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Abstract 
In this paper, the role of mathematical modeling in the development of clean technology has been considered. 
One method each for obtaining approximate solutions of mathematical models by ordinary differential equations 
and partial differential equations respectively arising from the modeling of systems and physical phenomena has 
been considered. The construction of continuous hybrid methods for the numerical approximation of the solutions 
of initial value problems of ordinary differential equations as well as  homotopy analysis method, an approximate 
analytical method, for the solution of nonlinear partial differential equations are discussed. 
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1. Introduction 
The term “clean technologies” refer to production systems 
developed and adopted for the primary purpose of 
improving environmental performance, (Koltuniewicz, 
2008). The development of these environmentally friendly 
technologies is of great interest to scientists and 
governments all over the world as a result of the effects of 
global warming. In Nigeria for instance, a Science and 
Technology Policy, which advocates the use of clean 
technologies in production systems, was launched in 
2011 by her federal government to underscore the 
importance it accords the development of clean 
technologies (Federal Republic of Nigeria Science 
Technology and Innovation Policy, September, 2011).  
 
The reality is that this advancement in technology has 
modified in many ways the expectations facing 
mathematicians and the practice of applied research. 
With industries becoming typically “high-tech”, 
computationally intensive methods are employed at all 
levels. The increased supply in computing power has also 
made it possible to implement and apply computational 
methods no matter how sophisticated. This interplay of 
mathematics, computing and technology could best be 
described as the art of mathematical modeling and 
simulation (Heilio, 2009). 
 
According to the report of the 2012 Workshop on 
mathematical modeling and simulation of power plant and 
CO2 capture held at the University of Warwick, 
mathematical modeling and simulation play important 
roles in proof of concept, feasibility study, reliability and 
performance analysis for  the designs and development 
of new systems to be cost effective and robust. This is 

especially relevant where experiments with real objects 
are difficult or completely not feasible.  
 
The design and development of any new system, typically 
begins with a mathematical model which is assumed to 
represent the structure and the laws governing the 
system or phenomenon. The model represents the key 
relationships among system components by means of 
equations. The equations can be derived in a number of 
ways. Many of them come from extensive scientific 
studies that have formulated and tested mathematical 
relationship against real data. Some come from 
laboratory testing of relationships where that is feasible. 
Sometimes real data are used to derive relationships 
using statistical techniques to fit a particular relationship 
to the data and to measure the level of error associated 
with that representation.  
 
The aim of this paper is not to build mathematical models 
but to discuss the numerical approximation to the 
solutions of the mathematical models of systems that lead 
to differential equations.  
 
The paper is arranged as follows: in section two 
mathematical models by ordinary differential equations 
and the methods of obtaining approximate solutions are 
considered; models by partial differential equations and 
the methods of approximating their solutions are 
described as well in section three; and section four is the 
conclusion  

 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/19334461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Anake: Lead Paper Proc. ICCEM (2012) 224 - 228 [Type text] 

225 

 

2. Models by Ordinary Differential 
Equations (ODE) 
Many mathematical problems in applied mathematics 
lead to ordinary differential equations. In the simplest 
case, to solve ODE one seeks a differentiable function, 

say  x x t  of one real variable t , whose 

thn derivative,  nx t , 1,2, , 1n n  , is to satisfy an 

equation of the form  

        1 2 1, , , ,
n

n

n

d x
f t x t x t x t x t

dt

  ,         1 

describing systems with dissipation, where n represents 

order of  the problem, or the special case, 

  ,
n

n

d x
f t x t

dt
 ,                                               2 

for systems without dissipation. Generally, for an initial 

value problem (IVP), one seeks a solution, say  x t , 

which satisfies n initial condition of the form 

   0 0
n

x t x ,                                                      3 

where 0,1,2, . 1n n  . 

For the boundary value problems (BVP), the desired 
solution of (1) and (2) has to satisfy a boundary condition 

    , 0r x a x b  ,       4 

where a b are two different numbers and 

 
 
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, ,..., , , ,...,

n n

n n n

r u u u v v v
r u v

r u u u v v v

 
 
 

 is a vector of 

n given functions ir of 2n  variables.  

In what follows, the numerical approximation of solutions 
of IVP of ODE is discussed 

 
2.1 Numerical Approximation of the Solutions 
of IVP of ODE 
The numerical solution of mathematical models by 
ordinary differential equations, in particular initial value 
problems, has been widely studied.  The most widely 
used numerical method for this class of problems is the 
finite difference methods. For BVP, any of the following 
methods can be employed: finite element methods and 
the semi-analytic methods such as homotopy perturbation 
method (He, 2008, 2009a; Jin, 2008; Liang and Jeffrey, 
2009), the adomian decomposition method (Adomian, 
1994), homotopy analysis methods (Kumar and Gupta, 
2010; Liang and Jeffrey, 2009; liao, 1992; Yuen et. al., 
2010; Zhu et. al., 2010), variational iterative method (He, 

1999a, 2000; Nikkar, 2012), regular perturbation methods 
(Cole, 1968), etc. In the sequel, only finite difference 
methods for IVP of ODE shall be considered. 
 
2.1.1  Finite Difference Methods  
This is the most widely used numerical method to solve 
ordinary differential equations of the form (1), (or the 
special case (2), with either of the conditions (3) or (4). 
This method uses difference equations to approximate 
the solution of the problem. They include first order 
methods such as Euler’s method, the family of Runge-
Kutta methods, and higher order methods such as 
Runge-Kutta Nystrom method, the backward difference 
methods, and the continuous linear multistep methods 
(Lambert, 1973). The focus here shall be on the 
integration of the initial value problem (1) and (3) directly 
by continuous hybrid one step methods. For the purpose 

of this paper, second order problems, that is when 2n , 

which arise from the modeling in the domains of celestial 
and mechanical systems are considered (Hindamarsh, 
1986).  
  
Conventionally, to solve the initial value problem (1) and 
(3), one can either choose to reduce the problem to an 
equivalent system of first order equations and then use 
any of the first order methods or solve the problem 
directly using higher order methods. It has been reported 
in (Anake, 2012a, 2012b) however, that it is more 
convenient to solve the initial value problem (1) and (3) 
directly. 
 
The continuous one step hybrid method uses the power 
series polynomial of the form 

 
0

d
j

j
j

P t u t


  ,                  5 

as the approximating polynomial on the partition 

[ , ] 0 1 2 1:a b j ja t t t t t b         of the interval of 

integration [ , ]a b .  The numerical scheme is developed 

by the combined techniques of interpolation and 
collocation. The approximating polynomial, expected to 
satisfy (1) and (3), takes the form 

 
1

0

r s
j

j
j

P t u t
 



  ,                 6 

where r and s represent the number of interpolation and 

collocation points respectively. In particular, let us 

interpolate (5) at the origin and the fifth point, that is 2r  
and collocate the differential system at nine points, that 

is 9s , in the one step hybrid design. It is worth 

mentioning, that this one step hybrid design incorporates 
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seven non-step points between the origin and the next 
step point. Thus, these eleven conditions imposed by the 
IVP (1) and (3) on (6) given as 

 
10

0

, 0,5j
j n r

j

P t u t x r


             7 

and 

     10
1

0

1 , 0,1,2,...,8
j

j n s
j

P t j j u t f s





     ,  

                                                                         8 
Leads to a system of eleven equations in eleven 
unknowns to be determined using any convenient method 
in the literatures.  
By putting the unknowns obtained in the system (7) and 
(8) into (6), a one step numerical scheme is obtained in 
the form 

 
4

1
2

1 1 2
0 1

7

( ) ( ) ( )
i in n n j n j n

j i

z x z x h z f fx z        
 

 
   


 

                                                            
,        9 

where, i  indicates the non-step points, 1n j n jh t t     

is a fixed step size, n j nt t jh   ,  n j n jx x t   

approximates the exact solution at n jt   and 

 , ,n j n j n j n jf f t x x    .  The coefficients  r z and 

 s z  are obtained from the transformation of the 

unknowns obtained earlier using a scaling factor, nt t

h
z


 . 

For emphasis, note that (9) is completely determined by 

the coefficients     ,r sz z  for all values of  0,1z . 

 
Error issues concerning the scheme, (9) are considered 
by the concept of local truncation error. The local 
truncation error (l.t.e) is a simple concept that determines 

the difference between the approximate solution n jx   

and the exact solution  n jx t  when the step is taken with 

all earlier data exact. Typically, (9) satisfies l.t.e if 

 2. . pl t e O h   as 0h , 

where p , determined by relations among the schemes 

coefficients, is the order of accuracy of the scheme. Apart 
from analyzing error issues, for (9) to be valid, the nature 
of its convergence has to be established. To do this, it 
suffices to show that the method is consistent and zero 
stable according to (Henrici, 1962). Further more, the 
absolute stability of the scheme is investigated using 
either, boundary locus methods, Schurz criterion method 

or the Rout Hurwitz method (Lambert, 1973). This 
property guarantees that if the solution of the IVP (1) and 
(3) is bounded then, the numerical solution (9) is also 
bounded. 

 
3. Models by Partial Differential 
Equations  
Partial Differential Equations (PDE) are equations that 
involve rates of change with respect to two or more 
continuous variables. The distinction in the configuration 
of PDE problems unlike ODE problems makes it usually 
much harder to solve. However, simpler solutions exist for 
linear problems. Basically, PDE may arise from 
phenomena such as acoustics, fluid flow, 
electrodynamics, and heat transfer. 

For a function F , the PDE is of the form  

2 2

1 2
1 1 1 1

, ,..., , , ,..., , ,..., ,... 0n
n n

u u u u
F x x x u

x x x x x x

    
                                                                                 

10 
 
A solution of a PDE is generally not unique; additional 
conditions must generally be specified on the boundary of 
the region where the solution is defined. Basically, PDE 
are classified as parabolic, hyperbolic and elliptic. The 
classification provides a guide to appropriate initial and 
boundary conditions, and to smoothness of the solutions. 
 
Several methods have been studied for the solution of 
PDE; this range from analytical through approximate 
analytical methods (He, 1998, 1999a, 1999b, 2000; Jin, 
2008; Kumar and Gupta, 2010; Liang and Jeffrey, 2009; 
Liao, 1992; Nikkar, 2012; Yuen et. al., 2010; Zhu et. al., 
2010) to numerical methods. 
 In this paper, only approximate analytical will be 
discussed.  

 
3.1 Approximate Analytical Methods 
By approximate analytical methods we refer to series 
expansion methods. These include the Adomian 
decomposition method (Adomian, 1994), the homotopy 
perturbation method (He, 1998, 1999a; Jin, 2008;Liang 
and Jeffrey, 2009), variational iteration methods 
(He,1999b, 2000; Nikkar, 2012), homotopy analysis 
methods (Kumar and Gupta, 2010; Liao, 1992; Yuen et. 
al., 2010; Zhu et. al., 2010), regular perturbation 
(Cole,1968), etc. They are especially suitable for non 
linear PDE. Note that, the Adomian decomposition 
method, the Lyapunov artificial small parameter method, 
and He's homotopy perturbation method are all special 
cases of the more general homotopy analysis method 
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(Liao, 1992). Except for the Lyapunov method, these 
methods are independent of small physical parameters as 
compared to the well known perturbation theory, which 
means greater flexibility and solution generality. In what 
follows, the Homotopy analysis method is discussed for 
the solution of nonlinear PDE arising from the 
mathematical modeling of physical phenomena. 
 
3.1.1  The Homotopy Analysis Method (HAM) 
The homotopy analysis method was first developed in 
1992 by S. J. Liao, (Liao, 1992). The simple manner in 
which this method ensures the convergence of the 
solution series does not remove the fact that the method 
is a powerful mathematical tool for obtaining accurate 
enough approximations. 
 
To describe the basic idea of HAM, consider the following 
nonlinear differential equation: 

 , 0N u x t    , 11 

where N is a nonlinear operator and the unknown 

function  ,u x t is specified by the independent variables 

x  and t . The zeroth-order deformation equation is 

derived by means of HAM as follows: 

         01 , ; , , , ;p L x t p u x t H x t N x t p         

, 12 

where  0,1p is the embedding parameter, 0 , is a 

nonzero auxiliary parameter,  , 0H x t  , is an auxiliary 

function, L  is an auxiliary linear operator,  0 ,u x t  is the 

initial guess of  ,u x t . We can see that when the 

embedding parameter changes from 0p  to 1p , the 

function  , ;x t p  varies from the initial guess  0 ,u x t  

to the exact solution  ,u x t . Now, expanding 

 , ;x t p in Taylor series with respect to p gives 

     0
1

, ; , ,k
k

k

x t p u x t p u x t




   , 13 

where  

 
0

1
,

!

k

k k

p

u x t
k p









 14 

The parameter  controls the convergence of the series 

(13) such that if it is convergent at 1p , we have 

     0
1

, ; , ,k
k

x t p u x t u x t




   . 

As proven earlier in [19], this must be one of the solutions 
of (11).  

Substituting (13) into (11) and equating the coefficients of 

like powers of p , the 
thm -order deformation equation is 

obtained as follows:  

      1 1, , ,m m m m mL u x t u x t R u x t       , 15 

subject to the initial conditions 

 ,0 0iu x   16 

where the vector 

        0 1, , , , ,..., ,n nu x t u x t u x t u x t , 

  
 

 1

1 1

0

, ;1
,

1 !

m

m m m

p

N x t p
R u x t

m p



 



   
 

 

and  

0, 1,
1, 1.

m
m m 

  

Thus, the solution of the 
thm -order deformation equation 

(15) for 1m becomes 

      1 1
1

, , ,
t

m m m m mu x t u x t R u x t d c     ,    17 

where c is the integration constant determined by the 

initial condition (16). This way, we obtain the solution of 
(11) as  

   , lim ,N
N

u x t x t


   18 

where 

   
1

0

, ,
N

N m
m

x t u x t




   . 

The main advantage of the HAM is that it always provides 
one with a simple way to adjust and control the 
convergence radius of solution series (Liao, 1992). 
Different from perturbation techniques, the HAM is valid 
no matter if a nonlinear problem contains small/large 
physical parameters; be it a strongly nonlinear system or 
a weakly nonlinear cases. 
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4. Simulations 
It is a well known fact that even though mathematical 
equations can be formulated to model systems, these 
equations are many times analytically intractable. In these 
situations, a computer can implement the mathematics 
literally and repeatedly to very extreme advantages. Both 
methods discussed above for instance, lend themselves 
easily to computer simulations. Infact, the implementation 
of the scheme (9) is only realistic when a computer 
program is written to simulate the result at the respective 
grid points. Similarly, symbolic computation programs 
such as maple, mathematica or matlab are employed to 
obtain the solutions in (17). 

 
5. Conclusion 
The role of mathematical models and simulation in the 
development of clean technology is revealed in the 
methods discussed for the solutions of ordinary and 
partial differential equations. Systems and phenomena 
that lead to IVP of ordinary differential equations and 
nonlinear partial differential equations are clearly 
understood and can be interpreted from the solutions of 
these mathematical models. In this paper, one method 
each for the solutions of models by ODE and models by 
PDE respectively has been discussed. These methods 
are by no means the only methods available as earlier 
mentioned, but they seemed the most convenient for this 
discussion. 
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