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Abstract In this paper the Gribov gap equation at finite
temperature is analyzed. The solutions of the gap equation
(which depend explicitly on the temperature) determine the
structure of the gluon propagator within the semi-classical
Gribov approach. The present analysis is consistent with the
standard confinement scenario for low temperatures, while
for high enough temperatures, deconfinement takes place and
a free gluon propagator is obtained. An intermediate regime
in between the confined and free phases can be read off from
the resulting gluon propagator, which appears to be closely
related to partial deconfinement.

1 Introduction

One of the most characteristic features of QCD is asymptotic
freedom [1,2], which allows one to perform the standard
perturbative analysis in the ultraviolet regime. On the other
hand, the infrared regime of the theory is not well understood
yet from the analytical point of view, as the running coupling
is large for low energies. Indeed, color confinement is one of
the main open problems in theoretical physics.

The standard perturbative approach to avoid overcount-
ing of gauge equivalent configurations in Yang–Mills (YM)
theory is to introduce a gauge fixing condition in the func-
tional integral (the Landau gauge will be considered in the
following). However, as Gribov pointed out [3], the Landau
gauge condition does not fix the gauge completely. Shortly
after, Singer showed that, due to the non-trivial nature of the
fiber bundle structure of YM-theory, any true gauge condi-
tion presents this obstruction [4] (see also [5]). The presence
of Gribov copies close to the identity induces the existence
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b e-mail: pais@cecs.cl
c e-mail: pasalgado@udec.cl

of non-trivial zero modes of the Faddeev–Popov operator,
which make the path integral ill defined. Even when per-
turbation theory around vacuum is not affected by Gribov
ambiguity when YM-theory is defined over a flat space–time1

with trivial topology [10], Gribov copies have to be taken into
account when considering more general cases [11] or when
non-perturbative phenomena are studied.

The most effective method to eliminate Gribov copies
(proposed by Gribov himself in [3] and refined in [12–14])
corresponds to restricting the path integral to the so-called
Gribov region, which is the region in the functional space
of gauge potentials over which the Faddeev–Popov opera-
tor is positive definite. In [12] Dell’Antonio and Zwanziger
showed that all the orbits of the theory intersect the Gribov
region, indicating that no physical information is lost when
implementing this restriction. Even though this region still
contains copies with non-trivial winding number [15], this
restriction has remarkable effects. In fact, the gluon propa-
gator is suppressed in the infrared and the ghost propagator is
enhanced, which has opened a way to understand color con-
finement [10,16]. A local and renormalizable effective action
for YM-theory whose dynamics is restricted to the Gribov
horizon and that yields the same results for the field prop-
agators was constructed in [13,14,17–20] by adding extra
fields to the action. Later, an improved action was proposed
by considering suitable condensates, which leads to propa-
gators and glueball masses in agreement with the lattice data
[21–23]. With the same action, one can also solve the old
problem of the Casimir energy in the MIT-bag model [24].

Even though it is an experimental fact that quarks and glu-
ons are confined and color charged states are unobservable
as asymptotic states at low temperatures, it is expected that

1 In the curved case, the pattern of appearance of Gribov copies can
be considerably more complicated: see in particular [6–9]. Therefore,
only the flat case will be considered.
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at high temperatures (Tc ∼ 150 − 200 MeV) they become
free [25,26]. Such a phase transition from confinement to
quark–gluon plasma (QGP) should be described within the
framework of finite-temperature field theory allowing a bet-
ter understanding of natural scenarios as the early universe
or compact star physics [26–28]. The high-temperature sec-
tor for the theory corresponds to the perturbative region, in
which gluons are physical states. In this regime it is neces-
sary to include thermal loop corrections, which may yield a
dynamical thermal mass generation for the gauge fields [26].
In particular, the hard thermal loop approximation cancels
infrared divergences coming from the Matsubara frequen-
cies, allowing one to study plasma oscillations. On the other
hand, lattice QCD allows one to handle non-perturbative phe-
nomena at finite temperature, such as phase transitions. The
critical temperature for QGP has been subject of several stud-
ies as well as its relation with the energy scale in the context
of quenched QCD [29,30]. Moreover, some recent analyses
(see, in particular [31–34], and references therein) strongly
support the existence of an intermediate regime which lies in
between the confined phase and the free phase. Within this
regime, some features of the confined phase coexist with the
high-temperature plasma phase. Although it is not clear yet
whether this intermediate phase corresponds to a phase tran-
sition or to a cross-over, it can be safely assumed that such
an intermediate regime does appear.

In this paper we will analyze the semi-classical Gribov
approach to QCD at finite temperature2 extending the pio-
neering works [35,36]. To this aim, the finite-temperature
theory at one loop will be restricted to the Gribov region and
the existence of phase transitions from confinement to gluon
plasma will be analyzed. Since gluon deconfinement is asso-
ciated to the presence of dynamical thermal mass [37], the
contribution of thermal loops to the finite-temperature anal-
ysis cannot be ignored when implementing this restriction.
The semi-classical Gribov analysis shed considerable light
on the non-perturbative behavior of the gluon propagator.
Indeed, at zero temperature, the existence of a non-trivial
solution to the Gribov gap equation implies that the gluon
propagator has imaginary poles and consequently gluons do
not belong to the physical spectrum. Hence, there are two
important requirements that the finite-temperature gap equa-
tion must satisfy. Firstly, the finite-temperature gap equation
should have, when the temperature is low enough, solutions
close to the zero-temperature one, describing confined glu-

2 A remark on the terminology: in the following we will denote by
“critical temperatures” the temperatures which correspond to changes of
the qualitative behavior of the solutions of the finite-temperature Gribov
gap equation. Although the present analysis by itself is not enough to
prove rigorously the appearance of a phase transition (since suitable
order parameters should be identified and analyzed), we think that this
terminology is useful to emphasize the sharp differences in the behavior
of the Gribov gluon propagator as the temperature changes.

ons. Secondly, when the temperature is high enough, the
finite-temperature gap equation should describe propagat-
ing gluons. Although it is not easy to satisfy both conditions
[35,36], here we will show that not only they can be satisfied,
but also that the finite-temperature gap equation discloses the
presence of a new regime in between the confined and free
regimes, which appears to be closely related to the interme-
diate regime mentioned before.

The paper is organized as follows: In Sect. 2 the quantiza-
tion of YM-theory and the semi-classical Gribov approach
at zero temperature are briefly reviewed following the lines
of [10]. In Sect. 3 the main considerations for the one-loop
finite-temperature analysis are exposed, and a thermal gap
equation is derived. Section 4 is devoted to the numerical
study of a phase transition taking into account a different
possible temperature dependence for the QCD running cou-
pling. Finally, in Sect. 5, we discuss the results and compare
them with the known literature.

Note added: recently, Ref. [38] was posted on arXiv, where
this problem is also studied by a different approach.

2 Semi-classical Gribov approach to QCD

In this section we will briefly review the semi-classical pro-
cedure to restrict the path integral formulation of YM-theory
to the Gribov region following the lines of [3,10].

The action functional for SU (N ) Euclidean YM-theory is
given by

SEYM[A] = 1

4g2
0

∫
d4x Fa

μν Fμν
a , (1)

where g0 is the coupling constant, Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ +

f a
bc Ab

μ Ac
ν is the field strength tensor associated to the four-

potential Aμ = Aa
μTa , and the Ta are the anti-hermitian

generators of the su(N ) algebra

[Ta, Tb] = f c
abTc,

with f a
bc the su(N ) structure constants. The action (1) is

invariant under SU (N ) gauge transformations

Aμ → A′
μ = h†(Aμ + ∂μ)h, h ∈ SU (N ).

The quantum theory can be constructed by defining the
Feynman path integral. In order to sum only over inequiva-
lent configurations, a gauge fixing condition must be imple-
mented via the Faddeev–Popov trick. In the Landau gauge
∂μ Aμ = 0, the gauge fixed path integral has the standard
form [40]

Z = N
∫

D ADcDc̄δ(∂μ Aμ) det(M) exp(−SEYM), (2)
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where N is a normalization, and M is the Faddeev–Popov
operator for the Landau gauge condition:

Ma
b = −∂μ(Dμ)a

b, (3)

with (Dμ)a
b = δa

b∂μ − f a
bc Ac

μ the covariant derivative in
the adjoint representation.

Due to the presence of Gribov copies [3], however, the
expression (2) is ill defined. To avoid zero modes of the
Faddeev–Popov operator and eliminate copies, Gribov pro-
posed to restrict the path integral to the so-called Gribov
region C0, which corresponds to the region in the functional
space of gauge potentials over which the Faddeev–Popov
operator is positive definite,

C0 ≡ {Aμ, ∂μ Aμ = 0| det M > 0}. (4)

The restriction of (2) to the Gribov region can be imple-
mented by redefining the generating functional as

ZG = N
∫

D ADc̄Dcδ(∂μ Aμ)

× det(M) exp(−SYM)V(C0), (5)

where the factor V(C0) ensures that the integration is per-
formed only over C0. In order to characterize V(C0), we
look at the connected two-point ghost function generated by
(2):

〈c̄a(x)cb(y)〉 = N
∫

D Aδ(∂μ Aμ) exp(−SYM)

× det(M)(M−1(x, y))ab. (6)

Singularities in (6) correspond to zero modes of the Faddeev–
Popov operator, i.e. infinitesimal Gribov copies. In the
momentum representation, singularities different from k2 =
0 imply that M(x, y) can become negative definite, and
therefore it is evaluated outside the Gribov horizon. The fac-
tor V(C0) must be such that this kind of singularities is not
present. This is known as the “no-pole condition”.

The standard connected ghost two-point function (6) can
be put in the form

〈c̄a(x)cb(y)〉 = N
∫

D ADcDc̄δ(∂μ Aμ)

× exp(−SYM)〈ca(x)cb(y)〉A, (7)

with 〈ca(x)cb(y)〉A the connected ghost two-point function
with Aa

μ playing the role of an external field. To second order
in perturbation theory this can be written in momentum space
as

〈c̄aca〉k;A = 1

k2 (1 + σ(k, A)) ≈ 1

k2

1

(1 − σ(k, A))
, (8)

where

σ(k, A) = Nkμkν

3(N 2 − 1)k2

1

V

∑
q

Aaλ(−q)Aaλ(q)

(k − q)2

×
(

δμν − qμqν

q2

)
, (9)

and V stands for the four-dimensional volume of the
Euclidean space–time. Since Aa

μ(−q)Aaν(q) is a decreas-
ing function of q2, σ(k, A) decreases as k2 increases and the
no-pole condition can be stated as

σ(0, A) = 1

4

N

N 2 − 1

1

V

∑
q

1

q2 Aa
μ(−q)Aμ

a (q) < 1. (10)

Hence, the factor V(C0) needed in (5) to restrict path inte-
grals to the Gribov horizon is given by V(C0) = �(1 −
σ(0, A)), where �(x) = 1

2π i

∫ i∞+ε

−i∞+ε
dη eηx

η
is the Heaviside

step function. Implementing this factor in ZG , the quadratic
part of the path integral in the field Aμ can be put in the form

Zquad
G = N

∫
dη

2π i
e f (η), f (η) = η − ln η

−3

2
(N 2 − 1)

∑
q

ln

(
q2 + ηNg2

0

N 2 − 1

1

2V

1

q2

)
. (11)

Using the steepest descent (saddle point) method, (11) can
be approximated by Zquad

G ≈ e f (η0), where η0 satisfies the
minimum condition f ′(η0) = 0. Defining the Gribov param-

eter γ 4 = η0 Ng2
0

N 2−1
1

2V , the minimum condition leads to the gap
equation

1 − Ng2
0

γ 4(N 2 − 1)2V
− 3Ng2

0

4V

∑
q

1

q4 + γ 4 = 0. (12)

The solution of this equation in the infinite volume limit V →
∞ is given by γ 2 = �2e

− 64π2

3Ng2
0 , where � is the ultraviolet

cutoff, and it leads to a confining gauge propagator [10]

Dab
μν(q) = δabg2

0
q2

q4 + γ 4

(
δμν − qμqν

q2

)
. (13)

For large q, (13) reduces to the standard perturbative result
[40]. In the infrared, however, the gluon propagator is sup-
pressed, as it displays imaginary poles. In other words, since
Dab

μν(q) has a positivity violating Källén–Lehmann repre-
sentation [39,40], gluons cannot be considered as part of the
physical spectrum and the propagator (13) is interpreted as
confining.

Replacing (13) in (9) leads to the following behavior for
the ghost propagators (8), in the infrared limit:

〈c̄aca〉q;A −→
q→0

128πγ 2

3Ng2
0

1

q4 , (14)
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which means that the ghost propagator is not free-like, but
enhanced for q → 0.

3 Finite-temperature analysis

Finite-temperature YM-theory can be studied using the imag-
inary time formalism [25,41], which relates the correspond-
ing quantum field theory generating functional with a quan-
tum statistical partition function through a compactification
of the temporal coordinate. In this formalism, the period of
the compactified time is associated with the inverse of the
temperature of a thermal bath, and the partition function can
be written as

Z =
∫

D A exp

⎛
⎜⎝ 1

4g2
0

1
T∫

0

dτ

∫
d3x Fa

μν Fμν
a

⎞
⎟⎠ . (15)

Since the temporal integration limits 0 and T −1 are identified,
when passing to momentum space, temperature dependent
fields are expanded in a Fourier series over discrete Matsub-
ara frequencies ωn .

ϕ(τ, x) = T
∞∑

n=−∞

∫
d3q

(2π)3 e−i(ωnτ+q·x)ϕ(ωn, q),

ωn = 2πnT . (16)

3.1 Dynamical thermal mass

When implementing the gauge fixing, the finite-temperature
formalism must be applied to the generating functional (2),
where the Euclidean action has to be written as a local func-
tional for ghost and gauge fields and perturbation theory can
be applied. For gluons, when considering one-loop correc-
tions, the resumed gauge propagator in the Landau gauge
takes the form [26]

Dab
μν(q) = g2δab

(
PT

μν(q)

q2 + �T (q)
+ P L

μν(q)

q2 + �L(q)

)
, (17)

where g is the running coupling and

PT
μν(q) = δi

μδ
j
ν

(
δi j − qi q j

q2

)
,

P L
μν(q) = δμν − qμqν

q2 − PT
μν(q) (18)

are transverse projectors orthogonal to each other, (PT
μνqν =

P L
μνqν = 0, δρσ PT

μρ P L
σν = 0), and �T (q), �L(q) are the

components of the self-energy �μν along the projectors (18)

�μν(q) = PT
μν(q)�T (q) + P L

μν(q)�L(q). (19)

In the plasma region, where ωn >> |q|, the self-energy
components �T (q), �L(q) are given, in the hard thermal
loop approximation, by

�T (q) = �L(q) ≈ Ng2T 2

9
, (20)

which means that, in a hot plasma, gauge fields acquire an
effective thermal mass [26]

m2
pl = Ng2T 2

9
. (21)

In this case the gauge propagator (17) takes the form

Dab
μν(q) = g2δab

q2 + m2
pl

(
δμν − qμqν

q2

)
. (22)

It is worth noting that ghost fields do not acquire a thermal
mass [25], which implies that the no-pole condition (10) has
no extra terms when one-loop corrections are considered.
However, the expression for the gap equation will be modified
by the presence of the effective thermal mass (21), as we will
see below.

3.2 Gluon propagator in the presence of dynamical mass

The effect of a dynamical mass m in the semi-classical Gribov
approach discussed in Sect. 2 can be obtained by adding a
term of the form m2 Aμ Aμ to the quadratic action in (11). This
approach was studied in [42] and modifies the gap equation
(12) as

1 − 3g2

γ 4(N 2 − 1)2V
− 3Ng2

4V

∑
q

1

q4 + m2q2 + γ 4 = 0.

(23)

The solution of this equation, if it exists, defines a massive
(partially) confining gauge propagator

D̄ab
μν(q) = δabg2 q2

q4 + m2q2 + γ 4

(
δμν − qμqν

q2

)
. (24)

The confining character of this propagator relies on the pres-
ence of imaginary poles, which violates positivity of the spec-
tral density function of the Källén–Lehmann representation
[39,40], indicating that it describes non-physical excitations.
However, the presence of a dynamical mass m allows the pos-
sibility for the propagator (24) to acquire a physical degree
of freedom. In fact, the poles of (24) are given by

z± = 1

2
(−m2 ±

√
m4 − 4γ 4). (25)

Hence, for m2 ≥ 2γ 2 the propagator D̄ab
μν(q) can describe

physical particles. Writing (24) in the form

D̄ab
μν(q) = δab g2√

m4 − 4γ 4

[
z+

(q2 − z+)
− z−

(q2 − z−)

]

×
(

δμν − qμqν

q2

)
, (26)
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we can see that the propagator splits into two terms with
opposite residue sign, indicating that the gluon field Aμ has
only one physical degree of freedom.

In general, if m is a function of some physical parameter,
we can distinguish three scenarios for the behavior of the
propagator.

• For m2 < 2γ 2 both poles of (24) are complex, indicating
that there are no propagating gluonic degrees of freedom
(confined phase).

• For m2 ≥ 2γ 2 only one of the two gluonic degrees of
freedom is physical (partially deconfined phase). Hence,
if this regime appears (as will be shown in the follow-
ing, it does) it shows qualitative characteristics both of the
confined phase and of the deconfined phase.

• If there is no solution for the gap equation, the only con-
sistent choice for the Gribov mass parameter is γ = 0,
leading to a free gluon propagator (deconfined phase).

In the present case, the effect of the one-loop thermal mass
(21) on the Gribov restriction will be considered by setting
m = m(T ), and it will be shown that there exist critical tem-
peratures corresponding to the above three different regimes.
It is worth noting that the inclusion of such a one-loop mass
is fundamental in order to obtain these different phases.

3.3 Thermal gap equation

As it has been already discussed in the introduction of
this manuscript, two important requirements for the consis-
tency of the analysis are the following. Firstly, the finite-
temperature gap equation should have, when the temperature
is low enough, solutions close to the zero-temperature one,
describing confined gluons. Secondly, when the temperature
is high enough, the gap equation should have no solution,
which describes propagating gluons.

As is well known, these conditions are not easy to satisfy
[35,36]. In the present paper, we will include the one-loop
perturbative corrections both in the running coupling (see
Sect. 4) and in the field propagators (since the crucial role
of the one-loop mass is well known: see [37] and references
therein). In order to write down the gap equation for the
finite-temperature case, we apply the prescription (16)–(23)
and take the infinite spatial volume limit

1

V

∑
q

→ T
∑

n

∫
d3q

(2π)3 . (27)

Finally, replacing the thermal gluon mass (21), we obtain the
following thermal gap equation:

3Ng2T

8π2

∑
n

�∫

0

r2dr

(r2 + ω2
n)2 + Ng2T 2

9 (r2 + ω2
n) + γ 4

= 1,

(28)

where we have adopted polar coordinates, integrated over
angular variables, and we defined a radial integration limit
�, which corresponds to an ultraviolet cutoff. Let us note
that we have neglected the second term of (23), as it goes to
zero for an infinite spatial volume.

Defining the dimensionless variables

R = r

�
, λ = 2πT

�

θn = ωn

�
= nλ, � = γ

�
, (29)

the thermal gap equation can be rewritten as

3Ng2λ

16π3

∑
n

1∫

0

R2dR

(R2 + θ2
n )2 + Ng2λ2

36π2 (R2 + θ2
n ) + �4

= 1.

(30)

The sum over all dimensionless Matsubara frequencies θn

can be carried out analytically (see Appendix), leading to

S(R, λ, �) =
∑

n

1

(R2 + θ2
n )2 + Ng2λ2

36π2 (R2 + θ2
n ) + �4

= π

2λ

√
N 2g4λ4

722π4 − �4

×

⎛
⎜⎜⎜⎝

cot h

⎛
⎝ π

λ

√
R2+ Ng2λ2

72π2 −
√

N2g4λ4

722π4 −�4

⎞
⎠

√
R2+ Ng2λ2

72π2 −
√

N2g4λ4

722π4 −�4

−
cot h

⎛
⎝ π

λ

√
R2+ Ng2λ2

72π2 +
√

N2g4λ4

722π4 −�4

⎞
⎠

√
R2+ Ng2λ2

72π2 +
√

N2g4λ4

722π4 −�4

⎞
⎟⎟⎟⎠ , (31)

and the gap equation takes the form

3Ng2λ

16π3

1∫

0

dR R2S(R, λ, �) = 1, (32)

which defines γ as a function of λ,

γ = ��(λ). (33)

4 The three regimes

As we have shown in Sect. 3, the effective gluon propagator
(24) can lead to three different regimes for gluons depend-
ing on the value of the thermal mass m pl(T ), which in turn
depends on the temperature T . These three phases can be
associated to two transition temperatures. In this section we
present the numerical analysis of the gap equation (32) for
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Fig. 1 Plot of the surface F for
different values of λ and �. The
intersection with the plane
Y = 1 occurs for λ below the
critical value λ

(1)
c = 1.4

Fig. 2 Plot of F as a function
of �, for λ = 1.2, 1.4 and 2.0

QCD (N = 3) in the high-temperature regime and subse-
quently we study a possible infrared continuation.

4.1 High-temperature running coupling

Let us consider the thermal gap equation in the limit of high
temperatures T >> 1. In finite-temperature QCD, the one-
loop running coupling depends on the temperature T (or, in
our case, on λ) as [35,43]

g2(λ) = 8π2

11 ln
(

2πT
�QCD

) = 8π2

11 ln(αλ)
, (34)

where we have defined the ratio between the cutoff � and
the energy scale �QCD as

α ≡ �

�QCD
. (35)

For the left hand side of (32), we define the function

F(λ, �) = 9g2λ

16π3

1∫

0

dR R2S(R, λ, �). (36)

Then the solution for the gap equation corresponds to the
intersection of the curves Y = F(λ, �) with Y = 1.

In order to obtain the qualitative behavior for the solu-
tions, we will consider α = 1 in the analysis below (as will
be explained later on, the qualitative behavior of the gluon
propagator does not depend on the value of α). From Fig. 1,
we see that the existence of solution depends on the temper-
ature. In fact, the intersection occurs for λ’s below a critical
value λ

(1)
c = 1.4; see Fig. 2. This corresponds to a phase

transition at temperature

T (1)
c

�QCD
= 0.22. (37)

For T > T (1)
c there is no solution for the gap equation (32). In

this case the only consistent choice for the Gribov parameter
is γ = 0, indicating that this regime represents the free phase.
On the other hand, for T < T (1)

c , there is a solution for the gap
equation, which define the Gribov parameter γ . Therefore,
as is shown in Fig. 3, � decreases as λ increases and vanishes
for λ(1) = 1.4.

Even though for λ < 1.4 there is a solution for the gap
equation, the propagator is still not completely confining. As
we saw in Sect. 3, depending on the sign of the discriminant
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Fig. 3 Plot � vs. λ. At λ(1) ∼ 1.4 there exists a phase transition from a

deconfined phase to a semi-confined one, which corresponds T 1
c

�
= 0.22

Fig. 4 Plot
√

4�4 − m4 vs. λ. At λ(2) ∼ 1.08 there exists a phase tran-
sition from a semi-confined phase to a confined one, which corresponds
T 2

c
�

= 0.17

in (25), a partial or total confinement can take place. In this
case, the change of sign in (25) occurs for λ

(2)
c = 1.08 (see

Fig. 4), which corresponds to

T (2)
c

�QCD
= 0.17. (38)

Hence, two phase transitions are found as the temperature
decreases: a deconfined/partially deconfined/confined phase
transition at T (1)

c and a partially deconfined/confined phase
transition at T (2)

c . In the intermediate phase, only one degree
of freedom of the gluon is physical, as discussed in Sect. 3.2.

4.2 Infrared continuation

In order to extend the analysis of the previous subsection to
the low-temperature regime, we need a prescription to extend
the definition (34) for λ < 1.

A way to extend the running coupling to the infrared
regime in zero-temperature QCD has been developed in [44]
in the framework of quark-antiquark potentials by adding
a non-perturbative contribution to the Wilson loop. In the
finite-temperature case, the analog extension reads

g2(g0, λ) = g2
0

1 + 11
16π2 g2

0 ln(1 + α2λ2)
. (39)

This expression reduces to (34) for large λ but, in the limit
λ → 0 the running coupling reduces to the bare coupling
constant g0

g2 −→
λ→0

g2
0 .

This choice is also consistent with the fact that the thermal
gluon mass (21) must vanish as T goes to zero

m2
pl −→

T →0
0,

which is a necessary requirement to reduce (23)–(12) in this
limit and to connect consistently with the standard T = 0
results [10]. Let us note that for large g0 the behavior of
g(g0, λ) becomes insensible to small variations of g0 itself;
see Fig. 5. This is consistent with the fact that in quantum
field theory bare quantities are infinite but unobservable and
they need to be renormalized.

Replacing the expression (39) (with α = 1) in the gap
equation (32), the left hand side takes the form

G (g0, λ, �) = 9g2λ

16π3

1∫

0

dR R2S (R, g0, λ, �) , (40)

where S(R, g0, λ, �) is obtained replacing (39) in (31). Then,
the solution for the gap equation again corresponds to the
intersection of the curves Y = G(g0, λ, �) and Y = 1,
whose existence depends on λ (see Fig. 6).

Similarly to the previous subsection, we find two phase
transitions. Choosing g0 = 1,000, the deconfined/partially
deconfined phase transition occurs for the critical value
λ

(1)
c = 1.17 (see Figs. 7, 8), which corresponds to

T (1)
c

�QCD
= 0.19, (41)

while the semi-confinement/confinement phase transition
now occurs for λ

(2)
c = 0.81 (see Fig. 9), i.e.,

T (2)
c

�QCD
= 0.13. (42)

The results obtained with the prescription (39) are very
similar to the ones obtained in the previous subsection.
It is important to note that the qualitative behavior of
the solution of the gap equation and the gluon propaga-
tor does not dependon the value of α in the definition

123



2855 Page 8 of 11 Eur. Phys. J. C (2014) 74:2855

Fig. 5 Plot of the running
coupling g as a function of g0
and λ. For g0 large, g becomes
almost insensible to small
variations of g0

Fig. 6 Plot of the surface F for
different values of λ and �. The
intersection with the plane
Y = 1 occurs for λ below a
critical value λ

(1)
c = 1.17

Fig. 7 Plot of F as a function
of �, for λ = 0.8, 1.17 and 2.5

(35). As we can see in Table 1, the greater the value of
α that we consider in the analysis (i.e. the greater the
cutoff � compared with QCD scale �QCD), the greater
will be the numerical values for the critical temperatures
for the phase transitions. Hence, the fact that the integra-
tion cutoff � is much higher than the QCD scale �QCD

implies that the critical temperatures obtained with this
method, when considering a more realistic ratio between this

quantities, will be greater than the values obtained in this
section.

On the other hand, in our analysis we have considered
only gluon dynamics (without quarks). In [29,30] it has been
found that the value for the energy scale �QCD that must
be considered depends on the numbers of flavors that are
included in the analysis and there have been found different
values for Tc

�QCD
depending on these considerations.
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Fig. 8 Plot � vs. λ. At λ(1) ∼ 1.17 there exists a phase transition
from a deconfined phase to a semi-confined one, which corresponds to
T (1)

c
�

= 0.19

Fig. 9 Plot
√

4�4 − m4 vs. λ. At λ(2) ∼ 0.81 there exists a phase tran-
sition from a semi-confined phase to a confined one, which corresponds

to T (2)
c
�

= 0.13

Table 1 Critical temperatures T (1)
c

�QCD
and T (2)

c
�QCD

for different values of
α. Here, gHT and gIC correspond to the running coupling at high tem-
perature (34) and its infrared continuation (39), respectively

α gHT gIC

T (1)
c

�QCD

T (2)
c

�QCD

T (1)
c

�QCD

T (2)
c

�QCD

1 0.223 0.172 0.186 0.128

10 0.437 0.331 0.414 0.301

100 0.758 0.558 0.752 0.540

5 Discussion and future developments

In this paper it has been shown that the semi-classical Gribov
approach applied to finite-temperature YM-theory is consis-
tent with the presence of a confined/deconfined phase transi-

tion. This is reflected in the fact that the existence of solutions
of the Gribov gap equation depends on the temperature.

A key ingredient for the consistent description of these
different regimes is the inclusion of a mass term in the gluon
propagator, which comes from the one-loop corrections to
the theory. Indeed, if the mass term is not taken into account,
there are no critical temperatures at all and one would be left
with confined gluons at all the temperatures. Furthermore, to
include one-loop corrections is consistent with the fact that
the thermal mass (21) causes gluon deconfinement [37].

In order to be able to study the low-temperature limit,
we have introduced a modified running coupling g, which
interpolates between the standard perturbative result in the
ultraviolet regime and a constant (in principle infinite but
unobservable) for the infrared regime. It is worth to note that
this modification has been considered only for consistency,
as it allows the gluon thermal mass to go to zero for low
temperature, but the presence of these phase transitions does
not depend on this fact. Indeed, the same qualitative behavior
for the gluon propagator was obtained when considering the
standard one-loop running coupling (34), and, furthermore,
it can be shown that phase transitions are also present if only
a constant coupling is considered in the whole analysis. We
stress that when the Gribov semi-classical method is imple-
mented at zero temperature but with a non-trivial Higgs field
(see [45,46]), the phase diagram turns out to be very close to
the one obtained in the present paper in agreement with the
Fradkin–Shenker theorem [47].

In this paper we have considered the scaling solution, in
which the gluon propagator (13) vanishes and the ghost prop-
agator (14) blows up as 1

q4 in the infrared limit q → 0.
On the other hand, it is clear by now that the decoupling
solution (where the gluon propagator goes to a constant in
the infrared limit while the ghost propagator has a free-like
behavior) is the relevant one3 [49,50]. The decoupling solu-
tion has a strong lattice support [51–54] and can be obtained
analytically within the refined Gribov–Zwanziger theory by
including some condensates [21–23]. It would certainly be
of interest to study the refined Gribov–Zwanziger approach
at finite temperature. However, as this theory includes extra
ghost fields necessary to express the action in a local form,
the main technical problem when passing to the finite-
temperature formalism is to determine the boundary con-
ditions that these extra fields must satisfy. This issue is under
investigation and we hope to come back to this point in the
future.

An interesting result of this paper is the appearance of an
intermediate regime in between confined and free regimes,
in which only one of the two gluonic degrees of freedom is

3 In Ref. [48] the effect of Gribov horizon in the Schwinger–Dyson
equations has been studied obtaining both the scaling and the decoupled
solution.
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physical, while the other one does not belong to the physical
spectrum. In this sense, this new regime captures traces of
both confined and deconfined regimes. Hence, this scenario
could be interpreted as a partial deconfinement or a semi-
QGP phase, which has been studied in [32–34]. Regimes of
this kind can appear when studying QGP by different meth-
ods. In fact, in a very interesting paper [31] the phase tran-
sition in hot QCD is analyzed in the context of electrically
and magnetically charged quasi-particles, where the confined
regime corresponds to a magnetically dominated and electri-
cally confined region, while the free regime is described by a
magnetically strongly correlated and electrically dominated
region. In between these regimes, a “post-confined” region
is found, where electrically charged excitations are strongly
correlated, which can also be interpreted as a partial decon-
finement. It is reassuring that, even though this method is
quite different from our approach, the qualitative results are
in agreement with ours, as far as the presence of an interme-
diate regime is concerned.

Despite the fact that pure Yang–Mills theory is interest-
ing in itself, the inclusion of quarks is important in order
to obtain a more realistic model. This point requires a care-
ful analysis since, as has been shown in [55–58] (see also
[59]), the quark propagator develops complex poles at the
non-perturbative level in the same way as the gluon propaga-
tor does after implementing the Gribov restriction. Accord-
ing to the analysis for a propagator with complex poles
given in Sect. 3.2, the fact that the quark and gluon prop-
agators share this feature in the infrared strongly suggests
that there could exist an intermediate quark regime as well.
On the other hand, the thermodynamics of quark models
with complex mass poles have been studied in [60], and it
would be interesting to follow its lines when adding quarks to
the Gribov–Zwanziger theory. The study of the equation of
state for gluons, both in the semi-classical Gribov approach
and the Gribov–Zwanziger theory, as well as the inclusion
of quarks, presents several technical difficulties at the ana-
lytical and numerical level, and they are currently under
investigation.

Another important subject in the understanding of decon-
finement, which is also the aim of a future work, is the order
of the phase transition. In order to formally associate each
regime of Sect. 4 with a phase of a gluon plasma and prove
rigorously that the critical temperatures that we have found
determine a phase transition, an order parameter must be
introduced. The natural choice for the order parameter in the
finite-temperature formalism is the Polyakov loop, and its
computation for the intermediate phase found in Sect. 3.2
would shed light on its relation with partial deconfinement
and semi-QGP. On the other hand, as has been explained in
[60], the Polyakov loop is very useful when dealing with non-
trivial thermodynamics arising in the presence of complex.
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Appendix: Sum over Matsubara frequencies

Let us consider the gap equation (30)

3Ng2λ

16π3

∑
n

1∫

0

R2dR

(R2 + θ2
n )2 + Ng2λ2

36π2 (R2 + θ2
n ) + �4

= 1,

and let us compute the following sum over the dimensionless
Matsubara frequencies θn :

∑
n

1

(R2 + θ2
n )2 + Ng2λ2

36π2 (R2 + θ2
n ) + �4

=
∑

n

1

P(n2)
,

(43)

where

P(x) = λ4(x + a−)(x + a+), (44)

a± = R2

λ2 + Ng2

72π2 ±
√

N 2g4

722π4 − �4

λ4 . (45)

Using algebraic manipulations, we can write (43) as

∑
n

1

P(n2)
= 1

λ4

1

a+ − a−

∑
n

(
1

n2 + a−
− 1

n2 + a+

)
.

(46)

Then, using the residue theorem applied to the sum series,

∞∑
n=−∞

f (z) = −
∑

res[π cot(π z) f (z)],

we obtain for (46)

∑
n

1

P(n2)
= 1

λ4

1

a+ − a−

(
π cot h(π

√
a−)√

a−

−π cot h(π
√

a+)√
a+

)
. (47)
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Defining S(R, λ, �) = ∑
n

1
P(n2)

and using (45) we obtain
(31):

S(R, λ, �) = π

2λ

√
N 2g4λ4

722π4 − �4

×

⎛
⎜⎜⎜⎝

cot h

⎛
⎝ π

λ

√
R2+ Ng2λ2

72π2 −
√

N2g4λ4

722π4 −�4

⎞
⎠

√
R2+ Ng2λ2

72π2 −
√

N2g4λ4

722π4 −�4

−
cot h

⎛
⎝ π

λ

√
R2+ Ng2λ2

72π2 +
√

N2g4λ4

722π4 −�4

⎞
⎠

√
R2+ Ng2λ2

72π2 +
√

N2g4λ4

722π4 −�4

⎞
⎟⎟⎟⎠

and the thermal gap equation (30) takes the form

3Ng2λ

16π3

1∫

0

dR R2S(R, λ, �) = 1.
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