higgs boson need not be
the lightest CP-even neutral Higgs boson in the CNMSSM.
Were the lightest Higgs boson’s couplings small, it could
have evaded searches for Higgs bosons at LEP, the Tevatron,
and the LHC (see, e.g., [32]).

The singlet superfield’s two fermionic degrees of freedom
are a Majorana “singlino”. After EW symmetry breaking,
off-diagonal masses mix the singlino with the two neutral
Higgsinos (which are mixed with the two neutral gauginos),
resulting in five neutralinos. The Higgsino–singlino mixing

is proportional to λ. If λ is small, the singlino decouples,
resulting in four MSSM-like neutralinos and a singlino. If
the singlino soft-breaking mass, mS , is substantial and the
singlino is decoupled, it might be difficult to distinguish the
MSSM and NMSSM neutralino sectors.

The model is described by six parameters: four SUSY
breaking parameters,

m1/2, m0, mS and A0, (10)

and the λ and κ SUSY preserving parameters in the super-
potential. The number of free parameters in the CNMSSM
is one greater than that of the CMSSM.

The singlet SUSY breaking mass is not unified at the GUT
scale, mS 	= m0. This choice is partly pragmatic—evolving
mS = m0 to the EW scale with correct EW symmetry break-
ing is difficult—and partly theoretical [33,34]. Suppose that
at the Planck scale, MP ∼ 1018 GeV, supersymmetry break-
ing is mediated by gravitational interactions with a hidden
sector, and that the superfields are embedded into represen-
tations of a GUT group, broken at MGUT ∼ 1016 GeV. If
SUSY breaking is universal (as in minimal supergravity),
mS = m0 at the Planck scale. If the singlet superfield resides
in a different representation of the GUT group, renormaliza-
tion group running between the Planck scale and the GUT
scale will result in non-universal SUSY breaking masses at
the GUT scale [35]. Moreover, SUSY breaking interactions
might discriminate the singlet from the other fields.

3 Bayesian naturalness

Our goal is to measure the “Bayesian naturalness” of the
EW scale and experimental data in the CMSSM and the
CNMSSM, e.g., is MZ ∼ 100 GeV a generic prediction or
does it require that the model parameters are “fine-tuned?”3

To measure Bayesian naturalness, we will utilize Bayesian
statistics. References [36–39] argued that naturalness and
fine-tuning arguments are Bayesian in nature. Let us briefly
recapitulate this argument (see, e.g., [39]).

In Bayesian statistics, probability is a numerical measure
of our degree of belief in a proposition, rather than the fre-
quency at which outcomes occur in repeated trials. We must
calculate the probability that our model is correct, given
experimental data, e.g., the measured EW scale. By Bayes’
theorem, we may write this probability as a function of the
Bayesian evidence, Z ≡ p(data | model); our belief in the
model prior to seeing the experimental data, p(model); and

3 Where there is an important distinction between traditional and
Bayesian interpretations of naturalness, in a Bayesian context, we refer
to Bayesian naturalness and credibility; whereas, in a general context,
we refer to naturalness.
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Table 1 The Jeffreys’ scale for interpreting Bayes factors [40,41],
which are ratios of evidences

Grade Bayes factor (B) Preference for
model in numerator

0 B ≤ 1 Negative

1 1 < B ≤ 3 Barely worth mentioning

2 3 < B ≤ 20 Positive

3 20 < B ≤ 150 Strong

4 B > 150 Very strong

We assume that the favored model is in the numerator, though this could
be readily inverted

an unknown normalization constant, p(data);

p(model | data) = p(data | model) × p(model)

p(data)
. (11)

To eliminate the normalization constant in Eq. (11),4 we
consider the ratio of probabilities for our two models, the
CMSSM and the CNMSSM;

p(CMSSM | data)

p(CNMSSM | data)︸ ︷︷ ︸
Posterior odds, θ ′

= p(data | CMSSM)

p(data | CNMSSM)︸ ︷︷ ︸
Bayes factor, B

× p(CMSSM)

p(CNMSSM)︸ ︷︷ ︸
Prior odds, θ

.

(13)

Our prior odds, θ , is a numerical measure of our relative
belief in the CMSSM over the CNMSSM, prior to seeing the
experimental data. The Bayes factor, B, updates our prior
odds, θ , with the experimental data, resulting in our poste-
rior odds, θ ′. Our posterior odds is a numerical measure of
our relative belief in the CMSSM over the CNMSSM, after
seeing the experimental data. The Bayes factor is the ratio of
the models’ evidences.

If the Bayes factor is greater than (less than) one, the
model in the numerator (denominator) is favored. The inter-
pretation of Bayes factors is somewhat subjective, though we
have chosen the Jeffreys’ scale, Table 1, to ascribe qualitative
meanings to Bayes factors. If a Bayes factor is sufficiently
large, all investigators will conclude that a particular model
is favorable, regardless of their prior odds for the models.

The Bayes factor quantitatively incorporates a Bayesian
interpretation of “naturalness” [9,10,42]. Consider the evi-
dence Z = p(data | model) a function of the data normal-
ized to unity [43]. Natural models “spend” their probability
mass near the obtained data, i.e., a large fraction of their
parameter space agrees with the data. Complicated models

4 Alternatively, we could assume that there exists a finite set of alterna-
tive models one of which is true, in which case we could calculate the
normalization constant;

p(data) =
∑

i

p(data | modeli ) × p(modeli ). (12)

squander their probability mass away from the obtained data.
For example, the SM is unnatural because its generic predic-
tion for the EW scale is MZ ∼ MP. See e.g., Ref. [39] for
elaboration.

With Bayes’ theorem, it can be readily shown that the evi-
dence is an integral over the likelihood—the probability of
obtaining data given a particular point in a model’s param-
eter space, L(x) ≡ p(data | x, model)—times the prior—
our prior belief in the model’s parameter space, π(x) ≡
p(x | model);

Z =
∫

L(x) × π(x)
∏

dx . (14)

3.1 Bayesian posterior

A probability density function (PDF) for the model’s param-
eter space in light of the experimental data—the posterior—
is a by-product of the calculation of the Bayesian evidence.
By Bayes’ theorem, the posterior density for a point x in a
model’s parameter space is

p(x | model, data) = p(data | x, model) × p(x | model)

p(data | model)

≡ L(x) × π(x)

Z . (15)

The evidence, Z , is merely a normalization constant in
this instance. The likelihood, L, updates our prior belief with
experimental data, resulting in our posterior.

The posterior in Eq. (15) is a PDF of all of the model’s
parameters. To find the PDF for e.g., two of the model’s
parameters, we “marginalize” the posterior;

p(x1, x2 | model, data) =
∫

p(x | model, data) dx3dx4 · · ·
(16)

Marginalization incorporates “fine-tuning”. If for fixed
(x1, x2), few combinations of x3, x4, . . . result in an appre-
ciable posterior density, p(x | model, data), the marginalized
posterior at (x1, x2) will be small. For further details, see,
e.g., Ref. [44].

4 Methodology

Our calculation of the evidence from Eq. (14) requires
two ingredients: our priors, which contain our prior beliefs
about the model’s parameter space, and our likelihood func-
tion, which contains relevant experimental data. We supply
our priors and our likelihood functions to the nested sam-
pling algorithm with importance sampling implemented in
(Py)MultiNest-3.4 [45,46], which returns the mod-
els’ Bayesian evidences and posterior PDFs.
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Table 2 Experimental data
included in our likelihood
function

Quantity Experimental data (μ ± σ ) Theory error (τ )

MZ 91.1876 GeV [13]

δaμ (28.8 ± 8.0) × 10−10 [13] 1.0 × 10−10 [73]

BR(Bs → μμ) (3.2 ± 1.5) × 10−9 [13] 14 % [74]

BR(Bs → Xsγ ) (3.43 ± 0.22) × 10−4 [75] 0.21 × 10−4 [76]

BR(Bu → τν) (1.14 ± 0.22) × 10−4 [75] 0.38 × 10−4 [77]

ATLAS-CONF-2013-047 [16] search for SUSY in ∼ 20/fb at
√

s = 8 TeV

LHC, Tevatron, and LEP Higgs searches. See Fig. 2 of Ref. [53]

This investigation is similar to that in Refs. [36,37,39,47–
49], in which the posterior PDF is calculated for the CMSSM
with naturalness priors, Refs. [50,51], in which the posterior
PDF is calculated for the CNMSSM but without naturalness
priors, and Ref. [24], in which a naturalness prior is calculated
for the CNMSSM. The posterior PDF for the CNMSSM with
naturalness priors and the Bayes factor for the CNMSSM
versus the CMSSM are, however, absent in the literature.

4.1 Likelihood function

Our likelihood function includes data from relevant labora-
tory measurements:

(1) The measured Z -boson mass, MZ = 91.1876 GeV [13],
with a Dirac likelihood function.

(2) Measurements and searches for Higgs bosons at LEP,
the Tevatron and the LHC with a 2 GeV theoretical
uncertainty in the Higgs mass [52]. The likelihood is
from HiggsSignals-1.2.0 [53–57] with the “lat-
est results” dataset (see Fig. 2 of Ref. [53] for a summary
of the experimental data). HiggsSignals-1.2.0
confronts the whole Higgs sector—all Higgs bosons—
with data. We do not need to separately consider dif-
ferent interpretations of the SM-like Higgs boson in the
CNMSSM.

(3) The ATLAS-CONF-2013-047 [16] 0 leptons + 2-6
jets + MET search with a hard-cut on the (m0, m1/2)95 %
confidence limit. The (m0, m1/2) confidence limit is
approximately independent of (A0, tan β) [58–60] and
the extra CNMSSM singlet superfield [51].

(4) The magnetic moment of the muon calculated with
SuperIso-3.3 [61–63].

(5) B-physics rare decays—BR(Bs → μμ), BR(Bs →
Xsγ ), and BR(Bu → τν)—calculated withSuperIso
-3.3.

For the numerical values of the constraints, see Table 2.
We calculate the mass spectra for the CMSSM and CNMSSM
with SOFTSUSY-3.4.1 [64,65]. Our codes for the

CNMSSM are consistent with our codes for the CMSSM.
Unfortunately, the precise Higgs mass calculation in
FeynHiggs-2.10.0 [66–69] is unavailable in the
CNMSSM. We omit observables that we cannot consistently
calculate, e.g., EW precision observables.

We exclude DM experiments from our likelihood, e.g.,
the Planck measurement of the DM density from the cosmic
microwave background (CMB) [70] and the LUX search for
DM with an underground detector [71], because fine-tuning
related to DM might cloud our understanding of the fine-
tuning of the EW scale. If we were to include DM experi-
ments, we would invoke particular DM annihilation mech-
anisms by fine-tuning the supersymmetric particle (sparti-
cle) masses and the mixing angles between mass and gauge
eigenstates. Including DM experiments would, furthermore,
require additional assumptions and uncertainties (see, e.g.,
[72]).

4.2 Priors

We pick “naturalness priors” [24,36–39,47–49] for the
model parameters. That is, we pick priors for the model
parameters in the soft-breaking Lagrangian and superpoten-
tial at the GUT scale and transform to parameters at the EW
scale e.g., tan β, obtained after EW symmetry breaking, with
the appropriate Jacobian.

Traditionally, fine-tuning of the EW scale is measured
with partial derivatives of the EW scale with respect
to Lagrangian parameters, e.g., the Barbieri–Giudice–Ellis
measure [9,10]. As discussed in e.g., Ref. [39], traditional
fine-tuning measures of the EW scale approximate natural-
ness priors; however, traditional fine-tuning measures lack a
probabilistic meaning.

Naturalness priors are an “honest” prior choice. The
(MZ , tan β) parameters are output from the fundamental
Lagrangian parameters. We are not ignorant of their ori-
gin. Our priors ought to reflect that. Typical Bayesian anal-
yses in the literature, e.g., Refs. [51,78], pick a linear prior
for tan β and no explicit prior for μ. The implicit prior for
μ in such analyses is that μ is always such that MZ =
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91.1876 GeV [13], i.e.,

π(μ) ∝ δ
(
μ − μZ (m0, m1/2, A0, tan β, . . .)

)
, (17)

where μZ is the numerical value of μ resulting in the exper-
imentally measured value of MZ for particular input param-
eters. This is a “dishonest”, informative prior choice.

We pick logarithmic priors for the models’ soft-breaking
and superpotential parameters, because we are ignorant of
their scale, but transform to tan β and MZ with an appropriate
Jacobian. Working with (MZ , tan β) as our input parameters,
we are guaranteed to find points with the correct EW scale.
The Jacobian in the CMSSM results from trading (μ2, b) →
(MZ , tan β);

J CMSSM = ∂μ2

∂ MZ

∂b

∂ tan β
− ∂b

∂ MZ

∂μ2

∂ tan β
= ∂μ2

∂ MZ

∂b

∂ tan β
.

(18)

The sign of the μ-parameter, sign μ, is a discrete input
parameter.

In the CNMSSM, we trade (m2
S, κ) → (MZ , tan β)

resulting in the Jacobian

J CNMSSM = ∂κ

∂ MZ

∂m2
S

∂ tan β
− ∂m2

S

∂ MZ

∂κ

∂ tan β
. (19)

In addition, we trade sign λ → sign μeff. The sign of
the singlet VEV, 〈S〉, is unphysical and can be chosen to be
always positive, such that sign λ = sign μeff. This transfor-
mation, traditional in the literature, simply renames a param-
eter; there is no associated Jacobian.

We find our naturalness priors by recognizing that if π(x)

is a PDF, then

π( f (x)) = π(x) × J where J =
∣∣∣∣det

∂xi

∂ f j

∣∣∣∣ . (20)

Our naturalness priors for (MZ , tan β) in the CMSSM are

π(MZ , tan β)=π(μ2, b)×J CMSSM ∝ 1

bμ2 × ∂μ2

∂ MZ

∂b

∂ tan β
.

(21)

Similarly, our naturalness priors for (MZ , tan β) in the
CNMSSM are

π(MZ , tan β) = π(m2
S, κ) × J CNMSSM

∝ 1

m2
Sκ

× J CNMSSM. (22)

We implement such priors by scanning the models in
their (MZ , tan β) parameterizations with naturalness priors.
We calculate the Jacobians with numerical differentiation by
modifying SOFTSUSY-3.4.1 and NMSSMSpec-4.2.1.
The naturalness priors for the CNMSSM were recently stud-
ied in Ref. [24].

Our prior ranges are in Table 3. We pick SUSY break-
ing masses less than 20 TeV; Refs. [44,79] indicate that the

Table 3 Priors for the CMSSM and CNMSSM model parameters

Parameter Distribution

CMSSM

m0 Log, 0.3, 20 TeV

m1/2 Log, 0.3, 10 TeV

A0 Flat, −20, 20 TeV

μ Log, 1 GeV, MP

b Log, 0.3, 20 TeV

Signμ ±1 with equal probability

CNMSSM

m0 Log, 0.3, 20 TeV

m1/2 Log, 0.3, 10 TeV

A0 Flat, −20, 20 TeV

λ Log, 0.001, 4π

mS Log, 0.3, 20 TeV

κ Log, 0.001, 4π

Signμeff ±1 with equal probability

SM

mb(mb)
MS Gaussian, 4.18 ± 0.03 GeV [13]

mPole
t Gaussian, 173.07 ± 0.89 GeV [13]

1/αem(MZ )MS Gaussian, 127.944 ± 0.014 [13]

αs(MZ )MS Gaussian, 0.1196 ± 0.0017 [13]

Phenomenological

tan β Effective, Eq. (21), 2, 62

MZ Effective, Eq. (21), 91.1876 GeV [13]

posterior PDF and evidence beyond 20 TeV is insignificant.
If one wishes to enlarge our priors for the SUSY breaking
masses beyond 20 TeV, the evidence can be scaled to correct
the denominator in the evidence calculation in Eq. (24) (see,
e.g., [39]);

Z(Enlarged priors) = Z(Priors with MSUSY ≤ 20 TeV)

×Volume with MSUSY ≤ 20 TeV

Volume of enlarged priors
.

(23)

Because the Bayes factor is a ratio of evidences, this cor-
rection cancels for the CMSSM versus the CNMSSM.

We pick the CMSSM μ-parameter less than the Planck
scale. By permitting μ � MSUSY, we incorporate the μ-
problem in our analysis. In the CNMSSM, the effective μ-
parameter is a function of the SUSY breaking scale. In the
CMSSM, theμ-parameter could be far from the SUSY break-
ing scale. If we picked μ ∼ MSUSY in our priors for the
CMSSM, we would hide the μ-problem.

We assign zero prior probability to “unphysical” points,
e.g., points that result in incorrect EW symmetry breaking,
an LSP which is not the lightest neutralino, or a Landau pole
below the GUT scale. In the CNMSSM, we minimize the
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occurrence of Landau poles below the GUT scale in λ by
choosing λ ≤ 4π at the GUT scale in our priors in Table 3.

4.3 Evidence

Let us clarify the calculation of the Bayesian evidence. In
the CMSSM, we wish to calculate the evidence by picking
priors in the (μ2, b) parameterization;

Z =
∫

R(μ2, b)
dμ2db

∫
d · · · L(μ2, b, · · · ) × π(μ2, b · · · )∫

R(μ2, b)
dμ2db

∫
d · · · π(μ2, b, · · · ) .

(24)

The ellipses represent the model’s other parameters. The
priors, π , are unnormalized, hence the denominator. The
region of integration, R(μ2, b), is the prior ranges in Table 3.

We could compute the integral in the numerator of Eq. (24)
with Monte Carlo (MC) integration; however, because few
points would predict the correct EW scale, finding modes
in the likelihood function would be time-consuming. If we
change variables to (MZ , tan β), we guarantee that points
predict the correct EW scale;

Z =
∫

R(MZ , tan β)
dMZ d tan β

∫
d · · ·L(MZ , tan β, · · · )×π(μ2, b, · · · )×J∫

R(μ2, b)
dμ2db

∫
d · · ·π(μ2, b, · · · ) . (25)

The change of variables introduces the Jacobian that
we calculate for our naturalness priors. For the change
in the integration region to R(MZ , tan β), we make an
approximation. We pick R(MZ , tan β) to be the region in
(MZ , tan β) in which the likelihood is appreciable. The
regions in (MZ , tan β) in which the likelihood is not appre-
ciable cannot significantly contribute to the integral. We trust
that the original R(μ2, b) region spans at least that region in
(MZ , tan β).

For reproducibility, we note that if one includes
naturalness priors in a “likelihood” supplied to
(Py)MultiNest-3.4, it returns

Z ′ =
∫

R(MZ , tan β)
dMZ d tan β

∫
d· · ·L(MZ , tan β, · · · )×π(b, μ, · · · )×J∫

R(MZ , tan β)
dMZ d tan β

∫
d· · ·π(· · · ) , (26)

i.e., without a Jacobian in the denominator. The difference
between Eqs. (25) and (26) must be corrected by hand;

Z = Z ′ ×
∫

R(MZ , tan β)
dMZ d tan β∫

R(μ2,b)
dμ2db π(μ2, b)

. (27)

In the CNMSSM, our calculation is similar.

5 Results

5.1 Posterior

We inspect the posterior in the CMSSM and CNMSSM by
plotting 1σ and 2σ credible regions on marginalized two-
dimensional planes. Our 1σ and 2σ credible regions are the
smallest regions that contain 68 and 95 % of the posterior;
the regions in which the posterior is most dense. One can
always draw credible regions; the existence and size of the
credible regions is not indicative of agreement with data or
the absence of fine-tuning.

Let us compare the CMSSM and CNMSSM side-by-side,
beginning with their (m0, m1/2)planes in Fig. 1. The poste-
rior favors gaugino masses as light as is permitted by the
exclusion contour from the LHC, approximately m1/2 �
0.5 TeV; however, the 1σ credible region extends to m1/2 �
6 TeV. The 1σ credible region for the unified scalar mass
spans 5 TeV � m0 � 15 TeV. The difference between the
CNMSSM’s and the CMSSM’s (m0, m1/2)planes is small;
in the CNMSSM, m1/2 is slightly larger and m0 is slightly
smaller than that in the CMSSM.

Prima facie, that m0 � 5 TeV is surprising; scalar masses
closer to the EW scale, in e.g., the stau-coannihilation [80]
and A-funnel [81] DM annihilation regions, are permitted
by the likelihoods, but excluded by the posterior. The dis-
covery reaches in Fig. 1 from Ref. [44] indicate that the√

s = 14 TeV LHC and a
√

s = 33 TeV High-Energy
LHC (HE-LHC) might struggle to discover the CMSSM or
CNMSSM, but that a

√
s = 100 TeV Very Large Hadron

Collider (VLHC) would probably discover the CMSSM or
CNMSSM were nature described by either model.

The posterior favors 5 TeV � m0 � 15 TeV because of
“focusing” in the renormalization group (RG) equations for

the soft-breaking masses [82–84]. With focusing in the RG
equations, the up-type soft-breaking Higgs mass at the EW
scale is similar to the EW scale,

m Hu |EW ∼ MZ , (28)
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Fig. 1 The (m0, m1/2)planes of the a CMSSM and b CNMSSM show-
ing the 68 % (red) and 95 % (orange) credible regions of the marginal-
ized posterior. The 95 % exclusion from ATLAS-CONF-2013-047

[16] is shown with a solid line. The expected discovery reaches of future
hadron colliders from Ref. [44] are also shown with dashed lines
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Fig. 2 The (A0, tan β) planes of the a CMSSM and b CNMSSM showing the 68 % (red) and 95 % (orange) credible regions of the marginalized
posterior

and is approximately independent of the initial values of
the soft-breaking masses at the GUT scale.5 The RG run-
ning of e.g., squark and slepton soft-breaking masses is not
focused to the EW scale; the squarks and sleptons could
be much heavier than the EW scale. Regions of parameter
space in which the up-type Higgs mass is focused gener-

5 Focusing is not, however, a fixed point in the RG flow (see, e.g., [83]).

ically predict the correct EW scale via Eq. (1) without
fine-tuning; they are natural. The modes in the posterior at
5 TeV � m0 � 15 TeV in Fig. 1 are “focus points.”

On the CMSSM’s (A0, tan β) plane in Fig. 2a, the 1σ

credible region spans a wide range of trilinear, |A0| �
20 TeV, but a restricted range of tan β, tan β � 30 and
tan β � 15 if |A0| � 10 TeV. This behavior is expected;
large tan βis unnatural. By the derivatives in the Jacobians
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Fig. 3 Sparticle masses in the a CMSSM and b CNMSSM. The red
and orange bars are the 68 and 95 % credible regions for the sparticle
masses. The green and blue bars are the 68 and 95 % credible regions

for the Higgs mass; note that the Higgs mass has a separate scale. The
circles are the posterior means

in Eqs. (21) and (22), our naturalness priors disfavor large
tan β. Reference [37] explains this simply; from EW sym-
metry breaking conditions,

tan β � m2
Hu

+ m2
Hd

+ 2μ2

b

∣∣∣∣∣
EW

. (29)

In the denominator, the radiative corrections to b from the
RG flow are proportional to μMSUSY, whereas the numerator
is proportional to M2

SUSY; rearranging,

MSUSY ∼ μ tan β. (30)

Large tan β implies a hierarchy between the soft-breaking
masses and the μ-parameter. The EW scale, however, results
from a cancelation between the soft-breaking masses and the
μ-parameter; thus large tan β implies fine-tuning. Because
b ∝ tan β, our logarithmic prior for b also disfavors large
tan β. tan β could, however, enhance focusing by affecting
the top and bottom Yukawa couplings.

On the CNMSSM’s (A0, tan β)plane in Fig. 2b, however,
tan β is larger than in the CMSSM at 1σ in Fig. 2a, with
tan β � 50. We cannot apply our previous argument that
large tan β is unnatural, to the CNMSSM, because the μ-
parameter is a function of the SUSY breaking scale. Because
large tan β in the CNMSSM does not imply a hierarchy
between scales or fine-tuning, it is not penalized by our effec-
tive priors.

We compare the sparticle and Higgs masses in the
CMSSM and CNMSSM in Fig. 3. In both models, the light-
est neutralino is typically Higgsino-like or a mixture of Hig-
gsino and gaugino gauge eigenstates, because μ is small.
The sleptons, squarks and gluino are between approximately

5 and 15 TeV, though slightly heavier in the CMSSM than
in the CNMSSM. With such heavy squarks, the Higgs mass
is mh � 126 GeV, in agreement with experiment. In the
CNMSSM, the Higgs with a mass of about 126 GeV is always
the lightest Higgs. As anticipated, mh � 126 GeV is achieved
in the CNMSSM with slightly lighter sparticles than in the
CMSSM, because of the CNMSSM’s additional tree-level
contribution to the Higgs mass in Eq. (4).

We further examine the Higgs mass in Fig. 4, in which
we plot the one-dimensional PDF for the Higgs mass in the
CMSSM and in the CNMSSM. The PDF in the CMSSM and
CNMSSM are nearly identical.6 Whilst Eq. (4) indicates that
the Higgs mass in the CNMSSM ought to be heavier than that
in the CMSSM, the similarity in the PDFs is unsurprising.
Our likelihood included a requirement that mh ∼ 126 GeV.

Let us instead examine whether the additional tree-level
contribution to the Higgs mass in the CNMSSM in Eq. (4),

�mh = λv sin 2β, (31)

is appreciable. This contribution is added in quadrature, m2
h +

�m2
h , weakening its impact. We plot �mh and the relevant

parameters, tan β and λ, in Fig. 5. The additional tree-level
contribution in the CNMSSM in Fig. 5a is negligible; with
one tail at 1σ , �mh � 0.25 GeV. The smallness of this
contribution stems from the smallness of λ in Fig. 5b; λ � 0.1
is favored, although λ as large as 4π is permitted.

The smallness of λ was remarked upon in previous
Bayesian studies of the CNMSSM [24,50,51], in which it
was posited that small λ minimized the occurrence of tachy-
onic Higgs bosons. Furthermore, Ref. [24] suggests that for

6 Minor differences in the PDF could result from statistical noise.
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Fig. 4 The predicted Higgs mass in the a CMSSM and b CNMSSM.
The orange line is the marginalized posterior PDF. The green and blue
bars are the 68 and 95 % credible regions for the Higgs mass. The cir-

cles are the posterior means. So that the PDFs can be fairly compared,
both PDFs are normalized such that their integrals are identical
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Fig. 5 a The additional tree-level contribution to Higgs mass in the
CNMSSM. The orange line is the marginalized posterior PDF. The
green and blue bars are the 68 and 95 % credible regions. b The
(λ, tan β) plane in the CNMSSM showing the 68 % (red) and 95 %

(orange) credible regions of the marginalized posterior. c Samples with
appreciable posterior weight scattered on the (λ, mh) plane. The rela-
tionship between λ, tan β and �mh is in Eq. (31)

mh ∼ 126 GeV and tan β � 10, naturalness priors might
favor small λ (see, e.g., Fig. 3 in Ref. [24]).

Reference [19] remarks that if Aλ is large, increases in λ

might decrease the Higgs mass. Because we always select
mh ∼ 126 GeV, this behavior is difficult to study; however,
Fig. 5c, a scatter plot on the (λ, mh) plane, indicates that this

behavior occurs. The highest Higgs mass achieved decreases
as λ is increased. We caution the reader that the scatter plot
is misleading, however, because the density of points cannot
be resolved. There are many more points, and much more
posterior weight, with λ � 0.1. In fact, with one tail at 2σ ,
λ � 0.08.
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With the Bayesian evidence, fine-tuning is a property of a
“neighborhood” in a model’s parameter space, i.e., the evi-
dence in a “neighborhood” is a probability density multiplied
by a volume element. By itself, a probability density is not
a well-defined property of an individual point, because it
is not e.g., invariant under reparameterizations. References
[85–87] present individual points with small fine-tuning mea-
sures. We refrain from presenting such points, because they
have no particular probabilistic meaning.

5.2 Evidence

Let us recapitulate our aim. We wanted to find the Bayes fac-
tor for the CNMSSM versus the CMSSM. The Bayes factor
measures how our relative belief in the CNMSSM versus the
CMSSM ought to change in light of the experimental data.
Bayesian naturalness of the EW scale is automatically incor-
porated in the Bayes factor. We interpret the Bayes factor
with the Jeffreys’ scale in Table 1.

If the Bayes factor is greater than (less than) one, the
CNMSSM (CMSSM) is favored. The Bayes factor was

B (CNMSSM/CMSSM) = 10+100
−5 . (32)

The large uncertainty results from the evidence calcula-
tion in the CNMSSM. With a reasonable computer time,
(Py)MultiNest-3.4 found the CNMSSM’s evidence
with an upper bound one order of magnitude greater than
its estimate and the CMSSM’s evidence to within a factor of
one-half. These uncertainties could be reduced with exten-
sive computing resources. Fortunately, the uncertainty in the
Bayes factor corresponds to an uncertainty of a single grade
on the Jeffreys’ scale in Table 1. The Bayes factor is “posi-
tive” or “strong” evidence in favor of the CNMSSM versus
the CMSSM. “Positive” evidence is two grades below “very
strong” evidence and one grade above “barely worth men-
tioning”.

A factor of about 5 in this ratio, however, resulted from
the difference in the prior volume of μ in the CMSSM and κ

in the CNMSSM in Table 3;

ln
(

MP
1 GeV

)
ln

( 4π
0.001

) ≈ 5. (33)

This factor is related to the μ-problem (see e.g., [39]).
Without this factor, the evidence in favor of the CNMSSM
versus the CMSSM is “barely worth mentioning” or “posi-
tive”. The naturalness of the CNMSSM is overstated in the
literature. The difference in the credibility of the CNMSSM
and CMSSM is “barely worth mentioning” or “positive”,
unless one considers the μ-problem. If one ignores the μ-
problem, the evidence in favor of the CNMSSM is unlikely
to be “strong” and is certainly not “very strong”.

Table 4 Our settings for the MultiNest algorithm. For details, see
the MultiNest documentation [45]

CMSSM CNMSSM

Samples in posterior
distribution

40 000 40 000

Total likelihood evaluations 400 000 1 100 000

Evidence tolerance 0.5 8

MultiNest v3.4 with gcc

Importance sampling True

Multimodal False

Constant efficiency False

Efficiency 1

Live points 4000

We anticipated that the CNMSSM would be more credible
than the CMSSM, because additional tree-level contributions
to the Higgs mass in Eq. (4) might permit lighter stops. Whilst
the stops in the CNMSSM were slightly lighter than the stops
in the CMSSM, the stops were 3 TeV � mt̃ � 15 TeV in each
model (see Fig. 3). We found “barely worth mentioning” to
“positive” evidence that the agreement between generic pre-
dictions and experimental data in the CNMSSM is better than
that in the CMSSM, if one ignores the μ-problem, and “pos-
itive” to “strong” evidence if one considers the μ-problem.

The final step, which we omit, is multiplying the Bayes
factor by one’s prior odds to find one’s relative belief in the
CNMSSM versus the CMSSM, in light of experimental data,
i.e., the posterior odds in Eq. (13). When picking prior odds,
one must discard knowledge of the EW scale, all experimen-
tal data, the fact that the CNMSSM solves the μ-problem of
the CMSSM, and any other naturalness considerations that
originate from knowledge of the EW scale. To include such
knowledge in one’s prior odds would be “double-counting;”
it is already included in the Bayes factor.

Calculating Bayesian evidences is numerically challeng-
ing and we acknowledge that our evidences suffered from
substantial uncertainties. To help judge those uncertainties,
we list our MultiNest-3.4 settings in Table 4. We fol-
lowed the recommendations in Ref. [88] for an accurate cal-
culation of the Bayesian evidence, with the exception of the
stopping criteria (the evidence tolerance) in the CNMSSM.
Satisfying the stopping criteria recommended in Ref. [88] in
the CNMSSM would require extensive computing resources.
As a consequence, there is an appreciable uncertainty in the
evidence in the CNMSSM, as already discussed.

5.3 Possible impact of DM

As mentioned in Sect. 4.1, to avoid extra assumptions and
sources of fine-tuning, we omitted DM observables from our
likelihood. One might wonder, however, how DM observ-
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ables might impact our conclusions, were we to assume that
the LSP accounted for all of the DM in the Universe.

In the CNMSSM, because we find that in our results the
singlino is decoupled, the singlino is probably irrelevant to
DM. We conjecture that DM observables could impact the
posterior PDF on the (m0, m1/2) plane in the CNMSSM
and in the CMSSM. Common DM annihilation mechanisms,
such as coannihilation or resonances, preclude focusing of
the EW scale, and would be disfavored. Focus point regions
in which the LSP is a fine-tuned bino–Higgsino mixture could
satisfy DM constraints [84]. Such regions would be favored.

It is unclear, however, how DM observables might impact
the Bayes factor, i.e., whether DM might favor a particular
model. Because the singlino is decoupled in the CNMSSM,
in each model, the most probable DM is a fine-tuned bino–
Higgsino mixture. We find insufficient reason to believe that
such a fine-tuned mixture could be more readily achieved in
a particular model. As such, we conjecture that the inclusion
of DM observables might not significantly impact the Bayes
factor.

6 Conclusions

We calculated the posterior PDF and evidence for the
CNMSSM and the CMSSM with naturalness priors, includ-
ing relevant data from the LHC. Previous calculations of the
posterior PDF for the CNMSSM picked informative priors
for (MZ , tan β) at the EW scale. We picked “honest” priors
for the model parameters in the Lagrangian and superpoten-
tial at the GUT scale. Whilst such priors were calculated for
the CNMSSM in Ref. [24], the posterior PDF and evidence
for the CNMSSM with such priors are absent in the literature.

We examined the credible regions of the CMSSM and
CNMSSM, finding which regions of parameter space were
favored by Bayesian naturalness. Mechanisms that focus
Higgs SUSY breaking masses to the EW scale were favored.
In each model, the SUSY breaking masses were m1/2 �
8 TeV and m0 � 15 TeV, with squarks and sleptons ∼
10 TeV. The discovery prospects at the LHC were limited;
with 3000/fb of data, it is unlikely that the LHC could
discover either the CMSSM or the CNMSSM. Contrari-
wise, the HE-LHC would probably discover the CMSSM
or CNMSSM, were nature described by either model.

We computed the Bayes factor for the CNMSSM ver-
sus the CMSSM. The calculation involved moderate uncer-
tainties that could be resolved with extensive computing
resources. We found that the evidence in favor of the
CNMSSM versus the CMSSM is “positive” to “strong” on
the Jeffreys’ scale, but that if one ignores the μ-problem, the
evidence is “barely worth mentioning” to “positive”. “Posi-
tive” evidence is two grades below “very strong”. We con-
clude that the credibility of the CNMSSM is perhaps over-

stated in the literature and that the μ-problem must be consid-
ered in a comparison between the CNMSSM and CMSSM.
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