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ABSTRACT 

 

Identifying Chromosome Rearrangements In The  

Allopolyploid Brassica Napus Using  

Pyrosequencing 

 

Allopolyploids form through the hybridization of two or more diploid 
genomes. A challenge to reproduction in allopolyploids is that pairing can occur 
between homologous chromosomes or homeologous chromosomes (i.e.different 
subgenomes.). Crossover between homeologous chromosomes can result in 
chromosome rearrangements that lower fertility and overall fitness. 
Rearrangements can alter the dosage of either entire chromosomes or just parts 
of chromosomes. Understanding the frequency and extent of rearrangements will 
help to explain the evolution and genome stabilization of agriculturally important 
allopolyploid species.  Pyrosequencing is a useful tool in the study dosage 
changes in allopolyploids because it allows quantification of the relative 
contribution from each progenitor species at any given locus.  Here we use 
pyrosequencing to analyze resynthesized Brassica napus allopolyploids and their 
progeny.  Targets for pyrosequencing were identified using a bioinformatic 
approach taking advantage of recently-released Brassica genome sequence.  
SNPs identified through bioinformatics were confirmed through molecular 
biology. Markers along the A3/C3 homeolog pair were used to identify the 
occurrence of novel homeologous exchanges during meiosis in the parent plant, 
and segregation patterns arising from dosage changes in the parent.  We identify 
a higher frequency of homeologous rearrangements at the distal end of the 
chromosomes.  We also observe that the presence of a dosage change in a 
parent increases the likelihood that the chromosome bearing the dosage change 
will undergo subsequent rearrangements in neighboring loci. 
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CHAPTER I: INTRODUCTION 

Species Formation  

When two different species mate they can produce hybrid offspring that 

are genetically and phenotypically distinct from themselves. Hybridization occurs 

in most eukaryotes, and it is common in plants. Hybridization between plant 

species followed by whole genome duplication (WGD) results in offspring with 

more than two complete sets of chromosomes. Since the newly created hybrid 

species contains chromosomes from two different progenitor species, it is 

referred to as an allopolyploid. Allopolyploid plants form naturally and many 

agricultural crops are known to be allopolyploid (Ozkan et al., 2001; Kim et al., 

2008; Lim et al., 2008; Pontes et al., 2004; Schmutz et al., 2010).  

There are costs and benefits associated with allopolyploids (Comai 2005). 

Allopolyploids exhibit heterosis, an increased vigor compared to the diploid 

progenitors (Birchler et al., 2010). Heterosis can allow hybrids to out-compete 

their progenitor species. The masking of deleterious alleles and genome 

subfunctionalization are other ways that allopolyploids maybe able to outcompete 

their diploid progenitor species (Mayfield-Jones et al., 2013; Madlung, 2013; 

Comai 2005). In addition, the formation of allopolyploids disrupts self-

incompatibility mechanisms that prevent self-pollination; this disruption results in 

organisms that are able to undergo asexual reproduction. This is advantageous, 

because when allopolyploid species are formed they are often reproductively 
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isolated and self-compatibility provides a way to propagate the allopolyploid 

genome (Comai 2005). 

Allopolyploidy can cause problems in meiosis resulting in genetic changes 

and chromosome restructuring (Comai 2005; Gaeta et al. 2010). Two or more 

different genomes (subgenomes), each with a complete set of homologous 

chromosomes, reside inside the same nucleus. The chromosomes from one 

subgenome are considered homeologous to chromosomes in another 

subgenome (Figure 1) (Gaeta et al., 2010; Webber et al., 2004). In a diploid 

genome, homologs pair-up to form bivalents (Figure 2), exchange genetic 

material through crossovers, and segregate to create gametes with a haploid set 

of chromosomes from each diploid progenitor. However, in allopolyploids there is 

no way to ensure equal segregation when homoeologs pair and when they do 

they can form bivalents, trivalents, tetravalents and higher-order groupings 

(Figure 2). Crossovers between these groupings segregate to create aneuploid 

gametes and result in chromosomes with homeologous rearrangements. 
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Figure 1. Allopolyploid Formation.  

Two different progenitor species mate to produce a hybrid offspring with a set of 

chromosomes from both. In most cases that hybrid offspring undergoes whole 

genome duplication and ends up with twice as many sets of chromosomes 

compared to the progenitor species. 

 

Homoeologous pairing between the sub-genomes of the progenitor 

species during meiosis can result in chromosome rearrangements and non-

disjunction events that lower fertility (Lim et al. 2008; Gaeta et al. 2010). The 

offspring produced may be aneuploid or have a different ratio of chromosomes 

than the parent; this is called a chromosome dosage change. Dosage changes 

can involve duplication or deletion of whole chromosomes, or as homoeologous 

non-reciprocal transpositions (HNRTs); (Figure 3); (Gaeta et al. 2007). HNRTs 

occur when homoeologous chromosomes form crossovers during meiosis and 

then during strand repair the homeolog is used as a template for repair instead of 

the homolog (Gaeta et al. 2010).  
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Figure 2. Possible Gametes Produced Through Cross-Overs In Tetraploids 

During Meiosis I. 

 During meiosis I homologous chromosomes cross over to form a bivalent (also 

known as a tetrad) which produces two diploid gametes (a). In allopolyploids 

homologous pairing is most common, but homeologous pairing can occur at a 

low rate and these homeologous pairing can lead to cross-overs to form 

trivalents which will produce a triploid gamete and haploid gamete (b), 

tetravalents which will produce a tetraploid gamete and a gamete with no 

chromosomes (c), or other combinations of mulitvalents. 

 

 

a)	 b)	 C)	

Meiosis	I	Products	

Pre-Meiosis	Cell	
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Figure 3. Different Types Of Chromosomal Rearrangements That Can Arise 

From Pairing Between Homeologous Chromosomes. 

 

Brassica napus as a Model Organism 

Brassica napus is a good model for studying allopolyploidy. It is an 

allotetraploid that formed 20mya from the hybridization of Brassica rapa and 

Brassica oleracea (Yang et al., 1999). Wild B. napus behaves genetically as a 

diploid due to a process called rediploidization (Wolfe, 2001). During 

rediploidization a polyploid undergoes chromosomal restructuring such that 

homologous pairing is promoted and homeologous pairing is suppressed. Thus, 

faithful pairing is restored and no further challenges to fertility are seen (Renny-

Byfield et al., 2013). 

One way to study allopolyploids is to recreate the hybridization event to 

generate “resynthesized” plant lines. Resynthesized B. napus plants are created 

by hybridizing double-haploid B. rapa and B. oleracea together (Geata et al., 

2007; Lukens et al. 2006). Double haploids are most commonly created by 
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chemically inducing chromosome doubling in a haploid seed or seedling (Choe et 

al., 2012; Dang et al., 2012). Using double haploid B. rapa and B. oleracea as 

progenitor parents simplifies genetic analysis by ensuring that parents are 

homozygous at every loci. Crossing the double haploid B. rapa and B. napus 

plants results in an F1 generation that is effectively a resynthesized B. napus. 

Resynthesizing hybrids in the lab allows researchers to observe the genetic 

restructuring following hybridization and genome duplication. 

 

Approaches To Study Chromosome Rearrangements 

Previous studies of resynthesized B. napus have analyzed the genetic 

variation of plants from distinct lineages at the same generation (i.e. 50 distinct S
0
 

or S
5
 plants are compared).  These studies have effectively sampled the types of 

genetic changes experienced by resynthesized B. napus plants.  The driver for 

most genetic changes is the high degree of synteny between the A and C 

genomes (Parkin et al., 2005; Inguez et al., 2008).  Homoeologous pairing and 

recombination during meiosis in B. napus can shuffle the genome producing 

chromosomes bearing both A and C loci (Nicolas et al., 2009; Szadkowski et al., 

2010); (Figure 3).  The resulting gametes are expected to vary from the expected 

CC:AA dosage at some loci (e.g. CCC:A and CCCC dosages); (Lukens et al., 

2006; Gatea et al., 2007; Gaeta et al., 2010).  The application of fluorescence in-

situ hybridization (FISH) to B. napus has revealed both reciprocal exchange (RE) 

between homoeologs, and non-reciprocal homoeologous transpositions (HNRT) 

in which a chromosome arm from one progenitor genome is replaced by one 
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from the other (Xiong et al., 2011a).  Another common change involves loss of an 

entire A or C chromosome.  Chromosome loss can be balanced 

(CC:AA�CCC:A) or unbalanced (CC:AA�CC:A) depending on whether or not 

the loss of a chromosome is accompanied by the gain of a homoeolog.  

Interestingly, while chromosome loss during meiosis appears to be frequent, 

levels of aneuploidy among resynthesized B. napus are fairly low with most 

plants having 36-42 chromosomes (Xiong et al., 2011b). This observation 

suggests that balanced dosage changes tend to predominate.  RE, HNRT and 

dosage change are not unique to B. napus and are observed in other 

allopolyploid species (Salmon et al., 2010; Tate et al., 2010). 

However, while some rearrangements may “stabilize” the allopolyploid 

genome, others may disrupt stability.  Gaeta and Pires (2010) describe the 

accumulation of chromosomal rearrangements in allopolyploids as a “ratchet-like 

mechanism” in which dosage changes caused by chromosomal rearrangements 

induce more chromosomal rearrangements in later rounds of meiosis (Figure 4).  

Recombination between homeologs during meiosis produces chromosomes 

carrying material from both subgenomes.  The presence of these rearranged 

chromosomes increases the likelihood that non-homologous chromosomes will 

pair during meiosis in the next generation.  
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Figure 4. “The Polyploid Ratchet”.  

When an allopolyploid undergoes meiosis either homologous pairing, pairing 

between chromosomes of the same subgenome, or homeologous pairing, pairing 

between chromosomes of different subgenomes. Homoeologous pairing can lead 

to chromosomal rearrangements, which in subsequent rounds of meiosis, can 

lead to even more chromosomal rearrangements. These chromosomal 

rearrangements accumulate such that later generations will have more 

chromosomal rearrangements than earlier generations. 

 

 Genetic markers for allopolyploid studies are ideally represent one locus 

per sub genome and are able to distinguish between homoeologous sequences 

at homeologous loci. In allopolyploid plants there are many duplicated regions of 

DNA and in order for a genetic marker to work for dosage counting, it must occur 
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at a single locus per subgenome, otherwise dosage measurements will be 

inflated (Salentijn et al., 2009; Deschamps et al., 2010). 

Chromosome rearrangements can be detected using several techniques, 

each of which has advantages and disadvantages. One way to visualize 

chromosome rearrangements is with fluorescent in-situ hybridization (FISH), 

which uses fluorescently labeled probes for each chromosome allowing the 

researcher to identify where homoeologous regions are located in the 

allopolyploid and what their dosages are. This method creates karyotype images 

that examine the whole genome and is dosage sensitive. However, FISH cannot 

detect inheritance patterns, is labor intensive, has a low yield-to-effort ratio, and 

is very expensive (Lim et al., 2008). Another technique that utilizes a genomic 

probe is Southern Blot, where specific sequences of DNA are hybridized to a 

membrane and then visualized in an image. It is able to detect differences 

between homoeologous chromosomes, and reveal dosage changes. However, it 

is expensive and requires radiolabeled nucleotides (Lukens et al., 2006; Lange et 

al., 2011). A third common technique is polymerase chain reaction (PCR), which 

uses DNA synthesis to amplify a target region of DNA. Since PCR works by 

using two primers that mark the beginning and end of the desired DNA region, 

one marker can only be used to distinguish between homoeologous loci when 

DNA region in each homoeologous subgenome has a size polymorphism (a large 

size difference is greater than 50bp) (Lukens et al., 2006). PCR is quick, 

inexpensive, and easy, however it cannot distinguish dosage changes. 
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A single nucleotide difference in sequence between two strands of 

otherwise syntenous DNA is called single nucleotide polymorphisms (SNP) 

(Figure 5). Common techniques for evaluating SNPs are PCR in conjunction with 

restriction digest or pyrosequencing. PCR in conjunction with restriction digest 

uses SNPs that occur in restriction sites. The SNP must fall within a restriction 

enzyme site such that enzyme will cleave one subgenome and not the other 

(Figure 5). Alleles can be detected by looking at the size of PCR products after 

enzyme digest. This technique is simple, however it lacks sensitivity of 

chromosomal dosages (Agarwa et al., 2007). 

 

 

Figure 5. SNPs.  

The red nucleotide highlights a single nucleotide polymorphism (SNP). Sequence 

in blue flanking the SNP is a restriction enzyme site. The sequence in green is 

the homoeologous region with a restriction site that cannot be cleaved by the 

corresponding enzyme. 

 

Pyrosequencing is a sequencing-by-synthesis method that uses 

fluorescence to track nucleotide incorporation into a newly synthesized cDNA. 

Whenever a nucleotide is incorporated a flash of light is detected with intensity 

proportional to the number of nucleotides incorporated at one time. Following 

ACCACGACATCATCTACG	

ACCACGACATAATCTACG	
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light produced during a series of nucleotide dispensations thus determines the 

sequence of the DNA strand (Figure 6);(Qiagen 2009). When a short region of 

DNA that contains a SNP is analyzed, there will be a difference in light intensity 

produced at the SNP position. The light intensity for each of the mismatched 

nucleotides of the SNP indicates their ratio in the genome, which is 

representative of the subgenome ratio at that locus. The ability to accurately 

track the sequence of a DNA strand and determine the ratio of nucleotides at a 

specific location makes pyrosequencing sensitive to the chromosome dosages 

(Figure 6). After the initial costs of acquiring a pyrosequencing machine, 

pyrosequencing is fast, easy, and relatively inexpensive (Rickert et al., 2002; 

Vignal et al., 2002; Salentijin et al., 2009; Deschamps et al., 2010).  
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Figure 6. Example Of A Pyrosequence Across A SNP-Containing Region.   

The sequence analyzed here is (C/T)GCATATCAAA (the SNP is in the first 

position and is either a C or a T).  The Y-axis represents fluorescence intensity.  

On the pyrogram the fluorescence associated with the SNP nucleotides are 

highlighted in blue.  The DNA sample analyzed is a 1:1 mixture of DNA from 

Brassica rapa (T nucleotide) and Brassica oleracea (C nucleotide). The 

fluorescence detected when either SNP nucleotide is incorporated is roughly 

proportional to template DNA ratio.  A nucleotide present in both genomes (e.g. 

the G immediately following the SNP) emits a fluorescence roughly twice the 

intensity of that emitted from either SNP nucleotide. 

 

Previous Research  

Previously DNA was collected from a parent Brassica napus plant (S
1
 

generation) and 39 offspring produced by self-pollination (S
2
 generation). One 

SNP located in the FLC3 gene at the tip of chromosome three was characterized 

and used to analyze the S
1
 plant. The resulting ratio of subgenomes present at 
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the FLC3 locus was three B. oleracea chromosomes: one B. rapa chromosome. 

Analysis of the 39 S
2
 plants by PCR analysis using this SNP identified six S

2
 

plants missing the B. rapa chromosome at that locus. Additional SNPs at multiple 

places along chromosome three will need to be identified to determine if HNRTs 

occurred in between the S1 and the S2 generations. Because PCR and RFLP 

analysis is dosage insensitive, we will use pyrosequencing to analyze these 

SNPs in the plants already characterized (Wang and Himelblau, unpublished). 

 The hypothesis of this study was that if a parent has chromosome 

rearrangements at a locus, the offspring will have more chromosomal 

rearrangements surrounding and including that locus. 
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CHAPTER II: METHODS 

Greenhouse 

Hybridization of Brassica oleracea (TO1000, egg donor; C-genome) and 

Brassica rapa (IMB218; pollen donor; A-genome) produced resynthesized B. 

napus allopolyploid plants (CCAA) as described previously by Lukens et al. 

(2006). Brassica rapa and B. oleracea used to generate B. napus are doubled 

haploids, and thus are expected to be homozygous at every locus. The CA 

hybrids produced in the original crosses were treated with colchicine to induce 

genome doubling that produce resulting in the first allopolyploid generation (S
0
).  

Lineages were propagated for 12 generations by self pollination as described in 

Gaeta et al. (2007).  Two such lineages were selected for analysis.  For each 

lineage a single S1, S6 and S11 plant was grown and DNA was extracted.  

These plants were self-pollinated.  Approximately 32 S2, S6, and S12 plants 

were grown from each of the original 6 parents.  All six parent plants and three 

progeny pools were selected for dosage-sensitive marker analysis. 

          

DNA Extraction and Sequencing 

         Genomic DNA was extracted using the Qiagen Plant Mini-Prep: DNA 

Extraction Kit (Qiagen; Valencia, Ca, USA). Three polymorphic markers were 

developed for the top (FLC3 locus), middle (the Bra012552 locus), and bottom 

(the Bra017743 locus) of the A3/C3 homeolog pair. DNA fragments were 

amplified using the following conditions: 1.0 U of GoTaq Flexi DNA Polymerase 
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(Promega Corporation; Madison, WI, USA), 25 mM MgCl
2
, 5X Green GoTaq 

Flexi Buffer, 2.5 µM of dNTPs, 10 µM each of forward and reverse primers, 10 ng 

of plant DNA, and dH
2
O to final volume of 20 µl. PCR conditions for FLC3 and 

12.138 were as follows: 95°C for 30 sec; eight cycles of 94°C for 30 sec, 50°C for 

30 sec, 72°C for 50 sec; 22 cycles of 89°C for 30 sec, 50°C for 30 sec, 72°C for 

50 sec; 72°C for 30 sec. PCR conditions for 2.2 were as follows: 95°C for 30 sec; 

eight cycles of 94°C for 30 sec, 55°C for 30 sec, 72°C for 50 sec; 22 cycles of 

89°C for 30 sec, 55°C for 30 sec, 72°C for 50 sec; 72°C for 30 sec.  

  

Search for Non-Orthologous or –Paralogous genes 

         The varieties of B. rapa and B. oleracea used in this study are not 

sequenced or publicly available, thus the published genome of closely related 

varieties were used to help identify candidate SNPs. Known and hypothesized 

genes on chromosome A3 of B. rapa and B. oleracea were identified, because 

they are more likely to contain a SNP surrounded stretches of homologous DNA. 

Potential genes were selected from either a previously published B. napus gene 

map (Parkins et al., 2005) or selected using the Genome Browser tool from the 

Brassica Rapa Data Base (BRAD) (Wang, X., et al., 2011). B. rapa sequences 

identified in this way were used to search an unpublished draft of the B. oleracea 

genome (Pires, unpublished). Using the Basic Alignment Search Tool (BLAST), 

potential B. oleracea homeologs on the C3 chromosome were identified. If a B. 

rapa sequence had significant matches on more than one B. oleracea 

chromosome or in more than one place on a chromosome, it was discarded. If a 
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gene had only one significant match, the genetic marker sequence was saved as 

a FASTA file and assigned a code for later use. 

  

Amplification and Sequencing of Candidate Markers 

         PCR primers were developed to amplify the potential gene region using 

the FASTA files from BRAD (Wang, X., et al., 2011) and Primer3 (Rozen et al., 

2000) (Appendix I). Primers were tested on 10ng of DNA from B. rapa, B. 

oleracea, and a synthetic hybrid composed of a 1:1 mixture of B. rapa and B. 

oleracea DNA. Initial PCR mixture used was: 1.0 U of GoTaq Flexi DNA 

Polymerase (Promega Corporation; Madison, WI, USA), 25 mM MgCl
2
, 5X Green 

GoTaq Flexi Buffer, 2.5 µM of dNTPs, 10 µM each of forward and reverse 

primers, 10 ng of plant DNA, and dH
2
O to final volume of 20 µl. A thermocycler 

program with an annealing temperature gradient was used: 94°C for 3 minutes, 8 

cycles of 94°C for 30 seconds, 50-60°C for 30 seconds, 72°C for 50 seconds, 27 

cycles of 89°C for 30 seconds, 50-60°C for 30 seconds, 72°C for 50 seconds, 

then 72°C for 3 minutes.  DNA fragments were separated using 6.0% 

polyacrylamide gel exposed to 300V for 1.5 hours. Fragments were visualized 

using ethidium bromide and a UV transilluminator and analyzed using Quantity 

One 4.6.3 Gel Doc EQ (BioRad, Hercules, CA, USA). The PCR protocol was 

optimized for primers that successively amplified in both parents. 

         Amplified fragments were purified using Wizard SV Gel and PCR Clean-

Up system (Promega Inc., Madison, WI, USA).  Fragments were sequenced by 
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Sanger sequencing using both the forward and reverse primers (GeneWiz Inc., 

Plainfield, NJ, USA)  

  

Identification and Validation of SNPs 

         B. rapa and B. oleracea sequences were aligned using the Pairwise-

BLAST to locate SNPs.  The following criteria were used to identify appropriate 

SNPs for pyrosequencing: SNPs that were flanked by at least 30 bp of identical 

sequence, SNPs did not contain an adenine, and the flanking region did not 

contain more than three identical nucleotides in a row (e.g. AAA, TTTTT, etc.). 

 Derived Cleaved Amplified Polymorphism (dCAP) markers were 

developed such that one version of the SNP was artificially turned into a 

restriction digest site (Appendix I). Following amplification, SNPs were digested 

with HpaI (testing the FLC3 locus), SalI (testing the Bra012552 locus), or EcoRV 

(testing the Bra017743 locus) then visualized on a gel as described above.  Once 

SNPs were verified by dCAP analysis, pyrosequencing primers and assays were 

designed around the SNP. 

  

Pyrosequencing 

         PCR and sequencing primers for pyrosequencing were designed using 

PyroMark Assay Design Software 2.0 (Qiagen, USA)(Table #). Pyrosequencing 

assay was developed by the PyroMark Q24 Analysis Software (Qiagen, USA) 

and performed on the PyroMark Q24 (Qiagen, USA). 
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         The FLC3 locus PCR mixture final concentrations used were: 0.06 U of 

GoTaq Flexi DNA Polymerase (Promega Corporation; Madison, WI, USA), 2.2 

mM MgCl
2
, 1X Green GoTaq Flexi Buffer, 1.3 µM dNTPs, 0.2 µM each of forward 

and reverse primers, 10 ng of plant DNA, and dH
2
O to final volume of 25 µl. The 

Bra012552 locus PCR mixture final concentrations used were: 0.06 U of GoTaq 

Flexi DNA Polymerase (Promega Corporation; Madison, WI, USA), 2.2 mM 

MgCl
2
, 1X Green GoTaq Flexi Buffer, 0.8 µM dNTPs, 0.2 µM each of forward and 

reverse primers, 10 ng of plant DNA, and dH
2
O to final volume of 25 µl. The 

Bra017743 locus PCR mixture final concentrations used were: 0.06 U of GoTaq 

Flexi DNA Polymerase (Promega Corporation; Madison, WI, USA), 2.2 mM 

MgCl
2
, 1X Green GoTaq Flexi Buffer, 0.8 µM dNTPs, 1X of Qiagen custom oligos, 

10 ng of plant DNA, and dH
2
O to final volume of 25 µl. 

PCR thermocycler settings for the SNP at the Bra017743 locus and the 

SNP at the Bra012552 locus: 1) 95°C for 5:00min, 2) 94°C for 30s, 3) 56°C for 

45s, 4) 72°C for 50s, 5) Repeat 2-4 35x, 6) 72°C for 3:00 min, 7) 4°C for • min. min. 

Pyrosequencing Binding Mix for the FLC3, Bra012552, and Bra017743 

loci was 40 µl Binding Buffer, 18 µl Nanopure water, 2 µl Streptavidin Beads.  l Binding Buffer, 18 µl Nanopure water, 2 µl Streptavidin Beads.  l Nanopure water, 2 µl Streptavidin Beads.  l Streptavidin Beads.  

The assay buffer mix for FLC3 and Bra012552: 25 µl Annealing Buffer and 0.75 l Annealing Buffer and 0.75 

µl 10µM Sequencing Primer. The assay Buffer Mix for l 10µM Sequencing Primer. The assay Buffer Mix for the Bra017743 SNP: 22.5 

µl Annealing Buffer and 2.5 µl 10x Sequencing Primer.l Annealing Buffer and 2.5 µl 10x Sequencing Primer.l 10x Sequencing Primer. 

  

Statistical Analysis of Pyrosequencing Data 
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Most samples were assayed twice, some were able to be assayed only 

once. In cases of multiple assays, the results of each individual were averaged to 

deliver a single value. A discriminant analysis was run on each genetic marker 

using dosage controls created by mixing B. rapa and B. oleracea DNA in specific 

rations (AAA:C, AA:C, A:C, A:CC, A:CCC) and parental DNA (A only, C only). 

Dosage controls comprised training groups for discriminant analysis for each 

marker.  Only predicted ratio designations that had a probability of a correct 

designation larger than 0.80 were retained for further analysis. Chi-squared 

analysis was used to compare the observed data with the predictions of 

Mendelian Models. 

All statistics were performed on JMP 10 statistical software (SAS Institute 

Inc., 2012). 
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CHAPTER III: RESULTS 
 

Dosage Changes At Loci Along The A3:C3 Homeologs 

To determine rates of homeologous rearrangements on an acrocentric 

chromosome in B. napus, dosage-sensitive pyrosequencing markers were 

developed at three loci along the A3:C3 homeologs (FLC3, Bra012552, 

Bra017743). Resynthesized B. napus plants with no rearrangements between 

homeologs are expected to have the dosage AA:CC at all loci.  HNRT is 

expected to alter dosage at the affected loci.  Dosage changes can be balanced 

(e.g, AA:CC to A:CCC) or unbalanced (e.g. AA:CC to A:CC).      

Populations of resynthesized B. napus were generated by crossing B. 

rapa (A genome) and B. oleracea (C genome) and colchicine-treating the hybrid 

progeny to induce genome doubling (Gaeta, 2007; Lukens, 2006).  To create 

plants with two copies of each A- and C-subgenomes, the A and C genome 

parents are doubled-haploids and are therefore expected to be homozygous at 

all loci.  Two resynthesized B. napus plants were self-pollinated for 11 

generations.  

Six independent plants from two different lineages were genotype with the 

SNP markers at all three loci (Figure 7). There were two S1, two S6, and two S11 

plants. Four of those six plants were AA:CC at all loci tested (Table A, Figure B). 

The other two plants were AA:CC at the Bra012552 and Bra017743 loci, but had 

changes at the FLC3 locus. One plant (parent #3) was a AA:C at the FLC3 locus. 

Another plant (parent #2) had a complete loss of the C genome at the FLC3 

locus, indicating a deletion likely occurred. These two parents presented an 
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opportunity to observe how dosage changes segregate during meiosis. A third 

plant (parent #1) was AA:CC at all loci tested, indicating that no dosage changes 

had occurred, and thus we were able to use it as a comparison the parents that 

had dosage changes (Figure 7). These plants were self-pollinated and about 35 

progeny were grown from each.  Parent #1 was self-pollinated to produce 

progeny population #1, parent #2 was self-pollinated to produce progeny 

population #2, and parent #3 was self-pollinated to produce progeny population 

#3. DNA was extracted from the progeny. The progeny were then genotyped at 

the same three loci to determine how parental genotype influenced the 

inheritance by the progeny.  
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Figure 7. Chromosome Diagrams Of Parents And Their Progeny.   

Parent #1 (AA:CC at all loci) was self-pollinated to produce population #1 (a). 

Parent #2 (A only at the FLC3 locus, AA:CC at the Bra012552 and Bra017743 

loci) was self-pollinated to produce population #2 (b). Parent #3 (AA:C at the 

FLC3 locus, and AA:CC at the Bra012552 and Bra017743 loci) was self-

pollinated to produce population #3 (c). The circle at the bottom of the 

chromosome represents the centromere and the squares represent the loci 

tested. “A” represents the B. rapa subgenome and “C” represents the B. oleracea 

subgenome. 

 

  

a) 

b) 

c) 
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Frequency Of Novel Rearrangements 

 To investigate the frequency of novel rearrangements (i.e. homeologous 

exchange during meiosis in a parent plant) parent #1 was self-pollinated and the 

progeny, population #1, were analyzed at the three loci.  In population #1 there 

were four individuals with dosage changes (Figure 7). One individual was A:CCC 

at the FLC3 locus, two were either AA:C or AAA:C at the FLC3 locus, and 

another individual was AA:C at the Bra012552 locus.  No dosage changes were 

observed at the Bra017743 locus. Since these individuals only have a dosage 

change at one locus, a HNRT likely occurred during meiosis in the parent. 

 Parent #2 had complete loss of the C genome at the FLC3 locus and was 

AA:CC at the other loci tested. Most offspring of parent #2, population #2, had 

the same genotype as parent #2, only one of the offspring was missing the C 

genome at the FLC3 locus, AA:CC at the Bra012552 locus, and AA:C at the 

Bra017743 locus. This dosage change occurs close to the centromere. Deletion 

at the distal end of the chromosome appears to have had little effect on 

homeologous pairing or exchange elsewhere in the chromosome. 

 

Segregation Of Rearrangements Present In The Parent 

Parent #3 has a dosage of AA:C at the FLC3 locus and AA:CC at the 

Bra012552 and Bra017743 loci. The FLC3 locus segregated into the offspring 

generation such that three offspring had a complete loss of the C genome, nine 

were AA:CC, thirteen were AA:C, seven were AAA:C, and two offspring were 
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A:CCC at the FLC3 locus. Novel changes at other loci were also observed. At the 

Bra012552 locus, seven were AA:C, and one was A:CC. At the Bra017743 locus 

one individual was AA:C (Figure 7). 
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CHAPTER IV: DISCUSSION 
 

Allopolyploidy in Brassica napus 

Allopolyploid genomes form by hybridization of two diploid genomes 

followed by duplication. Thus an allopolyploid is expected to have an equal 

dosage of loci from each subgenome. B. napus is allopolyploid of B. rapa (A-

subgenome) and B. oleracea (C-subgenome) and is therefore expected to be 

AA:CC at all loci. Homeologous pairing between the A- and C-subgenomes can 

lead to dosage changes. If a plant with a dosage change at a particular locus 

self-pollinates, the dosage change will segregate in the progeny. In addition, the 

presence of the dosage change in the parent may increase the likely hood of 

additional homeologous pairing and exchange at other loci. Here plants with and 

without dosage changes were self-pollinated and the progeny genotype was 

determined. Both novel dosage changes arising during meiosis in the parent and 

segregation patterns in the progeny were observed.  

 

Inheritance of Homeologous Exchanges 

Parent #1 most likely has two A chromosomes and two C chromosomes. 

Since parent #1 has no dosage changes, it is unlikely that there would be dosage 

changes in the offspring. Three out of 33 of the progeny were identified with a 

different dosage from the parent at the FLC3 locus and one individual with a 

dosage different at the Bra012552 locus. Of the loci tested, the FLC3 locus is the 

most distal from the A3/C3 centromere.  Since each progeny plant is the result of 
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two independent meiosis events, we concluded that in a parent three of 66 

meioses involved recombination between the A3 and C3 genome across an 

interval containing the FLC3 locus. In many plants recombination of 

chromosomes increases in regions further away from the centromere (Drouaud 

2006).  

It is straightforward to envision how balanced dosage changes (i.e. AA:CC 

changing to A:CCC) come about.  These result from crossing over between 

homeologs in which roughly equivalent regions are exchanged.  It is more difficult 

to envision a mechanism for unbalanced dosage changes (i.e. AA:CC changing 

to A:CC) especially in cases where other loci along the homeologs have 

maintained normal AA:CC dosage.  We have identified two such cases.  

Presumably these individuals have two A3 and two C3 chromosomes (explaining 

the normal dosage observed at 2 or 3 loci) but have a deletion of a locus from 

one of the chromosomes producing a AA:C or A:CC dosage at that locus only.  

Unequal crossing over between homologous chromosomes is known to cause 

segmental duplications and deletions (Szostak et al., 1980).  Between homologs, 

unequal crossover can be initiated by imprecise pairing.  We postulate that 

precise pairing between homeologs is unlikely particularly in more diverged 

regions.  Therefore, it may not be unexpected to find an increased frequency of 

duplication and deletion in an allopolyploid genome where both imprecise 

homologous pairing and unequal homeolog pairing are both possibilities. 

Parent #2 has only the A genome present at the FLC3 locus and AA:CC at 

the other two loci, and probably has this genotype as a result of either a deletion 
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of the C genome from the region containing the FLC3 locus or a homeologous 

translocation. If the genotype arose due to a deletion, one would expect little 

interaction between the A3 and C3 homeologes, because of the lack of synteny 

between the homeologes in the region containing the FLC3 locus. If the genotype 

arose due to a homeologous translocation, then one would expect the offspring 

to have a higher proportion of chromosome rearrangements because of the 

additional synteny from the region containing the FLC3 locus. What was seen 

was that only one offspring in population #2 had a genotype different from parent 

#2. This individual had only the A genome at the FLC3 locus, AA:CC at the 

Bra012552 locus, and AA:C at the Bra017743 locus (Figure 7). The fact that only 

one out of 33 offspring had a genomic rearrangement different from the parent 

supports the idea that the parent’s genotype arose from a deletion of the region 

containing the FLC3 locus from the C-genome. The FLC3 locus is at the 

chromosome tip furthest from the centromere and when the region containing the 

FLC3 locus was deleted the whole tip may have been lost. Since there were very 

few genomic changes in the offspring, this type of deletion does not seem to 

influence pairing such that homeologous recombination increases. 

 

 

 

Frequency of Homeologous Exchange on an Acrocentric Chromosome 

 Parent #3 AA:C at the FLC3 locus and AA:CC at the Bra012552 and 

Bra017743 loci and this genotype most likely arose due to a deletion of the 
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region containing the FLC3 locus from of the C3 chromosomes. According to 

Mendelian principles, one would expect this rearrangement to segregate such 

that approximately 50% of the offspring would be the same as the parent, 25% 

would be AA:CC at all loci, and the last 25% would be missing the region 

containing the FLC3 locus from the C genome entirely (Figure 8).  

What we saw was that 32.4% of the offspring were the same genotype as 

the parent, 17% were AA:CC at all loci, 2.9% were only A at the FLC3 locus and 

AA:CC at the other loci, and 47% were genotypes not predicted by the Mendelian 

hypothesis. This non-mendelian segregation suggests that homeologous 

exchange is occurring during meiosis. 

The presence of rearrangements distal to the centromere and the absence 

of rearrangements proximal to the centromere on A3/C3 in our populations could 

be explained two ways.  First, it could be a general phenomenon that 

homeologous pairing and recombination are suppressed nearer to the 

centromere.  A similar pattern has been seen in the B. napus C1-A1 homeolog 

pair (Nicolas 2012). Second, the patterns of recombination observed could be 

highly specific to the A3/C3 chromosome and not represent a general 

phenomenon.  A3 and C3 may be more syntenous at the distal ends of the 

chromosome and, therefore, more likely to pair and recombine in this region.  

Genetic maps show relatively high levels of synteny along A3/C3 yet the greatest 

synteny is found at the distal end of the chromosome (Nicolas 2012; Xiong 2011; 

Parkin 2005).  Soon a physical map for Brassica oleracea will be available that 

will allow the level of synteny between A3 and C3 to be determined with certainty.  
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At this point it would be premature to attribute the patterns of homeologous 

exchange observed for A3/C3 to a general phenomena within allopolyploids. 

 

Figure 8. Mendelian and Non-Mendelian Segregation for Parent #3.  

If parent #3’s dosage is the result of a deletion at the tip of one of the 

chromosomes and the homeologs segregate independently, one expects a 1:2:1 

ratio of the deletion in the progeny (bolded squares). If homeologous pairing that 

results in chromosome rearrangements in the gametes does occur, one expects 

more rearrangements than those predicted by independent assortment. 

 

 
CHAPTER V: CONCLUSION 
 

This approach has provided insights into the frequency with which 

homeologous pairing and exchange occur during meiosis in an allopolyploid. In 

parents with no dosage changes, novel changes occurred, but at lower rates 
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when compared to a parent with dosage changes. This suggests that a dosage 

changes in the parent may induce or contribute to chromosomal rearrangements 

during meiosis and thus produce more dosage changes in the offspring. Also, not 

just any chromosomal rearrangement leads to further rearrangements, parent #2, 

the one with only the A-subgenome at the FLC3 locus, had only one offspring 

with a dosage change, whereas parent #3, the one with the AA:C dosage at the 

FLC3 locus, had many offspring with a variety of dosage changes. Regardless of 

what the parent dosage was, most of the changes occurred at the FLC3 locus, 

which suggests that chromosomal rearrangements are more likely to occur 

farther from the centromere than they are closer to the centromere. 
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APPENDIX 

Supplemental Table 1: Primer Sequences  
  
Amplification for Sequencing 
 

 Forward Reverse 

2.2 ACGGTAAAGCAGGGGACTTT GGCCATTTGCAAGACATTTT 

12.138 TTCAACTCGCAGACCAAGTG AGGGTTGACTCCACCTTCCT 
  

 
Verification of SNPs (dCAPS) 

 Forward Reverse Enzyme 

2.2 CCTTTCGAAAGTGTGTCGA GTCACGATTGTGTTCCAAG
AAA 

Sal I 
(cuts A) 

12.138 ACGCGCCGTATCATCGACGA
TAT 
  

CTAAGTAACCGACCCCTTC
G 
  

EcoRV 
(cuts C) 

 
Pyrosequencing (initial amplification) 

 Forward Reverse 

2.2 GCT CTT GGA GTT TTC GTT 
GAG AT 

CAGATACCAAGCCAGCCTCT
ATT 
(5’ biotin) 

12.138 CACGCGCCGTATCATCGA 
  

GTCAATGCCTTCTGGAGAAC
G 
 (5’ biotin) 

 
Pyrosequencing (sequecning) 

 Sequencing Primer  

2.2 TAA CCC TTT CGA AAG TGT 
G 
 

 

12.138 GTATCATCGACGACAC 
  

 

 
 
RD/DCAP Markers 
DCAPs Primer FLC3 
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Brassica 22 cycles PCR settings: 1) 94°C for 3:00min, 2) 94°C for 30s, 3) 50°C 
for 30s, 4) 72°C for 50s, 5) Repeat 2-4 8x, 6) 89°C for 30s, 7) 50°C for 30s, 8) 
72°C for 50s, 9) Repeat 6-8 22x, 10) 72°C for 3:00 min, 11) 4°C for •.. 
  
FLC3 DCAP RD Mixture: 5 µl DNA (5ng/ µl), 2 µl 10x HpaI buffer, 0.5 µl HpaI, l DNA (5ng/ µl), 2 µl 10x HpaI buffer, 0.5 µl HpaI, l), 2 µl 10x HpaI buffer, 0.5 µl HpaI, l 10x HpaI buffer, 0.5 µl HpaI, l HpaI, 
and 12.5 µll diH2O for a total volume of 20 µl. Incubate at 37l. Incubate at 37°C for about 3 hours 
(2hrs minimum, overnight ok). 
  
DCAPs 12.138 PCR setting: 1) 94°C for 3:00min, 2) 94°C for 30s, 3) 50°C for 
30s, 4) 72°C for 50s, 5) Repeat 2-4 8x, 6) 89°C for 30s, 7) 50°C for 30s, 8) 72°C 
for 50s, 9) Repeat 6-8 27x, 10) 72°C for 3:00 min, 11) 4°C for • min. min. 
  
12.138 DCAP RD Mix: 1µl EcoR5, 12µl PCR product; Incubate at 37l EcoR5, 12µl PCR product; Incubate at 37l PCR product; Incubate at 37°C for 3 
hours 
  
  
SNP Exploration Thermo-Settings: 
Brassica 27 cycles PCR settings: 1) 94°C for 3:00min, 2) 94°C for 30s, 3) 50°C 
for 30s, 4) 72°C for 50s, 5) Repeat 2-4 8x, 6) 89°C for 30s, 7) 50°C for 30s, 8) 
72°C for 50s, 9) Repeat 6-8 27x, 10) 72°C for 3:00 min, 11) 4°C for •.. 
 
Brassica 22 cycles PCR settings: 1) 94°C for 3:00min, 2) 94°C for 30s, 3) 50°C 
for 30s, 4) 72°C for 50s, 5) Repeat 2-4 8x, 6) 89°C for 30s, 7) 50°C for 30s, 8) 
72°C for 50s, 9) Repeat 6-8 22x, 10) 72°C for 3:00 min, 11) 4°C for •.. 
 


