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Abstract 

Large-displacement Lightweight Armor 

Randomly entangled fibers forming loosely bound nonwoven structures are evaluated for use in 

lightweight armor applications. These materials sacrifice volumetric efficiency in order to realize 

a reduction in mass versus traditional armor materials, while maintaining equivalent ballistic 

performance. The primary material characterized, polyester fiberfill, is shown to have improved 

ballistic performance over control samples of monolithic polyester as well as 1095 steel sheets. 

The response of fiberfill is investigated at a variety of strain rates, from quasistatic to ballistic, 

under compression, tension, and shear deformation to elucidate mechanisms at work during 

ballistic defeat. Fiberfill’s primary mechanisms during loading are fiber reorientation, fiber 

unfurling, and frictional sliding. Frictional sliding, coupled with high macroscopic strain to 

failure, is thought to be the source of the high specific ballistic performance in fiberfill materials. 

The proposed armor is tested for penetration resistance against spherical and cylindrical 7.62 mm 

projectiles fired from a gas gun. A constitutive model incorporating the relevant deformation 

mechanisms of texture evolution and progressive damage is developed and implemented in 

Abaqus explicit in order to expedite further research on ballistic nonwoven fabrics.  
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1 Introduction 

1.1 Background 

The need for improved protection against ever increasing threat levels has evolved throughout 

history. Man has utilized nearly every class of material in search of protection from would-be 

threats. Starting from natural materials such as wood or dried animal hides and progressing into 

the 21
st
 century with complex composite armor systems utilizing technical ceramics, high 

strength fibers, nanoparticle filled matrices, and, in the case of armored vehicles, explosive 

reactive components. The need for lightness goes hand-in-hand with the need for sufficient 

protection when it comes to battlefield effectiveness. Mobility is key to survival and longevity in 

the field of battle. However, without sufficient protection high mobility is of little use. 

Necessarily, armor designers must make tradeoffs between these two attributes in order to 

optimize any armor system. 

The need for lightness is nowhere more pronounced than in lightweight tactical vehicles, which 

are designed to be quick and maneuverable, and are ideally transportable via airlift. Often 

lightweight tactical vehicles are sparingly armored, relying heavily on active avoidance of enemy 

fire. This can be to the detriment of passengers, cargo, or equipment in these vehicles, as 

relatively low threat level munitions can easily cause loss of function or loss of life. There exists a 

need for lightweight armor that can protect against low level ballistic threats without significantly 

affecting total vehicle mass. 

1.2 Motivation 

This project began with the goal to develop an armor system for a robotic vehicle used in live-fire 

military training exercises. The principal munition used in these exercises is 5.56 45 mm M855 

NATO ball round. It was determined that to meet the protection and multi-hit performance 

required for this application, the majority of the robotic platform’s load carrying capacity would 
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have to be dedicated to ballistic armor. An armor system was devised that, rather than sacrificing 

payload capacity, sacrificed volumetric efficiency to obtain the ballistic performance required for 

the application. 

1.3 Thesis Organization 

This thesis aims to keep the application of large-displacement lightweight vehicular armor close 

at hand, and attempts to relate all experimental and theoretical work back to this end application. 

This thesis is organized as follows. Chapter 2 motivates the direction taken in researching large 

displacement armors by beginning with a discussion of ballistic defeat, the mechanisms 

associated with ballistic defeat, and the materials used in state-of-the-art armor. Chapter 2 ends 

with a discussion on ballistic non-woven felts, and emphasizes the mechanisms particular to this 

type of armor. A nonwoven material, polyester fiberfill, which possesses the desirable 

characteristics of a ballistic felt, namely: high fiber mobility and low density, is evaluated for 

ballistic performance in Chapter 3. Results from the somewhat crude proof-of-concept tests 

conducted in Chapter 3 serve to inform the remainder of the experimental study of large 

displacement armor; first in the quasi-static and low rate dynamic regime (Chapter 4) and then in 

the ballistic regime (Chapter 5). Chapter 4 includes a short review section on mechanisms and 

prior research for each of the relevant deformation modes: compression, tension, and shear, and 

includes comparisons of experimental observations with predictions from the micromechanical 

theory of entangled fiber networks. Chapter 5 chronicles ballistic testing conducted using a light 

gas gun and compares fiberfill armor performance and mechanisms with equivalent areal density 

steel and polyester sheets. Ballistic tests are a time consuming activity, and a more efficient 

means of studying variations of the parameter space associated with large-displacement 

lightweight armor systems is needed to further research in this field. To this end, in Chapter 6, a 

numerical model is sought that can capture the relevant physics of non-woven deformation under 

arbitrary loading conditions. It was discovered that no suitable material model was available in 
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either of the commercial finite element analysis programs considered. Therefore, a material 

model that was capable of simulating fiberfill deformation behavior was developed and 

implemented in Abaqus explicit utilizing a VUMAT subroutine. Chapter 7 summarizes the work 

contained in this thesis and discusses future applications of large-displacement armor. 
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2 Armor Materials and Defeat Mechanisms 

2.1 Ballistic Defeat: 

The basic science of ballistic defeat is simple; however, the various mechanisms involved are 

complex. A projectile is stopped when it is robbed of its kinetic energy by an object acting to 

oppose the projectile’s motion. This can be described by the relation [1]:  

∫Fdx   
 

 
m  

  Eq 2.1 

 

The left hand side of this equation describes the work done by the retarding force F through the 

deflection distance dx, and the right hand side of the equation describes the kinetic energy of the 

projectile of mass m with an initial velocity of v0. This can also be cast in the impulse-momentum 

form of Newton’s second law of motion [1]: 

∫ Fdt  ∫md  Eq 2.2 

 

From these two relations it is clear that either large forces or large deflections and contact times 

must arise in the process of ballistic defeat in order to stop a projectile with significant 

momentum/kinetic energy. Forces give rise to stresses in both the projectile and the material 

acting to stop the projectile. Describing these stresses accurately via appropriate rate-dependent 

constitutive laws is where theoretical analysis becomes complicated. The effects of various 

mechanisms for energy dissipation must be accounted for in these constitutive laws such as 

internal friction, formation of new surfaces via fracturing, or phase changes within the material. 

Further complicating matters, is the transport of stress waves radiating from the impact site and 

interacting with boundaries and other stress waves in a complex manner. 

The purpose of armor is to harness these mechanisms, both elastic and inelastic, to defeat a 

projectile over a given distance in order to protect what lies beyond that distance. The 
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mechanisms utilized in armor materials vary depending on the particular application. A great deal 

of research has been conducted to elucidate the relationship between failure mechanisms and 

material properties during ballistic impact, but no uniform design methodology has emerged [2] 

to [14]. This is a direct consequence of the broad range of applications of armor systems each 

with different design constraints with respect to threat level, area density ( d 
mass

area
), thickness, 

dynamic deflection, and multi-hit performance [15]. 

Ballistic armor levels are classified based on the type of threat they are designed to withstand. 

The National Institute of Justice (NIJ) ranks armors (except for police body armor and ballistic 

helmets) according to NIJ 0108.01, and requires that an armor specimen tolerate 5 hits by the 

projectile listed without any penetrations, except for threat level IV which only requires 1 hit to 

be stopped. These threat levels are summarized in Table 2.1. Other standards for armor include: 

NIJ 0101.04, NIJ 0106.01, ISO14876, NATO STANAG 4569, and MIL-STD-662F. 

Table 2.1 NIJ 0108.01 

Protection 

Level 
Ammunition 

Mass 

[g] 

Suggested Barrel Length 

[cm] 

Projectile velocity 

[m/s] 

I 
.22 LRHV 2.6 

15 to 16.5 
320±12 

.38 Special RN 10.2 259±15 

II-A 
.357 Mag JSP 10.2 

10 to 12 
381±15 

9mm FMJ 8.0 332±12 

II 
.357 Mag JSP 10.2 15 to 16.5 425±15 

9mm FMJ 8.0 10 to 12 358±12 

III-A 
.44 Mag SWC 15.55 14 to 16 

426±15 
9mm FMJ 8.0 24 to 26 

III 

7.62mm 

9.7 56 838±15 .308 Winchester 

FMJ 

IV .30-06 AP 10.8 56 868±15 

LRHV- Long Rifle High Velocity  

RN- Round Nose 

Mag- Magnum 

FMJ- Full Metal Jacket  

JSP- Jacketed Soft Point  

SWC-Semi Wad Cutter  

AP- Armor Piercing 
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The velocities in the NIJ threat levels are V0 velocities, defined as the velocity at which there is a 

0% chance of a projectile penetrating the given armor. As it is very difficult to determine V0 

directly by experiment, V50 is a more common armor metric. V50 represents the velocity at which 

there is a 50% probability that armor will stop a particular threat, and is discussed in MIL-STD-

662-F. There are different interpretations depending on the standard of what counts as a defeat of 

a particular armor. This work will adopt the definition of MIL-STD-662-F, in which the ballistic 

limit is defined based on penetration of a witness sheet placed a specified distance behind the 

target from the armor. 

2.2 Mechanics of Ballistic Impact 

Elastic properties pertinent to ballistic defeat are [5] [6]: 

 Elastic wave speed: 

  √
 

 
  [

 

 
] Eq 2.3 

Acoustic impedance: 

  √    [
   

  
] Eq 2.4 

Specific energy absorption: 

  
 y y

  
 [
     

  
] Eq 2.5 

 

Where   is the modulus with units of pressure,   is the mass density, and  s and  s are the 

strength and failure strain respectively. Elastic wave speed represents the transmission of stress 

away from the impact site, and thus correlates to the volume of material engaged in the ballistic 

defeat. Acoustic impedance relates to the local pressures built up at the impact site that serve to 

deform the incoming projectile, but consequently also tend to cause yielding or fracture in the 

armor. The specific energy absorption attempts to capture the amount of energy a material can 
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store elastically and is a linear approximate of the area under the stress-strain curve normalized 

by the mass density. Other important material properties are fracture toughness Kc and hardness 

H, the former represents the ability of a material to resist crack growth and the latter represents a 

material’s resistance to permanent local deformation. Z and H are key to projectile erosion, but 

without adequately high values of C and U, sufficient projectile erosion and energy absorption 

cannot be achieved. Tradeoffs between these parameters and the concomitant change in ballistic 

performance are not well understood [5]. None of these properties is very useful in predicting 

ballistic performance unless their behavior can be determined in the high strain rate regimes 

characteristic of ballistic impact. Moreover, these material properties are merely an estimate of a 

given materials usefulness in an armor application, and ballistic performance is not directly 

defined by them. However, ballistic performance is coupled to these properties, and thus they are 

useful in providing a starting point for materials selection in armor applications. 

Depending on the application and threat level, different materials are called for in the 

construction of an appropriate armor. Low mass is generally desirable for vehicle and personnel 

armor, but becomes less important for static structures. Personnel armor must be highly 

deformable and low profile so that it does not impair the armor wearer’s mobility, but ground 

vehicle armor does not necessarily require these traits. Relevant armor materials fall into broad 

categories of metals, ceramics, polymers, and fiber reinforced composites. While there are many 

commonalities in the elastic regime, these materials differ greatly in their inelastic deformation 

characteristics. 

2.3 Monolithic Armor Plates 

2.3.1 Metals 

Metallic armors are highly effective against kinetic energy projectiles, and offer good structural 

performance in addition to having desirable armor characteristics. Metals defeat projectiles 
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through a combination of efficient elastic transmission of stress waves and plastic dissipation, and 

are some of the more common armor materials. Because of their ductility, metal armors have a 

high tolerance to multiple, non-penetrating, projectile impacts within a relatively small area, but 

suffer from being less mass efficient than high performance ceramic or composite armors. 

Monolithic metal armors are highly susceptible to High Explosive Anti-Tank (HEAT) munitions, 

which are designed to melt through armor plates using high energy jets of molten copper. 

Metallic armor capable of protecting against HEAT rounds must be very dense and very thick. 

2.3.2 Ceramics 

Ceramic armors are used in heavy armored vehicles and are used as trauma plates incorporated 

into composite personnel armor. Ceramics dissipate impact energy through deformation of 

projectiles due to high acoustic impedances, and efficient load spreading via high elastic wave 

speeds. Under compressive loads, ceramics exhibit ductile modes of energy dissipation by means 

of lattice plasticity and intergranular plasticity. Low ductility failure mechanisms of radial and 

cone cracking caused by microcracking within the ceramic also serve as dissipation mechanisms 

in ceramic armors. Comminution due to extensive cracking in a confined region has the added 

benefit of creating a high-energy spall of ceramic particles that erode the impacting projectile. 

The formation of high energy ceramic particles during comminution also serves to break up the 

molten copper jet from HEAT munitions and provides superior resistance to this type of ballistic 

threat. This comes at a cost, as multi-hit performance of ceramics is generally very poor due the 

extensive cracking that occurs in the vicinity of a projectile impact [5]. 

2.3.3 Polymers 

Polymers are utilized extensively in transparent armor. Polymers can display ductile or brittle 

behavior depending on loading rate and temperature. Their dissipation mechanisms include 

polymer chain untangling, interchain slip, bond breakage, and fracture. They benefit from low 

densities and relatively high elongation to failure. 
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2.3.4 Failure modes 

Failure modes for armor plates composed of metals, ceramics, and polymers can be divided into 

two regimes: one of low ductility and one of high ductility [16] to [19]. Theoretical and 

experimental studies on these modes can be found in Backman [18] and Johnson [20], and a 

review on the matter can be found in Corbett [21]. 

 In the low ductility regime spall fracture, plugging, and radial fracture are dominant failure 

modes. Spall fracture results from a compressive dilatational wave, formed at the impact site, 

reflecting as a tensile wave at the back of the plate with a magnitude sufficient to exceed the 

dynamic tensile strength of the material. Plugging can result either due to high shear stresses 

formed around the moving plug directly in front of the projectile or, in the case of ceramics, due 

to cone cracking. In the limit as projectile velocities increase, shear plugging often becomes the 

dominant failure mode. High velocity shear plugging occurs when a material has insufficient time 

to respond to an impact. Stresses ample enough to cause failure in the armor build up almost 

instantaneously at the impact site, with little stress wave propagation occurring prior to complete 

perforation of the armor, and a plug with approximately the same area as the projectiles frontal 

area is knocked out of the armor. Radial cracking occurs in materials with tensile strengths lower 

than their compressive strengths. As the initial compressive dilatational wave spreads outward, 

trailing radial tensile stresses lead to the formation of radial cracks emanating from the impact 

site.  

In the high ductility regime petaling and ductile hole enlargement are the two failure mechanisms 

usually observed. Petaling, either frontal or rearward, is caused by high radial and circumferential 

tensile stresses after the pass of the initial dilatational wave. Rearward petaling is the result of 

bending moments created by strain of the material in the direction of the projectiles motion. As 

the material pushes ahead of the projectile, large plastic deformation occurs which leads to a star-

shaped pattern of petals initiating from a failure site near the point of impact. Plastic hinges form 
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at the bases of the petals, and the petals then bend out of the way as the projectile passes them. 

Frontal petaling occurs in thicker sections of material and occurs due to a combination of 

unloading and projectile erosion opposite the direction of the projectiles path. Ductile hole 

enlargement is a common mechanism in thick plates impacted by conical or ogival tipped 

projectiles. At the contact site the projectile tip displaces material transversely, leading to a radial 

momentum that continues so that a hole in the plate is enlarged in the direction of the projectile’s 

motion. 

 
Figure 2.1 Plate armor failure modes [19] 

 

Monolithic armor plates rely on a single material to provide sufficient ballistic resistance across a 

broad range of threat levels. One material may be better suited against a certain type of threat in 

one situation whereas another material type may be superior against a slightly different threat. For 

instance, a metallic armor may be better at stopping many small fragments impacting in a 

concentrated area, whereas a ceramic armor may be better at stopping a single high-hardness 

projectile. In practice, the ability to have both good multi-hit protection as well as high single-hit 
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protection is needed. This often cannot be achieved using an armor composed of a single 

material. 

2.4 Composite Armor 

Composite armors can serve multifunctional structural and ballistic protection roles, and are 

composed of a myriad of constituents arranged in a systematic fashion. They fall into broad 

categories of fiber reinforced composites and laminated plate composites with significant overlap 

occurring between these two categories. Examples of composite armors include Composite 

Integral Armor (CIA) [22], [23]; Chobham armor, utilized on the M1 Abrams tank; Honeywell 

SpectraShield
®
; and Tencate Aramid-Shield

®
.  

In addition to the constituent material properties, parameters such as acoustic impedance 

mismatch and interfacial strength act in concert to dictate a composite armor system’s 

performance [24]. Synergistic material behaviors can be harnessed in composite armor systems, 

which benefit from the splitting of roles between different constituents within the armor [25]. For 

example: bilayer armor composed of a ceramic outer layer and a metallic inner layer benefits 

from the ceramic’s high hardness, which blunts or fractures oncoming projectiles and spreads the 

load on the inner layer, and the metallic layer’s high ductility and damage tolerance. In CIAs, 

when an interlayer with low acoustic impedance is incorporated between the ceramic and 

supporting layers, an improvement in the o erall armor system’s performance can be realized 

without requiring an increase in Ad [26] to [29]. 

Fiber reinforced composite armors represent the state of the art in ballistic protection. Fiber 

reinforced armors can be woven or non-woven, and are composed of fibers made from ceramics, 

metals, or polymers incorporated into a variety of matrix materials (Figure 2.2). Fibers possess 

high specific properties, and often exceed the mechanical performance of their parent material. 
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Figure 2.2 Fiber Reinforced Composite 

During a ballistic impact, the fibers directly engaged by the projectile (primary fibers), bear the 

brunt of the impact. Longitudinal and transverse stress waves propagate faster along the axes of 

these primary fibers, and in 0/90 laminates this leads to a pyramidal shaped cone deformation. 

The size of the cone is an indication of how far the impact energy has spread and how much 

energy has been absorbed by the composite. 

2.4.1 Elastic stress wave analysis in a fiber 

The mechanical behavior of individual fibers subject to ballistic impact is studied in Smith [30] 

and extended to multiple intersecting fibers in Roylance [31], [32]. Smith uses a rate independent 

approximation to study the stress wave transmission behavior of a single fiber. First, the earlier 

equation for wave speed is altered to account for the variation in modulus with strain: 

  √(
 

 

d ( )

d 
) Eq 2.6 

 

Now, consider a fiber fixed at one end with a velocity V instantaneously applied to its free end. 

After a time increment dt, the strain will have propagated into the fiber a distance  dt while the 

free end will have displaced outward an amount     (Figure 2.3). 

Fiber 

Matrix 
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Figure 2.3 Longitudinal dynamic deformation of a single fiber. 

 

The strain resulting from this deformation is then: 

   
 dt

 dt
   

 

 
 Eq 2.7 

 

and the stress is: 

  
d 

d 
     √ 

d 

d 
 Eq 2.8 

 

The shape of the wave front is dictated by the dynamic stress versus strain curve. If  
d
 
 

d  
     then 

each succeeding increment of strain in the propagating wave travels more slowly than the 

previous increment and the wave broadens as it travels. However, if 
d
 
 

d  
     then each strain 

increment travels faster than the previous increment; this will lead to stacking up at the wave 

front and will form a shock wave. In general, a stress wave may contain both dispersive and 

shock components. 

The velocity of a material point behind the wave is described by: 

    ∫    
  

 

 
Eq 2.9 

 

Where    is the ultimate value of strain generated by the impact. Since w must equal V: 
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    ∫  d 
  

 

 Eq 2.10 

 

The transverse impact case, more pertinent to ballistic behavior, involves the propagation of 

longitudinal (with respect to the fiber axis) and transverse waves.  Longitudinal waves radiate 

outward from the point of impact leading to particle velocities in the inward direction. Trailing 

the longitudinal wave front is a trans erse “kink” wa e.  

 
 

At the kink wavefront, the particle velocity of the fiber abruptly changes to match the speed and 

direction of the impacting projectile. Tension and strain are continuous across the kink wavefront, 

but particle velocities are discontinuous. This is referred to in Roylance [31] as a geometrical 

shock. The seemingly unbalanced tensions on either side of the kink wave are compensated by 

the change in particle momentum as the wave propagates. Behind the kink wavefront all particle 

velocities are equal to the projectile velocity and the fiber forms a straight line with an inclination 

θ from the initial plane of the fiber. The radial inward particle velocity is found from Eq 2.9. 

The velocity of the kink wave, with respect to a moving reference frame (Lagrangian) attached to 

the extending fiber, is: 

  √
  

       
 Eq 2.11 

 

Figure 2.4 Transverse impact of an individual fiber [14] 
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In the reference frame of a stationary observer, the kink wa e’s  elocity is: 

 ̅ (    )  w Eq 2.12 

 

These are related to the impact velocity V by: 

  √(    )
     ̅

 
 Eq 2.13 

 

For the case of non-linear material behavior this system of equations can be solved numerically. 

As a first estimate, however, we can assume linear elastic, rate independent behavior. These 

assumptions lead to the equation: 

   √  
 

 
( √  (    )   ) Eq 2.14 

 

which relates the strain developed by an impact velocity in terms of the fiber modulus and 

density. 

Utilizing the expression: 

    
 

 
       

 

 
   

   [
 

  
] Eq 2.15 

 

for the strain energy stored within the fiber, a plot of strain energy behind the wave for a given 

impact velocity can be plotted versus the specific modulus (Figure 5). For a low specific modulus 

a larger amount of strain energy is stored behind the wave front. If the strain energy behind the 

wave exceeds the critical strain energy: 

      s
     c Eq 2.16 

 

where  s is the failure strain of the fiber, the fiber ruptures, and ceases to spread elastic energy 

away from the impact. The Young’s modulus cannot be increased indefinitely, howe er, without 
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a reduction in the failure strain. This creates an optimization problem wherein an armor designer 

must select a fiber with sufficient modulus to spread energy to as much material as possible, but 

without significantly sacrificing the strain to failure. 

From this analysis of individual fibers it can be shown that there exists an impact velocity, for a 

fiber with a given stress-strain behavior, at which a fiber reaches its critical strain energy 

instantaneously upon impact. This velocity, deemed the critical velocity for a given fiber, can be 

related back to the parameters proposed by Cuniff. The critical velocity of a given fiber can be 

estimated by [6], [33]: 

 c √  
3

    [
 

 
] Eq 2.17 

 

The values of  c for some common fibers are listed in Table 2.2. This analysis does not take into 

account the interaction of stress waves with boundaries, fiber crossover points (as in woven 

composites), or with other stress waves. It also ignores rate dependence and the effects of 

inelastic deformation. By assuming that the quasistatic properties apply in the ballistic regime, 

erroneous results are obtained. For instance, carbon fiber is expected to have a similar ballistic 

performance to Spectra Fiber (Figure 2.6). In practice, carbon fiber is relatively ineffective in 

armor applications [13]. 
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Figure 2.5 Linear-Log plot of strain energy behind the elastic wave front versus specific fiber 

modulus for an impact velocity of 400 m/s. 

 

Table 2.2 Fiber Comparison 

Fiber Material C [
 

 
] U [

 -m
3

kg
]  c [

 

 
] 

PET 1.87E+03 8.23E+04 536 

Nylon 6,6 2.88E+03 7.91E+04 611 

Kevlar 29 7.00E+03 3.65E+04 634 

Kevlar 49 8.83E+03 2.50E+04 604 

Spectra 900 8.97E+03 5.05E+04 768 

Spectra 1000 1.17E+04 5.50E+04 864 

Spectra 2000 1.13E+04 5.16E+04 836 

IM7 Carbon 1.25E+04 3.02E+04 722 

IM10 Carbon 1.32E+04 3.89E+04 800 

M5 1.33E+04 6.25E+04 940 

S2 Glass  5.94E+03 5.67E+04 696 
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Figure 2.6 Fiber ballistic properties. Contours of constant    shown [33] to [38]. 

In order to study realistic ballistic fabrics, Roylance uses a grid model where secondary fibers are 

forced to move in the direction of stress waves traveling in the primary fibers, but are allowed 

some degree of slip. It was determined in this analysis that partial wave reflection occurs at 

crossover points, both impeding the transmission of the primary wave, and increasing the strain of 

the fiber at the crossover point. These two effects lead to premature failure of the fibers under 

ballistic loading [32], and give a good explanation as to why unidirectional fabrics are able to 

provide higher ballistic resistance compared to their woven counterparts [39]. 

2.5 Ballistic Felts 

Ballistic composites include a category of non-woven textiles that, rather than using a secondary 

matrix material, rely on interfiber junctions to hold the textile together. These junctions are 

formed in a variety of ways including thermal calendaring and mechanical entanglement. Ballistic 

felts, formed by needle-punching entangled fibers, are studied in [1], [3], [40] to [43]. Felts have 

excellent ballistic properties at low areal densities and provide superior protection versus low 

velocity fragment projectiles. Chocron determined that the ballistic felt Dyneema
®
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®
, at 
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an areal density of only 0.6 kg/m
2
, is capable of withstanding a 460 m/s normal impact of a 1.1-

gram 5.56 mm Fragment Simulating Projectile (FSP) [3]. However, ballistic felts do suffer from a 

number of deficiencies, namely, their range of applicability is limited to low velocity threats, and 

they require considerable deformation distances in order to stop a projectile [40]. 

The force-displacement behavior of a felt is highly nonlinear and involves significant evolution of 

the texture of the fabric arising from the rotation, realignment, and slippage of fibers. Felts are 

thought to stop projectiles not via efficient transport of stress waves or material inelastic 

deformation, but rather through a lossy, frictional, stick-slip mechanism. This so called stick slip 

mechanism, in which two interacting fibers alternate between being rigidly in contact and sliding 

upon one another, gives rise to macroscopic inelastic deformation, though the fibers themselves 

may only deform elastically. This mechanism is highly sensitive to fiber surface properties and 

the degree of confinement of a given fiber within the felt. A thicker felt with the same areal 

density as a thin felt will have a higher ballistic limit. This is thought to be an effect of the fiber 

mobility, with high compaction preventing fiber slippage from occurring [40]. 

Stress waves travel at a much lower velocity in felts than in unidirectional or woven composites, 

due to the low transmissibility of junctions and the tortuous path that an individual stress wave 

must traverse microscopically to accomplish significant displacement macroscopically. Because 

fibers are weakly held in place at junction points, rather than high magnitude stresses and wave 

reflection at these junction points, fibers instead slip and accelerate to the speed of the impacting 

projectile. Ipson experimentally determined the stress wave transmission in felts under ballistic 

impact by tracking material points on the felt using a series of spark gaps sewn into the back face 

of the felt [1]. The spark gaps were energized at known time increments leaving large bright spots 

on an exposed photographic plate which could be used to trace the motion of the felt. It was 

observed that the material initially displaces inward radially toward the impact site via 

longitudinal wave action, and then displaces transversely due to the macroscopic kink wave 
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trailing the longitudinal wave. The macroscopic deformation described amounts to an 

axisymmetric extension of the single fiber analysis discussed earlier. Transverse velocity dropped 

off as it radiated outward from the impact site, indicating dispersion within the felt. The kinetic 

energy absorbed by a felt reaches a maximum at the felt’s ballistic limit. This is a consequence of 

the drastic reduction in the volume of felt material involved in slowing the projectile as the ratio 

of projectile velocity to transverse wave velocity increases. 

Ipson determined that the contact pressures between the projectile and felt were low, and never 

exceeded the elastic limit of the steel projectiles used in his experiments. Thus, the projectiles 

were essentially undeformed and stored a negligible amount of strain energy. A consequence of 

this observation is that the hardness and strength of the projectile matters very little during impact 

with a felt. This is both an advantage and disadvantage for the felt. It is an advantage versus high 

hardness armor piercing projectiles as the increased mechanical properties of the projectile 

affords no increase in penetration performance, but is a disadvantage in that a felt is unable utilize 

projectile deformation or erosion as a dissipation mechanism [44]. 

Ipson tested various felts composed of polypropylene, PET, Nylon, and Acrylic and determined 

that Nylon felts were the best performers with polypropylene registering a close second. 

Interestingly, Nylon had the lowest wave velocities of the fibers tested, but the highest strain to 

failure. This resulted in ballistic impacts having lower forces but higher contact times and 

displacements. Polypropylene, in contrast, possessed nearly the same ballistic limit, but achieved 

this through higher wave speeds and a higher failure stress rather than high strains to failure. PET 

felts had the lowest ballistic limit of the samples tested. A comparison of the ballistic limits for 

Nylon felt, 2024-T3 aluminum, and Hadfield steel versus a 5.56 mm FSP are shown in Table 2.3. 
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Table 2.3 Areal density comparison of Nylon ballistic felt with metals of equivalent ballistic 

performance versus a 5.56mm FSP [1]. 

Nylon Felt AD 

[kg/m
2
] 

Ballistic limit 

[m/s] 

Al2024-T3 ADeq 

[kg/m
2
] 

Hadfield Steel ADeq 

[kg/m
2
] 

0.64 229 7.80 - 

1.46 274 10.17 5.76 

1.80 305 11.53 6.10 

 

2.6 Large Displacement Armor 

The concept of large displacement armor goes back to the impulse-momentum relation (Eq 2.2) 

where low forces but large deflections and relatively long time scales are used to arrest an 

incoming projectile. This is in contrast to classical plate armors which have very small deflections 

and generate high forces over short time periods. The aim of this work is to investigate thick-

section nonwovens that undergo very large dynamic deflections, and to determine whether an 

armor that takes advantage of these large deflections can realize an improvement in ballistic 

performance. This amounts to sacrificing volumetric efficiency for the sake of increased 

protection, and is thus only suitable for applications in which an increase in the total thickness of 

the armor material can be tolerated. 

The primary nonwoven studied in this thesis is polyester fiberfill manufactured by Polyester 

Fibers, LLC and sold under the brand name Mountain Mist
®
 Fiberloft

®
. Fiberfill is utilized in 

stuffing of pillows and children’s toys, but also sees use as an insulation material. It is comprised 

of crimped 30    diameter polyethylene terephthalate staple fibers, with average crimped lengths 

of ~25 mm and average fully extended lengths of ~50 mm. The fibers are mechanically entangled 

to form semi-consolidated batts that are then rolled and packaged. Because fiberfill is not needle 

punched, the fibers in it have a high degree of mobility. This makes handling of the fiberfill rather 

difficult as very low forces can alter its texture, and consequently its material properties. It is 
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hypothesized that this increase in fiber mobility can lead to an increase in ballistic performance 

[42]. The selection of polyester fiberfill for this investigation was largely due to its wide 

availability and very low cost. PET fibers are not ideal for armor applications, but the format of 

the material should provide good insight into the mechanisms, and potential performance, of a 

non-needle punched, thick section, ballistic felt. 
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3 Preliminary Ballistic Testing 

3.1 Experimental Procedure 

Early on in the experimental phase of this work, two sets of simple ballistic tests were undertaken 

to determine the usefulness of fiberfill in a ballistic armor application. In the first set of tests, 

fiberfill was stuffed into corrugated cardboard boxes and shot with two different types of .44 

magnum ammunition. Projectiles were fired from a Winchester
®
 Model 94 .44 carbine at a range 

of ~15 m.  elocity measurements were not taken during the experiment, but the manufacturers’ 

listed muzzle velocities are included in Table 3.1 below. The extended length of the barrel of the 

.44 carbine versus that of a .44 magnum handgun caused an increase in muzzle velocities of 140 

m/s in the case of Remington UMC ammunition (as determined in the second set of ballistic 

experiments), and is assumed to have caused a significant increase in the muzzle velocity of the 

MiWall ammunition as well. The kinetic energies of the projectiles upon impact with the sample 

were estimated to be 1 kJ and 2 kJ for the MiWall ammunition and the Remington ammunition 

respectively, when fired from the .44 carbine used in the experiment. 

Table 3.1 Ammunition details (Manufacturer's Data) 

Ammunition Type Mass [g] V [m/s] 
Kinetic Energy 

[J] 
Momentum [kg-m/s] 

MiWall .44 Rem Mag 

SP 
15.55 290 650 4.5 

Remington UMC .44 

Rem Mag JSP 
11.66 490 1400 5.7 

 

The second set of experiments tested the ballistic performance of varying densities of fiberfill 

compressed into 102mm diameter 610mm long cardboard tubes. The mass of the fiberfill was 

measured using a digital scale with the mass of the cardboard tube tared off. The same rifle firing 

only Remington UMC .44 magnum projectiles was used in these tests. Shots were fired at a 
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distance of 3m from muzzle to target. The average velocity of the Remington UMC ammunition 

was first determined, using an optical sensor chronograph, by firing shots over the test apparatus 

without a sample present. The average velocity of the five shots fired was 632 m/s, equating to a 

kinetic energy of 2332 J. For the experiment, projectiles were fired through the armor samples, 

and the exit velocity of the projectile was measured for multiple shots per sample. The difference 

in the exit velocity with and without a sample present was used to calculate the kinetic energy 

absorbed by the armor. A schematic of the experimental setup is show in Figure 3.1. 

 

Figure 3.1 Schematic of the second ballistic experimental setup. 

3.2 Results 

In the first set of experiments all seven MiWall projectiles were defeated in 0.3 to 0.35 meters of 

compressed PET fiberfill. None of the Remington projectiles was defeated within the 0.6 meters 

total thickness of the fiberfill samples. 

Defeated projectiles were extracted from the samples and the surrounding fibers were examined 

at both a macroscopic and microscopic level. On the leading edge of the projectiles, an envelope 

of compressed fibers formed cocoon-like structures that also entrained surrounding fibers (Figure 

3.2 and Figure 3.3).  The path of each defeated projectile was marked by a densified, highly 

aligned, and twisted tail (Figure 3.4 and Figure 3.5) surrounded by a less dense “hole” plowed by 

the projectile from the entrance to the point of defeat.  A similar structure was left in the wake of 

the Remington ammunition, from the point of entry to the exit hole. Multi-hit performance was 

enhanced by the residual compressive stress brought about by packing the fibers into the box.  

Projectile Path Test Sample 
Chronograph 
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This stress ser es to backfill the “holes,” formed by the projectiles that pass through the armor. 

The paths traced by the lower velocity projectiles, as evidenced by both tails and holes, indicated 

that projectiles became unstable and veered from their initial trajectories. The tortuous paths 

taken by destabilized projectiles enhanced the volume of armor material participating in ballistic 

defeat. 

 

Figure 3.2 "Cocoon" structures surrounding  

defeated projectiles. 

 

Figure 3.3 Defeated projectile being extracted 

from a “ o oon.” The tail on this proje tile has 

already been removed. 

 

 

Figure 3.5 "Tail" emanating from the side of a 

defeated projectile. 

A sample of fibers in the projectile affected area, where friction and melting appeared to occur at 

the macroscopic level, was extracted, using a razor blade, and examined under a scanning 

electron microscope (SEM) (Figure 3.6 and Figure 3.8).  Projectile affected fibers were compared 

to fibers in the virgin state (Figure 3.7 and Figure 3.9). All samples were mounted to a pressure 

sensitive adhesive coated conductive platen prior to examination, but neither sample was sputter 

coated. Significant deformation, sliding friction, and melting were evident from the SEM images. 

Figure 3.4 "Tail" structure following 

projectile path. 
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In addition to melted and worn areas, fibers from the affected region showed significant 

flattening, and exhibited a greater degree of kinking than fibers from unaffected regions. 

  

Figure 3.6 Fibers from the projectile affected 

region showing melting and adhesion. 

Figure 3.7 Fibers from a region unaffected by 

projectiles. 

  

Figure 3.8 Close up of fiber from the affected 

region showing inter-fiber friction wear and 

plastic deformation. 

Figure 3.9 Pristine fibers from unaffected region. 

 

The results of the second experiment are summarized in Figure 3.10. Interestingly, even after 

multiple shots were fired in essentially the same location, very little difference in the absorbed 

kinetic energy was observed. For the 46.2 kg/m
2
 sample, the energy absorbed for the first, second, 

and third shot respectively was 949 J, 1135 J, and 993 J.  
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Paths taken by projectiles in the second set of ballistic experiments were noted to display none of 

the tortuosity seen in the initial experiment. This is thought to be due to a combination of effects, 

namely, an increase in the projectile velocities, making the projectile less prone to destabilization 

due to an unbalance of forces, and a near-wall condition that may serve to direct the projectile 

along the axis of the constraint tube. 

The results from these early ballistic experiments served to inform the remainder of the 

experimental studies conducted on fiberfill based armors. It was clear that controlled ballistic 

tests, in ol ing a  ariation of  elocity and “far-field” boundary conditions, were necessary to 

accurately determine the ballistic limit of fiberfill armor. Furthermore, a study of the mechanisms 

of fiber realignment and interfiber sliding under different loading conditions would be important 

to gaining insight into fiberfill’s potential as an armor material. 

 

Figure 3.10 Results of the exit velocity experiments, values shown are averages of multiple shots fired 

into the same sample.
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4 Mechanical Testing and Micromechanics 

Fiberfill was mechanically characterized in the deformation modes thought to be relevant to 

ballistic impact. While the loading conditions in ballistic impact are both mixed and occurring at 

various strain rates, isolating those loading conditions to homogenous, constant strain rate cases 

should gi e  aluable insight into fiberfill’s mechanical beha ior. Where possible, elevated strain 

rates were studied, but, due to practical limitations, the majority of the material characterization 

tests were performed in a quasistatic manner. The response of fiberfill to homogenous 

deformations of uniaxial compression, uniaxial tension, and shear were investigated. For each 

deformation mode, a short review section and discussion on the underlying micromechanics 

precedes the experimental discussion. Where applicable, theoretical predictions of the 

micromechanical theory are compared with experimental results. 

4.1 Compression 

4.1.1 Micromechanics of compression 

The compression behavior of entangled fiberwebs was studied by van-Wyk [45] who was 

investigating the compression behavior of wool. He concluded that the governing mechanism was 

fiber bending between contact points. Utilizing elementary beam theory, van-Wyk determined 

that the compression pressure should vary according to: 

    k  n  Eq 4.1 

 

Where k is a fit parameter that accounts for geometric effects, n accounts for fiber distribution, E 

is the fiber elastic modulus, and   is the volume fraction of fibers.  

This equation can also be expressed in terms of the true strain,     ln 
x

x 
 , rather than the volume 

fraction [46]: 
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   eb  Eq 4.2 

 

here b is the same as the exponent n in the Toll van-Wyk equation, and A is a lumped modulus 

parameter with units of pressure. 

Toll later extended van-Wyk’s theory to account for both planar (2 dimensional) and bulk (3 

dimensional) fiber orientation distribution, and accounted for the maximum unforced packing of 

fibers [47]. This modification is expressed as: 

  k   
 
   
    Eq 4.3 

 

At sufficiently high values of  ,    can be neglected. Toll’s analysis predicts that the contact in 

planar fibers can no longer be approximated as point contact, and approaches line contact as the 

planar fibers are increasingly aligned. This affects the exponent, n, in van-Wyk’s equation, with 

random three dimensional configurations taking on the exponent n=3, and planar splays taking on 

the exponent of n=5. Increasing alignment increases the exponent depending on the orientation 

distribution and the degree of fiber-fiber slip [48] to [50]. Hysteresis under compressive loading 

is discussed in Carnaby [51]. Experimental studies of entangled fiber compression can be found 

in Mezeix [46], and numerical investigation of van-Wyk’s theory can be found in [52] to [54]. 

4.1.2 Compression experimental setup and procedure 

Compressions tests were performed for strain rates (defined as  ̇  
 

  
[
 

 
] where V is the velocity 

of the cross head and L0 is the initial height of the sample) ranging from 2.65x10
-4

 to 1.061[
 

 
]. All 

compression tests were performed on a servo-hydraulic Instron
®
 universal test machine. The 

compression test fixture utilized a transparent constraint tube to keep the fiberfill sample in place 

between the two, 197 mm diameter platens (Figure 4.1). This constraint tube does not allow 

unconstrained radial expansion of the samples under test, and thus the test is not truly uniaxial. 

However, since fiberfill is highly compressible, the effect of the constraint tube’s presence is 
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assumed to be negligible. The effect of friction at the walls of the constraint tube was also 

neglected. 

 
Figure 4.1 Compression test fixture mounted to servo hydraulic test frame 

 

Compression samples were prepared by removing portions of fiberfill from the master roll, and 

placing them in the constraint tube, layer-by-layer until the desired sample mass was achieved. 

Material was added or removed from each layer as necessary for that individual layer to correctly 

conform to the inside of the constraint tube. This layering method imparted preferred alignment 

to the individual layers in the direction transverse to the loading axis, and thus altered the 

structure of the fiberfill. Ideally, randomly entangled preforms would be fabricated inside of the 

constraint tube, but attempts to do this using blown air were unsuccessful. 

The procedure for conducting the individual compression tests was as follows: 

 Balance the load cell and actuator readings 

 Begin recording data 

Load Cell 

Fixed Platen 

Moving Platen 

Actuator 

Constraint 

Tube Sample 
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 Lower the crosshead to a fixed displacement defined by the yellow shaft collar in Figure 

4.1, thus pre-compressing the sample 

 Lock the crosshead in place 

 Start the actuator, which moves upward at a fixed velocity throughout the test 

 End the test once a maximum load of 35 kN is reached 

Due to the tests not starting in a zero stress state, the results had to be “toe-corrected.” To perform 

the toe correction a linear fit of the data in the low force regime was performed and the 

displacement necessary to reach an unstressed state was determined from the slope and intercept 

of this fit. The gage length and strain are then adjusted accordingly to achieve an unstressed state 

at zero strain (Figure 4.2). 

 

 
Figure 4.2 Example of toe correction procedure for compression data 

 

Relaxation tests were performed in a fashion similar to the compression tests, but rather than 

stopping at a defined force, the actuator was set to stop at a defined displacement. The actuator 
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rapidly ramped to the desired displacement at which point it ceased moving. The reduction in the 

stress over time at this displacement was then recorded until it appeared to reach steady state. 

This “relaxation,” is due to fiber reorientation and the escape of air from the fiberfill. 

4.1.3 Compression Results 

The results of all of the compression tests are shown in Figure 4.3 and Figure 4.4. A nonlinear 

least squares curve fit was performed on each individual data set and the average of these 

parameters was used to provide the master curve fit, shown in black. Table 4.1 summarizes the 

results of the cur e fitting. k ,  0, and n refer to the parameters in the Toll van-Wyk equation, 

and A and b refer to the parameters in the Meziex version of the Toll van-Wyk equation [46].  

The data is in excellent agreement with the power law prediction, but did show significant 

dispersion, especially in the low compaction range. This is likely due to the variability in samples 

due to non-ideal sample preparation procedures. Nonetheless, an exponent of 3.6 was obtained 

indicating that the samples were not three dimensionally isotropic in their randomness, but that 

they were not excessively aligned to the point where they behaved more like a two dimensional 

fiber splay. 

No rate dependence was evident in the range of strain rates tested. This was surprising due to the 

rate dependent nature of PET as well as the expected poroelastic contribution to the stress arising 

from the air contained in each sample [55]. However, while four decades of strain rates were 

sampled, the absolute value of these rates was likely too low to begin seeing evidence of these 

effects.  

Toll made a generalized prediction for the maximum unforced packing of arbitrarily oriented 

particles. For three dimensional, randomly oriented, nondisperse fibers Toll’s prediction for  0 is: 

   
 

3 r
 Eq 4.4 
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Where r   
 .    

-3

3    
- 
 [

 

 
] is the fiber aspect ratio, taken as the average length between crimps 

divided by the average fiber diameter. The resulting prediction for the maximum unforced 

packing is     .    
- . This prediction is somewhat higher than the average result obtained in 

the compression experiments (Table 4.1). Likely sources of error include experimental inaccuracy 

in the low force-displacement regime and non-ideal packing, which leads to dispersity and non-

random alignment of fibers. 

Table 4.1 Strain rates and curve fit parameters for compressions samples 

Sample  ̇ [1/s] kE [Pa] n  0 A [Pa] b 

P110 2.65E-01 1.40E+07 3.51 6.07E-07 243.6 3.51 

P111 2.65E-01 2.07E+07 3.74 1.19E-06 214.1 3.72 

P112 2.65E-04 1.30E+07 3.49 6.31E-07 242.4 3.49 

P113 2.65E-04 1.97E+07 3.66 3.06E-02 220.8 3.66 

P114 2.65E-04 1.72E+07 3.60 2.38E-07 223.2 3.60 

P115 2.65E-03 1.72E+07 3.60 3.15E-07 223.2 3.60 

P116 2.65E-03 2.06E+07 3.72 4.65E-02 202.7 3.73 

P117 2.65E-03 1.54E+07 3.50 2.66E-06 251.6 3.50 

P118 2.65E-03 2.06E+07 3.68 4.65E-02 222.6 3.71 

P119 2.65E-03 2.68E+07 3.87 5.68E-02 193.3 3.90 

P120 2.65E-02 1.97E+07 3.61 2.47E-06 240.0 3.61 

P121 2.65E-02 2.30E+07 3.70 4.34E-02 231.2 3.72 

P122 2.65E-02 2.19E+07 3.72 5.60E-02 229.0 3.75 

P123 2.65E-02 1.84E+07 3.57 3.35E-06 248.6 3.57 

P124 2.65E-02 2.40E+07 3.73 4.81E-02 230.5 3.75 

P125 1.06 1.35E+07 3.42 1.93E-02 338.3 3.42 

P126 1.06 1.95E+07 3.57 5.03E-02 304.3 3.59 

P127 1.06 1.74E+07 3.52 2.80E-02 228.6 3.52 

P128 1.06 1.78E+07 3.53 5.54E-02 355.7 3.56 

P129 1.06 1.35E+07 3.40 4.12E-02 410.9 3.41 

P130 1.06 1.54E+07 3.46 5.69E-02 394.7 3.49 

Average - 1.85E+07 3.60 2.76E-02 259.5 3.61 

Standard Deviation - 3.69E+06 0.12 2.40E-02 62.6 0.13 
 

 



34 

 

 
Figure 4.3 Compressive stress versus volume fraction (all data shown). Fit to the Toll van-Wyk 

equation shown in black. 

 

 
Figure 4.4 Compressive stress versus true strain.  

Fit to the Meziex form of the Toll van-Wyk equation shown in black. 

 

Representative relaxation results are shown in Figure 4.5. The data are fit to the standard linear 
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in Figure 4.6. The solution to the ordinary differential equation that describes the response of this 

model to a step input of strain is (see for example: Mase [56]): 

   f exp(  t)  c Eq 4.5 

 

Where   
  

 
. The parameters determined by the curve fit are shown in Table 4.2 below. These 

parameters are later used in modeling drop test experiments. 

Table 4.2 Viscoelastic relaxation fit parameters 

 

ED [Pa] 2.24E+04 

  [ /s] 1.649 

Ec [Pa] 3.65E+04 
 

 

 
Figure 4.5 Relaxation data and curve fit 
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Figure 4.6 Standard linear solid viscoelastic model 

 

4.2 Drop Tests 

4.2.1 Micromechanics of drop test experiments 

The drop test experiments conducted in this work were designed to closely mimic the 

compression tests performed in the previous section. The micromechanics for these high-rate 

compression tests are expected to be nearly identical to those seen in the quasistatic case, with the 

exception that rate effects should be visible as strain rates are increased above a certain threshold. 

The strain rate hardening in high rate compression tests is expected to arise from two sources: 

1. Interfiber friction opposing the rapid reorientation of fibers during compression 

2. Viscous effects caused by air trying to escape from the fiberfill/test fixture 

As the strain rates grow very high, for low-density fiberfill, the contribution from entrapped air is 

expected to dominate the compression response [55]. This is very similar to the behavior of open 

celled foams under high strain rate compressive loading. 

4.2.2 Drop test experimental setup and procedure 

In order to determine the effect of high strain rates on the compression response of fiberfill a 

series of drop tests were performed. A test fixture similar to the one used for compression tests 

was used in these experiments (Figure 4.7). In the experiments, the fixture is mounted in a 

ED η 

EC
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Dynatup drop tower, and a weighted crosshead, with a mass of 6.15 kg, is dropped on samples 

from varying heights. The force on the crosshead is determined from a conservation of 

momentum analysis where the acceleration of the cross head is calculated by twice differentiating 

displacement data with respect to time and multiplying the result by the mass of the crosshead. 

Displacement versus time data is collected using a Phantom high-speed camera (Figure 4.8) 

recording at a rate of 15,000 frames per second. The data is processed using a Matlab script that 

tracks the motion of a black dot drawn on the crosshead and smoothes the displacement data 

using a multi-point averaging scheme. The force acting on the cross head is taken to be equal to 

and opposite the force acting on the fiberfill sample under test. The stress in the fiberfill is: 

    
mc

 s

(
d
 
x

dt 
)   Eq 4.6 

 

Where mc is the mass of the crosshead,  s is the area of the fiberfill sample, x is the displacement 

of the crosshead, and t is time. The body force due to gravity is ignored, because of its relatively 

low magnitude. The double differentiation is very sensitive to any noise or error in the 

displacement data, hence the use of multi-point averaging to reduce these effects. 

Four different sets of test parameters were used, as described in Table 4.3. Two different densities 

were studied at two different drop heights, and each test ID # was conducted a minimum of three 

times. 

Table 4.3 Parameters for drop test experiments 

TestID Drop height [m] Impact velocity[m/s] Density of fiberfill [kg/m
3
] 

1 0.77 3.91 66.7 

2 0.77 3.91 44.4 

3 0.35 2.62 66.7 

4 0.35 2.62 44.4 
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Figure 4.7 Drop test fixture mounted in the Dynatup drop tower. 

 

 
Figure 4.8 High-speed camera used in drop test experiments. 
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4.2.3 Drop test results 

The complete results of the drop tests are shown in Appendix A. Results for a given set of 

parameters are consistent from experiment to experiment. In the high rate tests, larger forces and 

thus higher stresses are seen, as expected. Interestingly, however, the difference between high and 

low density samples at the high strain rate is smaller than anticipated, potentially indicating the 

onset of the dominance of viscous mechanisms associated with entrapped air near that applied 

strain rate. It is important to note that in the drop tests the crosshead velocity, and thus the strain 

rate, is changing continuously throughout the test. Also, importantly, once the kinetic energy of 

the crosshead reaches a value of zero, the forces acting on the crosshead cause it to reverse 

direction. The consequence of this is that the fiberfill is not highly compacted prior to the 

crosshead changing directions. In fact, the fiberfill was not compacted above a nominal strain of 

70% in any of the drop tests. A very large crosshead mass could be used to offset these effects, 

but would come at the cost of an amplification in the error associated with the force calculation, 

and is also practically limited by the size of the weights affixed to the crosshead.  Also of note is 

the clear trend of the stress versus strain curves with increasing initial velocity, indicating the 

activation of rate effects. 
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Figure 4.9 Stress versus Nominal Strain curves for differing cross head speeds, Density = 66.7 kg/m
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4.3 Tension 

4.3.1 Micromechanics of fiberfill tension 

Tension appeared to be a dominant mode in the initial ballistic tests. Once the fibers reorient 

themselves in the direction of the applied load they unfurl and stretch in tension, all the while 

sliding along their neighboring fibers. The study of the tensile micromechanics of randomly 

oriented fibers is derived heavily from the theory developed by Cox [57]. Cox theoretically 

derived the stiffness tensor for an assemblage of straight fibers using an expansion of spherical 

harmonics of the orientation distribution function. In his 1952 paper Cox also derives the means 

of load transfer between fibers, a theory now referred to as shear lag in composite materials. 

Narter et al extended  ox’s theory to arbitrary orientation distributions and showed that in the 

case of random orientation, their theory reduced to  ox’s [58]. The predicted elasticity tensor, is 

however, only applicable to straight fibers, whereas in fiberfill the individuals fibers have 

significant waviness due to their multiple crimps. Crimped fibers must unfurl before they are able 

to obtain the stiffness of a straight fiber with the same cross section and elastic properties. This 

leads to marked nonlinearity in the tensile response of entangled fibers, and is the topic of a 

significant quantity of research in recent years with applications in the field of biological tissues 

and micromechanical modeling of polymers [59] to [62]. In fact, fiberfill is not unlike a collagen 

fiber reinforced biological tissue, however it is lacking in a matrix material and thus the 

individual fibers are much more mobile. A number of different force-stretch relationships have 

been derived to model the behavior of collagen fibers including the Freely Jointed Chain, 

Wormlike Chain, and Euler elastica based formulations [63]. 

4.3.2 Tension experimental setup and procedure 

Tensile specimens were cut, from a large fiberfill roll (Figure 4.10), into strips with widths of 40 

to 50 mm and lengths of ~90 mm. These specimens were then adhesively bonded to 1mm thick 

aluminum sheets, the adhesive and fibers forming a composite core sandwiched between the 
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aluminum (Figure 4.11). This allowed the load to be transferred from the grips of the testing 

machine to the fibers in the specimens in a fairly uniform manner. For testing, the specimens 

were placed in a screw-driven Instron
®
 universal test frame equipped with a 500 N load cell. The 

samples were tested at low rates until complete failure. Some specimens of higher than nominal 

density were prepared by tightly rolling larger pieces of fiberfill, which were then bonded to 

aluminum sheets in the same manner as the low density samples. Samples cut from the roll 

direction, in addition to the cross direction, were also tested to investigate initial anisotropy in the 

fiberfill. A summary of the tensile test parameters is given in Table 4.4. 

  
Figure 4.10 Fiberfill sample preparation 
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Figure 4.11 Fiberfill Tensile Specimen 

 

 

Table 4.4 Parameters for tension experiments 

Test ID 
Relative 

Density 

Strain rate 

[1/s] 
Direction 

001 1.38E-02 9.06E-04 Cross 

002 9.07E-03 9.06E-04 Cross 

003 1.29E-02 3.62E-03 Cross 

004 8.86E-03 3.62E-03 Cross 

005 8.87E-03 1.09E-02 Cross 

006 8.22E-03 4.35E-02 Cross 

007 9.22E-03 1.53E-04 Cross 

008 1.55E-02 1.38E-03 Cross 

009 3.16E-02 1.31E-03 Cross 

010 5.83E-03 1.27E-03 Roll 

011 6.08E-03 1.15E-03 Roll 

012 1.06E-02 1.61E-03 Cross 

013 8.80E-03 1.61E-03 Roll 

014 8.33E-03 1.61E-03 Roll 
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4.3.3 Tension results 

In the initial stage of deformation the locked-in stress, due to static friction between fibers, 

dominates and the stress is due almost entirely to the stretching and bending of fibers without 

reorientation. The response in this low strain regime appears to follow a power-law like curve for 

all samples tested. After this very small elastic regime tensile deformation was dominated by the 

rotation and unfurling of the crimped fibers. The realignment of fibers in the loading direction led 

to a Poisson-like effect with samples showing significant reductions in cross section. As the load 

increased, fibers began slipping from their entanglements. After the peak load was reached, the 

deformation was dominated by gross slippage of fibers, which ultimately led to the softening of 

the response for higher levels of strain. Near the end of each test, damage localized in a small 

region near the middle of the sample and total failure occurred. An example of these stages of 

deformation is shown in Figure 4.12 and Figure 4.13. 

Samples tested in the roll direction showed approximately the same initial stiffness as those cut in 

the cross direction, but failed at much lower stresses. This is due to the alignment of the fibers 

induced by the manufacturing process, with preferential alignment in the cross direction [41], 

[42]. 
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A: Start of test 

 
B: Onset of fiber slip 

 
C: Load plateau 

 
D: Uniform damage progression 

 
E: Damage localization 

 
F: End of Test 

Figure 4.12 Images from tensile test 007. See Figure 4.13 
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Figure 4.13 Tensile test 007; several load-unload cycles shown 

 

There was significant variation in the stress-strain behavior of the tensile specimens, even among 

samples with very similar densities. Much of this variability may be due to the inherent variability 

within the material. Another source of variability may be due to the uncertainty of width and 

length measurements. This may have also been due to handling of the fiberfill while preparing the 

samples, which introduced variable levels of inelastic deformation to the different samples. It is 

also likely that the starting strains of the samples were not equal, which affected the measured 

stiffness.  

A comparison of sample IDs 003, 004, and 005 is shown in Figure 4.16 and Figure 4.17. Sample 

003 had a very similar relative density to that of sample 008, but showed significantly lower 

strength and initial stiffness. Sample 009 had the highest strength and initial stiffness, and showed 

an extended power law region (Figure 4.17), indicating a higher degree of locked in friction and 

lower fiber mobility. Comparisons of peak load and initial strength are shown in Figure 4.18 and 

Figure 4.19 respectively.  

0 0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800

1000

1200

1400

1600

Nominal Strain

N
o

m
in

al
 S

tr
es

s 
[P

a]

 

 

B

C

D

E

F

A



47 

 

 
Figure 4.14 Tensile data; low density samples 

 

 
Figure 4.15 Tensile data; low density samples, small strain regime 
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Figure 4.16 Comparison of high (009), medium (008) and low (003) density tensile samples 

 

 
Figure 4.17 Comparison of high (009), medium (008) and low (003) density tensile 

samples; small strain regime 
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Figure 4.18  Peak stress versus volume fraction; cross direction samples. Power law fit shown in 

black 

 

 
Figure 4.19 Initial modulus versus volume fraction; cross direction samples. Power law fit shown in 

black 
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The curve fits shown for these data sets are: 

 peak 3.  e   
 . 3 [    Eq 4.7 

 

 initial  .  e   
 .   [    Eq 4.8 

 

indicating a strong dependence on fiber volume fraction. For comparison, the modulus of open-

celled foams varies according to:  foam  solid 
  where  solid is the modulus of a solid piece of 

material from which the foam is made (   T    e  [   ). The relatively high exponent for 

fiberfill has two implications: first, that fiberfill is bending dominated in small-strain tension, and 

second, that the mechanical performance of fiberfill has a higher sensitivity to volume fraction 

than foam made of the same parent material [55]. 
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4.4 Shear 

4.4.1 Micromechanics of fiberfill Shear 

Shear micromechanics are very similar to those of tension, with unfurling, fiber realignment, and 

interfiber slip all playing a part in the deformation. Skelton studied the effects of friction on the 

shear behavior of polyethylene felts [64]. He determined that a simple power law equation could 

describe the small strain regime of both bending and shear deformation, with increasing strain 

leading to a decreased tangent shear modulus due to interfiber slip.  Pan and Carnaby later 

analyzed the small strain shear deformation of fibrous assemblies and determined elastic 

constants for a random assembly of straight fibers [65]. They assumed that the two dominant 

mechanisms were fiber bending between contact points, and fiber slip. In both analyses the 

contact point density and contact-point-to-contact-point distance play strong roles in dictating the 

deformation behavior. 

4.4.2 Shear experimental setup and procedure 

Shear specimens were made by adhesively bonding strips of fiberfill to plates which were 

mounted in a tensile plate shear fixture designed per ASTM C273. The specimens were tested to 

failure at strain rates between 3.28e-4 to 3.28e-3 [1/s]. The parameters for each shear test are 

listed in Table 4.5  

Table 4.5 Parameters for shear experiments 

TestID Relative Density Strain rate [1/s] 

001 7.87E-03 3.28E-04 

002 7.54E-03 3.28E-03 

003 6.80E-03 1.64E-03 

004 7.75E-03 3.28E-03 

005 8.02E-03 3.28E-03 

006 8.09E-03 3.28E-03 
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4.4.3 Shear results 

The shear behavior of fiberfill was very similar to its tension behavior; with an initial high 

stiffness region, corresponding to the locked-in frictional mechanism, followed by softening as 

fibers began to slide. In the large strain regime, fiber realignment in the maximum shear stress 

direction and fiber unfurling led to a stiffening of the response up to about 100% strain. After 

~100% strain fiber slippage from junction points began to dominate, and significant softening 

occurred. The fiberfill was, however, able to achieve engineering shear strains of 350 to 500% 

prior to complete failure. Again, very little rate effect was seen in the range of strain rates tested. 

Photographs of a shear test are shown in Figure 4.20 and Figure 4.21. Shear results are 

summarized in Figure 4.22 and Figure 4.23. 

Again, considerable variation in the stress-strain behavior was observed. The shear specimens 

underwent a significant amount of handling during sample preparation, thus increasing the risk of 

inducing permanent deformation in the samples. In addition, the specimens were somewhat 

compressed from their initial state during the adhesive bonding process, which likely affected the 

outcome of the shear tests. 
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Figure 4.20 Shear specimen 005 at 100% shear strain. 

 

 
Figure 4.21 Shear specimen 005 near end of test. 
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Figure 4.22 Shear data 

 

 
Figure 4.23 Shear data; small strain regime 
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5 Gas Gun Tests 

5.1 Experimental procedure and test fixture 

Gas gun tests were conducted in the mechanical testing facilities at the University of California 

Santa Barbara [5], [12]. The light gas gun utilized in this testing used high pressure nitrogen as a 

propellant, and had swappable barrels of either 7.62 or 45 mm bore diameters (Figure 5.1 and 

Figure 5.2). The gun has the ability to fire low velocity shots (100 to 450 m/s) using just the 

breech chamber, or can fire high velocity shots (~1000 m/s) using the breech chamber in 

conjunction with a larger charge chamber. Experiments conducted in this thesis used only the low 

velocity configuration of the gas gun. 

The gun is loaded from the breech end and can use a variety of different projectiles. The 

projectiles used were: 7.54 mm 304 stainless steel ball bearings (BB), 7.54 mm diameter by 40 

mm long 6061-T6 aluminum fragment simulating projectiles (FSP), and 44.5mm diameter 75mm 

long 6061-T6 aluminum slugs. In the small barrel, a tiny gap exists between the outer dimension 

of the projectile and the bore of the barrel. A urethane foam obturator was taped to the back of 

each projectile. The obturator was cut slightly oversized in order to form an interference fit with 

the barrel, thus preventing high pressure propellant gas from bypassing the projectile.  

A piece of brass shim stock separates the breech chamber from the barrel. To fire the gun, 

pressure in the breech is slowly increased until the brass shim ruptures; allowing the high 

pressure propellant gas to expand, which then forces the projectile down the barrel. Coarse 

adjustments of the velocity can be made by using thinner or thicker brass shims, thus altering the 

burst pressure. Fine velocity adjustments are accomplished by shifting the location of the 

projectile either closer to the muzzle of the barrel to reduce the velocity, or closer to the breech to 

increase the velocity. An array of laser gates is mounted in the muzzle of the barrel for measuring 
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the projectile’s speed. When the beams formed by these gates are interrupted by the passing 

projectile, the signal is recorded on a digital oscilloscope and the muzzle velocity can be 

determined from the delay between gate triggers. The laser gate signals trigger the high speed 

camera recording and trigger a high intensity flash to provide sufficient lighting for the camera 

footage. Tuning of the delay and ramp times for both the flash and camera is necessary to obtain 

good footage from each shot. Exit velocities, where applicable, were determined using the 

location of the projectile in, and the timestamp of, a series of frames taken after the projectile has 

exited the back side of a sample under test. 

Fiberfill was stuffed into transparent polycarbonate constraint tubes and mounted to a fixture at 

the muzzle of the gas gun. In the BB and FSP tests, fiberfill areal densities ranging from 4.4 to 

10.7 kg/m
2 

were tested. The highest of these densities was tested in four different tube diameters 

ranging from 47.6 to 197 mm to determine if there was a “near wall” effect in the smaller tube 

diameters. Difficulty was encountered with keeping the fiberfill in the constraint tube throughout 

the duration of the test. The projectile, the air in the barrel ahead of the projectile, and the high-

pressure gas behind the projectile all had a tendency to plug out the entire fiberfill sample. To 

overcome this issue, samples were sealed into their constraint tubes using a two-ply layer of duct 

tape on the each end of the tube. This proved to still be insufficient at keeping the entire sample 

from plugging out of the constraint tube, so a backing plate of 0.5 mm thick 2024 aluminum with 

a 25.4 mm orifice, roughly concentric with the sample under test, was added. The contribution of 

the duct tape and orifice plate to the ballistic performance was neglected. The orifice plate limited 

the back facing duct tape’s ability to membrane-stretch and served to limit the quantity of fiberfill 

participating in slowing projectiles as they exited the back of the samples, which is assumed to be 

a negative performance effect offsetting the increase in areal density from the duct tape. 

A large steel tube filled with alternating layers of ballistic sand and high density foam, and 

backed by a thick steel plate was placed behind each sample at a small standoff distance. This 
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“catch can” had a layer of duct tape placed across its face, both acting to hold its sand and foam 

contents in place, and serving as a witness plate. If the outer layer of duct tape was ruptured in 

any way, the shot was deemed an armor defeat as per MIL-STD-662-F. V50 was determined by 

taking the average of the two highest non-defeating shot velocities with the two lowest armor 

defeating shot velocities. Many shots that exited the sample under test at non-zero velocities were 

slowed enough to not puncture the witness tape. Thus, the exit velocity of a given projectile 

proved to be a poor metric for determining the actual V50, since the projectile was continuing to 

slow as it exited the frame of the camera and headed toward the catch can. 

FSP tests were conducted to elucidate any projectile destabilization effects that the fiberfill might 

have on a cylindrical rather than spherical projectile. These tests were only conducted on the 

higher density fiberfill. The issue of determining exit velocities in these tests was exacerbated by 

the destabilization of projectiles near the ballistic limit which tended to cause the projectiles to 

veer out of the frame. 

For comparison testing 101.6   101.6 mm, 1.27 mm thick 1095 blue tempered spring steel, and 

monolithic 6.35 mm thick PET sheets were tested. These control samples had approximately the 

same areal density as the fiberfill. The monolithic sheets were edge clamped in a transparent 

enclosure directly affixed to the catch can assembly. V50 for these comparison samples was 

determined by the same method utilized for fiberfill. 

Alternate fiber materials were also studied. One set of BB experiments was run on a commercial 

PET fiberfill called Polyfil. Additionally, high performance fiberfill samples made from Kevlar 

49 and Spectra 1000 fibers were prepared and tested. Fibers from these two materials were cut 

into 100 mm lengths, entangled and fluffed by hand. The process of making these samples by 

hand was incredibly time consuming, and consequently tests on high performance fiberfill was 

limited. 
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Several tests were performed with a mix of Kevlar and PET fiberfill to determine how the top 

layer of fiberfill deformed. Samples for these tests consisted of a layer of Kevlar fiberfill backed 

with a thicker layer of PET fiberfill (Figure 5.3). 

Slug tests were performed on fiberfill samples mounted in polycarbonate tubes with an open 

faced front side and rigid steel backing plate. These tests were intended to approximate the drop 

test experiments performed earlier, but at higher strain rates. 

 
Figure 5.1 Gas gun configured with 45 mm barrel 
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Figure 5.2 Gas gun schematic (not to scale) 

 

 

 
Figure 5.3 Kevlar-PET layered fiberfill secured in test fixture 

 

5.2 Results 

Results of each ballistic penetration test were fit to the Lambert-Jonas equation [66]: 
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with data falling below the V50 limit ignored. The results of this fitting are shown in Table 5.1. 

The exponent n takes on the value of 2 if a constant amount of kinetic energy is absorbed by the 

armor. Values of n higher than 2 indicate a reduction in the amount of kinetic energy absorbed as 

projectile velocities increase, and values less than 2 indicate an increase in energy absorbed with 

increasing velocity. Within the range tested, steel and PET show an increase in kinetic energy 

absorption with higher projectile velocities. This may be due to intrinsic rate dependence in the 

materials or in the projectile itself. Fiberfill, generally had an exponent of around 2, but varied 

between 1.804 and 2.453. This variation may be due to variable material properties, or may 

simply be an artifact of the error introduced by the V50 calculation. Nonetheless, fiberfill 

compares favorably to both 1095 steel and PET sheets of similar area densities in terms of 

ballistic limit (Figure 5.4). The gas gun as configured for these experiments was unable to 

achieve velocities capable of defeating the Spectra or Kevlar fiberfill samples, showing that with 

an increase in fiber performance a marked increase in armor performance can potentially be 

realized. 

The medium, and high-density Fiberloft samples are compared in Figure 5.5. Interestingly, the 

medium density samples appear to have the same, or perhaps slightly improved, performance 

versus the high density samples. This may indicate that the optimum tradeoff between fiber 

mobility and areal density occurs at a packing density less than 10.4 kg/m
2
. The results for the 

low-density Fiberloft sample are shown in Figure 5.6. At around 300 m/s an abrupt decrease in 

energy absorption is seen. This indicates a change in the mechanisms dissipating the projectile’s 

kinetic energy, and may be the limit velocity at which the stick-slip mechanism is able to act on 

the projectile efficiently for this density of Fiberloft. 
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Table 5.1 Ballistic penetration tests 

Test ID Material 

Tube 

Diameter 

[mm] 

Areal Density 

[kg/m
2
] 

Projectile V50 [m/s] n 

001 PET - 9.53 BB 238 1.468 

002 1095 Steel - 10.23 BB 282 1.567 

003 Fiberloft 47.6 10.67 BB 333 2.453 

004 Fiberloft 95.3 10.39 BB 336 1.919 

005 Fiberloft 197 10.38 BB 364 2.423 

006 Polyfil 47.6 10.67 BB 294 1.882 

007 Kevlar 49 47.6 10.67 BB - - 

008 Spectra 1000 47.6 10.67 BB - - 

009 Fiberloft 73 8.83 BB 356 2.251 

010 Fiberloft  73 4.42 BB 120 - 

011 Fiberloft 73 10.39 FSP 352 2.019 

012 Fiberloft 197 10.39 FSP 345 1.804 

 

 
Figure 5.4 BB Tests; comparison of PET, Steel, and Fiberfill 
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Figure 5.5 Comparison of Test ID 004 (10.39 [kg/m

2
]) and Test ID 009 (8.83 [kg/m

2
]) 

 

 
Figure 5.6 Test ID 010; low density Fiberloft vs BB projectile 
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projectile tumbling. This tumbling tended to cause the higher velocity projectiles to veer off 

course, entirely miss the witness tape, and instead make contact with the steel plate surrounding 

the catch can. For exit velocities in excess of 200 m/s the projectiles tended to be more stable, 

indicating a velocity limitation on the destabilization phenomena for the FSPs used. The tumbling 

projectiles interacted with increased volumes of the fiberfill material, which contributed to 

improved ballistic performance of the fiberfill when a projectile became unstable. Such a 

mechanism might prove useful in versus projectiles designed to tumble upon penetration of soft 

targets. 

 
Figure 5.7 Test ID 011 and Test ID 012; Fiberloft vs FSPs 

 

Images of the characteristic behaviors seen for penetrating projectiles versus Fiberloft and PET 
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This is in stark contrast to the monolithic PET sheets that were seen to behave in a very brittle 

manner at ballistic strain rates. Even in the lower velocity shots, PET quickly cracked and 

comminuted, absorbing no energy after the projectile had passed (Figure 5.11 and Figure 5.12). 

 

 
Figure 5.8 BB after impacting Fiberloft at 419 m/s 

 
Figure 5.9 BB after impacting Fiberloft at 346 m/s 

 
Figure 5.10 FSP tumbling after impacting Fiberloft at 367 m/s 

 
Figure 5.11 BB after impacting a PET sheet at 426 m/s 
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Figure 5.12 PET specimen showing cone and radial cracking after being impacted at 293 m/s 

 

The ballistic limit could not be determined for the multi-layer Kevlar-PET fiberfill. Some 

interesting results regarding the deformation behavior of fiberfill during ballistic impact, 

however, were obtained from these tests. The projectile forces the top layer of Kevlar to fold in 

on itself, behaving like a net that envelops the projectile Figure 5.13. This entire mass of Kevlar is 

then dragged through the PET fiberfill behind it, forming a tail similar to those observed in 3.2. If 

the projectile has sufficient velocity it pierces the tape on the back of the sample, dragging a long 

tail of Kevlar behind it (Figure 5.14). For the range of velocities tested, projectiles were unable to 

break free from this tail and make contact with the witness tape. 
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Figure 5.13 Kevlar/PET fiberfill enveloping a defeated projectile 

 

 
Figure 5.14 Projectile stopped in a Kevlar tail 
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Figure 5.15 Defeated projectile with foam obturator still intact 

 

Slug test results are shown in Figure 5.16. The data for these graphs was extracted from the high 

speed videos by tracking the back edge of the aluminum slug as it compressed the sample. Data 

for strains below ~30% have been omitted due to a large degree of noise, and has instead been 

approximated by straight line from the origin. The remaining data was smoothed using a robust 

Lowess linear method in the Matlab curve fitting toolbox. The data is again truncated in the 

compaction regime due to a lack of certainty that the slug itself or the test fixture was not 

deforming under the applied stress. The results confirm the rate hardening trend seen in the drop 

tests, with the increased hardening likely coming from the entrapped air in the sample and 

constraint tube. 
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Figure 5.16 Slug tests; Stress-strain curves 
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6 Numerical Analysis 

Running a full set of ballistic experiments to understand the change in V50 with the variation of 

any one parameter is a time consuming process, often taking days of experimental work and data 

extraction before good results are obtained. Furthermore, in these experiments there are physical 

and practical limitations with what can be tested, and how these tests can be instrumented. The 

ability to setup and run a set of numerical simulations of the experiments prior to investing the 

time and capital to run physical tests would prove to be a useful tool in speeding up both research 

and design in the field of large displacement ballistic armor. To this end, various attempts at 

developing such a model were made throughout the course of working on this thesis. Initially, a 

simple open-celled foam model (MAT-57) was utilized in LS-DYNA to model the drop test 

experiments [67], and good results were obtained for low to moderate strain rates. This model 

was then extended using a simple damage criteria to simulate the gas gun BB experiments (Figure 

6.1). The simple model failed to appropriately capture the physics occurring in the experiment, its 

weakness lying in this model’s inability to accurately depict modes of deformation other than 

compression. Clearly, a more accurate constitutive model, with the ability to account for fiber 

orientation, arbitrary loading, and damage was needed. 
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Figure 6.1 LS-DYNA MAT-57 ballistic simulation 

 

6.1 Models Considered 

Two models were found in the literature that had the potential to accurately capture the 

deformation behavior of entangled fiber materials under arbitrary loading conditions. These two 

models are the Planas model (P model) [68], [69], and the Jearanaisilawong model (JS model) 

[70]. Both models rely on the concepts of an effective fiber stretch [61], and an orientation 

distribution weighted response. Both models also rigorously account for the large rotations and 

extensions of the constituent fibers in the continuum, which will be necessary for simulation of 

the finite strains seen during ballistic experiments. The Cauchy stress of the incompressible P 

model is: 

    ∫ ŝf ( f)
[       ]

‖   ‖
  ( , )d  p    Eq 6.1 

 

Where   is the deformation gradient tensor, defined as: 
  i

   
 which maps material points in the 

reference configuration to material points in the present configuration,  

    cos( )e  sin( ) cos( ) e  sin( ) sin( ) e  Eq 6.2 
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is a unit vector in polar coordinates (Figure 6.2), sf is the user determined fiber stress-stretch 

constitutive relationship,   is the orientation distribution function (ODF) of fibers in the 

continuum,  f is the fiber stretch, p is an arbitrary hydrostatic pressure, and   is the unit tensor: 

    [
   

   

   

] Eq 6.3 

 

The integral shown is taken on the upper spherical half space at each material point considered. 

This polar integration, which accomplishes the homogenization of an arbitrary fiber assemblage, 

weights the fiber stretch according to the orientation distribution function. Taking this spherical 

integral at each material point, for each increment during a finite element solution is, however, 

computationally costly. The JS model avoids this computational cost by using a tensorial measure 

of fabric anisotropy, thus losing the generality of an ODF-weighted integration, but consequently 

reducing computational cost. 

 
Figure 6.2 Coordinate system for the P model [68] 
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6.2 Fiberfill Continuum Model 

The JS model is, at its core, a homogenization of a multi-chain hyperelastic model. The strain 

energy function is derived from the force stretch relationship, the interfiber repulsion, and the 

resistance to bulk compaction. The model assumes a Langevin statistics based force-stretch 

relationship [60], [61], [71], [72], which phenomenologically captures uncrimping of the fibers. 

The framework of the model does not limit the selection of a force stretch relationship to one 

based on Langevin statistics, but it will be the fiber constitutive relationship adopted in this thesis. 

The JS model utilizes a tensorial representation of the fiber orientation distribution and the 

distribution of junction-to-junction distances, thus eliminating the need to perform polar 

integration at each material point. This comes at the cost of losing the ability to represent 

arbitrary fiber distributions, as in the P model [73]. The structural tensor that captures orientation 

effects is referred to as the “fabric ellipsoid” or “texture” tensor,  
 
. A derivation for the elastic 

and inelastic parts of the JS model is included in the appendix. The Cauchy stress is written as 

follows: 

    
 

  tr   
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 T)      n     Eq 6.4 

 

For inelastic deformation the texture tensor  
 
 is replaced by the evolving structural tensor  

t
. 

The stress in the inelastic JS model depends on the elastic portion of the deformation and the 

inelastic evolution of the texture tensor. The Cauchy stress is calculated by: 
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     Eq 6.5 

 

The model implemented in this work deviates from the original JS model in several key ways. 

First, the constitutive relationship is augmented by a bulk compression term of the power law 

form suggested by van-Wyk. Second, the inelastic rotation is assumed to be:  i   . Therefore 
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only “elastic” rotations occur. This forces the solution of the inelastic component of the 

deformation to be unique [74], and leads to the same result for the inelastic spin as assumed in the 

JS inelastic model: 

        Eq 6.6 

 

and is helpful in casting the constitutive relationship in a corotational framework, as discussed in 

6.2.2. Third, the model is augmented by a progressive damage evolution law that models the 

effects of fiber slip and disentanglement. 

6.2.1 Progressive Damage Model 

The JS model fails to capture the effects of fibers slipping from junction points [75]. This leads to 

greatly over predicted stresses at high strains, as real fiberfill displays significant softening after 

reaching a peak stress due to the effects of accumulated damage. In order to capture these effects 

the principles of continuum damage mechanics (CDM) were applied, within the framework of the 

JS model, to formulate a simple damage evolution law.  

Kachanov was the first to introduce the concept of using a continuous variable to capture the 

microscopic effects of damage accumulation [76]. Damage models based on CDM utilize this 

continuous, and monotonically increasing damage variable, d, to track the effects of accumulating 

damage in the continuum. The stress in a damaged body is related to the effective stress by the 

relation: 

 ̃   
 

  d
 Eq 6.7 

 

Here, the quantity (1-d) can be interpreted as the effective area on which the stress is acting 

(Figure 6.3),  ̃ is the effective stress acting on the effective area, and    is the stress acting on the 

reference area [77]. This concept in the present model amounts to a scaling back of the effective 

strain energy due to the elongation of fibers. This is expressed as: 



74 

 

       d (
  

  tr   
t
 
(
 l

 f
e    

e  e  
t
  eT  l  

 e  
t 
 eT)     e

 n
    ) Eq 6.8 

 

A simple phenomenological model based on a Weibull analysis of fiber pullout is discussed in 

Krajcinovic [78]. The form of this model is adopted in the present analysis. The proposed model 

for the progressive growth of damage in fiberfill material is: 

dt dt   {
  exp( ( (

 eff
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md

)    eff    

dt   eff    

 
Eq 6.9 
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Eq 6.10 

 

Here, from the JS model,   is the modulus parameter with units of pressure,      is the inverse 

Langevin function,  f
e
 is the elastic effective fiber stretch, and  l is the locking stretch.  eff is the 

Von Mises effective stress defined as: 

 eff   
 

  d
√
3

 
(    tr    )

 
 Eq 6.11 

 

where tr( ) is the trace operator,    is the effective stress at which damage accumulation begins to 

occur,   frac is a fit parameter with units of energy divided by area, m is a dimensionless fit 

parameter, and  ch is the element characteristic length. The effective Von Mises stress is selected 

as the driving variable in the damage model based on the observation that damage accumulates 

earlier in shear deformation than in tensile deformation. An equivalent formulation based on the 

effective deviatoric strain could alternatively be implemented. In order to capture complex 

anisotropic damage growth, growth laws for different modes would need to be implemented. An 
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example of an anisotropic continuum damage model for composite materials can be found in 

Matzenmiller [79].  

The element characteristic length is introduced to reduce the mesh dependency of the damage 

model. Damage accumulation suffers from non-physical localization effects and element size 

dependent energy dissipation in finite element modeling. These spurious effects are reduced by 

the introduction of the element characteristic length to the damage evolution law [80]. The form 

of the “fracture energy”  ariable,  , used in the present model is analogous to that used in 

Ridruejo [69], but with a variable, nonlinear modulus parameter that scales with the effective 

stretch ratio. 

 

 

 

Figure 6.3 Illustration of the concept of effective area. 
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This model is subject to the thermodynamic restriction that damage must be dissipative, and thus 

cannot decrease. Therefore: 

d   max[ ,max(d)] Eq 6.12 

 

It is also restricted by the criteria: 

d   [ ,   Eq 6.13 

 

since damage cannot physically be greater than 100%. 

The damage model is completed by a viscous regularization of the damage growth based on the 

generalized Duvaut-Lions method [81]. This is expressed as: 

dt  t 
 t

 
d
  t

dt  t
tr

 
 
d

 
d
  t

dt Eq 6.14 

 

Here d
tr
 is the value calculated from the damage evolution law, and d is the viscous regularized 

damage variable, which approaches d
tr
 as t    . Viscous regularization minimizes damage 

runaway in the event of localization and stabilizes the solution in the softening regime, but it also 

increases the amount of energy absorbed during damage accumulation, and adds a time dependent 

component to damage growth. These effects must be accounted for when calibrating the damage 

model and it is suggested that a very low value of the damage viscosity,  
d
, be used. 

6.2.2 Abaqus implementation 

Modeling of short timescale events such as ballistic impact and blast, are well suited to an explicit 

dynamic finite element solution [67], [82]. The JS model, including the proposed additions, was 

implemented in Abaqus Explicit as a vectorized user material model (VUMAT). 

The Abaqus VUMAT interface uses a corotational framework where the reference system rotates 

along with the material. The rotating material frame is rotated back to the global reference frame 
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external to the VUMAT subroutine. Thus, when specifying the Cauchy stress within the VUMAT 

the corotational stress must be used, specified by the equation: 

 

 corot           T    Eq 6.15 

 

This is accommodated by formulating the constitutive model using the stretch tensor   in place 

of the deformation gradient tensor  . Where, from the polar decomposition of the deformation 

gradient: 

        Eq 6.16 

 

Some difficulty arises from the calculation of the elastic stretch from the inelastic stretch. Using 

the assumption mentioned previously, that  i    ,    e the elastic stretch can be calculated as: 

 e    i
  

 Eq 6.17 

 

The damage affected Cauchy stress internal to the VUMAT is then expressed as: 

 corotational      d (
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Where the elastic effective stretch is: 
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 Eq 6.19 

 

The model is written so as to include all necessary subroutines without requiring additional 

software libraries, such as BLAS or LAPACK. An LU decomposition subroutine from [83] is 

used for calculating matrix inverses. A simple pseudorandom number generator is included if a 

stochastic component to the damage evolution, or any other material property, is desired. The 
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user also has the option to delete elements based on the maximum allowable accumulated 

damage. This allows the model to capture the post-localization ripping and tearing effects seen in 

the experiments (Figure 4.13) 

 

The inverse Langevin function,  , defined as: 

x  coth( (x))  
 

 (x)
 Eq 6.20 

 

is approximated by the inverse of a Taylor series expansion of, ℒ, the Langevin function: 

  x    coth  x    
 

x
 Eq 6.21 

 

Thus the inverse Langevin function is approximated as [84]: 

  x 
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x    Eq 6.22 

 

A representation of this form does away with the inextensibility limit and has reduced accuracy in 

the neighborhood of x=1. Alternatively, a Padé approximant can be used, which has better fidelity 

near the inexstensible limit [85]: 

  x 
 ad 

  3x
3    x 

3  33x 
 Eq 6.23 

 

The Padé approximant gives a more accurate response than the Taylor series approximation with 

fewer terms, but suffers from an instability at x=1. Both functions are included in the VUMAT 

code. 

The complete FORTRAN code is included in the appendix. 
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6.2.3 Model Results 

The model remains to be appropriately fit to a specific entangled fiber armor material. Some 

results for material parameters shown in Table 6.1 appear to be a reasonable approximation for 

the tension and compression response of Fiberloft. However, the structure is assumed to be 

initially isotropic for the results shown, which is known to be false based on the material 

characterization tests conducted in Chapter 4.  

Table 6.1 Parameters used in model results (unless otherwise noted) 

Number Parameter Value Units 

1   5000 [Pa] 

2  l 2 - 

3   259 [Pa] 

4 n 3.61 - 

5     ,   1 - 

6     ,   1 - 

7    3,3  1 - 

8     ,   0 - 

9     ,3  0 - 

10    3,   0 - 

11    5 [Pa] 

12   175 [Pa] 

13 m 1.5 - 

14   0.25 - 

15    10 [Pa] 

16  ̇ 0.005 [1/s] 

17  frac 3 [J/m
2
] 

18 md 1 - 

19    650 [Pa] 

20  
d
 0 [s] 

21 dmax 1 - 

 

Quasistatic simulations of the tension experiments were run using the JS model (Figure 6.4). 

Good results in the low stretch regime were obtained (Figure 6.5 and Figure 6.6). Adequate strain 

softening behavior could not be achieved with the proposed damage model without a very large 
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increase in the damage viscosity parameter (Figure 6.7). However, an improvement in the model 

predictions is seen with the proposed progressive damage law in effect (Figure 6.8). With too low 

of a damage viscosity the solution tends to localize into a single plane of elements (Figure 6.9), 

unload, then load the next plane of elements until it too localizes. This leads to oscillations in the 

stress in the high strain regime, and is due to the ill posed nature of the problem at some point 

during the softening [86]. The localization seen here is a consequence of the discretization of the 

body into finite elements. Methods for circumventing non-physical localization instability include 

gradient smoothing, inter-element averaging, and non-local formulations. In order to obtain a 

physically realistic response in the softening regime, one of these schemes should be adopted. As 

it stands, a sufficient amount of damage viscosity can be added to approximate the solution 

desired. The elements should then be eroded to prevent large stress oscillations. 

Results for the variation of  frac are shown in Figure 6.10. Increasing this parameter does not 

affect the localization issue, but it does increase the peak stress at failure and increases the energy 

absorbed up to fracture.  

Uniaxial tensile simulations were also run on a single element model. In the single element, no 

spurious localization can occur, so it should give insight into the damage model’s beha ior if 

damage could be adequately spread to neighboring elements. Results are shown in Figure 6.11.  

Results for constrained compression are shown in Figure 6.12. These results show good 

agreement with experimental results for fiberfill, but predict excessively high stiffness in the pre-

compaction regime, perhaps owing to the fact that the model is not yet appropriately fit to 

fiberfill. 

In general, the proposed material model appears to capture the relevant mechanisms in the 

deformation modes examined, but still requires some work in terms of complete fitting to the data 

and a mesh-insensitive formulation for progressive damage modeling. 
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Figure 6.4 Boundary conditions and geometry for tension simulation 

 

 

 
Figure 6.5 JS model tension results; low strain regime (model results shown in black) 
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Figure 6.6 JS model tension results (model results shown in black) 

 

 

 
Figure 6.7 Effect of changing the damage viscosity parameter 
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Figure 6.8 JS model with and without progressive damage. 

 

 

 
Figure 6.9 Damage localization in tension simulation (contours of damage shown) 
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Figure 6.10 Effect of varying Gfrac 

 

 

 
Figure 6.11 Single element simulations 
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Figure 6.12 JS compression results 
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7 Conclusion 

The initial task of this thesis was to determine an effective lightweight armor system for a small 

robotic vehicle. The work presented here made progress toward that goal, but some deficiencies 

remain, namely, the lack of a finalized armor system capable of protecting against M855 

ammunition. Nonetheless, low-density, thick-section, non-woven ballistic armors appear to be a 

promising material format, especially in the case of multi-hit performance. Polyester fiberfill was 

selected as the pilot test material, and showed surprisingly good ballistic performance against two 

types of 7.62 mm projectiles. The fact that a large-displacement armor, composed of relatively 

low performance fibers, was able to outperform approximately equivalent areal density hardened 

1095 steel sheets versus ballistic threats bodes well for an armor system utilizing higher ballistic 

performance fibers. 

There remains significant work to be done in characterizing large-displacement lightweight armor 

systems, especially in the ballistic regime. Good progress was made in the characterization of 

polyester fiberfill in the quasistatic regime; however, the behavior at low rates does not indicate 

the behavior at high rates. This is especially evident when comparing fiberfill’s low strength and 

relatively low work-to-failure seen at quasistatic rates with its relatively good ballistic 

performance at high strain rates. This disparity is likely to be due, in some part, to the rate 

dependency of this material. 

Avenues for improvement of fiberfill-based, large-displacement armor include incorporating hard 

outer face sheets to facilitate load spreading and projectile erosion (two areas where soft fiberfill 

armor is lacking), and utilization of high performance fibers as the constituent material. 

Investigation of both of these methods for improved ballistic performance would benefit greatly 

from numerical studies utilizing an accurate material model.  
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The framework of the extended JS model presents a solid foundation for further refinement of an 

accurate fiberfill material model, but remains lacking in the area of damage modeling. As 

mentioned in Chapter 6, non-local averaging is necessary before adequate damage modeling can 

be accomplished. Furthermore, the model may benefit from the additions of anisotropic and/or 

rate dependent damage accounting for different modes of damage growth and rate dependence of 

material degradation. 
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Appendix  Complete Drop Test Results A.

 

Table 4.3 Parameters for drop test experiments 

TestID Drop height [m] Impact velocity[m/s] Density of fiberfill [kg/m
3
] 

1 0.77 3.91 66.7 

2 0.77 3.91 44.4 

3 0.35 2.62 66.7 

4 0.35 2.62 44.4 

 

 

 
 

Figure A.1 Test ID #1 

 

 
 

Figure A.2 Test ID #2 
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Figure A.3 Test ID #3 

 

  
Figure A.4 Test ID #4 

 

  
Figure A.5 Comparison of Test ID #1 and Test ID #2 fast impact; high versus low density 
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Figure A.6 Comparison Test ID #3 and Test ID #4 slow impact; high versus low density 

 

  
Figure A.7 Comparison of Test ID #1 and Test ID #3 high density; fast versus slow impact 

 

  
Figure A.8 Comparison of Test ID #2 and Test ID #4 low density; fast versus slow impact 
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Appendix  JS Model Derivation B.

 

This appendix is a recapitulation of the JS model derivation found in [70], with the additions 

proposed in section 6.2. Some of the finer points are emphasized; while material that is 

sufficiently covered in the original model derivation may be glossed over. This section is 

included here in hopes that, in conjunction with original paper by Jearanaisilawong, it may aid 

any future users of the JS model in understanding this model’s deri ation.  

B.1 Texture tensor structural analysis 

The number of points on a test fiber that are in contact with fibers in an arbitrary direction p  is 

gi en in Toll’s analysis of the compression of random fiber entanglements [47], [87]. First, a 

phantom fiber network in which fibers are able to interpenetrate is constructed. The average 

number of fiber centerlines intersecting a test fiber can be calculated by: 

N̅i   nl
  d 

 

 
 nld

 
 h    Eq B.1 

 

Where n is the number of fibers per unit volume, l ̅is the average length between crimps, d is the 

fiber diameter, and f and h are scalar invariants of the orientation distribution. For the number of 

intersections on a test fiber at a specified orientation p  the invariants are: 

f   ∮|p   p | (p)dp Eq B.2 

 

    ∮|p   p | (p)dp Eq B.3 

 

For the number of intersections with an average test fiber the invariants are then: 

f  ∮∮|p   p | (p ) (p)dp dp Eq B.4 

 



104 

 

h  ∮∮|p   p | (p ) (p)dp dp Eq B.5 

 

Where p is the orientation unit vector of a fiber and   p  is the fiber orientation distribution 

function. In a three dimensional randomly entangled assembly, f   
 

 
 and h   

 

 
. For a planar fiber 

splay f   h   
 

 
, and for aligned fibers f     and h    . 

The number of volume contacts is obtained by replacing d with 2d. 

N̅c   nl ̅
 
df  nld

 
 h    Eq B.6 

 

This can be written in terms of the fiber volume fraction,   
 

 
n d

 
l ̅: 

N̅c  
 

 
 rf    h    Eq B.7 

 

Where r   
l

d
 is the fiber aspect ratio. For high aspect ratios r    and this reduces to: 

N̅c  
 

 
 rf Eq B.8 

 

The average spacing between contact points is: 

  
l ̅

N̅c

 Eq B.9 

 

Which for non-aligned slender fibers reduces to: 

  
 d

  f
 Eq B.10 

 

The interjunction distance in each material direction is a product of the junction-to-junction 

distance distribution, and the average inter-junction distance  ̅: 
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  p    g p  ̅  Eq B.11 

 

using the relations: 

g(p)        p p  Eq B.12 

 

 (p)        p p  Eq B.13 

 

Where g(p) is the junction-to-junction distribution,   is the second order texture tensor, and   is 

the second order orientation distribution tensor. 

     p p   
 d

   
(∮∮|p   p |   p  p     p p dp dp)

  

 Eq B.14 

 

This defines a complex relationship between the orientation distribution and the texture tensor, 

but, in theory, could be determined via experimental means. 

       
 
 T Eq B.15 

 

B.2 JS Elastic Model 

Fiber junction points are assumed to deform in an affine manner with the macroscopic continuum 

strain. The texture tensor transforms according to: 

       
 
 T Eq B.16 

 

The fiber stretch in this framework is: 

 f   √
tr    

 
  T 

tr  
 
 

 Eq B.17 

 

Thus, the fiber stretch is biased by the texture tensor according to the fiber orientation and 

junction-to-junction distance.  

The strain energy function describing the fiber stretch is: 
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 fiber     
  l

 ((
 f

 l

)  { } ln [
 { }

sinh( { })
])  

 
 

 
 Eq B.18 

 

Where  
 
 is a scaling term with units of energy,   is the length of fiber in the control volume,  l 

is the locking stretch,      f/ l is the stretch ratio,      is the inverse Langevin function, and    is 

a normalizing energy that forces the strain energy to equal zero in the unstretched configuration. 

The second Piola-Kirchoff stress is calculated by: 

     
  fiber

  
 Eq B.19 

 

Where: 

  fiber

  
    

 
  l

 [ 
  { }

  

  

  f

  f

  
 
 { }

 l

  f

  
 (coth( { })  

 

 { }
)
  { }

  

  

  f

  f

  
]      Eq B.20 

 

However: 

coth( { })  
 

 { }
   { { }}   Eq B.21 

 

Therefore: 

  fiber

  
   

 
  l

   f

  
[
 { }

 l

  
  { }

  

  

  f

  
  { }

  

  

  f

]      Eq B.22 

 

  fiber

  
    

 
  l

  f

  
 { } Eq B.23 

 

Now, employing the relation: 

  f

  
 

 

  ftr   
 
 

 
 Eq B.24 

 

   
 
 
 

tr   
 
 
(
 l

 f

)      
 
 

Eq B.25 
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A repulsion term ( repulsion) must be added to enforce a stress-free reference configuration, and 

prevent collapse of the material [88] to [90]. The contribution to the stress due to repulsion 

between fibers is described by: 

 
repulsion

   
  

 
 

tr   
 
 
 l  

    
 
  T Eq B.26 

 

Where  
 
  {

 

 l
} is the value of the inverse Langevin function of the fiber stretch ratio in the 

reference configuration. 

The model does not account for all mechanisms of resistance to bulk compressibility (for 

instance, volume exclusion). In order to take these effects into account an isotropic term is added 

to the strain energy function of the JS model: 

 bulk  
 

 
(
     n

 n  
   ) Eq B.27 

 

 
  bulk

  
 

  

 n  
( n   n  

  

  
   n

  

  
)  

  

  
 Eq B.28 

 

 
  bulk

  
 

  

 n  
( n  )  n

  

  
  

  

  
 Eq B.29 

 

Using the identity: 

  

  
        Eq B.30 

 

 
  bulk

  
    (  n  )    Eq B.31 

 

Where   is a bulk modulus term with units of pressure. The second Piola-Kirchoff stress arising 

from this term is: 

  
bulk

    
  bulk

  
     (  n  )    Eq B.32 



108 

 

 

The second Piola-Kirchoff stress for the entire network including all contributions is: 

     
stretch

   
repulsion

   
bulk

 Eq B.33 

 

   
 
 
 

tr   
 
 
((

 l

 f

)      
 
   l  

    
 
  T)     (  n  )    Eq B.34 

 

This is related to the Cauchy stress by the tensorial push forward operation: 

    
 

 
     T Eq B.35 

 

Finally the constitutive relationship is expressed as: 

    
 

  tr   
 
 
(
 l

 f

       
 
  T  l  

   
  
 T)      n     Eq B.36 

 

Here μ   0 is a modulus parameter with units of pressure.  

B.3 Inelastic extension of the JS model 

The elastic JS model accounts for the recoverable deformation of fibers with an arbitrary 

orientation distribution, and tracks the change in orientation via a push forward of the texture 

tensor. The deformation of fiberfill is dominated, however, by inelastic effects leading to 

irrecoverable changes in the texture tensor [91]. These effects are captured via finite strain 

inelasticity.  

A multiplicative split of the deformation gradient is utilized in the inelastic formulation of the JS 

model. Multiplicative decompositions of this type have been considered in [92] to [102], among 

others. This split relies on the concept of an intermediate configuration, where the intermediate 

configuration amounts to an unloading of all neighborhoods of the body (Figure B.1). This is 

described by: 



109 

 

     e  i Eq B.37 

 

Where the superscript “e” refers to the elastic part of the total deformation gradient, and the 

superscript “i” refers to the inelastic portion of the total deformation gradient. The Jacobian of 

transformation decomposes as: 

   det      det  e i   det  e det  i    e i Eq B.38 

 

 e det  e  Eq B.39 

 

 i det     Eq B.40 

 

 

Figure B.1 Kroner-Lee Split of the deformation gradient [70] 

 

The deformation gradients can be spectrally decomposed to: 

 e  e e Eq B.41 

 

 i  i i Eq B.42 

 

Where  e and  i  are the elastic and inelastic rotation tensors, and  eand  i are the elastic and 

inelastic right stretch tensors. The elastic, right Cauchy-Green deformation tensor is defined by: 

 e    eT e    e  Eq B.43 
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The rate of deformation is: 

 ̇       Eq B.44 

 

Where L is the velocity gradient with elastic and inelastic components: 

     e    e i e   Eq B.45 

 

Where: 

 e  ̇
e
 e- 

and  i  ̇
i
 i

- 

 Eq B.46 

 

The velocity gradients decompose to their symmetric and skew symmetric parts according to: 

    
 

 
(     T)   

 

 
(     T)         Eq B.47 

 

 e   
 

 
( e    eT)    

 

 
( e    eT)     e    e Eq B.48 

 

 i   
 

 
( i    i

T

)    
 

 
( i    i

T

)     i    i Eq B.49 

 

Where D is the symmetric rate of deformation tensor and W is the skew spin tensor.  

In the present model, the inelastic deformation gradient will be solved via an explicit update using 

the equation: 

 ̇
i
   i i Eq B.50 

 

And the elastic portion is then solved from: 

 e    i
  

 Eq B.51 
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The second Piola-Kirchoff stresses in the reference and relaxed configurations, respectively, are 

calculated as: 

    -    -T and  e  e e- 

   e-T

 Eq B.52 

 

The rate of internal mechanical work in the continuum can be referred to by the contraction of the 

Cauchy stress with the rate of deformation tensor, integrated over the volume of the body: 

 internal ∫         Eq B.53 

 

Utilizing the elastic-inelastic decomposition developed previously. This can be expressed as: 

 internal ∫    sym   e    e i e       Eq B.54 

 

 ∫     e     ∫  e  eT   e T   i       Eq B.55 

 

 ∫
 

 
( e    ̇

e
) d i   ∫   

e
 e    i   d i Eq B.56 

 

 internal     elastic    inelastic Eq B.57 

 

Here        e
- 

   is the differential volume defined in the relaxed configuration, and 

 ̇
e
     eT e e. In order to satisfy the second law of thermodynamics, the inelastic work done 

must be dissipative [95]: 

     i     Eq B.58 

 

Where: 

     e e Eq B.59 

 

is the Mandel stress. 
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The application of this theory to non-woven fabrics relies on the following assumptions: 

1. The junctions in the fabric can be modeled as material points which displace in an affine 

manner with the continuum. 

2. The fabric texture can be captured through a single structural tensor  
 
that evolves with 

time in an affine manner with   . The fabric anisotropy in the unloaded configuration at 

time t can then be described in terms of the fabric texture tensor: 

 
t
  i( ) 

 
 i

T

    Eq B.60 

 

3. The elastic response of the network can be obtained by the constitutive relation proposed 

in the elastic JS model with the evolving texture tensor  
t
 replacing  

 
, the texture 

tensor in the reference configuration. 

4. Fibers do not undergo inelastic deformation, accumulate no damage, and do not slip from 

junction points. This ensures that the number of fiber segments and the average end-to-

end unstretched length of fiber segments in the body are constant. 

The spectral representation of the evolving texture tensor is written as: 

 
t
 [

 t
   

  t
  

   t
 

] Eq B.61 

 

The average end-to-end unstretched fiber length rt in the unloaded configuration at time t can be 

expressed as: 

rt 
 

 
dt√ t

   t
   t

  Eq B.62 

 

And as a consequence of the 4
th
 constitutive assumption rt constant r  or: 
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tr ( 
t
)  tr ( 

 
)  3 Eq B.63 

 

Since the number of fiber segments in the body is constant, and the volume in the unloaded 

configuration scales with the inelastic Jacobian, the number of fiber segments in the unloaded 

configuration scales as: 

 
t
   

 
 

 i
 Eq B.64 

 

According to the 3
rd

 constitutive assumption the Cauchy stress is: 

 e  
 
t
 

tr   
t
 
((

 l

 f
e)    

e  
t
   l  

 e   
t
 e T)    e( e

 n

  ) e   Eq B.65 

 

Where the effective elastic stretch is: 

 f
e
 √

tr  e  
t
  eT 

tr  
t
 

 Eq B.66 

 

And  e 
 f
e

 l
 is the elastic stretch ratio. 

The Cauchy stress is then found from a push forward to the relaxed configuration: 

    
 

 e
 e  e  eT Eq B.67 

 

    
 

  tr   
t
 
(
 l

 f
e    

e  e  
t
  eT  l  

 e  
t 
 eT)     e

 n
     Eq B.68 

 

Here  
t
 

  

 i
 therefore 

   

 i e
 

 

 
 

For irrecoverable deformation to occur, fibers must overcome interfiber friction and volume 

exclusion resulting from high levels of fiber volume fraction. Experimentally, the rate of 
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structural evolution decreases as the fibers become more aligned in the principal loading 

direction. 

Following the 2
nd

 constitutive assumption the rate of evolution of  
t
 and  i are related by: 

 ̇
t
   ̇

i
 

 
 iT    i 

 
 ̇

iT

 Eq B.69 

 

 ̇
t
   i i 

 
 iT    i 

  
 i

T

 i
T

 Eq B.70 

 

 ̇
t
   i 

t
    

t 
 i

T

 Eq B.71 

 

The 4
th
 constitutive assumption in rate form can be written: 

tr ( ̇
t
)    Eq B.72 

 

The constitutive relation for the evolution of  
t
 must be cast in an objective form by introducing 

an objective measure of the driving stress and the Jaumann co-rotational rate of  
 
  

 
t

 

   ̇
t
     

t
   

t
  Eq B.73 

 

Where   is a skew-symmetric structural spin tensor. Because the textural tensor is taken to 

deform in an affine manner with the inelastic deformation, the structural spin is equal to the spin 

of the unloaded configuration of the continuum: 

     i Eq B.74 

  

As mentioned in 6.2,  i is assumed to equal  . Therefore: 

 i    ̇
i
 iT    Eq B.75 

 

Thus, the structural spin vanishes, and the time derivative of the fabric ellipsoid is objective: 
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t

 

  ̇
t
 Eq B.76 

 

Therefore the inelastic velocity gradient is equal to the rate of deformation tensor: 

 i    i Eq B.77 

 

This allows Eq B.71 to be recast as: 

 ̇
t
   i 

t
    

t 
 i Eq B.78 

 

A flow rule is then cast in the form: 

 ̇
t
   ̇  Eq B.79 

 

Where  ̇ is a scalar measure of the magnitude of the rate of evolution, and   is the deviatoric 

tensorial direction of the flow.  ̇ scales with the magnitude of a driving stress. Using an 

approximate measure for  i: 

 
approx

i  
 

 
  ̇

t
 

t

    
t

   ̇
t
  Eq B.80 

 

And, imposing the constraint of Eq B.58:  

   
t

    
t

        Eq B.81 

 

The stress measure driving the evolution of the texture tensor is then expressed as: 

T
flow

 
 

 
    

t

    
t

     Eq B.82 

 

The direction of the flow is: 

    
de (T

flow
)

‖de (T
flow
)‖

 Eq B.83 
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Where ‖ ‖   √      , and de ( )     - 
 

3
tr   . 

The measure for the magnitude of the driving stress is: 

    
‖de (T

flow
)‖

√ 
 Eq B.84 

 

The constitutive relationship for the flow strain rate is: 

 ̇  ̇
 
 (

    

 t

)
m

(det ( 
t
)   det ( 

 
))   (    )   (det ( 

t
)   det ( 

 
))      Eq B.85 

 

 ̇     (    )    or  det( )      (det ( 
t
)   det ( 

 
))    Eq B.86 

 

The term (
 - 

 

 t
)
m

 is meant to capture the nonlinear dependence of the rate of structural evolution 

on the magnitude of the driving stress. This term relates the contribution to the resistance to 

texture evolution arising from interfiber friction. The parameter    represents the initial threshold 

of resistance to textural evolution due to static friction.  t represents the material flow strength at 

time t and evolves according to the equation: 

 t    ∫   ̇dt Eq B.87 

 

The term (det ( 
t
) - det ( 

 
)) is meant to capture volume exclusion, wherein structural 

evolution ceases when a limiting (high) volume fraction is achieved. 

The constitutive model is recast in a corotational framework and appended with a damage 

evolution law as described in 6.2.2. 
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An additional constraint imposed in the new formulation of the JS model is the cessation of 

structural evolution and damage growth under compressive hydrostatic stress. This is expressed 

as: 

 ̇       d ̇       h   
 

3
tr( )      Eq B.88 

 

In practice, some permanent structural evolution does take place during compaction, but, in 

Fiberloft, seems to be a very small effect. This constraint could be altered to allow some amount 

of structural evolution by defining a limiting hydrostatic stress, after which inelastic deformation 

ceases. 

The update algorithm for this constitutive model is summarized below: 

 Read in:  
t dt

, dt,  
tt
,  

t

i,  ̇
tt
, d, d 

  

 Update the structural tensor:  
tt dt

   
tt
  ̇

tt
 

 Solve for the inelastic rate of deformation tensor using  

 Calculate the inelastic stretch from:  
t dt

i    
t

i  i 
t

idt 

 Calculate the elastic stretch from:  e   
t dt 

 
t dt

i
- 

 

 Determine the damage affected Cauchy stress from Eq 6.18 

 Calculate the flow stress using Eq B.59 for the Mandel Stress (weighted by the factor (1-

d) to account for damage effects) and Eq B.82 for the flow stress 

 Calculate the direction and magnitude of the inelastic flow from Eq B.83 and Eq B.84 

 Calculate the structural flow rate from Eq B.79 

 Calculate  t from Eq B.87 

 Update the damage parameter using the damage model discussed in 6.2.1 

 Save the state variables for the next time increment  
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Appendix  JS VUMAT FORTRAN Code C.

 

!     FILE: 

! 

!     JS_v6.f 

! 

!     AUTHOR: 

! 

!     Eric Clough (eclough@calpoly.edu) 

! 

!     CONTENTS: 

! 

!     A VUMAT for the JS continuum fabric model including inelastic deformation 

!     and viscous regularized damage growth  

 

! 

!     CREATED: 

!     October 20th 2013 

!  

! 

!     |<- column 1 begins here 

!     | 

!     *User material, constants=21 

!     **..:....1....:....2....:....3....:....4....:....5....:....6....:....7....:....8 

!     ** 

!     .....Elastic properties..... 

!     props(1):   mu    ...modulus like parameter [Pa] 

!     props(2):   llock ...fiber locking stretch 

!     props(3):   kappa ...bulk modulus [Pa] 

!     props(4):   tolln ...compression exponent (from Toll Van-Wyk model) 

!  

!     .....Initial Fabric Ellipsoid "G0"..... 

!     Symmetric, positive definite 

!     Trace must be equal to 3 to satisfy normalization condition 

!     props(5) :  G011 

!     props(6) :  G022 

!     props(7) :  G033 

!     props(8) :  G012 

!     props(9) :  G023 

!     props(10):  G031  

!      

!     ..........................Inelastic Properties................................ 

!      

!     props(11):  tau0  ... initial flow stress norm [Pa] 

!     props(12):  alpha ... hardening rate parameter [Pa] 

!     props(13):  inelm ... (m in JS paper) captures non-linearity and rate effects 

!     props(14):  nu    ... volume exclusion parameter 

!     props(15):  St0   ... hardening modulus [Pa] 

!     props(16):  gmdot0... inelastic flow strain rate [1/sec] 

! 

!     ............................Damage Properties................................. 

! 

!     props(17):  Gfrac ... "fracture energy" 

!     props(18):  mdam  ... damage exponent 

!     props(19):  sigd0  ... damage initiation von-mises stress 
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!     props(20):  etad  ... damage viscosity 

!     props(21):  maxd  ... maximum damage before erosion occurs 

! 

! 

! 

!     ............................State variables................................... 

!     .....Time varying Fabric Ellipsoid "Gt"..... 

!     statev(1) : Gt11 

!     statev(2) : Gt22 

!     statev(3) : Gt33 

!     statev(4) : Gt12 

!     statev(5) : Gt23 

!     statev(6) : Gt31 

 

!     .....Uinelastic at the previous time step..... 

!     statev(7) : Ui11 

!     statev(8) : Ui22 

!     statev(9) : Ui33 

!     statev(10): Ui12 

!     statev(11): Ui23 

!     statev(12): Ui31 

 

!     .....Inelastic hardening variable..... 

!     statev(13): St 

 

!     .....Rate of change of fabric ellipsoid Gdot..... 

!     statev(14) : Gdot11 

!     statev(15) : Gdot22 

!     statev(16) : Gdot33 

!     statev(17) : Gdot12 

!     statev(18) : Gdot23 

!     statev(19) : Gdot31 

 

!     .....Counter for variable initialization.....  

!     statev(20): count 

! 

!     .....Damage variable.....  

!     statev(21): dmg 

! 

!     .....Viscous regularized damage .....  

!     statev(22): dmgv 

! 

!     ..... Seed integer for RNG .....  

!     statev(23): oseed 

! 

!     ..... Characteristic length..... 

!     statev(24): lch 

! 

!     ..... Integration point erosion flag ..... 

!     statev(25): delint 

*------------------------------------------------------------------------------ 

 

!     NOTES: 

!     This VUMAT only works for 3D elements in the current 

!     implementation and would have to be modified to accomodate 2D or 

!     axisymmetric elements. In several locations small numbers are replaced by 
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!     the parameter "zero." This may not be necessary depending on the problem. 

 

!     SUBROUTINES 

!     1.  push   ->  tensor push forward U*A*U^T     

!     2.  lnginv ->  Calculates the inverse Langevin function 

!     3.  luinv  ->  Inverts an n x n matrix using an LU decomposition 

!     4.  ludcmp ->  performs an LU decomposition of a matrix 

!     5.  lubksb ->  solves a system of equations with an LU decomposed LHS 

!     6.  norm   ->  calculates the norm of a symmetric 3x3 tensor 

!     7.  srand  ->  pseudorandom number generator 

 

! 

*------------------------------------------------------------------------------  

!  Start Abaqus required VUMAT Header 

! 

      subroutine vumat( 

! Read only (unmodifiable)variables - 

     1  nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 

     2  stepTime, totalTime, dt, cmname, coordMp, charLength, 

     3  props, density, strainInc, relSpinInc, 

     4  tempOld, stretchOld, defgradOld, fieldOld, 

     5  stressOld, stateOld, enerInternOld, enerInelasOld, 

     6  tempNew, stretchNew, defgradNew, fieldNew, 

! Write only (modifiable) variables - 

     7  stressNew, stateNew, enerInternNew, enerInelasNew ) 

! 

      include 'vaba_param.inc' 

! 

      dimension props(nprops), density(nblock), coordMp(nblock,*), 

     1  charLength(nblock), strainInc(nblock,ndir+nshr), 

     2  relSpinInc(nblock,nshr), tempOld(nblock), 

     3  stretchOld(nblock,ndir+nshr), 

     4  defgradOld(nblock,ndir+nshr+nshr), 

     5  fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 

     6  stateOld(nblock,nstatev), enerInternOld(nblock), 

     7  enerInelasOld(nblock), tempNew(nblock), 

     8  stretchNew(nblock,ndir+nshr), 

     8  defgradNew(nblock,ndir+nshr+nshr), 

     9  fieldNew(nblock,nfieldv), 

     1  stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 

     2  enerInternNew(nblock), enerInelasNew(nblock) 

! 

      character*80 cmname 

 

*                    End VUMAT required Header 

*------------------------------------------------------------------------------  

 

!     define variables 

      real U(3,3),G0(3,3),pushGt(3,3),trG0,leff,llock,Jac,t1,t2,t3,t4, 

     1  mu,kappa,tolln,beta,beta0,Ui(3,3),Ue(3,3),Di(3,3),A(3,3), 

     2  trGt,SPK(3,3),Xi(3,3),Je,Ceinv(3,3),N(3,3),tau0,alpha,inelm, 

     3  nu,St0,gmdot0,detGt,detG0,Gt(3,3),Gtinv(3,3),Gdot(3,3),tau, 

     4  gamdot,St,Tflow(3,3),dmg,Gfrac,lch,rand,dmgv,maxd,seff,sigd0, 

     5  admg,dsr 

      integer i,j,k,count,oseed 

      parameter zero=0d0,one=1d0,two=2d0,half=5d-1,third=1d0/3d0, 
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     2 fourth=1d0/4d0,tiny=1e-32,twothird=2d0/3d0,threehalf=3d0/2d0 

      

!     Elastic Properties       

      mu = props(1) 

      llock = props(2) 

      kappa = props(3) 

      tolln = props(4) 

       

!     setup G0 (fabric ellipsoid in ref config) 

      G0(1,1) = props(5) 

      G0(2,2) = props(6) 

      G0(3,3) = props(7) 

      G0(1,2) = props(8) 

      G0(2,3) = props(9) 

      G0(3,1) = props(10) 

      G0(2,1) = props(8) 

      G0(3,2) = props(9) 

      G0(1,3) = props(10) 

       

!     Inelastic Properties       

      tau0= props(11) 

      alpha= props(12) 

      inelm= props(13) 

      nu= props(14) 

      St0= props(15) 

      gmdot0= props(16) 

       

!     Damage Properties       

      Gfrac= props(17) 

      mdam= props(18) 

      sigd0= props(19) 

      etad= props(20) 

      maxd= props(21) 

 

!     Calculate the trace of G0 

!     this should always equal 3 

      trG0=G0(1,1)+G0(2,2)+G0(3,3) 

!     Calculate the determinant of G0         

      t1 = G0(1,1) * (G0(2,2)*G0(3,3) - G0(2,3)**2) 

      t2 = G0(1,2) * (G0(2,3)*G0(1,3) - G0(1,2)*G0(3,3)) 

      t3 = G0(1,3) * (G0(1,2)*G0(2,3) - G0(2,2)*G0(1,3)) 

      detG0 = t1 + t2 + t3 

       

 

!     calculate beta0, which will be the same for all material points 

      leff=one !effective stretch in the reference configuration 

      call lnginv(leff,llock,beta0) ! gets beta0 

         

      IF (stepTime.eq.0) then !1 

       

      ! forces the material to behave elastically for the data check increment 

          Do i=1,nblock 

              Ue(1,1) = stretchNew(i,1) 

              Ue(2,2) = stretchNew(i,2) 

              Ue(3,3) = stretchNew(i,3) 

              Ue(1,2) = stretchNew(i,4) 
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              Ue(2,1) = Ue(1,2) 

              Ue(2,3) = stretchNew(i,5) 

              Ue(3,2) = Ue(2,3) 

              Ue(1,3) = stretchNew(i,6) 

              Ue(3,1) = Ue(1,3) 

 

                 

              !     Calculate the Jacobian of Ue 

              t1 = Ue(1,1) * (Ue(2,2)*Ue(3,3) - Ue(2,3)**2) 

              t2 = Ue(1,2) * (Ue(2,3)*Ue(1,3) - Ue(1,2)*Ue(3,3)) 

              t3 = Ue(1,3) * (Ue(1,2)*Ue(2,3) - Ue(2,2)*Ue(1,3)) 

              Je = t1 + t2 + t3         

                 

              Gt=G0        

              !     Calculate the push forward of Gt 

              call push(Gt,Ue,ndir,pushGt) 

                 

              leff=sqrt((pushGt(1,1)+pushGt(2,2)+pushGt(3,3))/trG0) 

              call lnginv(leff,llock,beta)! gets beta 

              t1 = mu/(Je*trG0) !leading coefficient 

              t2 = llock/leff*beta !inverse of the stretch ratio * beta 

              t3 = kappa*((Je**(-tolln))-1) !Toll Van Wyk term 

              t4 = llock*beta0 

               

              !     Update the Cauchy stress      

              stressNew(i,1) = t1*(t2*pushGt(1,1)-t4*Gt(1,1))-t3 !Sig11 

              stressNew(i,2) = t1*(t2*pushGt(2,2)-t4*Gt(2,2))-t3 !Sig22 

              stressNew(i,3) = t1*(t2*pushGt(3,3)-t4*Gt(3,3))-t3 !Sig33 

              stressNew(i,4) = t1*(t2*pushGt(1,2)-t4*Gt(1,2))    !Sig12 

              stressNew(i,5) = t1*(t2*pushGt(2,3)-t4*Gt(2,3))    !Sig23 

              stressNew(i,6) = t1*(t2*pushGt(3,1)-t4*Gt(3,1))    !Sig31 

               

        !     .....    Store the new Gt       ..... 

              stateNew(i,1) =Gt(1,1) 

              stateNew(i,2) =Gt(2,2) 

              stateNew(i,3) =Gt(3,3) 

              stateNew(i,4) =Gt(1,2) 

              stateNew(i,5) =Gt(2,3) 

              stateNew(i,6) =Gt(3,1) 

               

        !     ..... Store the new Uinelastic  .....       

              stateNew(i,7) =one 

              stateNew(i,8) =one 

              stateNew(i,9) =one 

              stateNew(i,10)=zero 

              stateNew(i,11)=zero 

              stateNew(i,12)=zero            

               

              !     Make sure that erosion is off for the data check increment 

              stateNew(i,25) = one 

        enddo 

      ELSE 
 

* 

*------------------------------------------------------------------------------  

*                   Loop through all material points 
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      do 100 i = 1, nblock 

* 

*------------------------------------------------------------------------------  

*                   Initialize the state variables 

      !     update count       

      count=stateOld(i,20)+1 

          !if in the first increment initialize variables 

          if (count.le.1) then !2 

 

          !     Set Gt to G0 

          Gt=G0  

          !     Set Ui to the identity tensor         

          Ui(1,1) =one 

          Ui(2,2) =one 

          Ui(3,3) =one 

          Ui(1,2) =zero 

          Ui(2,3) =zero 

          Ui(3,1) =zero 

          Ui(2,1) =zero     

          Ui(3,2) =zero 

          Ui(1,3) =zero 

           

          !     Set Gdot to zeros 

          Gdot(1,1) =zero 

          Gdot(2,2) =zero 

          Gdot(3,3) =zero 

          Gdot(1,2) =zero 

          Gdot(2,3) =zero 

          Gdot(3,1) =zero 

          Gdot(2,1) =zero 

          Gdot(3,2) =zero 

          Gdot(1,3) =zero 

           

          !     initialize the damage variable 

          dmg=zero 

          dmgv=zero 

           

          !     initialize the characteristic length 

          stateNew(i,24)=charLength(i) 

           

          !     intialize erosion flag 

          stateNew(i,25)=one 

            

          !     Set St to St0 

          St=St0 !St 

          else !setup from stateOld 

                         

          !       Setup Gt 

          Gt(1,1)=stateOld(i,1) 

          Gt(2,2)=stateOld(i,2) 

          Gt(3,3)=stateOld(i,3) 

          Gt(1,2)=stateOld(i,4) 

          Gt(2,3)=stateOld(i,5) 

          Gt(3,1)=stateOld(i,6)   

          Gt(2,1)=stateOld(i,4) 

          Gt(3,2)=stateOld(i,5) 
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          Gt(1,3)=stateOld(i,6) 

                     

          !     Setup the old inelastic stretch 

          Ui(1,1)=stateOld(i,7) 

          Ui(2,2)=stateOld(i,8) 

          Ui(3,3)=stateOld(i,9) 

          Ui(1,2)=stateOld(i,10) 

          Ui(2,3)=stateOld(i,11) 

          Ui(3,1)=stateOld(i,12) 

          Ui(2,1)=Ui(1,2) 

          Ui(3,2)=Ui(2,3) 

          Ui(1,3)=Ui(3,1) 

          !     Get the old St (hardening parameter) 

          St=stateOld(i,13) 

 

          !     Setup Gdot 

          Gdot(1,1)=stateOld(i,14) 

          Gdot(2,2)=stateOld(i,15) 

          Gdot(3,3)=stateOld(i,16) 

          Gdot(1,2)=stateOld(i,17) 

          Gdot(2,3)=stateOld(i,18) 

          Gdot(3,1)=stateOld(i,19) 

          Gdot(2,1)=stateOld(i,17) 

          Gdot(3,2)=stateOld(i,18) 

          Gdot(1,3)=stateOld(i,19) 

           

          !      damage variable 

          dmg=stateOld(i,21) 

           

          !     viscous regularized damage variable 

          dmgv=stateOld(i,22) 

           

          !     Integer seed for RNG 

          oseed=stateOld(i,23) 

           

!          !     store the characteristic length 

          lch=CharLength(i) 

          stateNew(i,24)=lch 

           

          !     integration point erosion flag 

          stateNew(i,25)=stateOld(i,25) 

          endif !2        

* 

*------------------------------------------------------------------------------  

*                   Update U, Gt, Di, Ui, Ue, pushGt, leff, and Beta 

!       setup U  

!       This model will be formulated in a corotational reference 

!       frame so we will use U rather than F 

 

        U(1,1) = stretchNew(i,1) 

        U(2,2) = stretchNew(i,2) 

        U(3,3) = stretchNew(i,3) 

        U(1,2) = stretchNew(i,4) 

        U(2,3) = stretchNew(i,5) 

        U(1,3) = stretchNew(i,6) 

        U(3,2) = U(2,3) 
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        U(2,1) = U(1,2) 

        U(3,1) = U(1,3) 

         

!       calculate the Jacobian of U 

        t1 = U(1,1) * (U(2,2)*U(3,3) - U(2,3)**2) 

        t2 = U(1,2) * (U(2,3)*U(1,3) - U(1,2)*U(3,3)) 

        t3 = U(1,3) * (U(1,2)*U(2,3) - U(2,2)*U(1,3)) 

        Jac = t1 + t2 + t3           

         

!       Update Gt using gamdot from the previous increment 

        Gt=Gt+Gdot*dt 

        do j=1,ndir 

            do k=1,ndir 

                if (Gt(j,k).lt.zero)then 

                Gt(j,k)=zero 

                endif 
                if (abs(Gt(j,k)).le.tiny)then 

                Gt(j,k)=zero 

                endif 

            enddo 

        enddo 
         

!       Calculate the trace of Gt         

        trGt=Gt(1,1)+Gt(2,2)+Gt(3,3) 

         

!       Calculate the determinant of Gt         

        t1 = Gt(1,1) * (Gt(2,2)*Gt(3,3) - Gt(2,3)**2) 

        t2 = Gt(1,2) * (Gt(2,3)*Gt(1,3) - Gt(1,2)*Gt(3,3)) 

        t3 = Gt(1,3) * (Gt(1,2)*Gt(2,3) - Gt(2,2)*Gt(1,3)) 

        detGt = t1 + t2 + t3 

         

!       Solve for Di using the approximate eqn Di=1/4*(inv(Gt)*Gdot+Gdot*inv(Gt)) 

        call diup(Gt,Gdot,ndir,Di,Gtinv) 

         

!       Update the inelastic stretch         

        Ui=Ui+matmul(Di,Ui)*dt     

         

!       Calculate Ue from Ue=U*inv(Ui), A=inv(Ui) in this case 

        call luinv(Ui,ndir,A) 

        Ue=matmul(U,A) 

!       Calculate the Jacobian of Ue 

        t1 = Ue(1,1) * (Ue(2,2)*Ue(3,3) - Ue(2,3)**2) 

        t2 = Ue(1,2) * (Ue(2,3)*Ue(1,3) - Ue(1,2)*Ue(3,3)) 

        t3 = Ue(1,3) * (Ue(1,2)*Ue(2,3) - Ue(2,2)*Ue(1,3)) 

        Je = t1 + t2 + t3         

                

!       Calculate the push forward of Gt 

        call push(Gt,Ue,ndir,pushGt) 

        ! gets pushGt 

 

!       Calculate the effective elastic stretch 

!       leff=sqrt(tr(U*Gt*U)/tr(Gt)) 

        leff=sqrt((pushGt(1,1)+pushGt(2,2)+pushGt(3,3))/trGt) 

 

!       Calculate the inverse Langevin function of the stretch ratio 

        call lnginv(leff,llock,beta) 
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        ! gets beta 

         

    

*------------------------------------------------------------------------------  

!                   Update SPK, Xi, and Cauchy stress       

! 

 

!       Calculate inv(Ue), A is overwritten and is now inv(Ue) 

        call luinv(Ue,ndir,A) 

        !print *, 'invUe', A 

!       Calculate inv(Ce)=inv(Ue)*inv(Ue) 

!       taking advantage of symmetry here 

!        Ceinv=matmul(A,A) 

        Ceinv(1,1)=A(1,1)**2+A(1,2)**2+A(1,3)**2 

        Ceinv(2,2)=A(1,2)**2+A(2,2)**2+A(2,3)**2 

        Ceinv(3,3)=A(1,3)**2+A(2,3)**2+A(3,3)**2 

        Ceinv(1,2)=A(1,1)*A(1,2)+A(1,2)*A(2,2)+A(3,1)*A(2,3) 

        Ceinv(2,3)=A(1,2)*A(3,1)+A(2,2)*A(2,3)+A(2,3)*A(3,3) 

        Ceinv(3,1)=A(1,1)*A(3,1)+A(1,2)*A(2,3)+A(3,1)*A(3,3) 

        Ceinv(2,1)=Ceinv(1,2)! 

        Ceinv(3,2)=Ceinv(2,3)! 

        Ceinv(1,3)=Ceinv(3,1)! 

         

 

! SPK = mu/(tr(Gt))*(llock/leff*beta*Gt-llock*beta0*inv(Ue)Gt*inv(Ue)) 

! -kappa*Je*(Je^(-n)-1)*inv(Ce) 

! this breaks down to: Spk= stretch term - repulsive term - bulk term the  

! strain energy is scaled back by the damage to account for fiber slip from 

! junction points 

 

      ! overwrite t1,t2,t3,t4 

        t1 = mu/(trGt)*(one-dmgv) !leading coefficient including damage 

        t2 = llock/leff*beta !inverse of the stretch ratio times beta 

        t3 = kappa*Je*((Je**(-tolln))-one)*(one-dmgv)!Toll Van Wyk term 

        t4 = llock*beta0 

 

! overwrite Xi with the term: inv(Ue)*Gt*inv(Ue) 

! this is actually the repulsive term in this context but will be overwritten    

! later with the real Xi 

      call push(Gt,A,ndir,Xi) 

! Calculate second Piola Kirchoff stress: SPK  

! in this case Xi is the repulsive stress term 

! I also multiply the terms by their respective coefficients in this step 

! taking advantage of symmetry here to save some computation                     

      SPK(1,1)=t1*(t2*Gt(1,1)-t4*Xi(1,1))-t3*Ceinv(1,1) 

      SPK(2,2)=t1*(t2*Gt(2,2)-t4*Xi(2,2))-t3*Ceinv(2,2) 

      SPK(3,3)=t1*(t2*Gt(3,3)-t4*Xi(3,3))-t3*Ceinv(3,3) 

      SPK(1,2)=t1*(t2*Gt(1,2)-t4*Xi(1,2))-t3*Ceinv(1,2) 

      SPK(2,3)=t1*(t2*Gt(2,3)-t4*Xi(2,3))-t3*Ceinv(2,3) 

      SPK(3,1)=t1*(t2*Gt(3,1)-t4*Xi(3,1))-t3*Ceinv(3,1) 

      SPK(2,1)=SPK(1,2) 

      SPK(3,2)=SPK(2,3) 

      SPK(1,3)=SPK(3,1) 

            

! Update the cauchy stress 

! Sig = mu/(Jac*tr(Gt))*(llock/leff*beta*pushGt-llock*beta0*Gt)-kappa*(Jac^(-n)-1)*I 
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! update t1,and t3 according to the cauchy stress coefficients 

! I don't use a push forward of SPK here due to the way I've defined the modulus 

      t1=t1/Jac 

      t3=t3/Je       

      stressNew(i,1) = t1*(t2*pushGt(1,1)-t4*Gt(1,1))-t3 !Sig11 

      stressNew(i,2) = t1*(t2*pushGt(2,2)-t4*Gt(2,2))-t3 !Sig22 

      stressNew(i,3) = t1*(t2*pushGt(3,3)-t4*Gt(3,3))-t3 !Sig33 

      stressNew(i,4) = t1*(t2*pushGt(1,2)-t4*Gt(1,2))    !Sig12 

      stressNew(i,5) = t1*(t2*pushGt(2,3)-t4*Gt(2,3))    !Sig23 

      stressNew(i,6) = t1*(t2*pushGt(3,1)-t4*Gt(3,1))    !Sig31 

      !print *, 'stressnew', stressnew(i,:) 

! Calculate the Mandel stress Xi=Ue*Ue*Spk 

!     Overwrite Xi (which was used for the repulsive term above) with Ce 

!     Taking advantage of symmetry 

      Xi(1,1)=Ue(1,1)**2+Ue(1,2)**2+Ue(1,3)**2 

      Xi(2,2)=Ue(1,2)**2+Ue(2,2)**2+Ue(2,3)**2 

      Xi(3,3)=Ue(1,3)**2+Ue(2,3)**2+Ue(3,3)**2 

      Xi(1,2)=Ue(1,1)*Ue(1,2)+Ue(1,2)*Ue(2,2)+Ue(3,1)*Ue(2,3) 

      Xi(2,3)=Ue(1,2)*Ue(3,1)+Ue(2,2)*Ue(2,3)+Ue(2,3)*Ue(3,3) 

      Xi(3,1)=Ue(1,1)*Ue(3,1)+Ue(1,2)*Ue(2,3)+Ue(3,1)*Ue(3,3) 

      Xi(2,1)=Xi(1,2) 

      Xi(3,2)=Xi(2,3) 

      Xi(1,3)=Xi(3,1) 

! Calculate the Mandel stress: Xi 

      Xi=matmul(Xi,SPK) !overwrite Xi again, now = Mandel stress 

*------------------------------------------------------------------------------  

! Calculate the inelastic flow stress, its magnitude, and direction 

      Tflow=half*(matmul(Xi,Gtinv)+matmul(Gtinv,Xi))      

! Calculate the volumetric part of Tflow  

      t1=third*(Tflow(1,1)+Tflow(2,2)+Tflow(3,3)) !overwrites t1 

! Calculate the deviatoric part of Tflow  

      Tflow(1,1)=Tflow(1,1)-t1 

      Tflow(2,2)=Tflow(2,2)-t1 

      Tflow(3,3)=Tflow(3,3)-t1 

      !pause 

! Calculate the Norm of Tflow 

      call norm(Tflow,ndir,t2) !overwrites t2 

      !print *, 'norm devTflow', t2 

! Calculate the direction of dev(Tflow)       

      N=Tflow/t2 

      !print *, 'N', N 

! Calculate the magnitude of dev(Tflow)       

      tau=t2/sqrt(two)       

*------------------------------------------------------------------------------  

! Perform the inelastic update           

      t1=tau-tau0      

      t2=detGt-nu*detG0 

      t3=third*(stressNew(i,1)+stressNew(i,2)+stressNew(i,3)) 

 

       

      If (t1.le.zero) then 

       

          gamdot=zero 

          Gdot(1,1) =zero 

          Gdot(2,2) =zero 

          Gdot(3,3) =zero 
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          Gdot(1,2) =zero 

          Gdot(2,3) =zero 

          Gdot(3,1) =zero 

          Gdot(2,1) =zero 

          Gdot(3,2) =zero 

          Gdot(1,3) =zero 

           

          else if (t3.lt.zero) then 

          !we don't want structural evolution in compaction  

 

          gamdot=zero 

          Gdot(1,1) =zero 

          Gdot(2,2) =zero 

          Gdot(3,3) =zero 

          Gdot(1,2) =zero 

          Gdot(2,3) =zero 

          Gdot(3,1) =zero 

          Gdot(2,1) =zero 

          Gdot(3,2) =zero 

          Gdot(1,3) =zero 

            else if (t1.lt.zero) then 

                    if (t2.eq.zero) then 

                    gamdot=zero 

                      Gdot(1,1) =zero 

                      Gdot(2,2) =zero 

                      Gdot(3,3) =zero 

                      Gdot(1,2) =zero 

                      Gdot(2,3) =zero 

                      Gdot(3,1) =zero 

                      Gdot(2,1) =zero 

                      Gdot(3,2) =zero 

                      Gdot(1,3) =zero  

                    endif 
            else if (t1.gt.zero) then 

                    if (t2.gt.zero) then 

                    gamdot=gmdot0*t2*(t1/St)**inelm 

                    Gdot=gamdot*N 

                    endif 

            else 
            print *,'Something went wrong' 

      endif 
       

*------------------------------------------------------------------------------  

!     Damage Model   

 

!     Calculate the Von Mises effective stress 

 

       

      if (t3.lt.0)then !don't want damage growth during compaction 

      seff=0 

      else 
      seff=(one/(one-dmgv))*sqrt(threehalf*( 

     1(stressNew(i,1)-t3)**two+(stressNew(i,2)-t3)**two+ 

     2(stressNew(i,3)-t3)**two+two*(stressNew(i,4)**two+ 

     3stressNew(i,5)**two+stressNew(i,6)**two))) 

      endif 
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!     Random number generator for stochastic effects 

      t2=one    

!      call srand (20029,oseed,t1) 

!        if (t1.le.half)then 

!        t2=one-5*t1/100 

!        else 

!        t2=one+5*(t1-half)/100 

!        endif 

 

       

      !damage stress ratio 

      dsr=seff/sigd0*t2    

 

!     Check to see if the damage threshold has been exceeded 

!     If it has, calculate the damage variable         

        if(dsr.gt.one)then 

         

      !calculate the Bazant and Oh factor  

      t3=mu*beta 

      admg=two*lch*sigd0**two/ 

     2(two*t3*Gfrac-lch*sigd0**two) 

       

      !evolve the damage parameter 

        t3=one-exp(-(admg*(dsr-one))**mdam) 

          if(t3.gt.dmg) then !damage cannot decrease 

          dmg=t3 

          endif               

        endif   
      ! update the viscous regularized damage   

      t4=dt/(etad+dt)*dmg+etad/(etad+dt)*dmgv 

       

      if (t4.gt.dmgv) then !check to ensure dmgv never decreases 

      dmgv=t4 

      endif 
               

      ! check for total failure  

      if(dmgv.ge.maxd)then 

      stateNew(i,25)=zero !erode if totally failed 

      dmgv=one 

      endif 
*------------------------------------------------------------------------------  

       

!     .....    Store the new Gt       ..... 

      stateNew(i,1) =Gt(1,1) 

      stateNew(i,2) =Gt(2,2) 

      stateNew(i,3) =Gt(3,3) 

      stateNew(i,4) =Gt(1,2) 

      stateNew(i,5) =Gt(2,3) 

      stateNew(i,6) =Gt(3,1) 

       

!     ..... Store the new Uinelastic  .....       

      stateNew(i,7) =Ui(1,1) 

      stateNew(i,8) =Ui(2,2) 

      stateNew(i,9) =Ui(3,3) 

      stateNew(i,10)=Ui(1,2) 
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      stateNew(i,11)=Ui(2,3) 

      stateNew(i,12)=Ui(3,1) 

       

!     ..... Update St the inelastic hardening variable .....       

      stateNew(i,13)=St+alpha*gamdot*dt 

       

!     .....    Store the new Gdot       ..... 

      !print *, 'Gdot end', Gdot 

      stateNew(i,14) =Gdot(1,1) 

      stateNew(i,15) =Gdot(2,2) 

      stateNew(i,16) =Gdot(3,3) 

      stateNew(i,17) =Gdot(1,2) 

      stateNew(i,18) =Gdot(2,3) 

      stateNew(i,19) =Gdot(3,1) 

       

!     ..... Store the new count value .....       

      stateNew(i,20)=count 

!     ..... Store the new damage parameter ..... 

      stateNew(i,21)=dmg 

!     ..... Store the new viscous damage parameter ..... 

      stateNew(i,22)=dmgv 

!!     ..... Store the new seed for the pseudorandom number generator ..... 

!      stateNew(i,23)=oseed 

             

       

 

 100  CONTINUE 

      endif !1 

      RETURN 
      END !end of the VUMAT 

 

 

*------------------------------------------------------------------------------ 

*------------------------------------------------------------------------------  

*------------------------------------------------------------------------------  

! 

!                                  Subroutines 

! 

*------------------------------------------------------------------------------  

*------------------------------------------------------------------------------  

*------------------------------------------------------------------------------  

 

 

 

*------------------------------------------------------------------------------  

* 1                   NxN Matrix Push Forward Subroutine "push" 

! 

!  Subroutine to push an nxn matrix forward into the present configuration. 

!  This could also be called to rotate a matrix forward into the present 

!  configuration. 

! 

!  INPUTS: 

!  1.  M       ->  Matrix to be pushed (or rotated) forward 

!  2.  U       ->  Either deformation gradient or the rotation matrix    

!  3.  ndir    ->  Size of the matrix to be pushed (or rotated) forward  

!                  (nxn == ndirxndir)ndir is included in this subroutine  
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!                  in the event that a future version of this VUMAT  

!                  supports elements other than 3D continuum elements 

! 

!  OUTPUTS: 

!  1.  MP      ->  pushed forward matrix also of size (ndir x ndir) 

!   

!  INTERNAL: 

!  1.  M1      ->  multiplication of U*M 

*------------------------------------------------------------------------------       

 

        subroutine push(M,U,ndir,Mpush) 

        integer ndir,i,j 

         

        real M(ndir,ndir),M1(ndir,ndir),U(ndir,ndir),Ut(ndir,ndir), 

     1  Mpush(ndir,ndir) 

               

! Multiply U times m 

        M1=matmul(U,M) 

        Ut=transpose(U) !if using U the transpose is unnecessary 

!       multiply (U*M) by Ut to get M1 

        Mpush=matmul(M1,Ut) 

        return 

        end 
 

*------------------------------------------------------------------------------  

* 2                   inverse langevin function subroutine "lnginv" 

! 

!       this subroutine calculates the inverse langevin function of an 

!       input argument. this input argument is either 1/llock for beta0 or 

!       leff/llock for beta. 

! 

!       this subroutine can use a taylor series approximation of the 

!       inverse langevin function, or a Pade' approximant (which leads to a  

!       stiffer response with fewer terms than a taylor series approximation).  

!       The Pade approximant suffers from an instability as the input argument 

!       exceeds a value of one.        

! 

!  inputs: 

!  1.  leff    ->  effective stretch 

!  2.  llock   ->  locking stretch 

! 

!  outputs: 

!  1.  beta    ->  output of the inverse langevin function 

!   

*------------------------------------------------------------------------------       

 

        subroutine lnginv(leff,llock,beta) 

!       argument declarations                

        real leff,llock,beta,x 

        parameter thirtyfive=3.5e1,thirtythree=3.3e1,twelve=1.2e1, 

     1  two=2d0,three=3d0 

 

!       calculate the stretch ratio leff/llock 

        x=leff/llock         

!       calculate the inverse langevin function 

!        beta= 3*x+9/5*x**3+297/175*x**5+1539/875*x**7 !Taylor 
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        beta= three*x*((thirtyfive-twelve*x**two)/ 

     1        (thirtyfive-thirtythree*x**two)) !Pade approx 

        return 

        end 
         

*------------------------------------------------------------------------------  

*  3              nxn matrix inversion subroutine by LU Decomposition 

!  The LU decomposition used in this VUMAT is from: 

!   

!  Press, William H. Numerical recipes in Fortran 77: the art of scientific computing.  

!  Vol. 1. Cambridge university press, 1992. 

!   

!  This subroutine calls ludcmp and lubksb to form the inverse of a matrix.  

!  Y is set as the identity matrix but could instead be a matrix that the inverse of A  

!  will be multiplied with (ex. A^-1*Y=X). Using LU in this case saves a matrix  

!  multiply computation. 

! 

!  inputs: 

!  1.  a       ->  matrix to be inverted 

!  2.  np      ->  size of the matrix to be inverted (nxn == ndirxndir) 

! 

!  outputs: 

!  1.  y       ->  inverted matrix also of size (ndir x ndir) 

*------------------------------------------------------------------------------  

      subroutine luinv (a,np,y) 

      INTEGER np,indx(np),d 

      REAL a(np,np),b(np,np),y(np,np) 

       

      n=np 

!     the authors use both n and np, in the LU subroutines, this seems unnecessary 

      b=a 

      do i=1,n !12 Set up identity matrix. 

        do j=1,n !11 

        y(i,j)=0. 

        enddo !11 

      y(i,i)=1. 

      enddo !12 

 

      call ludcmp(b,n,np,indx,d) !Decompose the matrix just once. 

        do j=1,n !13 Find inverse by columns. 

        call lubksb(b,n,np,indx,y(1,j)) 

!     Note that FORTRAN stores two-dimensional matrices by column, so y(1,j) is the 

!     address of the jth column of y. 

        enddo !13   

      return 

      END 
 

*------------------------------------------------------------------------------  

*  4              LU Decomposition of an nxn matrix 

! 

!     Given a matrix a(1:n,1:n), with physical dimension np by np, this routine replaces it by 

!     the LU decomposition of a rowwise permutation of itself. a and n are input. a is output, 

!     arranged as in equation (2.3.14) above; indx(1:n) is an output vector that records the 

!     row permutation effected by the partial pivoting; d is output as ±1 depending on whether 

!     the number of row interchanges was even or odd, respectively. This routine is used in 

!     combination with lubksb to solve linear equations or invert a matrix. 
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! 

!  inputs: 

!  1.  a       ->  matrix to be decomposed 

!  2.  n       ->  size of the matrix to be decomposed (nxn == ndirxndir) 

!  3.  np      ->  same as n 

!  4.  indx    ->  output vector 

! 

!  outputs: 

!  1.  a      ->  inverted matrix also of size (ndir x ndir) destroys the input matrix 

*------------------------------------------------------------------------------         

      SUBROUTINE ludcmp(a,n,np,indx,d) 

      INTEGER n,np,indx(n),NMAX 

      REAL d,a(np,np),TINY 

      PARAMETER (NMAX=3,TINY=1.0e-20)  

      !Largest expected n, and a small number "TINY". 

      INTEGER i,imax,j,k 

      REAL aamax,dum,sum,vv(NMAX)  

      !vv stores the implicit scaling of each row. 

      d=1. !No row interchanges yet. 

      do i=1,n !12 

      !Loop over rows to get the implicit scaling information. 

      aamax=0. 

        do j=1,n !11 

            if(abs(a(i,j)).gt.aamax)aamax=abs(a(i,j)) 

        enddo !11 

          if(aamax.eq.0.) pause 'singular matrix in ludcmp'  

          !No nonzero largest element. 

      vv(i)=1./aamax !Save the scaling. 

      enddo !12 

 

      do j=1,n !19 This is the loop over columns of Crout's method. 

        do i=1,j-1 !14 This is equation (2.3.12) except for i=j. 

        sum=a(i,j) 

            do k=1,i-1 !13 

            sum=sum-a(i,k)*a(k,j) 

            enddo !13 

        a(i,j)=sum 

        enddo !14 

      aamax=0. !Initialize for the search for largest pivot element. 

      do i=j,n !16 

      !This is i=j of equation (2.3.12)and i=j+1...N of equation (2.3.13).  

      sum=a(i,j) 

        do k=1,j-1 !15 

        sum=sum-a(i,k)*a(k,j) 

        enddo !15 

      a(i,j)=sum 

      dum=vv(i)*abs(sum) !Figure of merit for the pivot. 

        if(dum.ge.aamax)then !Is it better than the best so far? 

        imax=i 

        aamax=dum 

        endif 
      enddo !16 

        if(j.ne.imax)then !Do we need to interchange rows? 

            do k=1,n !17 Yes, do so... 

            dum=a(imax,k) 

            a(imax,k)=a(j,k) 
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            a(j,k)=dum 

            enddo !17 

        d=-d !...and change the parity of d. 

        vv(imax)=vv(j) !Also interchange the scale factor. 

        endif 
      indx(j)=imax 

        if(a(j,j).eq.0.) a(j,j)=TINY 

!    If the pivot element is zero the matrix is singular  

!     (at least to the precision of the algorithm). 

!    For some applications on singular matrices, it is desirable to substitute  

!    TINY for zero. 

 

        if(j.ne.n)then !Now, finally, divide by the pivot element. 

        dum=1./a(j,j) 

            do i=j+1,n !18 

            a(i,j)=a(i,j)*dum 

            enddo !18 

        endif 
      enddo !19 !Go back for the next column in the reduction. 

      return 

      END 
 

*------------------------------------------------------------------------------  

*  5              LU Back substitution of an nxn matrix 

! 

!     Solves the set of n linear equations A*X=B. Here a is input, not as the  

!     matrix A but rather as its LU decomposition, determined by the routine  

!     ludcmp. indx is input as thepermutation vector returned by ludcmp. b(1:n)  

!     is input as the right-hand side vector B,and returns with the solution  

!     vector X. a,n,np,and indx are not modified by this routineand can be left  

!     in place with successive call of right-hand sides b. This routine takes into   

!     account the possibility that b will begin with many zero elements,so it is  

!     effiecient for use in matrix inversion. 

! 

!  inputs: 

!  1.  a       ->  decomposed matrix 

!  2.  n       ->  size of the matrix 

!  3.  np      ->  same as n 

!  4.  indx    ->  permutation vector 

!  5.  b       ->  right hand side vector 

! 

!  outputs: 

!  1.  b       ->  now the x vector (destroys b) 

*------------------------------------------------------------------------------     

 

      SUBROUTINE lubksb(a,n,np,indx,b) 

      INTEGER n,np,indx(n) 

      REAL a(np,np),b(n) 

!     Local Declarations       

      INTEGER i,ii,j,ll 

      REAL sum 

      ii=0  

!    When ii is set to a positive value, it will become the index 

!    of the first nonvanishing element of b. We now do 

!    the forward substitution, equation (2.3.6). The only new 

!    wrinkle is to unscramble the permutation as we go. 



135 

 

      do i=1,n !12 

      ll=indx(i) 

      sum=b(ll) 

      b(ll)=b(i) 

        if(ii.ne.0)then 

            do j=ii,i-1 !11 

            sum=sum-a(i,j)*b(j) 

            enddo !11 

        elseif(sum.ne.0.)then 

        ii=i  

!    A nonzero element was encountered, so from now on we will 

!    have to do the sums in the loop above.  

        endif 
        b(i)=sum 

        enddo !12 

        do i=n,1,-1 !14 

        ! Now we do the backsubstitution, equation (2.3.7). 

        sum=b(i) 

            do j=i+1,n !13 

            sum=sum-a(i,j)*b(j) 

            enddo !13 

        b(i)=sum/a(i,i)! Store a component of the solution vector X. 

        enddo !14 

      return 

      END 
* 

 

*------------------------------------------------------------------------------  

*  6              Euclidean Norm 

! 

!    Solves for the Euclidean Norm of a matrix. This equals the square root of  

!    the sum of the squares of all elements in the matrix, and is used in  

!    calculating the magnitude of inelastic flow. This procedute takes advantage  

!    of symmetry in Tflow. 

 

! 

!  inputs: 

!  1.  a       ->  input matrix 

!  2.  n       ->  dimension of the matrix (nxn) 

! 

!  outputs: 

!  1.  anorm   ->  norm 

*------------------------------------------------------------------------------   

      SUBROUTINE norm(a,n,anorm) 

      INTEGER n,i,j 

      REAL a(n,n),anorm,sum 

      PARAMETER zero=0.d0, two=2.d0 

 

       

      anorm=sqrt(A(1,1)**two+A(2,2)**two+A(3,3)**two+two*A(1,2)**two 

     2+two*A(2,3)**two+two*A(3,1)**two) 

!           sum=zero 

!      do j=1,n 

!        do i=1,n 

!        sum=sum+a(i,j)**two 

!        enddo 
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!      enddo 

!      anorm=sqrt(sum) 

      return 

      END 
       

*------------------------------------------------------------------------------  

*  7             Approximate equation for the inelastic stretch rate Di 

! 

!     This Subroutine reads in Gt and Gdot and returns Di using the equation 

!     Di=1/4*(inv(Gt)*Gdot+Gdot*inv(Gt). LU decompose is called once and LU backsub 

!     is called twice. First with Gdot as the right hand side (saves a matmul operation) 

!     and then is called with the identity tensor as the right hand side. 

! 

! 

!  inputs: 

!  1.  Gt       ->  Structure tensor 

!  2.  Gdot     ->  Time derivative of Gt 

!  3.  ndir     ->  number of directions (3) 

! 

!  outputs: 

!  1.  Di       ->  Inelastic stretch rate (ndir x ndir) 

!  2.  C        ->  Inverse of Gt for later use in calculating the flow stress 

*------------------------------------------------------------------------------  

      subroutine diup(Gt,Gdot,ndir,Di,C) 

       

      INTEGER ndir,indx(ndir),d,k,j 

      REAL Gt(ndir,ndir),Gdot(ndir,ndir),Di(ndir,ndir),A(ndir,ndir), 

     2 B(ndir,ndir), C(ndir,ndir) 

      PARAMETER zero=0d0,one=1d0,fourth=1d0/4d0,tiny=1e-32 

      

      ! setup the identity tensor 

      C(1,1)=one 

      C(2,2)=one 

      C(3,3)=one 

      C(1,2)=zero 

      C(1,3)=zero 

      C(2,1)=zero 

      C(2,3)=zero 

      C(3,1)=zero 

      C(3,2)=zero 

       

 

      A=Gt !so we don't overwrite Gt 

      B=Gdot !so we don't overwrite Gdot 

    

      call ludcmp(A,ndir,ndir,indx,d) !Decompose Gt only once! 

         

        !Calculate inv(Gt)*Gdot 

        do j=1,ndir 

        call lubksb(A,ndir,ndir,indx,B(1,j)) !overwrites B 

        enddo  
         

        !Calculate inv(Gt) 

        do j=1,ndir 

        call lubksb(A,ndir,ndir,indx,C(1,j)) !overwrites C with inv(Gt) 

        enddo 
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      ! Calculate Di   

      Di=fourth*(B+matmul(Gdot,C)) 

       

      !replace any very small numbers with zero to avoid underflow 

      do k=1,ndir 

        do j=1,ndir 

        if (abs(Di(k,j)).le.tiny) then 

           Di(k,j)=zero 

        endif 
        if (abs(C(k,j)).le.tiny) then 

        C(k,j)=zero 

        endif  

        enddo 

      enddo  

      return 

      END 
       

       

*------------------------------------------------------------------------------ 

*  8             srand 

! 

 

!     This subroutine calculates a pseudorandom number between 0 and 1. It can  

!     be used to model stochastic effects in the damgage growth. 

! 

! 

!  inputs: 

!  1.  iseed     ->  initial seed 

! 

!  outputs: 

!  1.  random    ->  a pseudorandom number between 0 and 1 

!  2.  oseed     ->  the integer seed 

*------------------------------------------------------------------------------    

        subroutine srand(iseed,oseed,random) 

        Integer iseed,c1,c2,oseed 

        Parameter (c1=19423, c2=811) 

        Real random 

         

        if (oseed.eq.0) then 

        oseed=iseed 

        endif 
        oseed=mod(c1*oseed,c2) 

        random=real(oseed)/real(c2) 

        return 

        end 
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