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Abstract

We derived a Reynolds type equation for a ferrofluid lubrica-
tion in a squeeze film between two circular plates using Jenkins
model and considering combined effects of rotation of the plates,
anisotropic permeability in the porous matrix and slip velocity
at the interface of porous matrix and film region. We used it to
study the case of a parallel-plate squeeze film bearing. Expres-
sions were obtained for dimensionless pressure, load capacity
and response time. Computed values were displayed some in
tabular form and some in graphical form. The load capacity
decreased with increasing values of the radial permeability and
attained a minimum when the plates rotated in the opposite
directions with nearly the same speed. It increased with in-
creasing values of the axial permeability or material constant
of Jenkins model and attained a maximum when the value of
the material constant was near unity. It increased or decreased
for increasing values of the speed of rotation of the upper plate
according as the value of the material constant is zero or not.
The response time slowly decreased with increasing values of
the radial permeability, speed of rotation of upper plate or
the material constant. But, it increased with increasing val-
ues of the axial permeability and attained a maximum when
the plates rotated in opposite directions with nearly the same
speed. Anisotropic permeability affected the bearing character-
istics considerably.
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Nomenclature

a radius of each plate
F defined in eq.(15)
F ∗ defined in eq.(22)
G defined in eq.(14)
G∗ defined in eq.(21)
h general film thickness
h̄ h/h0

h0 central film thickness
h̄0 h0/h2

h2 initial film thickness
H0 thickness of porous facing
H̄ external magnetic field
H magnitude of H̄
k defined in eq.(12)
p film pressure
p̄ defined in eq.(12)
P porous pressure
r radial coordinate
R r/a
s slip constant
s̄ sh0

s∗ sh2

S defined in eq.(12)
S1 defined in eq.(20)
t time
t̄ defined in eq.(20)
u radial component of film fluid velocity
ū radial component of porous fluid velocity
w axial component of film fluid velocity
w̄ axial component of porous fluid velocity
W load capacity
W̄ defined in eq.(18)
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z axial coordinate
M magnitude of M̄
M̄ magnetization vector
Ms saturation magnetization
M̄∗ corotational derivative of M̄
q̄ velocity vector of the film fluid
v the tangential component of q̄

Greek symbols

α2 material constant of Jenkins model
β2 defined in eq.(12)
γ∗ defined in eq.(12)
γ∗1 defined in eq.(20)
η fluid viscosity
ηr porosity of porous facing
µ0 permeability of free space
µ̄ magnetic susceptibility
µ∗ defined in eq.(12)
µ∗

1 defined in eq.(20)
ρ fluid density
φ inclination to H̄ to the radial direction
φr permeability in the radial direction
φz permeability in the axial direction
ψr defined in eq.(12)
ψ∗

r defined in eq.(20)
ψz defined in eq.(12)
ψ∗

z defined in eq.(20)
Ωf Ωl/Ωu

Ωl angular speed of lower plate
Ωr Ωu − Ωl

Ωu angular speed of the upper plate
γ another material constant
χ0 initial susceptibility of the fluid
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1 Introduction

When studying porous bearing problems it was usual to assume no slip
condition at the porous surface. Beavers et al [1] and Sparrow et al [2]
not only showed that such an assumption need not hold at the nominal
boundary of a naturally permeable material but provided the necessary
boundary conditions also. Using these conditions Prakash and Vij [3]
studied the squeeze film behaviour for porous discs considering slip
velocity while Patel and Gupta [4] analysed a porous slider bearing
considering slip velocity. The increase in the slip parameter decreased
the load capacity of the bearings.

Another assumption usually made is that the permeability in the
porous matrix is isotropic. Owing to manufacturing defects it may be
different along the three axes. With this end in view Kulkarni and
Vinay Kumar [5] obtained a new lubrication equation for porous slider
bearings considering anisotropic permeability in the porous matrix as
well as the slip velocity at the porous-film interface. Bhat [6] extended
the equation [5] including the effect of a conducting lubricant under
a transverse magnetic field. Puri and Patel [7] analysed anisotropic
porous slider bearing considering slip velocity. Recently, Ram and
Verma [8] studied the ferrofluid lubrication in a porous inclined slider
bearing using Jenkins model for the ferrofluid flow while Shah and Bhat
[9] analysed the effect of rotation on the curved squeeze film betweeen
two circular plates using Neuringer-Rosensweig model.

In this paper, we use Jenkins model to derive a Reynolds type
equation for ferrofluid lubrication of a squeeze film between two circular
plates considering combined effects of rotation of the plates, anisotropic
permeability in the porous matrix and slip velocity at the interface
of porous matrix and film region. We use it to study the case of a
parallel plate squeeze film bearing. This paper also includes the added
advantage of inclusion of effect of material constant due to Jenkins
model.

2 Analysis

The bearing consists of two circular plates, each of radius a. The upper
plate has a porous facing of thickness H0 which is backed by a solid
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wall. It moves normally towards an impermeable and flat plate with a
uniform velocity

ḣ0 =
dh0

dt
,

where h0 is the central film thickness. The general film thickness is
h. But the figure 1 is to discuss the case when h = h0. The upper
and lower plates rotate with angular velocities Ωu and Ωl respectively.
We assume axisymmetric flow of the ferrofluid flowing as per Jenkins
model. The external magnetic field H̄ with magnitude H and inclina-
tion φ to the lower plate is taken,

H̄ = H(r)(cosφ(r, z), 0, sinφ(r, z))

i.e. H(r) depends only on radial coordinate so it is axisymmetric.
The governing equation as derived in Appendix is

∂2u

∂z2
=

1

η
(

1 − ρα2µ̄H

2η

)

[

d

dr

(

p− 1

2
µ0µ̄H

2

)

− ρr
(z

h
Ωr + Ωl

)2
]

, (1)

where p is the film pressure, u is the radial velocity of the fluid in the
film, η is the fluid viscosity, ρ is the fluid density, α2 is the material
constant, µ̄ is the magnetic susceptibility, µ0 is the permeability of the
free space and Ωr = Ωu − Ωl ,

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (2)

w being the axial component of the film fluid velocity.
Solving eq.(1) under the slip boundary conditions [2]

u = 0 when z = 0, u =
1

s

∂u

∂z
when z = h,

1

s
=

√
φrηr

5
, (3)

φr being the permeability of the fluid in the porous matrix in the radial
direction and ηr being the porosity in the same direction, we obtain
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u =
z

2η (sh− 1)

(

1 − ρα2µ̄H

2η

)

[(

hsz − sh2 − z + 2h
)

×

d

dr

(

p− 1

2
µ0µ̄H

2

)

− ρr

6h2

{(

hsz3 − sh4 − z3 + 4h3
)

Ω2

r +

4h
(

hsz2 − sh3 − z2 + 3h2
)

ΩrΩl+

6h2
(

hsz − sh2 − z + 2h
)

Ω2

l

}]

. (4)

The radial and axial velocity components of the fluid in the porous
matrix are given by a generalized Darcy’s law considering contributions
from the magnetic pressure and the material constant as in eq.(A.9)
and rotation of the upper plate as [8]

ū = −φr

η

[

∂

∂r

(

P − 1

2
µ0µ̄H

2

)

− ρ Ω2

ur +
ρα2µ̄

2

∂

∂z

(

H
∂u

∂z

)]

, (5)

w̄ = −φz

η

[

∂

∂z

(

P − 1

2
µ0µ̄H

2

)

− ρα2µ̄

2r

∂

∂r

(

rH
∂u

∂z

)]

, (6)

φz is the permeability of the porous fluid in the axial direction and P
is the fluid pressure there.

Substitution of eqs.(5) – (6) in the continuity equation

1

r

∂

∂r
(rū) +

∂w̄

∂z
= 0 , (7)

and integrating it across the porous matrix, yields
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φrH0

r

d

dr

{

r
d

dr

(

p− 1

2
µ0µ̄H

2

)}

−

2ρ Ω2
uφrH0 − φz

∂

∂z

(

P − 1

2
µ0µ̄H

2

) ∣

∣

∣

∣

z=h

+

ρα2µ̄

2
(φr − φz)

1

r

∂

∂r

(

rH
∂u

∂z

) ∣

∣

∣

∣

h+H0

z=h

= 0 ,

(8)

using Morgan-Cameron approximation to get the first term and the
fact that the surface z = h+H0 is impermeable.

Using eq.(4), eq.(8) gives

∂

∂z

(

P − 1

2
µ0µ̄H

2

) ∣

∣

∣

∣

z=h

=
φrH0

φzr

d

dr

{

r
d

dr

(

p− 1

2
µ0µ̄H

2

)}

− 2ρΩ2
uφrH0

φz

+
ρα2µ̄

2ηφz

(φr − φz)
H0

r

× d

dr









rH

1 − ρα2µ̄H

2η

{

d

dr

(

p− 1

2
µ0µ̄H

2

)

− ρrΩ2
u

}









.

(9)

Owing to continuity of the fluid velocity components across the
surfaces z = h, we have

wz=h = ḣ0 + w̄|z=h = ḣ0 −
φz

η

[

∂

∂z

(

P − 1

2
µ0µ̄H

2

) ∣

∣

∣

∣

z=h

−sρα
2µ̄

2

1

r

d

dr















rHh2

2η (sh− 1)

(

1 − ρα2µ̄H

2η

)

×
(

d

dr

(

p− 1

2
µ0µ̄H

2

)

− ρr

6
(3Ω2

r + 8ΩlΩr + 6Ω2
l )

)}]

,

(10)
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using eqs.(4) and (6).

Integrating eq.(2) across the film thickness and using eqs.(9) and
we obtain the Reynolds type equation in this case as

1

r

d

dr























12φrH0 +
h3 (4 − sh) + 3sρα2µ̄φzh

2H/η

(1 − sh)

(

1 − ρα2µ̄H

2η

)

+
6ρα2µ̄ (φr − φz)H0H

η

(

1 − ρα2µ̄H

2η

)















r
d

dr

(

p− 1

2
µ0µ̄H

2

)









= 12ηḣ0 +24ρ Ω2

uφrH0 +6ρα2µ̄ (φr − φz)
H0

ηr

d

dr









ρr2Ω2
uH

1 − ρα2µ̄H

2η









(11)

−sρ2α2µ̄
φz

2ηr

d

dr















r2h2H (3Ω2
r + 8ΩlΩr + 6Ω2

l )

(sh− 1)

(

1 − ρα2µ̄H

2η

)















−ρ
r

d

dr









r2h3

(sh− 1)

(

1 − ρα2µ̄H

2η

)

{

3

10
(6 − sh) Ω2

r

+(5 − sh) ΩrΩl + (4 − sh) Ω2

l

}]

,
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Using the quantities

H2 =
kr2 (a− r)

a
, R =

r

a
, h̄ =

h

h0

, ψr =
φrH0

h3
0

, ψz =
φzH0

h3
0

s̄ = sh0 , β2 =
ρα2µ̄

√
ka

2η
, γ∗ =

6φz

h2
0

, µ∗ = −kµ0µ̄h
3
0

ηḣ0

p̄ = − h3
0p

ηa2ḣ0

, S = −ρΩ
2
uh

3
0

ηḣ0

, Ωf =
Ωl

Ωu

.

(12)

k being a quantity to suit the dimensions of both sides of the first eq.
in (12), eq.(11) can be expressed as

1

R

d

dR

[

GR
d

dR

{

p̄− 1

2
µ∗R2 (1 −R)

}]

=
1

R

d

dR
(RF ) , (13)

where

G =
h̄3

(

4 − s̄h̄
)

+ β2s̄γ∗h̄2R
√

1 −R
(

1 − s̄h̄
) (

1 − β2R
√

1 −R
) +

12
(

ψr − β2ψzR
√

1 −R
)

1 − β2R
√

1 −R
(14)

and

F = −6R +
12SR

(

ψr − β2ψzR
√

1 −R
)

(

1 − β2R
√

1 −R
)

−
Sβ2γ∗

(

3 + 2Ωf + Ω2
f

)

s̄h̄2R2
√

1 −R

6
(

s̄h̄− 1
) (

1 − β2R
√

1 −R
)

+
SRh̄3

{

3s̄h̄− 18 +
(

4s̄h̄− 14
)

Ωf +
(

3s̄h̄− 8
)

Ω2
f

}

10
(

s̄h̄− 1
) (

1 − β2R
√

1 −R
) .

(15)
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3 Solutions

Since the atmospheric pressure is negligible compared to the film pres-
sure, p̄(1) = 0.

Solving eq.(13) under the boundary conditions

p̄ (1) = 0,
dp̄

dR
= 0 when R = 0 (16)

yields

p̄ =
1

2
µ∗

(

R2 −R3
)

+

R
∫

1

F

G
dR . (17)

The load capacity W defined by the equation

w = 2π

a
∫

0

prdr ,

can be expressed in dimensionless form as

W̄ = − h3
0W

2πηa4ḣ0

=
µ∗

40
− 1

2

1
∫

0

R2F

G
dR . (18)

The response time t to reach a film thickness h0 starting with an
initial film thickness h2 is given in dimensionless form by the equation

dt̄

dh̄0

=

3
1
∫

0

R3

G∗

dR

− 1

2π
+
µ∗

1

40
− 1

2

1
∫

0

R2F ∗

G∗

dR

(19)

where

h̄0 =
h0

h2

, µ∗

1 =
kµ0µ̄a

4

W
, ψ∗

r =
φrH0

h3
2

, ψ∗

z =
φzH0

h3
2

,

γ∗1 =
6φz

h2
2

, t̄ =
h2

2Wt

ηa4
, s∗ = sh2 , S1 =

ρa4Ω2
u

W
,























(20)
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G∗ =
h̄3

0h̄
3
(

4 − s∗h̄0h̄
)

+ β2s∗γ∗1 h̄
2
0h̄

2R
√

1 −R
(

1 − s∗h̄0h̄
) (

1 − β2R
√

1 −R
)

+
12

(

ψ∗

r − β2ψ∗

zR
√

1 −R
)

1 − β2R
√

1 −R
,

(21)

F ∗ =
12S1R

(

ψ∗

r − β2ψ∗

zR
√

1 −R
)

(

1 − β2R
√

1 −R
)

−
S1β

2γ∗1
(

3 + 2Ωf + Ω2
f

)

s∗h̄2
0h̄

2R2
√

1 −R

6
(

s∗h̄0h̄− 1
) (

1 − β2R
√

1 −R
) (22)

+
S1Rh̄

3
0h̄

3
{

3s∗h̄0h̄− 18 +
(

4s∗h̄0h̄− 14
)

Ωf +
(

3s∗h̄0h̄− 8
)

Ω2
f

}

10
(

s∗h̄0h̄− 1
) (

1 − β2R
√

1 −R
) .

4 Results and discussion

The dimensionless pressure p̄ , load capacity W̄ , and response time
t̄ are given by equations (17)-(19). The main parameters appearing
in them are the radial and axial permeability parameters φr/h

2
0 and

φz/h
2
0, rotation parameters S and S1, magnetization parameters µ∗

and µ∗

1 , material parameter β2 of Jenkins model, rotational speeds
ratio parameter Ωf . By setting h̄ = 1 in eqs.(17)-(19) we obtain the
results for a parallel plate squeeze film bearing.

We take the representative values a = 0.05m, h0 = 2.5 × 10−5m,
ηr = 0.25, W = 50Kgms−2 , η = 2 × 10−3Kgm−1s−1 , µ̄ = 0.05,
µ0 = 4π×10−7Kgms−2A−2, ρ = 800Kgm−3, maxH = 1.9×105Am−1,
when Ωu = 10rads−1 , S = 0.25 and S1 = 0.01 for computing W̄ and
t̄. The computed values are displayed in Tables 1-2 and Figs. 2-7.

Table 1 shows that W̄ decreases slowly with increasing values of
φr/h

2
0 . However, W̄ increases with increasing values of φz/h

2
0 and the

increase in W̄ is marked for smaller values of φz/h
2
0. The values of W̄
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on the downward diagonal corresponds to the isotropic case where it
decreases slowly with increasing values of the permeability parameter.
From fig.2, when S increases, W̄ decreases slowly or increases markedly
according as φz/h

2
0 < 10−4 or not.

In Fig.3 values of W̄ for β2 = 0 correspond to Neuringer-Rosensweig
model [9] where W̄ decreases slowly with increasing values of S. How-
ever, in Jenkins model W̄ increases with increasing values of S and
attains a maximum for a values of β2 near 1. It can be seen from fig.4
that W̄ attains a minimum for a value of Ωf near -1, i.e. when the
plates rotate with nearly the same speed in opposite directions.

Table 2 shows that t̄ decreases slowly with increasing values of φr/h
2
0

and it increases slowly with increasing values of φz/h
2
0. Figures 5 – 6

show that t̄ decreases slowly with increasing values of S1 or β2. From
fig.7, t̄ attains a maximum when the plates rotate in opposite directions
with nearly the same speed. Since the slip parameter

1

s̄
=

√
ηrφr

5h0

,

increase in 1/s̄ causes decrease in both W̄ and t̄ as seen from Tables
1 and Fig.2 respectively. W̄ and t̄ depend on the strength k of the
magnetic field via µ∗ or µ∗

1 and β2.
Thus, anisotropic permeability of the porous facing can be used

to increase the load capacity of a parallel plate squeeze film porous
bearing.
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Table 1 Values of W̄ for different values of φr/h
2
0 and φz/h

2
0 for

β2 = 0.5, µ∗=19.6, S=0.25, Ωf = 1.0, H0/h0 = 10 .

φz/h
2
0

φr/h
2
0

10−7 10−6 10−5 10−4 10−3

10−7 2.953 1.287 1.120 1.098 1.038
10−6 19.609 2.953 1.287 1.115 1.040
10−5 186.201 19.613 2.952 1.280 1.055
10−4 1855.58 186.557 19.636 2.933 1.205
10−3 18902.691 1891.330 190.011 19.817 2.740

Table 2 Values of t̄ for different values of φr/h
2
0 and φz/h

2
0 for β2=0.5,

µ∗

1=0.785, S1 = 0.01, Ωf= 1.0, H0/h0 = 10, h̄0 = 0.8.

φz/h
2
0

φr/h
2
0

10−7 10−6 10−5 10−4 10−3

10−7 1.2860 1.2861 1.2850 1.2680 1.1052
10−6 1.2860 1.2861 1.2850 1.2680 1.1053
10−5 1.2863 1.2864 1.2853 1.2683 1.1055
10−4 1.2892 1.2893 1.2882 1.2711 1.1072
10−3 1.3195 1.3196 1.3185 1.3005 1.1296
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Appendix

The equations of Jenkins model[8] are

ρ
[

∂q̄

∂t
+ (q̄ • ∇)q̄

]

= −∇p+ η∇2q̄+

+µ0(M̄ • ∇)H̄ + ρα2∇×
(

M̄
M

× M̄∗

)

,
(A.1)

∇ • q̄ = 0 , (A.2)

∇× H̄ = 0 , (A.3)

∇ • (H̄ + 4πM̄) = 0 , (A.4)

γ
D2M̄

Dt2
= −4πρ

Ms

χ0

M̄

Ms −M
− 2α2

M
M̄∗ + H̄ (A.5)

with M̄∗ =
DM̄

Dt
+

1

2
(∇× q̄) × M̄ , (A.6)

where q̄ , γ, M̄,M,Ms, χ0 and M̄∗ are the fluid velocity, another mate-
rial constant, the magnetization vector, its magnitude, the saturation
magnetization, initial susceptibility of the fluid and the corotational
derivative of M̄ respectively.
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In the present analysis, we replace eq.(A.5) by

M̄ = µ̄H̄ . (A.7)

Using eqs. (A.3) and (A.7) , eq. (A.1) yields

ρ

[

∂q̄

∂t
+ (q̄ • ∇)q̄

]

= −∇p+ η∇2q̄ +
1

2
µ0µ̄∇H2+

+
ρα2µ̄

2
∇×

(

H̄

H
×

{

(∇× q̄) × H̄
}

)

.
(A.8)

Assume that the flow is quasi-steady, fully developed (i.e. sufficient
time elapsed after the flow started so that there are no singularities),
axially symmetric and incompressible. Then eq. (A.8) yields, with
usual assumptions of lubrication,

−ρv
2

r
= −∂p

∂r
+ η

∂2u

∂z2
+

1

2
µ0µ̄

∂H2

∂r
− ρα2µ̄H

2

∂2u

∂z2
, (A.9)

0 =
∂2v

∂z2
, (A.10)

0 =
∂p

∂z
. (A.11)

Solving eq.(A.10) under the boundary conditions:

v = rΩu when z = h, v = rΩl when z = 0

one obtains
v = r

(z

h
Ωr + Ωl

)

. (A.12)

Eqs.(A.9)-(A.12) yield eq.(1) of the text.

Submitted on July 2003, revised on December 2003.
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Figure 1: Configuration of the problem.

Figure 2: Dimensionless load capacity for different values of φz/h
2
0[per]

and S for φr/h
2
0 = 10−3, β2 = 0.5, µ∗ = 19.6, Ωf = 1.0, H0/h0 = 10 .
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Figure 3: Dimensionless load capacity for different values of β2

[mat.const.] and S for φr/h
2
0 = φz/h

2
0 = 10−5, µ∗ = 19.6, Ωf = 1.0,

H0/h0 = 10 .

Figure 4: Dimensionless load capacity for different values of Ωf [of]
and S for φr/h

2
0 = φz/h

2
0 = 10−5, µ∗= 19.6, β2 = 0.5, H0/h0 = 10 .
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Figure 5: Dimensionless response time for different values of φz/h
2
0

[per] and S1 for φr/h
2
0 = 10−3, β2 = 0.5, µ∗

1 = 0.785, Ωf = 1.0, H0/h0

= 10, h̄0 = 0.8 .

Figure 6: Dimensionless response time for different values of β2

[mat.const.] and S1 for φr/h
2
0 = φz/h

2
0 = 10−5, µ∗

1 = 0.785, Ωf =
1.0, H0/h0 = 10, h̄0 = 0.8 .
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Figure 7: Dimensionless response time for different values of Ωf [of]
and S1 for φr/h

2
0 = φz/h

2
0 = 10−5, µ∗

1 = 0.785, β2 = 0.5, H0/h0 = 10,
h̄0 = 0.8 .

Podmazivanje gvozdenim fluidom ležǐsta sa
stisnutim filmom

UDK 531.783

Izvedena je jednačina Rejnoldsovog tipa za podmazivanje gvoz-
denim fluidom u stisnutom filmu izmedju dve kružne ploče. Pritom
se koristi Dženkinsov model, a posmatraju se kombinovani efekti obr-
tanja ploča, anizotropne permeabilnosti u poroznoj matrici i brzini
klizanja na medjupovrši oblasti porozne matrice i filma. Nju smo
koristili za proučavanje clučaja nošenja stisnutog filma. Dobijeni su
izrazi za bezdimenzioni pritisak, kapacitet nosivosti i vreme odgov-
ora. Izračunate vrednosti su pokazane grafički i tabelarno. Kapacitet
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nosivosti je opadao sa porastom vrednosti radijalne permeabilnosti i
dostigao je minimum kada su se ploče obrtale u suprotnim smerovima
približno istom brzinom. On je rastao sa porastom vrednosti aksi-
jalne permeabilnosti ili materijalne konstante Dženkinsovog modela i
dostigao je maksimum kada je vrednost te materijalne konstante bila
približno jedanak jedinici. On je rastao ili opadao za rastuće vrednosti
brzine obrtanja gornje ploče zavisno od toga da li je ova materijalna
konstanta bila jednaka nuli ili ne. Vreme odgovora je sporo opadalo
sa porastima radijalne permeabilnosti, brzine obrtanja gornje ploče ili
pomenute materijalne konstante. Medjutim, ono je raslo sa porastom
vrednosti aksijalne permeabilnosti i dostiglo je maksimum kada su se
ploče obrtale u suprotnim smerovima približno istom brzinom. Ani-
zotropna permeabilnost je uticala značajno na karakteristike nosivosti.


