
A writer's collaborative assistant
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Tamara Babaian, Barbara J. Grosz, and Stuart M. Shieber. A writer's
collaborative assistant. In Proceedings of the Intelligent User
Interfaces Conference, pages 7-14, San Francisco, CA, January
2002. ACM Press.

Published Version http://doi.acm.org/10.1145/502716.502722

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252600

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193327683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20writer's%20collaborative%20assistant&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=94ea999075c4ed3103926050776e9bf6&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252600
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A Writer’s Collaborative Assistant

Tamara Babaian
CIS Dept., Bentley College

Waltham, MA 02452

tbabaian@bentley.edu

Barbara J. Grosz
DEAS, Harvard University

Cambridge, MA 02138

grosz@deas.harvard.edu

Stuart M. Shieber
DEAS, Harvard University

Cambridge, MA 02138

shieber@deas.harvard.edu

Abstract

In traditional human-computer interfaces, a human mas-
ter directs a computer system as a servant, telling it not
only what to do, but also how to do it. Collaborative inter-
faces attempt to realign the roles, making the participants
collaborators in solving the person’s problem. This paper
describes Writer’s Aid, a system that deploys AI planning
techniques to enable it to serve as an author’s collaborative
assistant. Writer’s Aid differs from previous collaborative
interfaces in both the kinds of actions the system partner
takes and the underlying technology it uses to do so. While
an author writes a document, Writer’s Aid helps in identify-
ing and inserting citation keys and by autonomously finding
and caching potentially relevant papers and their associated
bibliographic information from various on-line sources. This
autonomy, enabled by the use of a planning system at the
core of Writer’s Aid, distinguishes this system from other
collaborative interfaces. The collaborative design and its
division of labor result in more efficient operation: faster
and easier writing on the user’s part and more effective in-
formation gathering on the part of the system. Subjects in
our laboratory user study found the system effective and the
interface intuitive and easy to use.

1. Introduction and Motivation
In traditional human-computer interfaces, a person acts

as the master directing a computer-system servant. Collab-
orative interfaces [17] attempt to realign the roles, making
the participants collaborators in solving the user’s problem.
Formal models of collaboration [5, 8, 7] identify as some of
the key features of a collaborative activity commitment to
a shared, or joint, goal; an agreed-on division of labor; and
communication between the parties to enable the satisfac-
tion of joint goals. Whereas in a traditional interface the
human user is the repository of all goals and takes all the
initiative in determining ways to satisfy them, in a collabo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI ’02, January 13-16, 2002, San Francisco, California, USA
Copyright 2002 ACM 1-58113-459-2/02/0001 ...$5.00.

rative interface the participants establish shared goals and
both take initiative in satisfying them.

For example, the GLIDE system [16] is a network-diagram
layout tool in which the user and the computer simultane-
ously and seamlessly work to satisfy the user’s layout goals.
Goal-sharing is achieved by the user’s conveying layout goals
through direct manipulation, and the division of labor in
achieving the goals is implicit in the design of the system as
a whole. Thus, a level of collaboration is achieved without
explicit reasoning about goals or the state of the world. The
Distributed Information Access for Learning (DIAL) system
[13] provides for multi-media interactions with a complex in-
formation system; DIAL works with users to identify infor-
mation relevant to their needs. The manner in which DIAL
interacts collaboratively derives from the SharedPlans the-
ory of collaboration [7]. DIAL uses explicit representations
of recipes for domain actions and reasons about intentional
contexts to lessen the amount of information a user needs
to provide in querying the system. It demonstrates both
the efficacy of deploying a model of collaboration to inform
the design of a system and the system limitations that arise
from limited reasoning about knowledge and actions.

GLIDE and DIAL were designed to directly implement
key features of a formal model of collaboration, handling var-
ious belief and intentional constructs implicitly. The formal
model of collaboration is used as a design guide in the design
of the system, but is not reasoned with directly. An alterna-
tive design philosophy is found in the Collagen system [14],
in which the formal model is directly reasoned with, mech-
anisms are incorporated to manage databases of beliefs and
intentions, and a recipe library of predefined plans is used.
In this case, the formal model of collaboration is treated as
a specification of the implementation.

In this paper, we explore another part of the design space
of collaborative interfaces. We describe a writer’s collabora-
tive assistant, implemented in a system called Writer’s Aid,
designed to support an author’s writing efforts by perform-
ing various bibliographic tasks that typically arise in the
process of writing a research manuscript. As in GLIDE and
DIAL, Writer’s Aid follows the design-guide approach. Also
like earlier systems, the division of labor between the user
and Writer’s Aid is predefined and constant. A distinguishing
feature of Writer’s Aid is its ability to autonomously gener-
ate and execute plans to achieve goals provided by the user
and adopted by the system. This autonomy, enabled by use
of automated planning, also distinguishes Writer’s Aid from
other collaborative interfaces with predefined recipes. It en-

ables Writer’s Aid to act as a robust collaborative partner,
undertaking tasks in the service of a joint goal (producing
a manuscript with well-formed citations) and pursuing all
known avenues to accomplish those tasks.

The use of planning to organize the behavior of a collabo-
rative system is especially important in tasks for which there
is more than one possible course of action and where some
of the actions may unpredictably fail. Dealing with biblio-
graphic records and papers is one such problem domain. Pa-
pers and bibliographic information are often available from
multiple electronic sources such as digital libraries, author’s
homepages, and on-line bibliographies. It is burdensome
for a person to search systematically and thoroughly differ-
ent sources to locate papers and tedious for people to com-
pose bibliographic records. Because Internet searches are
typically incomplete, many authors also must consult hard
copies of journals and conference proceedings. The creation
of citations is also disruptive to the writing process. Most
of such work is more appropriately done by a computer sys-
tem that can plan for a wide variety of approaches to data
gathering and pursue them exhaustively. Similarly, many
actions, such as accessing bibliogaphic databases or web re-
sources, can fail (for instance, due to a server failure). In
such a case, a planner can dynamically recover and replan,
efficiently reusing already obtained information, until a goal
is satisfied or all ways of satisfying it fail.

Planning has proven advantages in the task of informa-
tion integration from multiple distributed sources; it hides
from the user the process of data acquisition and manip-
ulation [1, 10]. We take this idea further and weave such
information integration into an ongoing human-computer
collaboration on a broader task that is the source of the
information need. This setup creates advantages for both
parties and thus results in more efficient overall execution
of the task. The user’s simultaneous involvement in edit-
ing the paper and expertise in the particular academic field
provides the computer-assistant with highly selective query
terms and thus results in a high likelihood of Writer’s Aid

autonomously finding the necessary information. The sys-
tem’s performance of various search and formatting actions
saves the writer time and effort identifying and creating bib-
liographic records and locating viewable versions of cited
papers, enabling more efficient paper writing.

Besides being a natural framework for reasoning about
goals and actions, planning offers advantages from the de-
sign and implementation standpoints. The declarative na-
ture of planning-based interfaces allows extending the sys-
tem by adding new types of user goals, new information
sources, and new information retrieval actions independently
of the existing code. As reported by Barish et al. [3] and
confirmed by our own experience with Writer’s Aid, once
the planning structure is in place, designing, extending and
modifying the system in response to users’ requests required
relatively little effort. This flexibility ensures that with more
and more specialized searchable collections appearing on the
Internet, Writer’s Aid’s repertoire of available search meth-
ods and sources will be easily augmented.

Initial laboratory user studies have shown Writer’s Aid

meets its design goals. In particular, most subjects (like
many authors who are fluent in web technologies) ordinar-
ily perform a sequence of online searches for bibliographic
information and papers similar to those done by Writer’s

Aid. Even for such users, Writer’s Aid’s freeing them from

doing these tasks and providing relevant information during
the writing process in a timely manner was of significant
help. An overwhelming majority of users found the system
useful (some characterizing it as very useful), reflecting how
often it was able to find papers the user intended to cite.
Users found the interface intuitive and easy to learn. These
results are all the more impressive because little attention
was spent in fine-tuning the surface features of Writer’s Aid;
for example, the tested version of Writer’s Aid did not use
any advanced context-based rank-ordering of the search re-
sults. A further example of Writer’s Aid’s usefulness is the
preparation of this paper: some of the references cited were
identified using Writer’s Aid and some of the bibliographic
records and all inline citations were done by the system.

Writer’s Aid is implemented on top of Carsten Dominik’s
Reftex package for the GNU Emacs editor, and the LATEX
and BibTEX document typesetting systems. The front end is
implemented in Emacs Lisp, the planner in Allegro Common
Lisp, and web access in WebL [9]. Writer’s Aid is activated
when the user opens a TEX document in the Emacs text
editor.

After giving an example to illustrate the use and advan-
tages of Writer’s Aid, the paper enumerates characteristics of
the bibliographic domain and task that underlie the design
choices in Writer’s Aid and then presents details of the sys-
tem. The system description includes a discussion of the ma-
jor issues that arise in building collaborative interfaces that
utilize planning in domains with incomplete information,
especially the implications for the system architecture and
knowledge representation and planning methods. We briefly
outline extensions to classical planning methods to meet the
demands of collaborative interfaces in domains with proper-
ties like the Writer’s Aid’s. The paper then presents results
of initial user studies, describes related work, and concludes
with a discussion of possible future extensions to the system.

2. Overview and Example
To illustrate Writer’s Aid’s functions and main features,

we will explore its use in the following scenario: An author,
Ed is writing a paper on collaborative interfaces. He decides
to refer to Kinny et al.’s article on teamwork but he does
not recall the title of the paper nor where it appeared. He
does not want to interrupt his writing to locate the paper,
but he does want to scan the paper once it is found to make
sure his claims about it are accurate.

Entering a citation command: Ed inserts a citation
command with a special Emacs command. The system then
prompts him to enter search parameters: keywords of the
search and an indication of whether he wants only the bib-
liographic data on papers or the viewable versions as well.
Ed enters Kinny and team as search keywords and selects
the option of obtaining bibliographic records and viewable
versions of relevant papers.

After a citation command is issued, a label resembling
the LATEX ordinary citation command is automatically gen-
erated and placed in the body of text. The label displays
the type, keywords and status of the citation command as
shown in Figure 1. The labels include the search keywords
and type of search, a word indicating the status (SEARCH-
ING or DONE) and the number of bibliographic records and
viewable papers found in reference to the particular citation
command; they may be updated to reflect the most recent
findings by a simple user request.

While Ed continues writing (and inserting other citation
commands) Writer’s Aid plans and executes a search for the
material he has requested. To make the search more efficient
and better suited to Ed’s needs, Writer’s Aid limits the search
for bibliographic information and papers to his preferred
bibliographies and paper collections. Writer’s Aid identifies
preferred bibliographies semi-automatically at the time of
installation by searching a user’s home directory for his own
bibtex files and inspecting his browser’s bookmarks.

At installation time, Writer’s Aid has identified as Ed’s
preferred bibliographies his own bibtex files and two on-line
scientific collections: ResearchIndex and ACM Digital Li-
brary. It constructs a plan to query Ed’s preferred bibli-
ographic collections for the list of bibliographic records of
papers that are related to the keywords Kinny and team.
Once Writer’s Aid has collected the list of relevant paper
titles from Ed’s bibtex file, ResearchIndex and ACM Dig-
ital Library it attempts to locate viewable version of each
identified paper.

Writer’s Aid’s arsenal includes actions for parsing bibtex
files; querying various digital repositories (currently NEC
Research Institute’s ResearchIndex and the ACM Digital Li-
brary) in search for papers, paper titles and authors’ home-
pages; parsing homepages in search for papers with a given
title; and downloading papers from a given URL.

Reviewing the results and selecting citation item: To
view the data that Writer’s Aid has collected in response to
the citation command, Ed puts the cursor at the body of
the citation command and issues a command to display the
search results. The list of paper titles that has been com-
piled is displayed in a separate window, while the following
options are a single keypress away: viewing and editing the
bibtex record for an item; viewing the text of the paper, if
it is available; selecting an item for citation. The prompt on
the bottom of the selection buffer displays a help line with
the commands for each option (see Figure 1).

Ed reviews the list, scanning some of the papers by issu-
ing a view command until he identifies the paper he wants
to cite, namely “Planned Team Activity”. He selects this
paper with a single keystroke, and Writer’s Aid ensures the
citation is ready for compilation, that is, the appropriate
bibliographic record is inserted in the bibliography file and
the key for that record is placed in the text of the paper.

3. The Citation Application Domain
The Writer’s Aid application has several characteristics

that influenced the design of the system architecture and its
constituent knowledge representation, reasoning, and plan-
ning systems. These requirements arise from two sets of
characteristics: characteristics of the interface, that is, ca-
pabilities desired in the interaction with a person, and char-
acteristics of the domain, that is the properties of references
and citations. These characteristics also appear in many
other applications for which collaborative interface systems
would be beneficial, and hence their effect on system design
are relevant beyond this particular application. We briefly
describe these characteristics and their implications for the
design and implementation of the collaborative interface sys-
tem.

3.1 Interface Characteristics
We discuss three interface requirements in this section,

along with their implications for the implemented system.

These requirements were considered in the initial design of
the collaborative interface and later refined given the obser-
vations and interviews from our pilot user studies.

Anytime editing/search/access capability: A key re-
quirement of the interface is the seamless integration of the
search and selection of papers for citation with the process
of writing. A user can insert new citation commands and
access possibly incomplete results of the search for any of
the citation commands at any time while writing or editing
a paper.

To guarantee the user fast and effective access to bibli-
ographic information for all citations, information requests
arising from citation commands are processed in a round-
robin fashion, working on tasks in the order of increasing
complexity. For instance, querying a bibliography for rele-
vant bibliographic records is easier and faster than searching
for the viewable version of a paper. As a result, Writer’s Aid

first attempts to locate the bibliographic records for all cita-
tions, and postpones attempting to satisfy goals related to
obtaining their viewable versions.1

Availability of partial results and search status: A
user can access the results of a search and make a selection
at any time, even when the search has not yet completed.
When using Writer’s Aid, a person’s primary task, and hence
focus, is typically on writing the paper. As a result, users
usually do not explicitly monitor the progress of the sys-
tem. However, Writer’s Aid informs the user of the progress
of the search by updating the body of the citation command
appearing in the text of the paper (see Figure 1). The dis-
play of search-status information is helpful in two ways: It
enables early detection of queries that produce no matches
(allowing reformulation of the citation command), and it is
a way to inform users about completion status of a citation,
before they start reviewing and selecting from the list of
papers.

3.2 Domain Characteristics
The domain of Writer’s Aid has two characteristics that di-

rectly affect the types of technology used in the underlying
system, both relating to the incompleteness of the informa-
tion possessed by the system.

A major challenge to systems design is the inherent in-
completeness of information about Writer’s Aid’s domain:
bibliographic records, papers, their locations, keywords. A
complete description of this domain cannot be provided a
priori and can never be fully acquired. Rather, the system
must be able to represent partial information and to reason
about acquiring missing information that is necessary to sat-
isfy the planning goals related to a user’s citation needs.

Further, Writer’s Aid’s domain knowledge has local incom-
pleteness; it is incomplete even with respect to properties of
the objects the system knows about. For instance, it may
not know which papers have a particular keyword in their
abstracts or where viewable versions of a paper are located.
As a result, actions in the bibliographic domain rely heavily
on information gathering to in turn affect the actions to be

1However, a user can override this default and can focus
Writer’s Aid specifically on getting a particular paper by us-
ing a special immediate citation command. The search for
materials related to immediate citation is not abandoned
until all possibilities are attempted, that is, until all related
planning goals are either satisfied or found unsatisfiable.

Figure 1: A snapshot of Writer’s Aid. In the middle Emacs window, the user has entered a set of citations in
the text of a paper. The body of the citation command displays the status of the searches, the first of which
is completed. The user is browsing the paper list from one of the incomplete searches in the front window.
The rear window is showing the first paper from the list, retrieved by a single keystroke.

taken subsequently. For example, the results of a query for
relevant papers may determine which viewable versions of
papers the system acquires. The system must therefore be
able to interleave information acquisition and planning; this
is a special case of interleaved planning and plan execution.

Classical planning techniques are insufficient to handle
these properties of the domain. To address inherent incom-
pleteness, Writer’s Aid uses an expressive yet tractable logic,
PSIPLAN[2], which allows efficient representation of incom-
plete information. To address local incompleteness and al-
low for information gathering, Writer’s Aid deploys a novel
method for combining planning with execution of incomplete
plans, which we call planning with hypotheticals. These im-
portant technical aspects of our solution are described in a
later section.

The domain characteristics interact with the interface
characteristics. For instance, since Writer’s Aid begins with
little knowledge about papers relevant to the user’s request,
a substantial amount of information gathering may be re-
quired to satisfy a user’s requests. Because most of the in-
formation is obtained from remote sources over the Internet,
it may take considerable time to identify, locate and down-
load all of this information. On the other hand, it is very
likely that the user will be satisfied with only partial results

of the search, as conventional search engines often provide
only partial results. To make partial results quickly available
to the user (an important interface characteristic), Writer’s

Aid’s design includes (i) formulation of the information re-
quest into a set of goals, processed in order of increasing
likelihood of relevancy to the user, (ii) initial goal reduc-
tion to account for already available information, and (iii)
round-robin processing of information requests in order of
increasing search complexity. These features are described
in more detail in the next sections of the paper.

4. Architecture Overview
The architecture of Writer’s Aid contains the following

three major components in addition to a front-end Emacs
interface:

• State of Knowledge (SOK) and Goal (G)
databases: The SOK database contains Writer’s

Aid’s knowledge about the user’s preferences and the
world of bibliographies, papers and paper sources. The
G database records the system’s goals.

• The Reasoning module (R): This module handles
goal reduction with respect to the SOK database.

• The Planning Problem Manager (PPM): This
module constructs and manages planning problems
arising from a user’s citation requests. It includes a
planning and execution module, PSIPOP-SE (PSIplan-
based Partial Order Planner with Sensing and Execu-
tion), which constructs and executes individual plans.

In brief, Writer’s Aid uses these components to handle a
user’s citation command as follows: The command itself
results in a goal being posted to the goal database G and
the goal reduction module R being invoked as a separate
thread. R consults the SOK database and computes the
part of the goal that is already accomplished and the part
that still remains to be achieved. It places the latter onto
G, passing it to the planning problem manager, PPM. The
PPM module creates an instance of a planning problem and
hands it to the planner, PSIPOP-SE, which either constructs
and executes a plan or reports failure if the planning problem
is unsolvable.

Upon executing the plan actions, Writer’s Aid updates the
SOK database to reflect all changes in knowledge. For ex-
ample, additional knowledge generated by an information-
gathering action is added. Upon completion of its part,
PPM removes the goals that were satisfied from the goal
agenda, records the failure for the (sub)goals that PPM
failed to achieve, and proceeds with the next goal.

When a user issues a command to view a list of records
and papers corresponding to a citation command, this infor-
mation is derived from the SOK, formatted, and presented
in a separate window for browsing.

4.1 SOK and Goal Formulation
All of Writer’s Aid’s knowledge about the world is con-

tained in the SOK database. As discussed above, this
knowledge is assumed to be correct but incomplete. Since
the system cannot have access to a complete description of
the world, it must be able to effectively represent, reason,
and plan with incomplete knowledge.

Writer’s Aid uses the PSIPLAN language [2] which enables
efficient representation of an agent’s incomplete knowledge
about the world and knowledge goals and has an associ-
ated knowledge update procedure that is efficient. As de-
scribed in the language specification [2], PSIPLAN entail-
ment is sound, complete, and takes only polynomial time in
the size of the agent’s SOK database. Alternative planning
representations are either intractable in the general case, or,
as with the tractable LCW (locally closed world) represen-
tation [6], lack completeness and sometimes discard correct
information. Precision in reasoning about the world in the
presence of the unknown bears directly on the ability to have
non-redundancy of information gathering; it is thus espe-
cially critical for a system that uses costly (time-consuming)
information-gathering actions. Incompleteness of reasoning
may cause failure to construct all possible plans, which is
also problematic for a collaborative agent.

PSIPLAN formulas are either ground atoms over function-
free terms, universally quantified negated clauses with ex-
ceptions, or knowledge propositions. For example the state-
ment

The only bibliographies preferred by Ed are the
digital library of the ACM, and maybe the Re-
searchIndex database.

is represented in PSIPLAN by the following two proposi-
tions:2

1. ACM’s digital library is a preferred bibliography, which
is represented by a ground atom:

PrefBib(ACM)

2. Nothing is a preferred bibliography except for ACM and
the ResearchIndex, which is expressed as the following
quantified negated clause with exceptions:

∀b¬PrefBib(b) ∨ b = ACM ∨ b = RI

To represent that a value of a certain proposi-
tion is known, PSIPLAN uses knowledge propositions;
KW (PrefBib(ACM)) denotes that the agent knows the
truth value of PrefBib(ACM), that is, the agent knows
whether ACM is a preferred bibliography.

To represent the user’s goals, Writer’s Aid extends
PSIPLAN to handle implication goals of the form
∀~x∃~y P (~x, ~y) =⇒ Q(~x, ~y), where ~x and ~y are sets of vari-
ables, and both P and Q are conjunctions of atoms.

A user’s request to obtain papers relevant to subject Y is
formulated as the following goal:

For each paper that is relevant to subject Y ac-
cording to some bibliography preferred by Ed, get
that paper and get the bibliographic record for it.

This goal is instantiated as three separate PSIPLAN goal
formulas. The first goal is to obtain all papers and biblio-
graphic records of papers containing keywords Y in the title
and referenced in the user’s own local bibliographic collec-
tions:

∀p∃bPrefBib(b) ∧ LocalBib(b) ∧ InCollection(p, b)∧
T itleUses(p,Y) =⇒ Got(p) ∧ GotBib(p)

(1)

The second goal extends the first to all of the user’s preferred
bibliographic collections.

∀p∃bPrefBib(b) ∧ InCollection(p, b)∧
T itleUses(p, Y) =⇒ Got(p) ∧ GotBib(p)

(2)

The last goal is to obtain all papers containing keywords Y
in the text, rather than in the title.

∀p∃bPrefBib(b) ∧ InCollection(p, b)∧
TextUses (p, Y) =⇒ Got(p) ∧ GotBib(p)

(3)

The first goal is entailed by the second, which is entailed
by the third; thus, the set of papers required by the first
goal is subsumed by the set of second goal’s papers, which,
in turn, is subsumed by the third goal (since a title is a part
of the text). However, these three goals are posted and pro-
cessed in the order presented above to explicitly prioritize

2In this section, we use the following predicates: PrefBib(b)
denotes that b is a preferred bibliography; LocalBib(b)
denotes that b is a locally stored bibtex bibliography;
InCollection(p, b) denotes paper p being in collection of bib-
liography b; TitleUses(p, Y) denotes that keywords Y occur
in p’s title (where by title we mean a combination of the title
and author names); TextUses (p, Y) denotes that keywords
Y occur in p’s full text including the title and author fields;
Got(p) and GotBib(p) denote, respectively, that paper p and
its bibliographic record are stored locally.

the search for papers that are more likely to be in the de-
sired set. Writer’s Aid is able to accomplish this incremental
processing without doing redundant searches for the same
information by saving in the SOK the information acquired
during its attempts to satisfy the first and second goals.

4.2 Goal Reduction
Once a goal is posted to the goal database G, the goal re-

duction module R handles the processing of the goal. R
chooses a goal from G, reducing it with respect to the
SOK, and passing it to PPM. When the planner returns, R
records success or failure in achieving the goal, and proceeds
to the next one.

For simplicity of presentation, we abbreviate a conjunc-
tion of predicates occurring in the left hand side of goals
(1-3) above by a metapredicate Rel(p, b, Y) to indicate that
a paper p is relevant to keywords Y according to bibliogra-
phy b, and drop GotBib(p) from the right hand side. Thus,
the goal with which we are concerned is

g = ∀p∃bPrefBib(b) ∧Rel(p, b, Y) =⇒ Got(p) (4)

To satisfy this goal, it is first necessary to find all papers that
are relevant to Y according to some preferred bibliography
and then, for those papers only, construct a plan of obtaining
them. Thus, R transforms g into two goals in PSIPLAN’s
base language:

1. finding out the truth value of the conjunction
PrefBib(b)∧Rel(p, b, Y) for all possible values of b and
p, i.e.

g1 = ∀p∀bKW (PrefBib(b) ∧ Rel(p, b, Y)),

and, after g1 is achieved,

2. instances of Got(p) corresponding to all values of p for
which PrefBib(b) ∧ Rel(p, b, Y) is true.

R places g1 as the next goal of G and further reduces it
with respect to SOK to identify the part that is not already
known (e.g., as a result of previously executed information-
gathering actions). This computation corresponds to a spe-
cial PSIPLAN operation, called extended difference, denoted
−̇. Given PSIPLAN propositions A and B, A−̇B is the set
of propositions of A that are not entailed by B. R reduces
any goal g by computing the extended difference g−̇SOK.
For example, given an information goal g1 and an SOK that
contains information that nothing is a preferred bibliogra-
phy except for possibly the ACM digital library and the
ResearchIndex, R deduces that the only remaining informa-
tion goals are

g2 = ∀pKW (PrefBib(ACM) ∧Rel(p,ACM, Y)),
g3 = ∀pKW (PrefBib(RI) ∧Rel(p,RI, Y)).

passing g2 and g3 to the PPM.
Such reduction of g, if not done prior to planning, would

need to be carried out while planning to achieve this goal
inside the planner itself. However, in our formalism no in-
formation ever gets lost, so that such early separation of yet
unknown facts from those already known is an advantage,
because it identifies exactly what goal the planner is working
to achieve, and the user can access that information while

the planner is working on the goal. The advantage becomes
even more apparent if we consider having multiple agents
working to achieve the goal. In such cases, reducing the
goal initially prevents redundant computation.

4.3 Managing Planning Problems
Once the reduced goal is computed, it is passed to PPM,

the Planning Problem Manager, which takes care of creat-
ing, prioritizing, solving, and keeping track of the status
of multiple planning tasks arising from goals adopted by
Writer’s Aid. PPM consists of two major components: a
list of planning problems, and a planning algorithm PSIPOP-

SE, which constructs solution plans for individual planning
problems.

When a goal is passed to PPM, a new planning problem
is created and passed to PSIPOP-SE, which searches for a
solution plan, and returns the result. Each planning prob-
lem is a structure that records a planning goal, its solution,
and the overall status of the planning problem, which is one
of open, done, unsatisfiable. Open problems are those for
which the solution plan has not been found, yet the goal has
not yet been found to be unsatisfiable. If a solution plan is
found and successfully executed, PPM removes the plan-
ning problem from the list of open problems and places it
on the done list. If a solution is found but an action execu-
tion failure occurs, the failed action instance is recorded and
never used again by the planner; the planning problem re-
mains on the open list until the planner establishes that no
alternative course of action exists. Unsatisfiable problems
are those that have unachievable goals.

Iterative Deepening in Hypotheticals: To guarantee
step-by-step processing, and availability of partial results of
the search for all of the user’s requests as motivated ear-
lier, PPM processes open problems in a round-robin fash-
ion, gradually increasing the maximum complexity level of
finding and executing the solution plan. To implement the
gradual increase of solution complexity, PPM performs it-
erative deepening in hypotheticals. A hypothetical is a partial
plan that hypothesizes on the value of an unknown propo-
sition or subgoal. For example, having no information on
the location of a paper, the planner may adopt a hypothesis
that the paper is available from a certain collection, and ver-
ify the information by querying the collection. An example
of a plan with two hypotheses is a plan that hypothesizes
that a paper is available from the author’s homepage, and
then, having no information about the author’s homepage,
hypothesizes that the URL for the homepage can be found
from a known index.

By verifying a hypothesis via execution of a sensing action,
the planner eventually collects enough information, and thus
reduces the incompleteness of the knowledge enough to find
a solution plan or find the goal unsatisfiable.

PPM maintains a list of all open problems, processed in
a loop. At each cycle of the loop PPM attempts to find
a solution for each open problem in turn, increasing the
maximum allowed number of hypotheses in a solution plan
when necessary, and executes the plan until the processing
is completed and the problem is removed from the open list.

This combination of iterative deepening in hypotheticals
with round-robin processing of planning problems enables
effective time sharing between the user’s goals, which is nec-
essary for providing partial results on many user requests si-

multaneously, and avoiding the bottlenecks of searching for
a hard to find paper, which may not be the one desired by
the user.

5. Evaluation
We performed a pilot study with two users, followed by a

user study involving eleven subjects. Most of the subjects
were Harvard University students and postdocs; eleven are
computer scientists, one a physicist. Most, though not all,
of the subjects were familiar with Emacs and had previously
written papers using LATEX and BibTEX.

The subjects were shown a brief, two-minute demonstra-
tion of the system; they were then given a printed tutorial3

and asked to follow the steps of the tutorial. The subjects
were next asked to write a paragraph or two of text in the
area of their expertise involving citations, using Writer’s Aid.
All the subjects used the same local bibliography collection,
which overlapped with some of the citations some subjects
desired to make, but most of the bibliographic records re-
quired by the authors were dynamically collected from Re-
searchIndex.

To our surprise, even without access to the writer’s per-
sonal BibTEX database, but using only ResearchIndex as an-
other preferred bibliography and the (dynamically located)
authors’ homepages in the search for papers, Writer’s Aid

was able in most cases to successfully locate at least biblio-
graphic records for the papers. The success rate for finding
viewable versions was more modest, but users still found the
system very helpful. We expect a higher number of papers
could be found by expanding the set of sources to include
more online collections.

After the test, subjects completed a questionnaire allow-
ing freeform answers to the following questions:

1. How hard was it to learn to use the Writer’s Aid?

2. Was it useful? Would you use it for writing papers?

3. Which modifications to the functionality/interface of
Writer’s Aid would you recommend?

Some users were later interviewed to clarify their responses
to Question 3.

The success of Writer’s Aid is indicated by the answers
to the Question 2. To the first part “Was Writer’s Aid use-
ful?” the replies were: very useful (3), useful (7), moderately
useful (1). To the question “Would you use it for writing pa-
pers?” ten users answered yes. (The single dissenting user
explained that he would not trust any online source with
a bibliographic record, so he would manually verify all such
records anyway, making Writer’s Aid redundant in his mind.)

To the question How hard was it to learn to use Writer’s

Aid? 4 users answered very easy, 2 easy, and 5 reasonably
easy or not hard.

In response to Question 3, users suggested adding
morphology-aware search, automatic spell checking of key-
words, an ability to add a record to the personal biblio-
graphic collection without citing it, and minor alterations
to the window interface. We are planning to implement
some of these features in the next version of Writer’s Aid.

3The tutorial is available at
http://www.eecs.harvard.edu/∼tbabaian/waid/tutor.ps.

6. Related Work and Future Directions
Research presented in this paper has connections to work

in several areas, most notably AI-based collaborative inter-
faces, information integration systems and Internet search.

Like many other information integration systems, Writer’s

Aid takes advantage of the breadth of bibliographic infor-
mation available on the web. BIG [10] integrates several
AI technologies, including resource-bounded planning and
scheduling to conduct an offline search for information on
software packages based on a client’s specification. Barish
et al. [3] report on a query-planning-based system, called
TheaterLoc, that searches online movie-related databases in
real time in response to users’ queries. Writer’s Aid differs
from these and other planning-based information-retrieval
systems [11] in carrying out its activities in the context of
collaboration with a user in the ongoing writing process, so
that this writing process provides context for interpreting
the information request. Writer’s Aid is also distinguished
from other planning-based information retrieval systems by
the capabilities it incorporates for interleaved planning and
execution, crucial for integrating information-gathering into
the planning process.

Collagen [15] is a middleware package based on a theory of
collaboration in dialogue [12]; it provides a means for creat-
ing interfaces that participate in dialogues with users about
their goals and beliefs, suggesting possible courses of action
based on the available library of act recipes. Collagen does
not include capabilities for automated reasoning about goal
achievement beyond the use of a fixed set of recipes. Thus,
it lacks Writer’s Aid’s ability to satisfy user goals from al-
most any initial state using a variety of dynamically created
courses of actions. Collagen’s collaborative strength is its
ability to work with the user through a process, known (via
a recipe library) to the system, leading to achievement of the
user’s goal. The focus in Writer’s Aid is on another system
capability important for collaboration, namely, the ability
to plan for and carry out autonomously a complex task that
otherwise would have to be done by the human, and inte-
grating the activities of the system-partner with those of the
user in a non-intrusive and efficient manner.

Other work has explored the use of context in information
retrieval. Watson [4] is intended to work with its user proac-
tively downloading and suggesting information it regards as
relevant to a document that the user is currently editing or
viewing. Watson creates a search query based on the text
and the structure of the document, but not related to any
specific user request. However, the user study of Watson
[4] evaluated the utility of information provided by Watson
statically; it did not involve the system working “alongside”
a user. As a result, the appropriateness of Watson’s search
results in interactive use was not evaluated in that study.
In contrast, Writer’s Aid takes seriously the fact that when
users delegate to a system the task of finding information
needed to complete a task (or satisfy a user’s goal), the use-
fulness of the system depends critically on the relevancy of
the information retrieved by the system and on the results
being available in a timely manner. Otherwise, the time it
takes the user to sift through irrelevant information or the
time spent waiting for the results may outweigh the time the
user saves by not performing the search himself. These per-
formance characteristics in Writer’s Aid are ensured by the
system adopting the precisely specified user’s search goal
and using information sources that are directly related to

a well defined set of data items such as papers and biblio-
graphic records.

In the future, we plan to extend Writer’s Aid to incorporate
the context of a citation request for more efficient search and
ranking of the results. Another direction we have started to
explore is adding the user as a source of information about
his or her own preferences and knowledge of relevance of
various online collections to the subject of a paper. Such
personalization tasks can be stated declaratively via a set of
knowledge goals and satisfied by an action of querying the
writer, when this information becomes necessary. This rep-
resentation separates personalization of the interface from
its overall architecture, making it more easily adjustable. It
also leads to preference elicitation that occurs within the
context of a particular task.

7. Conclusion
We have presented a writer’s assistant system that works

collaboratively with a user, achieving the necessary flexibil-
ity of behavior through explicit representation, reasoning,
and planning with respect to goals and domain knowledge.
Collaborativeness is embodied in the system’s commitment
to shared goals of producing accurate, well-formed citations;
a division of labor in which each participant contributes ac-
cording to natural capabilities, pursuing all known avenues
to accomplish those goals; and communication between the
parties in both directions, the user providing query infor-
mation and bibliographic choices to the system, the system
providing query status and gathered information to the user.

The use of planning technology to implement collabora-
tive interfaces places new requirements on the knowledge
representation and planning methods. We presented a set
of extensions to classical planning representations and tech-
niques to satisfy these requirements. In particular, the use of
an expressive, yet precise and tractable formalism for knowl-
edge representation, PSIPLAN, and the addition of hypo-
thetical planning to integrate domain actions with sensing
actions and interleaved execution, were crucial to the imple-
mentation of the collaboration.

We conducted a laboratory user study to examine the ef-
fectiveness of the system. The results indicate the success
of this particular interface and its implementation. Users
characterized it as a useful and easy-to-learn tool that they
would like to have for academic writing.

8. Acknowledgements
The research reported in this paper was supported by

National Science Foundation grants IRI-9618848 and IIS-
9978343 to Harvard University. The authors thank Luke
Hunsberger, Wheeler Ruml and Christian Lindig for their
assistance in developing the system and for helpful com-
ments on the paper, and all participants of the user study.

9. References
[1] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen.

Query reformulation for dynamic information
integration. Journal of Intelligent Information
Systems - Special Issue on Intelligent Information
Integration, 6(2/3):99–130, 1996.

[2] Tamara Babaian. Knowledge Representation and Open
World Planning Using ψ-forms. PhD thesis, Tufts
University, 2000.

[3] Greg Barish, Craig A. Knoblock, Yi-Shin Chen,
Steven Minton, Andrew Philpot, and Cyrus Shahabi.
The TheaterLoc virtual application. In AAAI/IAAI,
pages 980–987, 2000.

[4] Jay Budzik and Kristian Hammond. User interactions
with everyday applications as context for just-in-time
information access. In Proceedings of IUI2́000, 2000.

[5] P. Cohen and H. Levesque. Teamwork. Nôus,
25:487–512, 1991.

[6] O. Etzioni, K. Golden, and D. Weld. Sound and
efficient closed-world reasoning for planning. Artificial
Intelligence, 89(1–2):113–148, January 1997.

[7] Barbara J. Grosz and Sarit Kraus. The Evolution of
Shared Plans. In A. Rao and M. Wooldridge, editors,
Foundations of Rational Agency, pages 227–262.
Kluwer Academic Press, 1999.

[8] D. Kinny, M. Ljungberg, A. S. Rao, E. Sonenberg,
G. Tidhar, and E. Werner. Planned team activity. In
C. Castelfranchi and E. Werner, editors, Artificial
Social Systems, Lecture Notes in Artificial Intelligence
(LNAI-830), Amsterdam, The Netherlands, 1994.
Springer Verlag.

[9] Thomas Kistler and Hannes Marais. WebL – a
programming language for the web. Computer
Networks and ISDN Systems, 30(1–7):259–270, 1998.

[10] V. Lesser, B. Horling, F. Klassner, A. Raja,
T. Wagner, and S. Zhang. Big: An agent for
resource-bounded information gathering and decision
making. Artificial Intelligence, 118:197–244, 2000.

[11] A. Levy and D. Weld, editors. Artificial Intelligence,
volume 118. Elsevier Science, 2000.

[12] K. E. Lochbaum. A collaborative planning model of
intentional structure. Computational Linguistics, 24,
1994.

[13] C. Ortiz and B.J. Grosz. Interpreting information
requests in context: a collaborative web interface for
distance learning. Autonomous Agents and
Multi-Agent Systems Journal, to appear, 2002.

[14] C. Rich and C. Sidner. Segmented interaction history
in a collaborative interface agent. In Proceedings of
IUI9́7, 1997.

[15] C. Rich, C. Sidner, and N. Lesh. Collagen: Applying
collaborative discourse theory to human-computer
interaction. AI Magazine, Special Issue on Intelligent
User Interfaces, 2001.

[16] K. Ryall, J. Marks, and S. Shieber. An interactive
constraint-based system for drawing graphs. In
Proceedings of UIST, 1997.

[17] S. Shieber. A call for collaborative interfaces. ACM
Computing Surveys, 28A (electronic), 1996.

