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Abstract Two observational results, the density profile
from simulations performed in the �CDM scenario and the
observed flat galactic rotation curves, are taken as input with
the aim of showing that the galactic halo possesses some of
the characteristics needed to support traversable wormholes.
This result should be sufficient to provide an incentive for
scientists to seek observational evidence for wormholes in
the galactic halo region.

1 Introduction

In recent years observational evidence has been found for
black holes, once considered to be hypothetical astrophysi-
cal objects. An interesting challenge is to find evidence for
another type of strange object, the traversable wormhole, a
tunnel-like structure connecting different regions of our Uni-
verse or of different universes altogether. Although just as
good a prediction of Einstein’s theory as black holes, they
have so far eluded detection. Unlike black holes, holding a
wormhole open requires the violation of the null energy con-
dition, an example of which is the Casimir effect [1]. On the
cosmological level, phantom dark energy also violates the
null energy condition and could therefore give rise to worm-
holes [2,3].

Moving to the galactic level, we are confronted with other
peculiar phenomena that cannot be explained by the stan-
dard model, examples of which are the observed flat rotation
curves in galaxies. In particular, the rotation curves of neu-
tral hydrogen clouds in the outer regions cannot be explained
in terms of ordinary (luminous) matter. These phenomena
have led to the hypothesis that galaxies and even clusters of
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galaxies are pervaded by some non-luminous matter, now
called dark matter. Dark matter is able to account for these
flat rotation curves. The term dark refers to the fact that
it does not emit electromagnetic waves, nor does it inter-
act with normal matter. A number of candidates for dark
matter have been proposed over time: new particles pre-
dicted by supersymmetry [4], massive neutrinos collectively
known as WIMPs (weakly interacting massive particles) [5],
a source of scalar fields [6–9], global monopoles [10–12],
brane-world effects of gravitation [13–15], noncommutative
geometry [16], geometric effects of f (R) gravity [17], f (T )

gravity [18], etc.
To see how wormholes might fit in with these strange

astrophysical phenomena, we begin by noting that Navarro
et al. [19,20] have used N -body simulations to search out
the structure of dark halos, in particular the density pro-
file of dark halos in the standard CDM cosmology. Their
numerical simulations in the �CDM scenarios led to the
density profile of galaxies and clusters of galaxies having the
form

ρ(r) = ρs

r
rs

(
1 + r

rs

)2 , (1)

where rs is the characteristic scale radius and ρs the corre-
sponding density. Since this density profile of CDM halos
of several masses (between 3 × 1011 M� and 3 × 1015 M�)
fits accurately, we will rely on Eq. (1) to show that the
galactic halo may be able to support traversable worm-
holes.

In the present work, essentially we are motivated to
show that the geometry of the spacetime of a galactic
halo may be described by a traversable wormhole met-
ric, fitting with the expected density profile predicted by
simulations and with the observed flat galactic rotation
curves.
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2 The solutions

While we now have the density profile, other properties
of dark matter remain unknown. We will therefore assume
that dark matter has the most general anisotropic energy-
momentum tensor, given by

T μ
ν = (ρ + pt )u

μuν − pt g
μ
ν + (pr − pt )η

μην, (2)

with uμuμ = −ημημ = 1, pt and pr being the transverse
and radial pressures, respectively.

As noted earlier, the observed flat rotation curves of neu-
tral hydrogen clouds in the outer regions of galaxies indicate
the existence of dark matter. In such galaxies these neutral
hydrogen clouds are therefore treated as test particles mov-
ing in circular orbits. The spacetime in the galactic halo is
characterized by the line element

ds2 = −e2 f (r)dt2 + e2g(r)dr2 + r2(dθ2 + sin2 θ dφ2). (3)

A more convenient form for later analysis is

ds2 = −e2 f (r)dt2+
(

1 − b(r)

r

)−1

dr2+r2(dθ2+sin2 θ dφ2).

(4)

A flat rotation curve for the circular stable geodesic motion
in the equatorial plane yields

e2 f (r) = Brl , (5)

derived in Appendix A. Here l = 2(vφ)2, where vφ is the
rotational velocity and B is an integration constant. The
observed rotation curve profile in the dark matter region indi-
cates that the rotational velocity vφ is nearly constant. For
example, for a typical galaxy of mass 1.8 × 1012 M� within
300 kpc [21], the rotational velocity is vφ ∼ 10−3 (300 km/s).
So by letting B = 1/rl

s , the spacetime metric becomes

ds2 = −
(

r

rs

)l

dt2+
(

1 − b(r)

r

)−1

dr2+r2(dθ2+sin2 θ dφ2).

(6)

As shown in Appendix B, the Einstein field equations
(Gμν = 8πTμν) now yield

b(r) = 8πρsr3
s

⎡
⎣ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎤
⎦ (7)

and

8πr2
s pr

= l

( r
rs

)2

⎡
⎣1 − 8πρsr2

s
r
rs

⎧
⎨
⎩ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎫
⎬
⎭

⎤
⎦

−8πρsr2
s

( r
rs

)3

⎡
⎣ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎤
⎦ . (8)

It should be emphasized that this result is based on the two
cosmological observations made earlier, the density profile,
Eq. (1), and the observed rotation curve profile. (The expres-
sion for the transverse pressures is given in Appendix B.)

Having obtained both f (r) and b(r), we are now in a posi-
tion to examine the spacetime metric more closely. First recall
that if the line element, Eq. (4), is to represent a wormhole,
then

1. The redshift function, f (r), must remain finite to prevent
an event horizon.

2. The shape function, b(r), must obey the following con-
ditions at the throat r = r0: b(r0) = r0 and b′(r0) < 1,
the so-called flare-out condition.

3. b(r)/r < 1 for r > r0.

Regarding these requirements, observe that Eq. (6) shows
that the spacetime does not have an event horizon. To check
the shape function, we will use a graphical approach by
using some typical values of the parameters. Figure 1 (left
panel) shows the following: the throat is located at r = r0,
where b(r) − r cuts the r axis. Also, for r > r0, we have
b(r) − r < 0, which implies that b(r)/r < 1, an essen-
tial requirement for a shape function. Moreover, b(r) − r
is a decreasing function for r ≥ r0. Therefore, b′(r0) < 1,
so that the flare-out condition is satisfied. Figure 1 (mid-
dle panel) also supports this assertion. So all three condi-
tions are satisfied. For the sake of completeness, observe
that for the values in Fig. 1, ρs = 0.05 and rs = 1,
we obtain r0 = 1.7192 kpc to four decimal places with
b′(1.7192) ≈ 0.29218.

Our final task concerning the wormhole structure is to
examine the null energy condition. This condition must be
violated if the wormhole is to remain open [1]. Judging from
Fig. 1 (right panel), this is indeed the case since pr + ρ < 0.

For a spacetime to be asymptotically flat, both f (r) and
b(r)/r have to approach zero as r → ∞. The second con-
dition is satisfied, but not the first, as we can see from Eq.
(6). So the wormhole cannot be arbitrarily large, which also
applies to the halo region. The usual procedure is to cut off
the wormhole material at some radial distance and join the
solution to an external Schwarzschild spacetime.
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Fig. 1 (Left) The throat of the wormhole occurs where b(r)−r cuts the
r axis. (Middle) Diagram of the derivative of the shape function of the
wormhole. (Right) The variation of the left-hand side of the expression

for the null energy condition of matter in the galactic halo is plotted
against r . We have used geometric units, G = c = 1 for choosing the
values of ρs = 0.05 and rs = 1

It is also useful to calculate the active gravitational mass
of the wormhole from the throat, r0 (in kpc) up to the radius
R. This mass is given by

Mactive = 4π

R∫

r0

ρr2dr

= 4πρsr3
s

⎡
⎣ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎤
⎦

R

r0

. (9)

Observe that the active gravitational mass Mactive of the
wormhole is positive. This implies that seen from the
Earth, we would not be able to distinguish the gravitational
nature of a wormhole from that of a compact mass in the
galaxy.

3 Equilibrium condition

The generalized Tolman–Oppenheimer–Volkov (TOV) equa-
tion is

d pr

dr
+ ν′

2
(ρ + pr ) + 2

r
(pr − pt ) = 0. (10)

According to Ponce de León’s suggestion [22], we rewrite
the above TOV equation (10) for the anisotropic mass distri-
bution in the galactic halo, to the following form:

− MG (ρ + pr )

r2 e
λ−ν

2 − d pr

dr
+ 2

r
(pt − pr ) = 0, (11)

where MG = MG(r) is the effective gravitational mass from
the throat to some radius r and is given by

MG(r) = 1

2
r2e

ν−λ
2 ν′. (12)

This expression of mass can be derived from the Tolman–
Whittaker formula and the Einstein field equations. It is quite
natural that the modified TOV equation (11) provides the
information of the equilibrium condition for the wormhole
subject to gravitational (Fg) and hydrostatic (Fh) plus another
force due to the anisotropic nature (Fa) of the matter compris-
ing the wormhole. Hence, for equilibrium the above equation
(11) takes the form

Fg + Fh + Fa = 0, (13)

where

Fg = −ν′

2
(ρ + pr ) , (14)

Fh = −d pr

dr
, (15)

Fa = 2

r
(pt − pr ) . (16)

The profiles of Fg , Fh , and Fa for the matter distribution
of the galactic halo region are shown in Fig. 2. The figure
indicates that the equilibrium stage can be achieved due to
the combined effect of pressure anisotropic, gravitational,
and hydrostatic forces. It is to be noted that value of Fg is
too small. The other two plots reside nearly opposite to each
other to make the system balanced.
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Fig. 2 Three different forces acting on fluid elements in static equilib-
rium are shown against r . The value of Fg is too small

4 Scattering of scalar waves in wormhole geometry

The minimally coupled massless wave equation in a worm-
hole background is given by

	

 = 1√−g
∂μ[√−ggμν∂ν
] = 0. (17)

Note that for simplicity, we are dealing with minimally cou-
pled scalar waves. Since the wormhole spacetime is spheri-
cally symmetric, the equation related to the scalar field can
be solved by separation of variables,


l0m = Yl0m(θ, φ)
Ul0(r, t)

r
. (18)

Here Yl0m(θ, φ) are the spherical harmonics and l0 is the
quantum angular momentum.

The possibility of astrophysical observations now pro-
vides the motivation for studying the scattering of scalar
waves in our wormhole spacetime. Such observations would
be important for research on the gravitational radiation, as
well as for determining the possible existence of actual phys-
ical wormholes.

Using the separable form (18) in (17), one can obtain

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

]
Yl0m = l0(l0 + 1)Yl0m

(19)

Table 1 Values of r∗ for different r . (r0 = 1.7192, rs = 1, ρs = 0.05)

r r∗

5 4.9884

10 11.1906

15 16.9754

20 22.5755

25 28.0675

30 33.4974

and

Ül0 + ∂2Ul0

∂r∗2 = Vl0Ul0 , (20)

where the potential Vl0 is given by

Vl0 = e2 f
[

l0(l0 + 1)

r2 − b′r − b

2r3 + 1

r

(
1 − b

r

)
f ′
]

. (21)

Here we have used the tortoise coordinate transformation r∗,
i.e.,

∂

∂r∗ = e f

√
1 − b

r

∂

∂r
, (22)

where the dot represents the differentiation with respect to t .
Actually, r∗ is the proper distance given by (using rs = 1)

r∗ =
r∫

r0

x− l
2 dx√

1 − 4πρs ln(1+x)+ 4πρs
1+x

x

. (23)

Since integration cannot be performed in exact analytical
form, we find the numerical values of the proper distance r∗
for given values of radial distance r from the throat radius
r0, which is shown in Table 1.

Observe that the characteristics of the potential are deter-
mined by the shape and redshift functions of the wormhole.

Assuming the time dependence of the wave to be har-
monic, one can write

Ul0(r, t) = Ûl0(r, ω)e−iωt . (24)

Using (17) in (20), we get the Schrödinger equation

[
d2

dr∗2 + ω2 − Vl0(r)

]
Ûl0(r, ω) = 0. (25)

Near the throat (r0 −→ b(r0)), the potential ≈ e2 f (r0)[ l0(l0+1)

r2
0

]
, which is finite.
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Since the wormhole proposed here is not arbitrarily large,
we assume that the wormhole material extends from the
throat r0 = 1.7192 kpc to the radius 300 kpc. For the value
of l = 0.000001, note that the magnitude of Vl0 is negli-
gible at r = 30 kpc. This means that the solution has the
form of a plane wave Ûl0 ∼ e±iωr∗

at the distance r = 300
kpc. This result indicates that if a scalar wave passes through
the wormhole, the solution would be changed from e±iωr to
e±iωr∗

. This confirms that the potential affects the scattering
of scalar waves.

5 Conclusion

We have shown in this paper that the galactic halo possesses
some of the characteristics needed to support a traversable
wormhole. The analysis is based on two observational results,
the density profile from simulations performed in the �CDM
scenario and the observed flat galactic rotation curves. The
results should provide sufficient incentives for scientists to
seek observational evidence for wormholes, all the more
since our study is based on the rotational velocity vφ ∼
10−3 (300 km/s) and a mass of 1.8×1012 M� within 300 kpc,
making our own galaxy typical enough to be a good candi-
date. We have briefly studied here balancing of the forces that
provides the equilibrium configuration of the system and also
proposed a possible detection of such wormholes by studying
the scattering of scalar waves.
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Appendix A

We derive the tangential velocity of circular orbits for the
line element

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θ dφ2). (26)

The Lagrangian for a test particle is given by

2L = −eν(r) ṫ2 + eλ(r)ṙ2 + r2(θ̇2 + sin2 φ̇2), (27)

where the overdot indicates differentiation with respect to
the affine parameter s. The metric coefficients do not depend

explicitly on t , θ , or φ. So the Euler–Lagrange equation
yields directly the following conserved quantities: the energy
E = −eν(r) ṫ , the θ -momentum Lθ = r2θ̇ , and the φ-
momentum Lφ = r2sin2θ φ̇. So the square of the total angu-
lar momentum is

L2 = L2
θ +

(
Lφ

sinθ

)2

= r4(θ̇2 + sin2θ φ̇2). (28)

With the conserved quantities E and L and the norm of the
four-velocity uμuν = −1, the geodesic equation becomes

−1 = −eν(r) ṫ2 + eλ(r)ṙ2 + r2(θ̇2 + sin2θ φ̇2). (29)

As a result,

eν(r)+λ(r)ṙ2 + eν(r)

(
1 + L2

r2

)
= E2 (30)

or

eλ(r)ṙ2 + 1 + L2

r2 − e−ν(r)E2 = 0. (31)

From the equation of motion

ṙ2 + V (r) = 0, (32)

we may deduce

V (r) = −e−λ(r)

(
e−ν(r)E2 − L2

r2 − 1

)
. (33)

However, according to Ref. [21], since we are dealing with
circular orbits, it is more convenient to use Eq. (31) and the
effective potential

Veff = 1 + L2

r2 − e−ν(r)E2. (34)

Dealing with circular orbits, the following conditions must
be satisfied: ṙ = 0, Vr = 0, and Vrr > 0 [23]. The first
condition gives directly

E2 = eν(r)

(
1 + L2

r2

)
, (35)

and from Eq. (34), the second condition yields

L2

r2 = 1

2
rν′(r)e−ν(r)E2, (36)

or

E2 = eν(r)

1 − 1
2rν′(r)

(37)
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and

L2 =
1
2r3ν′(r)

1 − 1
2rν′(r)

. (38)

Turning next to the tangential velocity vφ , we have [24]

(vφ)2 = r2e−ν(r)

[(
dθ

dt

)2

+ sin2θ

(
dφ

dt

)2
]

= r2e−ν(r)

[(
dθ

ds

ds

dt

)2

+ sin2θ

(
dφ

ds

ds

dt

)2
]

= r2e−ν(r)(θ̇2 + sin2θφ̇2)
1

ṫ2 . (39)

By Eq. (28),

(vφ)2 = L 2̂

E2

1

r2 eν(r) (40)

and by Eq. (36),

(vφ)2 = 1

2
rν′(r). (41)

Integrating, we obtain

eν = Brl ,

where B is an integration constant and l = 2(vφ)2.
Now from Eq. (34),

Veff(r)rr = 6L2

r4 − E2e−ν(ν′)2 + E2e−νv′′. (42)

Substituting for E2, L2, and ν, we obtain

Veff(r)rr = 2l

r2 > 0,

showing the existence of stable orbits.

Appendix B

The Einstein field equations (in geometrized units G = c
= 1) for the metric (3) are

b′(r)

r2 = 8πρ(r), (43)

2

(
1 − b

r

)
f ′

r
− b

r3 = 8πpr (r), (44)

(
1 − b

r

)[
f ′′ + f ′

r
+ f ′2 −

{
b′r − b

2r(r − b)

}(
f ′ + 1

r

)]

= 8πpt (r). (45)

Using Eqs. (1) and (5), we obtain the following solutions:

b(r) = 8πρsr3
s

⎡
⎣ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎤
⎦ , (46)

8πr2
s pr = l

( r
rs

)2

⎡
⎣1 − 8πρsr2

s
r
rs

⎧⎨
⎩ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎫⎬
⎭

⎤
⎦

−8πρsr2
s

( r
rs

)3

⎡
⎣ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎤
⎦ , (47)

8πr2
s pt =

⎡
⎣1 − 8πρsr2

s
r
rs

⎧⎨
⎩ln

(
1 + r

rs

)
+ 1(

1 + r
rs

)
⎫⎬
⎭

⎤
⎦

×
⎡
⎢⎣ l2

4( r
rs

)2 −

⎧
⎪⎨
⎪⎩

8πρsr2
s

(1+r/rs )
2 − 8πρsr2

s
(r/rs )2

[
ln
(

1 + r
rs

)
+ 1

1+r/rs

]

2
[
1 − 8πρsr2

s
r/rs

{
ln
(

1 + r
rs

)
+ 1

1+r/rs

}]

⎫
⎪⎬
⎪⎭

×
{

l

2 r
rs

+ 1
r
rs

}]
. (48)
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